-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparams.py
64 lines (53 loc) · 1.81 KB
/
params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
####################################
# Experiment setup #################
####################################
experiment_name = "ion_sam_spea"
#Options:
trials = 1
random_seed = 0
dataset_name = "ion"
#Options: ion, spect, yst_m3, yst_mit, even_parity%n
train_test_rate = 0.5
#Domain: in (0,1)
semantic_size_rate = 1
#Domain: in [0,1]
semantic_keep_label_rate = True
semantic_peculiarity_b = 1
####################################
# CGP ##############################
####################################
n_outputs = 1
n_rows = 1
n_columns = 400
levels_back = n_columns
allow_input_to_output = True
inputs_available_to_all_columns = True
functions = ["sum","sub","mul","safe_divide_one"]
#Options: sum, sub, mul, safe_divide_one, safe_divide_one,
point_mutation_percentage = 9
#Domain: in (0,100]
numeric_output_mapping_threshold = 0.5
####################################
# EA ###############################
####################################
population_size = 500
tournament_size = 5
moea_sorting_method = "SPEA2"
#Options: NSGAII
stopping_criteria = "fitness_evaluations"
#Options: fitness_evaluations, node_evaluations, generations
generations = 10
node_max_evals = 100000000
fitness_max_evals = 100000
objective_names = ["accuracy_in_label", "accuracy_in_label"]
#Options: accuracy, accuracy_in_label
objective_to_max = [True, True]
#Conditions: must be the same length as the objective_names
accuracy_label_index = [0,1] #Relevant if any objective is named "accuracy_in_label".
#Options: labell indexes (order of appearence)
#Conditions: must be the same length as the objective_names
####################################
# Logs #############################
####################################
timestamp_format = ("%Y_%m_%d-%H_%M_%S")
output_path = ["output",experiment_name]