From 977a942f774dd7770a20750155ac2ad3e8fac8be Mon Sep 17 00:00:00 2001 From: Sean Date: Thu, 11 Nov 2021 10:24:48 +0800 Subject: [PATCH 01/20] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 26c70c3..dcef6ab 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,6 @@ # TDEER -Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) +Official Code For [TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations](https://aclanthology.org/2021.emnlp-main.635/) (EMNLP2021) ## Overview From d65703758677cb5c46953fe2482759a00acb80cb Mon Sep 17 00:00:00 2001 From: Sean Date: Thu, 11 Nov 2021 10:30:44 +0800 Subject: [PATCH 02/20] Update README.md update citation --- README.md | 21 ++++++++++++++++----- 1 file changed, 16 insertions(+), 5 deletions(-) diff --git a/README.md b/README.md index dcef6ab..8b6f0aa 100644 --- a/README.md +++ b/README.md @@ -194,12 +194,23 @@ If you use our code in your research, please cite our work: ```bibtex -@inproceedings{li2021tdeer, - title={TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations}, - author={Li, Xianming and Luo, Xiaotian and Dong, Chenghao and Yang, Daichuan and Luan, Beidi and He, Zhen}, - booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)}, - year={2021} +@inproceedings{li-etal-2021-tdeer, + title = "{TDEER}: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations", + author = "Li, Xianming and + Luo, Xiaotian and + Dong, Chenghao and + Yang, Daichuan and + Luan, Beidi and + He, Zhen", + booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", + month = nov, + year = "2021", + address = "Online and Punta Cana, Dominican Republic", + publisher = "Association for Computational Linguistics", + url = "https://aclanthology.org/2021.emnlp-main.635", + pages = "8055--8064", } + ``` ## Contact From b80daf1c81deceeb524ce8b1c97137ddb835a695 Mon Sep 17 00:00:00 2001 From: Sean Date: Thu, 11 Nov 2021 10:46:55 +0800 Subject: [PATCH 03/20] Update README.md typo --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 8b6f0aa..a512290 100644 --- a/README.md +++ b/README.md @@ -4,7 +4,7 @@ Official Code For [TDEER: An Efficient Translating Decoding Schema for Joint Ext ## Overview -TDEER is an efficient model for joint extraction of entities and relations. Unlike the common decoding approach that predicting the relation between subject and object, we adopt the proposed translating decoding schema: subject + relation -> objects, to decode triples. By the proposed translating decoding schema, TDEER can handle the overlapping triple problem effectively and efficiently. The following figure is an illustration of our models. +TDEER is an efficient model for joint extraction of entities and relations. Unlike the common decoding approach that predicts the relation between subject and object, we adopt the proposed translating decoding schema: subject + relation -> objects, to decode triples. By the proposed translating decoding schema, TDEER can handle the overlapping triple problem effectively and efficiently. The following figure is an illustration of our models. ![overview](docs/TDEER-Overview.png) From 171ccf0717b308df9621ca4ccb9c32ab142d03e3 Mon Sep 17 00:00:00 2001 From: Sean Date: Thu, 11 Nov 2021 11:02:05 +0800 Subject: [PATCH 04/20] Update README.md add paperwithcode badges --- README.md | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/README.md b/README.md index a512290..7615c69 100644 --- a/README.md +++ b/README.md @@ -1,3 +1,9 @@ +[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/tdeer-an-efficient-translating-decoding/joint-entity-and-relation-extraction-on-nyt)](https://paperswithcode.com/sota/joint-entity-and-relation-extraction-on-nyt?p=tdeer-an-efficient-translating-decoding) +[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/tdeer-an-efficient-translating-decoding/joint-entity-and-relation-extraction-on-1)](https://paperswithcode.com/sota/joint-entity-and-relation-extraction-on-1?p=tdeer-an-efficient-translating-decoding) +[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/tdeer-an-efficient-translating-decoding/relation-extraction-on-nyt)](https://paperswithcode.com/sota/relation-extraction-on-nyt?p=tdeer-an-efficient-translating-decoding) +[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/tdeer-an-efficient-translating-decoding/relation-extraction-on-webnlg)](https://paperswithcode.com/sota/relation-extraction-on-webnlg?p=tdeer-an-efficient-translating-decoding) + + # TDEER Official Code For [TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations](https://aclanthology.org/2021.emnlp-main.635/) (EMNLP2021) From 3f304b6b6dcda2a397ed9787f764e8dfbd132db2 Mon Sep 17 00:00:00 2001 From: Sean Date: Thu, 11 Nov 2021 17:08:44 +0800 Subject: [PATCH 05/20] Update README.md add emoji --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 7615c69..7f1a2e0 100644 --- a/README.md +++ b/README.md @@ -4,7 +4,7 @@ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/tdeer-an-efficient-translating-decoding/relation-extraction-on-webnlg)](https://paperswithcode.com/sota/relation-extraction-on-webnlg?p=tdeer-an-efficient-translating-decoding) -# TDEER +# TDEER 🦌🦒 Official Code For [TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations](https://aclanthology.org/2021.emnlp-main.635/) (EMNLP2021) From 35a17191050250b31c0e84a39d8ba8c47ace2017 Mon Sep 17 00:00:00 2001 From: Sean Date: Wed, 22 Dec 2021 10:50:53 +0800 Subject: [PATCH 06/20] Update README.md add tensorflow version --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 7f1a2e0..9b9297f 100644 --- a/README.md +++ b/README.md @@ -27,6 +27,7 @@ You can install the required dependencies by the following script. pip install -r requirements.txt ``` +For tensorflow version, we recommend `tensorflow-gpu==1.15.0`. ### 2. Prepare Data From c4f848fdb4b4238e310a92ce10c958d8c7cd2654 Mon Sep 17 00:00:00 2001 From: Sean Date: Wed, 22 Dec 2021 10:51:26 +0800 Subject: [PATCH 07/20] Update requirements.txt remove TensorFlow dependency --- requirements.txt | 1 - 1 file changed, 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index 99d13c4..bedd737 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,7 +1,6 @@ tokenizers boltons Keras>=2.3.1 -tensorflow tqdm click langml From 23cb59ad4d5a86d7b6d0c90eaa893b6a23039c25 Mon Sep 17 00:00:00 2001 From: Sean Date: Wed, 22 Dec 2021 10:53:30 +0800 Subject: [PATCH 08/20] Update README.md update enviroment --- README.md | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 9b9297f..635b4a6 100644 --- a/README.md +++ b/README.md @@ -21,13 +21,14 @@ TDEER is an efficient model for joint extraction of entities and relations. Unli We conducted experiments under python3.7 and used GPUs device to accelerate computing. -You can install the required dependencies by the following script. +You should first prepare the tensorflow version in terms of your GPU environment. For tensorflow version, we recommend `tensorflow-gpu==1.15.0`. + +Then, you can install the other required dependencies by the following script. ```bash pip install -r requirements.txt ``` -For tensorflow version, we recommend `tensorflow-gpu==1.15.0`. ### 2. Prepare Data From faaf2376c86ba280c317bc28ec34bc4ba32c8850 Mon Sep 17 00:00:00 2001 From: Sean Date: Wed, 22 Dec 2021 17:56:08 +0800 Subject: [PATCH 09/20] Update README.md acknowledgment --- README.md | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/README.md b/README.md index 635b4a6..b890f68 100644 --- a/README.md +++ b/README.md @@ -221,6 +221,11 @@ If you use our code in your research, please cite our work: ``` +## Acknowledgment + +Some of our codes are inspired by [weizhepei/CasRel](https://github.com/weizhepei/CasRel). Thanks for their excellent work. + + ## Contact If you have any questions about the paper or code, you can From 1f36f68036ba03a86391bd79e244bb66d54a82bb Mon Sep 17 00:00:00 2001 From: Sean Date: Fri, 21 Jan 2022 10:35:43 +0800 Subject: [PATCH 10/20] langml version --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index bedd737..f74f7f0 100644 --- a/requirements.txt +++ b/requirements.txt @@ -3,4 +3,4 @@ boltons Keras>=2.3.1 tqdm click -langml +langml<0.2.0 From 983e504d663db8689ac83dd25f1e55b6035d5f67 Mon Sep 17 00:00:00 2001 From: Sean Date: Thu, 10 Feb 2022 11:53:01 +0800 Subject: [PATCH 11/20] Update README.md --- ckpts/README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ckpts/README.md b/ckpts/README.md index bd30641..65f26ca 100644 --- a/ckpts/README.md +++ b/ckpts/README.md @@ -1,3 +1,3 @@ The `ckpts` folder saves pre-trained TDEER models. -Click [Google Drive]() \| [Baidu NetDisk]() to download pre-trained TDEER models and then uncompress to this folder. +use `git-lfs` to download the pretrained models. From f97727df506790edfcb28d65c4970a6f67fec9ab Mon Sep 17 00:00:00 2001 From: Sean Date: Thu, 10 Feb 2022 11:53:32 +0800 Subject: [PATCH 12/20] Update README.md --- data/README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/data/README.md b/data/README.md index 59537cf..6917119 100644 --- a/data/README.md +++ b/data/README.md @@ -1,3 +1,3 @@ We follow [weizhepei/CasRel](https://github.com/weizhepei/CasRel) to prepare datas. -You could download our preprocessed datasets ([Google Drive]() | [Baidu NetDisk]()). +Please use `git-lfs` to download the preprocessed data. From bd05d990c6f1d07b01c986502945a00f0a014a55 Mon Sep 17 00:00:00 2001 From: Sean Date: Thu, 10 Feb 2022 12:01:52 +0800 Subject: [PATCH 13/20] Update README.md --- ckpts/README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ckpts/README.md b/ckpts/README.md index 65f26ca..d715026 100644 --- a/ckpts/README.md +++ b/ckpts/README.md @@ -1,3 +1,3 @@ The `ckpts` folder saves pre-trained TDEER models. -use `git-lfs` to download the pretrained models. +You can use `git-lfs` to download the pretrained models. From d9c95d92ef55a4f4bd87239d1810fc8eab4270f2 Mon Sep 17 00:00:00 2001 From: Sean Date: Wed, 16 Feb 2022 09:53:42 +0800 Subject: [PATCH 14/20] Update requirements.txt --- requirements.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index f74f7f0..f7a5fc4 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,6 +1,6 @@ tokenizers boltons -Keras>=2.3.1 +Keras==2.3.1 tqdm click langml<0.2.0 From bd51835664f78d234739ac81ee66eaf4cb480578 Mon Sep 17 00:00:00 2001 From: Sean Date: Mon, 7 Mar 2022 14:14:22 +0800 Subject: [PATCH 15/20] remove duplicated code --- utils.py | 1 - 1 file changed, 1 deletion(-) diff --git a/utils.py b/utils.py index d5f6105..bfbdf9d 100644 --- a/utils.py +++ b/utils.py @@ -66,7 +66,6 @@ def __call__(self, text: str, threshold: float = 0.5) -> Set: batch_sub_entities = [] batch_rel_types = [] for (sub, sub_head, sub_tail) in subjects: - sub = self.decode_entity(text, mapping, sub_head, sub_tail) for rel in relations: batch_sub_heads.append([sub_head]) batch_sub_tails.append([sub_tail]) From c782dad5d84b50d531eecb2eb2be3ed22f5180fe Mon Sep 17 00:00:00 2001 From: Sean Date: Sat, 26 Mar 2022 10:25:36 +0800 Subject: [PATCH 16/20] fix a typo --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index b890f68..e1edf53 100644 --- a/README.md +++ b/README.md @@ -221,7 +221,7 @@ If you use our code in your research, please cite our work: ``` -## Acknowledgment +## Acknowledgement Some of our codes are inspired by [weizhepei/CasRel](https://github.com/weizhepei/CasRel). Thanks for their excellent work. From 81d3b3457e5308547d7d6695b31193bb34d98223 Mon Sep 17 00:00:00 2001 From: Sean Date: Wed, 18 May 2022 09:57:26 +0800 Subject: [PATCH 17/20] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index e1edf53..bfd2d96 100644 --- a/README.md +++ b/README.md @@ -4,7 +4,7 @@ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/tdeer-an-efficient-translating-decoding/relation-extraction-on-webnlg)](https://paperswithcode.com/sota/relation-extraction-on-webnlg?p=tdeer-an-efficient-translating-decoding) -# TDEER 🦌🦒 +# TDEER 🦌 Official Code For [TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations](https://aclanthology.org/2021.emnlp-main.635/) (EMNLP2021) From a3780423a2894d00e57de2c677ca3403a105a53c Mon Sep 17 00:00:00 2001 From: innovation64 Date: Wed, 5 Jun 2024 18:23:41 +0800 Subject: [PATCH 18/20] update pytorch version --- ckpts/README.md | 3 - ckpts/ckpts.zip | 3 - dataloader.py | 204 +- langml/.bumpversion.cfg | 5 - langml/.gitignore | 103 - langml/Dockerfile | 31 - langml/README.md | 17 - langml/dev-requirements.txt | 5 - langml/langml/__init__.py | 11 - langml/langml/baselines/__init__.py | 22 - langml/langml/baselines/clf/__init__.py | 50 - langml/langml/baselines/clf/bert.py | 51 - langml/langml/baselines/clf/bilstm.py | 44 - langml/langml/baselines/clf/cli.py | 480 - langml/langml/baselines/clf/dataloader.py | 115 - langml/langml/baselines/clf/textcnn.py | 45 - langml/langml/baselines/cli.py | 16 - langml/langml/baselines/ner/__init__.py | 104 - langml/langml/baselines/ner/bert_crf.py | 49 - langml/langml/baselines/ner/cli.py | 329 - langml/langml/baselines/ner/dataloader.py | 141 - langml/langml/baselines/ner/lstm_crf.py | 31 - langml/langml/cli.py | 19 - langml/langml/layers/__init__.py | 24 - langml/langml/layers/attention.py | 577 - langml/langml/layers/crf.py | 159 - langml/langml/layers/layer_norm.py | 103 - langml/langml/log.py | 22 - langml/langml/model.py | 96 - langml/langml/plm/__init__.py | 29 - langml/langml/plm/albert.py | 138 - langml/langml/plm/bert.py | 343 - langml/langml/plm/layers.py | 244 - langml/langml/prompt/__init__.py | 3 - langml/langml/prompt/prompt.py | 276 - langml/langml/tensor_typing.py | 61 - langml/langml/third_party/__init__.py | 0 langml/langml/third_party/conlleval.py | 305 - langml/langml/third_party/crf.py | 693 - langml/langml/tokenizer.py | 525 - langml/langml/transformer/__init__.py | 18 - langml/langml/transformer/encoder.py | 104 - langml/langml/transformer/layers.py | 241 - langml/langml/utils.py | 104 - langml/requirements.txt | 11 - langml/setup.cfg | 3 - langml/setup.py | 48 - .../tests/data/albert_vocab/30k-clean.model | Bin 760289 -> 0 bytes .../tests/data/albert_vocab/30k-clean.vocab | 30000 ---------------- langml/tests/data/wp_cn_vocab.txt | 21128 ----------- langml/tests/test_attention.py | 93 - langml/tests/test_bert.py | 23 - langml/tests/test_crf.py | 43 - langml/tests/test_layer_norm.py | 29 - langml/tests/test_model.py | 164 - langml/tests/test_modify_boundary.py | 17 - langml/tests/test_tokenizer.py | 643 - langml/tests/test_transformer.py | 25 - model.py | 294 +- pretrained-bert/README.md | 1 - requirements.txt | 6 - run.py | 98 +- utils.py | 152 +- 63 files changed, 432 insertions(+), 58289 deletions(-) delete mode 100644 ckpts/README.md delete mode 100644 ckpts/ckpts.zip delete mode 100644 langml/.bumpversion.cfg delete mode 100644 langml/.gitignore delete mode 100644 langml/Dockerfile delete mode 100644 langml/README.md delete mode 100644 langml/dev-requirements.txt delete mode 100644 langml/langml/__init__.py delete mode 100644 langml/langml/baselines/__init__.py delete mode 100644 langml/langml/baselines/clf/__init__.py delete mode 100644 langml/langml/baselines/clf/bert.py delete mode 100644 langml/langml/baselines/clf/bilstm.py delete mode 100644 langml/langml/baselines/clf/cli.py delete mode 100644 langml/langml/baselines/clf/dataloader.py delete mode 100644 langml/langml/baselines/clf/textcnn.py delete mode 100644 langml/langml/baselines/cli.py delete mode 100644 langml/langml/baselines/ner/__init__.py delete mode 100644 langml/langml/baselines/ner/bert_crf.py delete mode 100644 langml/langml/baselines/ner/cli.py delete mode 100644 langml/langml/baselines/ner/dataloader.py delete mode 100644 langml/langml/baselines/ner/lstm_crf.py delete mode 100644 langml/langml/cli.py delete mode 100644 langml/langml/layers/__init__.py delete mode 100644 langml/langml/layers/attention.py delete mode 100644 langml/langml/layers/crf.py delete mode 100644 langml/langml/layers/layer_norm.py delete mode 100644 langml/langml/log.py delete mode 100644 langml/langml/model.py delete mode 100644 langml/langml/plm/__init__.py delete mode 100644 langml/langml/plm/albert.py delete mode 100644 langml/langml/plm/bert.py delete mode 100644 langml/langml/plm/layers.py delete mode 100644 langml/langml/prompt/__init__.py delete mode 100644 langml/langml/prompt/prompt.py delete mode 100644 langml/langml/tensor_typing.py delete mode 100644 langml/langml/third_party/__init__.py delete mode 100644 langml/langml/third_party/conlleval.py delete mode 100644 langml/langml/third_party/crf.py delete mode 100644 langml/langml/tokenizer.py delete mode 100644 langml/langml/transformer/__init__.py delete mode 100644 langml/langml/transformer/encoder.py delete mode 100644 langml/langml/transformer/layers.py delete mode 100644 langml/langml/utils.py delete mode 100644 langml/requirements.txt delete mode 100644 langml/setup.cfg delete mode 100644 langml/setup.py delete mode 100644 langml/tests/data/albert_vocab/30k-clean.model delete mode 100644 langml/tests/data/albert_vocab/30k-clean.vocab delete mode 100644 langml/tests/data/wp_cn_vocab.txt delete mode 100644 langml/tests/test_attention.py delete mode 100644 langml/tests/test_bert.py delete mode 100644 langml/tests/test_crf.py delete mode 100644 langml/tests/test_layer_norm.py delete mode 100644 langml/tests/test_model.py delete mode 100644 langml/tests/test_modify_boundary.py delete mode 100644 langml/tests/test_tokenizer.py delete mode 100644 langml/tests/test_transformer.py delete mode 100644 pretrained-bert/README.md delete mode 100644 requirements.txt diff --git a/ckpts/README.md b/ckpts/README.md deleted file mode 100644 index d715026..0000000 --- a/ckpts/README.md +++ /dev/null @@ -1,3 +0,0 @@ -The `ckpts` folder saves pre-trained TDEER models. - -You can use `git-lfs` to download the pretrained models. diff --git a/ckpts/ckpts.zip b/ckpts/ckpts.zip deleted file mode 100644 index d7230bf..0000000 --- a/ckpts/ckpts.zip +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:aaefe93dd5d6427897975a33fc9bc0ee99c4282c093ac1a8b75d58b65eb9ee25 -size 1226187952 diff --git a/dataloader.py b/dataloader.py index bda6e34..b49fd3a 100644 --- a/dataloader.py +++ b/dataloader.py @@ -1,50 +1,52 @@ -#! -*- coding:utf-8 -*- +# -*- coding:utf-8 -*- import json from typing import Dict, List, Optional, Tuple from collections import defaultdict import numpy as np -from keras.preprocessing.sequence import pad_sequences +import torch +from torch.utils.data import Dataset, DataLoader +from transformers import BertTokenizer import log - -def find_entity(source: List[int], target: List[int]) -> int: +def find_entity(source, target): + """ Find the start index of the target sequence in the source sequence """ target_len = len(target) - for i in range(len(source)): - if source[i: i + target_len] == target: + for i in range(len(source) - target_len + 1): + if source[i:i+target_len] == target: return i return -1 +def to_tuple(sent): + """ Convert lists to tuples in place """ + sent['triple_list'] = [tuple(triple) for triple in sent['triple_list']] -def to_tuple(sent: str): - """ list to tuple (inplace operation) - """ - triple_list = [] - for triple in sent['triple_list']: - triple_list.append(tuple(triple)) - sent['triple_list'] = triple_list - - -def filter_data(fpath: str, rel2id: Dict): +def filter_data(fpath: str, rel2id: dict): filtered_data = [] - for obj in json.load(open(fpath)): - filtered_triples = [] - if 'NYT11-HRL' in fpath and len(obj['triple_list']) != 1: + try: + with open(fpath, 'r') as file: + data = json.load(file) + except FileNotFoundError: + print("File not found:", fpath) + return filtered_data + except json.JSONDecodeError: + print("Error decoding JSON from:", fpath) + return filtered_data + + for obj in data: + if 'NYT11-HRL' in fpath and len(obj.get('triple_list', [])) != 1: continue - for triple in obj['triple_list']: - if triple[1] not in rel2id: - continue - filtered_triples.append(triple) + filtered_triples = [triple for triple in obj.get('triple_list', []) if triple[1] in rel2id] if not filtered_triples: continue obj['triple_list'] = filtered_triples filtered_data.append(obj) + return filtered_data - -def load_rel(rel_path: str) -> Tuple[Dict, Dict, List, int]: +def load_rel(rel_path: str) -> Tuple[Dict, Dict, List]: id2rel, rel2id = json.load(open(rel_path)) all_rels = list(id2rel.keys()) id2rel = {int(i): j for i, j in id2rel.items()} @@ -64,9 +66,8 @@ def load_data(fpath: str, rel2id: Dict, is_train: bool = False) -> List: log.info(f"data len: {len(data)}") return data - -class DataGenerator: - def __init__(self, datas: List, tokenizer: object, rel2id: Dict, all_rels: List, max_len: int, +class DataGenerator(Dataset): + def __init__(self, datas: List, tokenizer: BertTokenizer, rel2id: Dict, all_rels: List, max_len: int, batch_size: int = 32, max_sample_triples: Optional[int] = None, neg_samples: Optional[int] = None): self.max_sample_triples = max_sample_triples self.neg_samples = neg_samples @@ -85,7 +86,7 @@ def __init__(self, datas: List, tokenizer: object, rel2id: Dict, all_rels: List, pos_datas = [] neg_datas = [] - text_tokened = tokenizer.encode(data['text']) + text_tokened = tokenizer.encode_plus(data['text'], truncation=True, padding='max_length', max_length=max_len) entity_set = set() # (head idx, tail idx) triples_set = set() # (sub head, sub tail, obj head, obj tail, rel) subj_rel_set = set() # (sub head, sub tail, rel) @@ -95,12 +96,12 @@ def __init__(self, datas: List, tokenizer: object, rel2id: Dict, all_rels: List, for triple in data['triple_list']: subj, rel, obj = triple rel_idx = self.rel2id[rel] - subj_tokened = tokenizer.encode(subj) - obj_tokened = tokenizer.encode(obj) - subj_head_idx = find_entity(text_tokened.ids, subj_tokened.ids[1:-1]) - subj_tail_idx = subj_head_idx + len(subj_tokened.ids[1:-1]) - 1 - obj_head_idx = find_entity(text_tokened.ids, obj_tokened.ids[1:-1]) - obj_tail_idx = obj_head_idx + len(obj_tokened.ids[1:-1]) - 1 + subj_tokened = tokenizer.encode_plus(subj, add_special_tokens=False) + obj_tokened = tokenizer.encode_plus(obj, add_special_tokens=False) + subj_head_idx = find_entity(text_tokened['input_ids'], subj_tokened['input_ids']) + subj_tail_idx = subj_head_idx + len(subj_tokened['input_ids']) - 1 + obj_head_idx = find_entity(text_tokened['input_ids'], obj_tokened['input_ids']) + obj_tail_idx = obj_head_idx + len(obj_tokened['input_ids']) - 1 if subj_head_idx == -1 or obj_head_idx == -1: continue entity_set.add((subj_head_idx, subj_tail_idx, 0)) @@ -141,8 +142,8 @@ def __init__(self, datas: List, tokenizer: object, rel2id: Dict, all_rels: List, sample_obj_heads[idx] = 1.0 # postive samples pos_datas.append({ - 'token_ids': text_tokened.ids, - 'segment_ids': text_tokened.type_ids, + 'token_ids': text_tokened['input_ids'], + 'segment_ids': text_tokened['token_type_ids'], 'entity_heads': entity_heads, 'entity_tails': entity_tails, 'rels': rels, @@ -158,8 +159,8 @@ def __init__(self, datas: List, tokenizer: object, rel2id: Dict, all_rels: List, neg_pair = (neg_subj_head_idx, neg_sub_tail_idx, rel_idx) if neg_pair not in subj_rel_set and neg_pair not in neg_history: current_neg_datas.append({ - 'token_ids': text_tokened.ids, - 'segment_ids': text_tokened.type_ids, + 'token_ids': text_tokened['input_ids'], + 'segment_ids': text_tokened['token_type_ids'], 'entity_heads': entity_heads, 'entity_tails': entity_tails, 'rels': rels, @@ -175,8 +176,8 @@ def __init__(self, datas: List, tokenizer: object, rel2id: Dict, all_rels: List, neg_pair = (subj_head_idx, subj_tail_idx, neg_rel_idx) if neg_pair not in subj_rel_set and neg_pair not in neg_history: current_neg_datas.append({ - 'token_ids': text_tokened.ids, - 'segment_ids': text_tokened.type_ids, + 'token_ids': text_tokened['input_ids'], + 'segment_ids': text_tokened['token_type_ids'], 'entity_heads': entity_heads, 'entity_tails': entity_tails, 'rels': rels, @@ -192,8 +193,8 @@ def __init__(self, datas: List, tokenizer: object, rel2id: Dict, all_rels: List, neg_pair = (neg_subj_head_idx, neg_sub_tail_idx, rel_idx) if neg_pair not in subj_rel_set and neg_pair not in neg_history: current_neg_datas.append({ - 'token_ids': text_tokened.ids, - 'segment_ids': text_tokened.type_ids, + 'token_ids': text_tokened['input_ids'], + 'segment_ids': text_tokened['token_type_ids'], 'entity_heads': entity_heads, 'entity_tails': entity_tails, 'rels': rels, @@ -211,54 +212,71 @@ def __init__(self, datas: List, tokenizer: object, rel2id: Dict, all_rels: List, current_datas = pos_datas + neg_datas self.datas.extend(current_datas) - self.steps = len(self.datas) // self.batch_size - if len(self.datas) % self.batch_size != 0: - self.steps += 1 - def __len__(self): - return self.steps - - def __iter__(self, random: bool = False): - idxs = list(range(len(self.datas))) - if random: - np.random.shuffle(idxs) - batch_tokens, batch_segments = [], [] - batch_entity_heads, batch_entity_tails = [], [] - batch_rels = [] - batch_sample_subj_head, batch_sample_subj_tail = [], [] - batch_sample_rel = [] - batch_sample_obj_heads = [] - - for idx in idxs: - obj = self.datas[idx] - batch_tokens.append(obj['token_ids']) - batch_segments.append(obj['segment_ids']) - batch_entity_heads.append(obj['entity_heads']) - batch_entity_tails.append(obj['entity_tails']) - batch_rels.append(obj['rels']) - batch_sample_subj_head.append(obj['sample_subj_head']) - batch_sample_subj_tail.append(obj['sample_subj_tail']) - batch_sample_rel.append(obj['sample_rel']) - batch_sample_obj_heads.append(obj['sample_obj_heads']) - if len(batch_tokens) == self.batch_size or idx == idxs[-1]: - batch_tokens = pad_sequences(batch_tokens, maxlen=self.max_len, padding='post', truncating='post') - batch_segments = pad_sequences(batch_segments, maxlen=self.max_len, padding='post', truncating='post') - batch_entity_heads = pad_sequences(batch_entity_heads, maxlen=self.max_len, value=np.zeros(2)) - batch_entity_tails = pad_sequences(batch_entity_tails, maxlen=self.max_len, value=np.zeros(2)) - batch_rels = np.array(batch_rels) - batch_sample_subj_head = np.array(batch_sample_subj_head) - batch_sample_subj_tail = np.array(batch_sample_subj_tail) - batch_sample_rel = np.array(batch_sample_rel) - batch_sample_obj_heads = np.array(batch_sample_obj_heads) - yield [batch_tokens, batch_segments, batch_entity_heads, batch_entity_tails, batch_rels, batch_sample_subj_head, batch_sample_subj_tail, batch_sample_rel, batch_sample_obj_heads], None - batch_tokens, batch_segments = [], [] - batch_entity_heads, batch_entity_tails = [], [] - batch_rels = [] - batch_sample_subj_head, batch_sample_subj_tail = [], [] - batch_sample_rel = [] - batch_sample_obj_heads = [] - - def forfit(self, random: bool = False): - while True: - for inputs, labels in self.__iter__(random=random): - yield inputs, labels + return len(self.datas) + + def __getitem__(self, idx): + sample = self.datas[idx] + + return { + 'token_ids': sample['token_ids'], + 'segment_ids': sample['segment_ids'], + 'entity_heads': sample['entity_heads'], + 'entity_tails': sample['entity_tails'], + 'rels': sample['rels'], + 'sample_subj_head': sample['sample_subj_head'], + 'sample_subj_tail': sample['sample_subj_tail'], + 'sample_rel': sample['sample_rel'], + 'sample_obj_heads': sample['sample_obj_heads'] + } + + +def collate_fn(batch): + print("Batch input:", batch) + batch_tokens = [item['token_ids'] for item in batch] + batch_attention_masks = [[1] * len(tokens) for tokens in batch_tokens] + batch_segments = [item['segment_ids'] for item in batch] + batch_entity_heads = [item['entity_heads'] for item in batch] + batch_entity_tails = [item['entity_tails'] for item in batch] + batch_rels = [item['rels'] for item in batch] + batch_sample_subj_head = [item['sample_subj_head'] for item in batch] + batch_sample_subj_tail = [item['sample_subj_tail'] for item in batch] + batch_sample_rel = [item['sample_rel'] for item in batch] + batch_sample_obj_heads = [item['sample_obj_heads'] for item in batch] + + # Convert lists to NumPy arrays + batch_tokens_np = np.array(batch_tokens) + batch_attention_masks_np = np.array(batch_attention_masks) + batch_segments_np = np.array(batch_segments) + batch_entity_heads_np = np.array(batch_entity_heads) + batch_entity_tails_np = np.array(batch_entity_tails) + batch_rels_np = np.array(batch_rels) + batch_sample_subj_head_np = np.array(batch_sample_subj_head) + batch_sample_subj_tail_np = np.array(batch_sample_subj_tail) + batch_sample_rel_np = np.array(batch_sample_rel) + batch_sample_obj_heads_np = np.array(batch_sample_obj_heads) + + # Convert NumPy arrays to PyTorch tensors + batch_tokens = torch.tensor(batch_tokens_np, dtype=torch.long) + batch_attention_masks = torch.tensor(batch_attention_masks_np, dtype=torch.long) + batch_segments = torch.tensor(batch_segments_np, dtype=torch.long) + batch_entity_heads = torch.tensor(batch_entity_heads_np, dtype=torch.float) + batch_entity_tails = torch.tensor(batch_entity_tails_np, dtype=torch.float) + batch_rels = torch.tensor(batch_rels_np, dtype=torch.float) + batch_sample_subj_head = torch.tensor(batch_sample_subj_head_np, dtype=torch.long) + batch_sample_subj_tail = torch.tensor(batch_sample_subj_tail_np, dtype=torch.long) + batch_sample_rel = torch.tensor(batch_sample_rel_np, dtype=torch.long) + batch_sample_obj_heads = torch.tensor(batch_sample_obj_heads_np, dtype=torch.float) + + return { + 'token_ids': batch_tokens, + 'attention_mask': batch_attention_masks, + 'segment_ids': batch_segments, + 'entity_heads': batch_entity_heads, + 'entity_tails': batch_entity_tails, + 'rels': batch_rels, + 'sample_subj_head': batch_sample_subj_head, + 'sample_subj_tail': batch_sample_subj_tail, + 'sample_rel': batch_sample_rel, + 'sample_obj_heads': batch_sample_obj_heads + } \ No newline at end of file diff --git a/langml/.bumpversion.cfg b/langml/.bumpversion.cfg deleted file mode 100644 index 6c922aa..0000000 --- a/langml/.bumpversion.cfg +++ /dev/null @@ -1,5 +0,0 @@ -[bumpversion] -files = setup.py langml/__init__.py -commit = True -tag = True -current_version = 0.6.3 diff --git a/langml/.gitignore b/langml/.gitignore deleted file mode 100644 index 6e1079e..0000000 --- a/langml/.gitignore +++ /dev/null @@ -1,103 +0,0 @@ -# Byte-compiled / optimized / DLL files -__pycache__/ -*.py[cod] -*$py.class - -# C extensions -*.so - -# Distribution / packaging -.Python -env/ -build/ -develop-eggs/ -dist/ -downloads/ -eggs/ -.eggs/ -lib/ -lib64/ -parts/ -sdist/ -var/ -wheels/ -*.egg-info/ -.installed.cfg -*.egg - -# PyInstaller -# Usually these files are written by a python script from a template -# before PyInstaller builds the exe, so as to inject date/other infos into it. -*.manifest -*.spec - -# Installer logs -pip-log.txt -pip-delete-this-directory.txt - -# Unit test / coverage reports -htmlcov/ -.tox/ -.coverage -.coverage.* -.cache -nosetests.xml -coverage.xml -*.cover -.hypothesis/ - -# Translations -*.mo -*.pot - -# Django stuff: -*.log -local_settings.py - -# Flask stuff: -instance/ -.webassets-cache - -# Scrapy stuff: -.scrapy - -# Sphinx documentation -docs/_build/ - -# PyBuilder -target/ - -# Jupyter Notebook -.ipynb_checkpoints - -# pyenv -.python-version - -# celery beat schedule file -celerybeat-schedule - -# SageMath parsed files -*.sage.py - -# dotenv -.env - -# virtualenv -.venv -venv/ -ENV/ - -# Spyder project settings -.spyderproject -.spyproject - -# Rope project settings -.ropeproject - -# mkdocs documentation -/site - -# mypy -.mypy_cache/ - -.vscode diff --git a/langml/Dockerfile b/langml/Dockerfile deleted file mode 100644 index dd8e919..0000000 --- a/langml/Dockerfile +++ /dev/null @@ -1,31 +0,0 @@ -FROM ubuntu:16.04 - -ENV LANG en_US.UTF-8 -ENV LANGUAGE en_US:en -ENV LC_ALL en_US.UTF-8 -ENV LD_LIBRARY_PATH /usr/local/lib:$LD_LIBRARY_PATH - -RUN apt-get update && \ - apt-get install -y locales && \ - locale-gen en_US.UTF-8 && \ - DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends apt-utils \ - # dependency for scipy - gfortran libatlas-dev libblas-dev libopenblas-dev liblapack-dev libopenblas-base \ - redis-server wget build-essential curl ca-certificates libssl-dev && \ - DEBIAN_FRONTEND=noninteractive apt-get autoremove -y && \ - rm -rf /var/lib/apt/list/* - -# Install Python 3.7 -RUN echo 'deb http://ppa.launchpad.net/deadsnakes/ppa/ubuntu xenial main' > /etc/apt/sources.list.d/deadsnakes-ubuntu-ppa-xenial.list && \ - apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 6A755776 && \ - apt-get update && \ - DEBIAN_FRONTEND=noninteractive apt-get install -y python3.7 python3.7-dev python3.7-venv && \ - curl -sSL https://bootstrap.pypa.io/get-pip.py | python3.7 \ - && python3.7 -m ensurepip - -ADD dev-requirements.txt /tmp/dev-requirements.txt -ADD requirements.txt /tmp/requirements.txt - -ARG PIP_INDEX_URL -RUN python3.7 -m pip install --no-cache-dir -U pip twine flake8 "tensorflow<2.5.0" && \ - python3.7 -m pip install --no-cache-dir -r /tmp/dev-requirements.txt diff --git a/langml/README.md b/langml/README.md deleted file mode 100644 index b7f98b9..0000000 --- a/langml/README.md +++ /dev/null @@ -1,17 +0,0 @@ -# Installation - - -You can install [langml](https://github.com/4AI/langml) via pip, -``` -pip install langml -``` - -or manually, - -``` -pip install -e . -``` - -# Reference - -- [langml](https://github.com/4AI/langml) \ No newline at end of file diff --git a/langml/dev-requirements.txt b/langml/dev-requirements.txt deleted file mode 100644 index 921f055..0000000 --- a/langml/dev-requirements.txt +++ /dev/null @@ -1,5 +0,0 @@ --r requirements.txt -setuptools -pytest -pytest-cov -pytest-sugar diff --git a/langml/langml/__init__.py b/langml/langml/__init__.py deleted file mode 100644 index 94edd59..0000000 --- a/langml/langml/__init__.py +++ /dev/null @@ -1,11 +0,0 @@ -# -*- coding: utf-8 -*- - -import os - -import tensorflow as tf - - -__version__ = '0.6.3' - -TF_VERSION = int(tf.__version__.split('.')[0]) -TF_KERAS = int(os.getenv('TF_KERAS', 0)) == 1 diff --git a/langml/langml/baselines/__init__.py b/langml/langml/baselines/__init__.py deleted file mode 100644 index 488ff4a..0000000 --- a/langml/langml/baselines/__init__.py +++ /dev/null @@ -1,22 +0,0 @@ -# -*- coding: utf-8 -*- - -from typing import Dict, Any - - -class BaselineModel: - def build_model(self, *args, **kwargs): - raise NotImplementedError - - -class Parameters: - """ Hyper-Parameters - """ - def __init__(self, data: Dict): - for name, value in data.items(): - setattr(self, name, self._wrap(value)) - - def _wrap(self, value: Any): - if isinstance(value, (tuple, list, set, frozenset)): - return type(value)([self._wrap(v) for v in value]) - else: - return Parameters(value) if isinstance(value, dict) else value diff --git a/langml/langml/baselines/clf/__init__.py b/langml/langml/baselines/clf/__init__.py deleted file mode 100644 index 0025d89..0000000 --- a/langml/langml/baselines/clf/__init__.py +++ /dev/null @@ -1,50 +0,0 @@ -# -*- coding: utf-8 -*- - -import os -from typing import Dict, List, Tuple, Union - -import numpy as np -from sklearn.metrics import f1_score, accuracy_score, classification_report - -from langml import TF_VERSION -from langml.tensor_typing import Models - - -class Infer: - def __init__(self, - model: Models, - tokenizer: object, - id2label: Dict, - is_bert: bool = True): - self.model = model - self.tokenizer = tokenizer - self.id2label = id2label - self.is_bert = is_bert - - def __call__(self, text: str): - tokenized = self.tokenizer.encode(text) - token_ids = np.array([tokenized.ids]) - segment_ids = np.array([tokenized.segment_ids]) - if TF_VERSION > 1: - if self.is_bert: - logits = self.model([token_ids, segment_ids]) - else: - logits = self.model([token_ids]) - else: - if self.is_bert: - logits = self.model.predict([token_ids, segment_ids]) - else: - logits = self.model.predict([token_ids]) - pred = np.argmax(logits, 1)[0] - return self.id2label[pred] - - -def compute_detail_metrics(infer: object, datas: List, use_micro=False) -> Tuple[float, float, Union[str, Dict]]: - y_true, y_pred = [], [] - for text, label in datas: - y_pred.append(infer(text)) - y_true.append(label) - acc = accuracy_score(y_true, y_pred) - f1 = f1_score(y_true, y_pred, average='micro' if use_micro else 'macro') - cr = classification_report(y_true=y_true, y_pred=y_pred) - return f1, acc, cr diff --git a/langml/langml/baselines/clf/bert.py b/langml/langml/baselines/clf/bert.py deleted file mode 100644 index d4adac7..0000000 --- a/langml/langml/baselines/clf/bert.py +++ /dev/null @@ -1,51 +0,0 @@ -# -*- coding: utf-8 -*- - -from langml import TF_KERAS -if TF_KERAS: - import tensorflow.keras as keras - import tensorflow.keras.layers as L -else: - import keras - import keras.layers as L - -from langml.plm.albert import load_albert -from langml.plm.bert import load_bert -from langml.baselines import BaselineModel, Parameters -from langml.tensor_typing import Models - - -class Bert(BaselineModel): - def __init__(self, - config_path: str, - ckpt_path: str, - params: Parameters, - backbone: str = 'roberta'): - self.config_path = config_path - self.ckpt_path = ckpt_path - self.params = params - assert backbone in ['bert', 'roberta', 'albert'] - if backbone == 'albert': - self.load_plm = load_albert - else: - self.load_plm = load_bert - - def build_model(self, lazy_restore=False) -> Models: - if lazy_restore: - model, _, restore_bert_weights = self.load_plm(self.config_path, self.ckpt_path, lazy_restore=True) - else: - model, _ = self.load_plm(self.config_path, self.ckpt_path) - # CLS - output = L.Lambda(lambda x: x[:, 0], name='CLS')(model.output) - output = L.Dense(self.params.tag_size, - name='tag', - activation='softmax')(output) - train_model = keras.Model(model.input, output) - train_model.summary() - train_model.compile(keras.optimizers.Adam(self.params.learning_rate), - loss='sparse_categorical_crossentropy', - metrics=['accuracy']) - # For distributed training, restoring bert weight after model compiling. - if lazy_restore: - restore_bert_weights(model) - - return train_model diff --git a/langml/langml/baselines/clf/bilstm.py b/langml/langml/baselines/clf/bilstm.py deleted file mode 100644 index 15ea476..0000000 --- a/langml/langml/baselines/clf/bilstm.py +++ /dev/null @@ -1,44 +0,0 @@ -# -*- coding: utf-8 -*- - -from langml import TF_KERAS -if TF_KERAS: - import tensorflow.keras as keras - import tensorflow.keras.backend as K - import tensorflow.keras.layers as L -else: - import keras - import keras.backend as K - import keras.layers as L - -from langml.baselines import BaselineModel, Parameters -from langml.layers import SelfAttention -from langml.tensor_typing import Models - - -class BiLSTM(BaselineModel): - def __init__(self, params: Parameters): - self.params = params - - def build_model(self, with_attention: bool = False) -> Models: - x_in = L.Input(shape=(None, ), name='Input-Token') - x = x_in - x = L.Embedding(self.params.vocab_size, - self.params.embedding_size, - mask_zero=True, - name='embedding')(x) - if with_attention: - x = L.Bidirectional(L.LSTM(self.params.hidden_size, return_sequences=True))(x) - # attn - x = SelfAttention()(x) - x = L.Lambda(lambda x: K.max(x, 1))(x) - else: - x = L.Bidirectional(L.LSTM(self.params.hidden_size))(x) - x = L.Dropout(0.2)(x) - o = L.Dense(self.params.tag_size, name='tag', activation='softmax')(x) - model = keras.Model(x_in, o) - model.summary() - model.compile(keras.optimizers.Adam(self.params.learning_rate), - loss='sparse_categorical_crossentropy', - metrics=['accuracy']) - - return model diff --git a/langml/langml/baselines/clf/cli.py b/langml/langml/baselines/clf/cli.py deleted file mode 100644 index 2400d04..0000000 --- a/langml/langml/baselines/clf/cli.py +++ /dev/null @@ -1,480 +0,0 @@ -# -*- coding: utf-8 -*- - -import os -import json -from typing import Optional -from shutil import copyfile - -import click -from langml import TF_VERSION, TF_KERAS -if TF_KERAS: - import tensorflow.keras as keras - import tensorflow.keras.backend as K -else: - import keras - import keras.backend as K - -from langml.log import info -from langml.baselines import Parameters -from langml.baselines.clf import Infer, compute_detail_metrics -from langml.baselines.clf.dataloader import load_data, DataGenerator, TFDataGenerator -from langml.model import save_frozen -from langml.tokenizer import WPTokenizer, SPTokenizer - - -MONITOR = 'val_accuracy' if not TF_KERAS or TF_VERSION > 1 else 'val_acc' - - -@click.group() -def clf(): - """classification command line tools""" - pass - - -@clf.command() -@click.option('--backbone', type=str, default='bert', - help='specify backbone: bert | roberta | albert') -@click.option('--epoch', type=int, default=20, help='epochs') -@click.option('--batch_size', type=int, default=32, help='batch size') -@click.option('--learning_rate', type=float, default=2e-5, help='learning rate') -@click.option('--max_len', type=int, default=512, help='max len') -@click.option('--lowercase', is_flag=True, default=False, help='do lowercase') -@click.option('--tokenizer_type', type=str, default=None, - help='specify tokenizer type from [`wordpiece`, `sentencepiece`]') -@click.option('--early_stop', type=int, default=10, help='patience to early stop') -@click.option('--use_micro', is_flag=True, default=False, help='whether to use micro metrics') -@click.option('--config_path', type=str, required=True, help='bert config path') -@click.option('--ckpt_path', type=str, required=True, help='bert checkpoint path') -@click.option('--vocab_path', type=str, required=True, help='bert vocabulary path') -@click.option('--train_path', type=str, required=True, help='train path') -@click.option('--dev_path', type=str, required=True, help='dev path') -@click.option('--test_path', type=str, default=None, help='test path') -@click.option('--save_dir', type=str, required=True, help='dir to save model') -@click.option('--verbose', type=int, default=2, help='0 = silent, 1 = progress bar, 2 = one line per epoch') -@click.option('--distribute', is_flag=True, default=False, help='distributed training') -def bert(backbone: str, epoch: int, batch_size: int, learning_rate: float, max_len: Optional[int], - lowercase: bool, tokenizer_type: Optional[str], early_stop: int, use_micro: bool, - config_path: str, ckpt_path: str, vocab_path: str, train_path: str, dev_path: str, - test_path: str, save_dir: str, verbose: int, distribute: bool): - - # check distribute - if distribute: - assert TF_KERAS, 'Please `export TF_KERAS=1` to support distributed training!' - - from langml.baselines.clf.bert import Bert - - if not os.path.exists(save_dir): - os.makedirs(save_dir) - - train_datas, label2id = load_data(train_path, build_vocab=True) - id2label = {v: k for k, v in label2id.items()} - dev_datas = load_data(dev_path) - test_datas = None - if test_path is not None: - test_datas = load_data(test_path) - info(f'labels: {label2id}') - info(f'train size: {len(train_datas)}') - info(f'valid size: {len(dev_datas)}') - if test_path is not None: - info(f'test size: {len(test_datas)}') - - if tokenizer_type == 'wordpiece': - tokenizer = WPTokenizer(vocab_path, lowercase=lowercase) - elif tokenizer_type == 'sentencepiece': - tokenizer = SPTokenizer(vocab_path, lowercase=lowercase) - else: - # auto deduce - if vocab_path.endswith('.txt'): - info('automatically apply `WPTokenizer`') - tokenizer = WPTokenizer(vocab_path, lowercase=lowercase) - elif vocab_path.endswith('.model'): - info('automatically apply `SPTokenizer`') - tokenizer = SPTokenizer(vocab_path, lowercase=lowercase) - else: - raise ValueError("Langml cannot deduce which tokenizer to apply, please specify `tokenizer_type` manually.") # NOQA - - tokenizer.enable_truncation(max_length=max_len) - params = Parameters({ - 'learning_rate': learning_rate, - 'tag_size': len(label2id), - }) - if distribute: - import tensorflow as tf - # distributed training - strategy = tf.distribute.MirroredStrategy() - with strategy.scope(): - model = Bert(config_path, ckpt_path, params, backbone=backbone).build_model(lazy_restore=True) - else: - model = Bert(config_path, ckpt_path, params, backbone=backbone).build_model() - - early_stop_callback = keras.callbacks.EarlyStopping( - monitor=MONITOR, - min_delta=1e-4, - patience=early_stop, - verbose=0, - mode='auto', - baseline=None, - restore_best_weights=True - ) - save_checkpoint_callback = keras.callbacks.ModelCheckpoint( - os.path.join(save_dir, 'best_model.weights'), - save_best_only=True, - save_weights_only=True, - monitor=MONITOR, - mode='auto') - - if distribute: - info('distributed training! using `TFDataGenerator`') - assert max_len is not None, 'Please specify `max_len`!' - train_generator = TFDataGenerator(max_len, train_datas, tokenizer, label2id, - batch_size=batch_size, is_bert=True) - dev_generator = TFDataGenerator(max_len, dev_datas, tokenizer, label2id, - batch_size=batch_size, is_bert=True) - train_dataset = train_generator() - dev_dataset = dev_generator() - else: - train_generator = DataGenerator(train_datas, tokenizer, label2id, - batch_size=batch_size, is_bert=True) - dev_generator = DataGenerator(dev_datas, tokenizer, label2id, - batch_size=batch_size, is_bert=True) - train_dataset = train_generator.forfit(random=True) - dev_dataset = dev_generator.forfit(random=False) - - model.fit(train_dataset, - steps_per_epoch=len(train_generator), - verbose=verbose, - epochs=epoch, - validation_data=dev_dataset, - validation_steps=len(dev_generator), - callbacks=[early_stop_callback, save_checkpoint_callback]) - - # clear model - del model - if distribute: - del strategy - K.clear_session() - # restore model - model = Bert(config_path, ckpt_path, params, backbone=backbone).build_model() - if TF_KERAS or TF_VERSION > 1: - model.load_weights(os.path.join(save_dir, 'best_model.weights')).expect_partial() - else: - model.load_weights(os.path.join(save_dir, 'best_model.weights')) - # compute detail metrics - info('done to training! start to compute detail metrics...') - infer = Infer(model, tokenizer, id2label, is_bert=True) - _, _, dev_cr = compute_detail_metrics(infer, dev_datas, use_micro=use_micro) - print('develop metrics:') - print(dev_cr) - if test_datas: - _, _, test_cr = compute_detail_metrics(infer, test_datas, use_micro=use_micro) - print('test metrics:') - print(test_cr) - # save model - info('start to save frozen') - save_frozen(model, os.path.join(save_dir, 'frozen_model')) - info('start to save label') - with open(os.path.join(save_dir, 'label2id.json'), 'w', encoding='utf-8') as writer: - json.dump(label2id, writer) - info('copy vocab') - copyfile(vocab_path, os.path.join(save_dir, 'vocab.txt')) - - -@clf.command() -@click.option('--epoch', type=int, default=20, help='epochs') -@click.option('--batch_size', type=int, default=32, help='batch size') -@click.option('--learning_rate', type=float, default=1e-3, help='learning rate') -@click.option('--embedding_size', type=int, default=200, help='embedding size') -@click.option('--filter_size', type=int, default=100, help='filter size of convolution') -@click.option('--max_len', type=int, default=None, help='max len') -@click.option('--lowercase', is_flag=True, default=False, help='do lowercase') -@click.option('--tokenizer_type', type=str, default=None, - help='specify tokenizer type from [`wordpiece`, `sentencepiece`]') -@click.option('--early_stop', type=int, default=10, help='patience to early stop') -@click.option('--use_micro', is_flag=True, default=False, help='whether to use micro metrics') -@click.option('--vocab_path', type=str, required=True, help='vocabulary path') -@click.option('--train_path', type=str, required=True, help='train path') -@click.option('--dev_path', type=str, required=True, help='dev path') -@click.option('--test_path', type=str, default=None, help='test path') -@click.option('--save_dir', type=str, required=True, help='dir to save model') -@click.option('--verbose', type=int, default=2, help='0 = silent, 1 = progress bar, 2 = one line per epoch') -@click.option('--distribute', is_flag=True, default=False, help='distributed training') -def textcnn(epoch: int, batch_size: int, learning_rate: float, embedding_size: int, - filter_size: int, max_len: Optional[int], lowercase: bool, tokenizer_type: Optional[str], - early_stop: int, use_micro: bool, vocab_path: str, train_path: str, dev_path: str, - test_path: str, save_dir: str, verbose: int, distribute: bool): - - # check distribute - if distribute: - assert TF_KERAS, 'please `export TF_KERAS=1` to support distributed training!' - - from langml.baselines.clf.textcnn import TextCNN - - if not os.path.exists(save_dir): - os.makedirs(save_dir) - - train_datas, label2id = load_data(train_path, build_vocab=True) - id2label = {v: k for k, v in label2id.items()} - dev_datas = load_data(dev_path) - test_datas = None - if test_path is not None: - test_datas = load_data(test_path) - info(f'labels: {label2id}') - info(f'train size: {len(train_datas)}') - info(f'valid size: {len(dev_datas)}') - if test_path is not None: - info(f'test size: {len(test_datas)}') - - if tokenizer_type == 'wordpiece': - tokenizer = WPTokenizer(vocab_path, lowercase=lowercase) - elif tokenizer_type == 'sentencepiece': - tokenizer = SPTokenizer(vocab_path, lowercase=lowercase) - else: - # auto deduce - if vocab_path.endswith('.txt'): - info('automatically apply `WPTokenizer`') - tokenizer = WPTokenizer(vocab_path, lowercase=lowercase) - elif vocab_path.endswith('.model'): - info('automatically apply `SPTokenizer`') - tokenizer = SPTokenizer(vocab_path, lowercase=lowercase) - else: - raise ValueError("Langml cannot deduce which tokenizer to apply, please specify `tokenizer_type` manually.") # NOQA - - if max_len is not None: - tokenizer.enable_truncation(max_length=max_len) - params = Parameters({ - 'learning_rate': learning_rate, - 'tag_size': len(label2id), - 'vocab_size': tokenizer.get_vocab_size(), - 'embedding_size': embedding_size, - 'filter_size': filter_size - }) - if distribute: - import tensorflow as tf - # distributed training - strategy = tf.distribute.MirroredStrategy() - with strategy.scope(): - model = TextCNN(params).build_model() - else: - model = TextCNN(params).build_model() - - early_stop_callback = keras.callbacks.EarlyStopping( - monitor=MONITOR, - min_delta=1e-4, - patience=early_stop, - verbose=0, - mode='auto', - baseline=None, - restore_best_weights=True - ) - save_checkpoint_callback = keras.callbacks.ModelCheckpoint( - os.path.join(save_dir, 'best_model.weights'), - save_best_only=True, - save_weights_only=True, - monitor=MONITOR, - mode='auto') - - if distribute: - info('distributed training! using `TFDataGenerator`') - assert max_len is not None, 'Please specify `max_len`!' - train_generator = TFDataGenerator(max_len, train_datas, tokenizer, label2id, - batch_size=batch_size, is_bert=False) - dev_generator = TFDataGenerator(max_len, dev_datas, tokenizer, label2id, - batch_size=batch_size, is_bert=False) - train_dataset = train_generator() - dev_dataset = dev_generator() - else: - train_generator = DataGenerator(train_datas, tokenizer, label2id, - batch_size=batch_size, is_bert=False) - dev_generator = DataGenerator(dev_datas, tokenizer, label2id, - batch_size=batch_size, is_bert=False) - train_dataset = train_generator.forfit(random=True) - dev_dataset = dev_generator.forfit(random=False) - - model.fit(train_dataset, - steps_per_epoch=len(train_generator), - verbose=verbose, - epochs=epoch, - validation_data=dev_dataset, - validation_steps=len(dev_generator), - callbacks=[early_stop_callback, save_checkpoint_callback]) - - # clear model - del model - if distribute: - del strategy - K.clear_session() - # restore model - model = TextCNN(params).build_model() - if TF_KERAS or TF_VERSION > 1: - model.load_weights(os.path.join(save_dir, 'best_model.weights')).expect_partial() - else: - model.load_weights(os.path.join(save_dir, 'best_model.weights')) - # compute detail metrics - info('done to training! start to compute detail metrics...') - infer = Infer(model, tokenizer, id2label, is_bert=False) - _, _, dev_cr = compute_detail_metrics(infer, dev_datas, use_micro=use_micro) - print('develop metrics:') - print(dev_cr) - if test_datas: - _, _, test_cr = compute_detail_metrics(infer, test_datas, use_micro=use_micro) - print('test metrics:') - print(test_cr) - # save model - info('start to save frozen') - save_frozen(model, os.path.join(save_dir, 'frozen_model')) - info('start to save label') - with open(os.path.join(save_dir, 'label2id.json'), 'w', encoding='utf-8') as writer: - json.dump(label2id, writer) - info('copy vocab') - copyfile(vocab_path, os.path.join(save_dir, 'vocab.txt')) - - -@clf.command() -@click.option('--epoch', type=int, default=20, help='epochs') -@click.option('--batch_size', type=int, default=32, help='batch size') -@click.option('--learning_rate', type=float, default=1e-3, help='learning rate') -@click.option('--embedding_size', type=int, default=200, help='embedding size') -@click.option('--hidden_size', type=int, default=128, help='hidden size of lstm') -@click.option('--max_len', type=int, default=None, help='max len') -@click.option('--lowercase', is_flag=True, default=False, help='do lowercase') -@click.option('--tokenizer_type', type=str, default=None, - help='specify tokenizer type from [`wordpiece`, `sentencepiece`]') -@click.option('--early_stop', type=int, default=10, help='patience to early stop') -@click.option('--use_micro', is_flag=True, default=False, help='whether to use micro metrics') -@click.option('--vocab_path', type=str, required=True, help='vocabulary path') -@click.option('--train_path', type=str, required=True, help='train path') -@click.option('--dev_path', type=str, required=True, help='dev path') -@click.option('--test_path', type=str, default=None, help='test path') -@click.option('--save_dir', type=str, required=True, help='dir to save model') -@click.option('--verbose', type=int, default=2, help='0 = silent, 1 = progress bar, 2 = one line per epoch') -@click.option('--with_attention', is_flag=True, default=False, help='apply bilstm attention') -@click.option('--distribute', is_flag=True, default=False, help='distributed training') -def bilstm(epoch: int, batch_size: int, learning_rate: float, embedding_size: int, - hidden_size: int, max_len: Optional[int], lowercase: bool, tokenizer_type: Optional[str], - early_stop: int, use_micro: bool, vocab_path: str, train_path: str, dev_path: str, - test_path: str, save_dir: str, verbose: int, with_attention: bool, distribute: bool): - - # check distribute - if distribute: - assert TF_KERAS, 'please `export TF_KERAS=1` to support distributed training!' - - from langml.baselines.clf.bilstm import BiLSTM as BiLSTM - - if not os.path.exists(save_dir): - os.makedirs(save_dir) - - train_datas, label2id = load_data(train_path, build_vocab=True) - id2label = {v: k for k, v in label2id.items()} - dev_datas = load_data(dev_path) - test_datas = None - if test_path is not None: - test_datas = load_data(test_path) - info(f'labels: {label2id}') - info(f'train size: {len(train_datas)}') - info(f'valid size: {len(dev_datas)}') - if test_path is not None: - info(f'test size: {len(test_datas)}') - - if tokenizer_type == 'wordpiece': - tokenizer = WPTokenizer(vocab_path, lowercase=lowercase) - elif tokenizer_type == 'sentencepiece': - tokenizer = SPTokenizer(vocab_path, lowercase=lowercase) - else: - # auto deduce - if vocab_path.endswith('.txt'): - info('automatically apply `WPTokenizer`') - tokenizer = WPTokenizer(vocab_path, lowercase=lowercase) - elif vocab_path.endswith('.model'): - info('automatically apply `SPTokenizer`') - tokenizer = SPTokenizer(vocab_path, lowercase=lowercase) - else: - raise ValueError("Langml cannot deduce which tokenizer to apply, please specify `tokenizer_type` manually.") # NOQA - - if max_len is not None: - tokenizer.enable_truncation(max_length=max_len) - params = Parameters({ - 'learning_rate': learning_rate, - 'tag_size': len(label2id), - 'vocab_size': tokenizer.get_vocab_size(), - 'embedding_size': embedding_size, - 'hidden_size': hidden_size - }) - if distribute: - import tensorflow as tf - # distributed training - strategy = tf.distribute.MirroredStrategy() - with strategy.scope(): - model = BiLSTM(params).build_model(with_attention=with_attention) - else: - model = BiLSTM(params).build_model(with_attention=with_attention) - - early_stop_callback = keras.callbacks.EarlyStopping( - monitor=MONITOR, - min_delta=1e-4, - patience=early_stop, - verbose=0, - mode='auto', - baseline=None, - restore_best_weights=True - ) - save_checkpoint_callback = keras.callbacks.ModelCheckpoint( - os.path.join(save_dir, 'best_model.weights'), - save_best_only=True, - save_weights_only=True, - monitor=MONITOR, - mode='auto') - - if distribute: - info('distributed training! using `TFDataGenerator`') - assert max_len is not None, 'Please specify `max_len`!' - train_generator = TFDataGenerator(max_len, train_datas, tokenizer, label2id, - batch_size=batch_size, is_bert=False) - dev_generator = TFDataGenerator(max_len, dev_datas, tokenizer, label2id, - batch_size=batch_size, is_bert=False) - train_dataset = train_generator() - dev_dataset = dev_generator() - else: - train_generator = DataGenerator(train_datas, tokenizer, label2id, - batch_size=batch_size, is_bert=False) - dev_generator = DataGenerator(dev_datas, tokenizer, label2id, - batch_size=batch_size, is_bert=False) - train_dataset = train_generator.forfit(random=True) - dev_dataset = dev_generator.forfit(random=False) - - model.fit(train_dataset, - steps_per_epoch=len(train_generator), - verbose=verbose, - epochs=epoch, - validation_data=dev_dataset, - validation_steps=len(dev_generator), - callbacks=[early_stop_callback, save_checkpoint_callback]) - - # clear model - del model - if distribute: - del strategy - K.clear_session() - # restore model - model = BiLSTM(params).build_model(with_attention=with_attention) - if TF_KERAS or TF_VERSION > 1: - model.load_weights(os.path.join(save_dir, 'best_model.weights')).expect_partial() - else: - model.load_weights(os.path.join(save_dir, 'best_model.weights')) - # compute detail metrics - info('done to training! start to compute detail metrics...') - infer = Infer(model, tokenizer, id2label, is_bert=False) - _, _, dev_cr = compute_detail_metrics(infer, dev_datas, use_micro=use_micro) - print('develop metrics:') - print(dev_cr) - if test_datas: - _, _, test_cr = compute_detail_metrics(infer, test_datas, use_micro=use_micro) - print('test metrics:') - print(test_cr) - # save model - info('start to save frozen') - save_frozen(model, os.path.join(save_dir, 'frozen_model')) - info('start to save label') - with open(os.path.join(save_dir, 'label2id.json'), 'w', encoding='utf-8') as writer: - json.dump(label2id, writer) - info('copy vocab') - copyfile(vocab_path, os.path.join(save_dir, 'vocab.txt')) diff --git a/langml/langml/baselines/clf/dataloader.py b/langml/langml/baselines/clf/dataloader.py deleted file mode 100644 index e7eef8a..0000000 --- a/langml/langml/baselines/clf/dataloader.py +++ /dev/null @@ -1,115 +0,0 @@ -# -*- coding: utf-8 -*- - -import json -import math -from random import shuffle -from typing import Dict, List - -import numpy as np -from boltons.iterutils import chunked_iter -import tensorflow as tf -from langml import TF_KERAS -if TF_KERAS: - from tensorflow.keras.preprocessing.sequence import pad_sequences -else: - from keras.preprocessing.sequence import pad_sequences - - -def load_data(fpath: str, build_vocab: bool = False) -> List: - if build_vocab: - label2id = {} - datas = [] - with open(fpath, 'r', encoding='utf-8') as reader: - for line in reader: - line = line.strip() - if not line: - continue - obj = json.loads(line) - if build_vocab and obj['label'] not in label2id: - label2id[obj['label']] = len(label2id) - datas.append((obj['text'], obj['label'])) - if build_vocab: - return datas, label2id - return datas - - -class DataGenerator: - def __init__(self, - datas: List, - tokenizer: object, - label2id: Dict, - batch_size: int = 32, - is_bert: bool = True): - self.batch_size = batch_size - self.is_bert = is_bert - - self.datas = [] - for text, label in datas: - tokened = tokenizer.encode(text) - self.datas.append((tokened.ids, tokened.segment_ids, label2id[label])) - - def __len__(self) -> int: - return math.ceil(len(self.datas) / self.batch_size) - - def __iter__(self, random: bool = False): - if random: - shuffle(self.datas) - - for chunks in chunked_iter(self.datas, self.batch_size): - batch_tokens, batch_segments, batch_labels = [], [], [] - - for token_ids, segment_ids, label in chunks: - batch_tokens.append(token_ids) - batch_segments.append(segment_ids) - batch_labels.append([label]) - - batch_tokens = pad_sequences(batch_tokens, padding='post', truncating='post') - batch_segments = pad_sequences(batch_segments, padding='post', truncating='post') - batch_labels = np.array(batch_labels) - if self.is_bert: - yield [batch_tokens, batch_segments], batch_labels - else: - yield batch_tokens, batch_labels - - def forfit(self, random: bool = False): - while True: - for inputs, labels in self.__iter__(random=random): - yield inputs, labels - - -class TFDataGenerator(DataGenerator): - def __init__(self, - max_len: int, - datas: List, - tokenizer: object, - label2id: Dict, - batch_size: int, - is_bert: bool): - super().__init__(datas, tokenizer, label2id, batch_size=batch_size, is_bert=is_bert) - self.max_len = max_len - - def __call__(self): - def gen_features(): - for token_ids, _, label in self.datas: - token_ids = token_ids[: self.max_len] + [0]*(self.max_len - len(token_ids)) - if self.is_bert: - segment_ids = [0] * len(token_ids) - yield {'Input-Token': token_ids, 'Input-Segment': segment_ids}, [label] - else: - yield token_ids, [label] - - if self.is_bert: - output_types = ({'Input-Token': tf.int64, 'Input-Segment': tf.int64}, tf.int64) - output_shapes = ({'Input-Token': tf.TensorShape((None, )), - 'Input-Segment': tf.TensorShape((None, ))}, - tf.TensorShape((1, ))) - else: - output_types = (tf.int64, tf.int64) - output_shapes = (tf.TensorShape((None, )), tf.TensorShape((1, ))) - dataset = tf.data.Dataset.from_generator(gen_features, - output_types=output_types, - output_shapes=output_shapes) - dataset = dataset.repeat() - dataset = dataset.shuffle(self.batch_size * 1000) - dataset = dataset.batch(self.batch_size) - return dataset diff --git a/langml/langml/baselines/clf/textcnn.py b/langml/langml/baselines/clf/textcnn.py deleted file mode 100644 index 2b8c98d..0000000 --- a/langml/langml/baselines/clf/textcnn.py +++ /dev/null @@ -1,45 +0,0 @@ -# -*- coding: utf-8 -*- - -from langml import TF_KERAS -if TF_KERAS: - import tensorflow.keras as keras - import tensorflow.keras.layers as L -else: - import keras - import keras.layers as L - -from langml.baselines import BaselineModel, Parameters -from langml.tensor_typing import Models - - -class TextCNN(BaselineModel): - def __init__(self, params: Parameters): - self.params = params - - def build_model(self) -> Models: - x_in = L.Input(shape=(None, ), name='Input-Token') - x = x_in - x = L.Embedding(self.params.vocab_size, - self.params.embedding_size, - name='embedding')(x) - convs = [] - for kernel_size in [3, 4, 5]: - # for convenience, using 1d-conv here. - conv = L.Conv1D(filters=self.params.filter_size, - kernel_size=kernel_size, - strides=1, - padding='valid', - activation='relu')(x) - conv = L.MaxPooling1D()(conv) - conv = L.GlobalMaxPool1D()(conv) - convs.append(conv) - x = L.Concatenate()(convs) - x = L.Dropout(0.2)(x) - o = L.Dense(self.params.tag_size, name='tag', activation='softmax')(x) - model = keras.Model(x_in, o) - model.summary() - model.compile(keras.optimizers.Adam(self.params.learning_rate), - loss='sparse_categorical_crossentropy', - metrics=['accuracy']) - - return model diff --git a/langml/langml/baselines/cli.py b/langml/langml/baselines/cli.py deleted file mode 100644 index d05c27e..0000000 --- a/langml/langml/baselines/cli.py +++ /dev/null @@ -1,16 +0,0 @@ -# -*- coding: utf-8 -*- - -import click - -from langml.baselines.ner.cli import ner -from langml.baselines.clf.cli import clf - - -@click.group() -def baseline(): - """LangML Baseline client""" - pass - - -baseline.add_command(ner) -baseline.add_command(clf) diff --git a/langml/langml/baselines/ner/__init__.py b/langml/langml/baselines/ner/__init__.py deleted file mode 100644 index 73ab8cc..0000000 --- a/langml/langml/baselines/ner/__init__.py +++ /dev/null @@ -1,104 +0,0 @@ -# -*- coding: utf-8 -*- - -import re -from typing import Dict, List, Optional - -import numpy as np -from seqeval.metrics import classification_report - -from langml import TF_VERSION -from langml.utils import bio_decode -from langml.tensor_typing import Models - - -re_split = re.compile(r'.*?[\n。]+') - - -class Infer: - def __init__(self, - model: Models, - tokenizer: object, - id2label: Dict, - max_chunk_len: Optional[int] = None, - is_bert: bool = True): - self.model = model - self.tokenizer = tokenizer - self.id2label = id2label - self.max_chunk_len = max_chunk_len - self.is_bert = is_bert - - def decode_one(self, text: str, base_position: int = 0): - """ - Args: - - text: str - - base_position: int - - Return: - list of tuple: [(entity, start, end, entity_type)] - """ - tokened = self.tokenizer.encode(text) - mapping = self.tokenizer.tokens_mapping(text, tokened.tokens) - token_ids = np.array([tokened.ids]) - segment_ids = np.array([tokened.segment_ids]) - if TF_VERSION > 1: - if self.is_bert: - logits = self.model([token_ids, segment_ids]) - else: - logits = self.model([token_ids]) - else: - if self.is_bert: - logits = self.model.predict([token_ids, segment_ids]) - else: - logits = self.model.predict([token_ids]) - tags = [self.id2label[i] for i in np.argmax(logits[0], axis=1)] - entities = bio_decode(tags) - - res = [] - for s, e, t in entities: - s = mapping[s] - e = mapping[e] - s = 0 if not s else s[0] - e = len(text) - 1 if not e else e[-1] - res.append((base_position + s, base_position + e + 1, text[s: e + 1], t)) - return res - - def __call__(self, text: str): - if self.max_chunk_len is None or len(text) < self.max_chunk_len: - return self.decode_one(text) - sentences = re_split.findall(text) - if not sentences: - return self.decode_one(text) - results = [] - prev, base_position = 0, 0 - for i in range(1, len(sentences)): - current_text = ''.join(sentences[prev: i]) - if len(current_text) <= self.max_chunk_len and len(''.join(sentences[prev: i+1])) > self.max_chunk_len: - results.extend(self.decode_one(current_text, base_position=base_position)) - prev = i - base_position += len(current_text) - results.extend(self.decode_one(''.join(sentences[prev:]), base_position=base_position)) - return results - - -def report_detail_metrics(model: Models, datas: List, id2label: Dict, is_bert: bool = True): - all_preds, all_golds = [], [] - for token_ids, segment_ids, tags in datas: - token_ids = np.array([token_ids]) - segment_ids = np.array([segment_ids]) - if TF_VERSION > 1: - if is_bert: - logits = model([token_ids, segment_ids]) - else: - logits = model([token_ids]) - else: - if is_bert: - logits = model.predict([token_ids, segment_ids]) - else: - logits = model.predict([token_ids]) - gold_tags = [id2label[i] for i in tags] - pred_tags = [id2label[i] for i in np.argmax(logits[0], axis=1)] - assert len(gold_tags) == len(pred_tags), f'g: {len(gold_tags)}, t: {len(pred_tags)}' - all_preds.append(pred_tags) - all_golds.append(gold_tags) - - print(classification_report(all_golds, all_preds, digits=4)) diff --git a/langml/langml/baselines/ner/bert_crf.py b/langml/langml/baselines/ner/bert_crf.py deleted file mode 100644 index e22b388..0000000 --- a/langml/langml/baselines/ner/bert_crf.py +++ /dev/null @@ -1,49 +0,0 @@ -# -*- coding: utf-8 -*- - -from langml import TF_KERAS -if TF_KERAS: - import tensorflow.keras as keras - import tensorflow.keras.layers as L -else: - import keras - import keras.layers as L - -from langml.plm.albert import load_albert -from langml.plm.bert import load_bert -from langml.layers import CRF -from langml.baselines import BaselineModel, Parameters -from langml.tensor_typing import Models - - -class BertCRF(BaselineModel): - def __init__(self, - config_path: str, - ckpt_path: str, - params: Parameters, - backbone: str = 'roberta'): - self.config_path = config_path - self.ckpt_path = ckpt_path - self.params = params - assert backbone in ['bert', 'roberta', 'albert'] - if backbone == 'albert': - self.load_plm = load_albert - else: - self.load_plm = load_bert - - def build_model(self, lazy_restore=False) -> Models: - if lazy_restore: - model, _, restore_bert_weights = self.load_plm(self.config_path, self.ckpt_path, lazy_restore=True) - else: - model, _ = self.load_plm(self.config_path, self.ckpt_path) - crf = CRF(self.params.tag_size, sparse_target=False, name='crf') - output = L.Dropout(self.params.dropout_rate)(model.output) - output = L.Dense(self.params.tag_size, name='tag')(output) - output = crf(output) - train_model = keras.Model(model.input, output) - train_model.summary() - train_model.compile(keras.optimizers.Adam(self.params.learning_rate), loss=crf.loss, metrics=[crf.accuracy]) - - if lazy_restore: - restore_bert_weights(model) - - return train_model diff --git a/langml/langml/baselines/ner/cli.py b/langml/langml/baselines/ner/cli.py deleted file mode 100644 index b061875..0000000 --- a/langml/langml/baselines/ner/cli.py +++ /dev/null @@ -1,329 +0,0 @@ -# -*- coding: utf-8 -*- - -import os -import json -from typing import Optional -from shutil import copyfile - -from langml import TF_KERAS, TF_VERSION -if TF_KERAS: - import tensorflow.keras as keras - import tensorflow.keras.backend as K -else: - import keras - import keras.backend as K -import click - -from langml.log import info -from langml.tokenizer import WPTokenizer, SPTokenizer -from langml.baselines import Parameters -from langml.baselines.ner import report_detail_metrics -from langml.baselines.ner.dataloader import load_data, DataGenerator, TFDataGenerator -from langml.model import save_frozen - - -@click.group() -def ner(): - """ner command line tools""" - pass - - -@ner.command() -@click.option('--backbone', type=str, default='bert', - help='specify backbone: bert | roberta | albert') -@click.option('--epoch', type=int, default=20, help='epochs') -@click.option('--batch_size', type=int, default=32, help='batch size') -@click.option('--learning_rate', type=float, default=2e-5, help='learning rate') -@click.option('--dropout_rate', type=float, default=0.2, help='dropout rate') -@click.option('--max_len', type=int, default=512, help='max len') -@click.option('--lowercase', is_flag=True, default=False, help='do lowercase') -@click.option('--tokenizer_type', type=str, default=None, - help='specify tokenizer type from [`wordpiece`, `sentencepiece`]') -@click.option('--config_path', type=str, required=True, help='bert config path') -@click.option('--ckpt_path', type=str, required=True, help='bert checkpoint path') -@click.option('--vocab_path', type=str, required=True, help='bert vocabulary path') -@click.option('--train_path', type=str, required=True, help='train path') -@click.option('--dev_path', type=str, required=True, help='dev path') -@click.option('--test_path', type=str, default=None, help='test path') -@click.option('--save_dir', type=str, required=True, help='dir to save model') -@click.option('--early_stop', type=int, default=10, help='patience to early stop') -@click.option('--distribute', is_flag=True, default=False, help='distributed training') -@click.option('--verbose', type=int, default=2, help='0 = silent, 1 = progress bar, 2 = one line per epoch') -def bert_crf(backbone: str, epoch: int, batch_size: int, learning_rate: float, - dropout_rate: float, max_len: Optional[int], lowercase: bool, - tokenizer_type: Optional[str], config_path: str, ckpt_path: str, - vocab_path: str, train_path: str, dev_path: str, test_path: str, - save_dir: str, early_stop: int, distribute: bool, verbose: int): - - from langml.baselines.ner.bert_crf import BertCRF - - # check distribute - if distribute: - assert TF_KERAS, 'Please `export TF_KERAS=1` to support distributed training!' - - if not os.path.exists(save_dir): - os.makedirs(save_dir) - - train_datas, label2id = load_data(train_path, build_vocab=True) - id2label = {v: k for k, v in label2id.items()} - dev_datas = load_data(dev_path) - test_datas = None - if test_path is not None: - test_datas = load_data(test_path) - info(f'labels: {label2id}') - info(f'train size: {len(train_datas)}') - info(f'valid size: {len(dev_datas)}') - if test_path is not None: - info(f'test size: {len(test_datas)}') - - if tokenizer_type == 'wordpiece': - tokenizer = WPTokenizer(vocab_path, lowercase=lowercase) - elif tokenizer_type == 'sentencepiece': - tokenizer = SPTokenizer(vocab_path, lowercase=lowercase) - else: - # auto deduce - if vocab_path.endswith('.txt'): - info('automatically apply `WPTokenizer`') - tokenizer = WPTokenizer(vocab_path, lowercase=lowercase) - elif vocab_path.endswith('.model'): - info('automatically apply `SPTokenizer`') - tokenizer = SPTokenizer(vocab_path, lowercase=lowercase) - else: - raise ValueError("Langml cannot deduce which tokenizer to apply, please specify `tokenizer_type` manually.") # NOQA - - tokenizer.enable_truncation(max_length=max_len) - params = Parameters({ - 'learning_rate': learning_rate, - 'dropout_rate': dropout_rate, - 'tag_size': len(label2id), - 'vocab_size': tokenizer.get_vocab_size(), - }) - if distribute: - import tensorflow as tf - # distributed training - strategy = tf.distribute.MirroredStrategy() - with strategy.scope(): - model = BertCRF(config_path, ckpt_path, params, backbone=backbone).build_model(lazy_restore=True) - else: - model = BertCRF(config_path, ckpt_path, params, backbone=backbone).build_model() - - if distribute: - info('distributed training! using `TFDataGenerator`') - assert max_len is not None, 'Please specify `max_len`!' - train_generator = TFDataGenerator(train_datas, tokenizer, label2id, - batch_size=batch_size, max_len=max_len, is_bert=True) - dev_generator = TFDataGenerator(dev_datas, tokenizer, label2id, - batch_size=batch_size, max_len=max_len, is_bert=True) - train_dataset = train_generator() - dev_dataset = dev_generator() - else: - train_generator = DataGenerator(train_datas, tokenizer, label2id, - batch_size=batch_size, max_len=max_len, is_bert=True) - dev_generator = DataGenerator(dev_datas, tokenizer, label2id, - batch_size=batch_size, max_len=max_len, is_bert=True) - train_dataset = train_generator.forfit(random=True) - dev_dataset = dev_generator.forfit(random=False) - - early_stop_callback = keras.callbacks.EarlyStopping( - monitor='val_viterbi_accuracy', - min_delta=1e-4, - patience=early_stop, - verbose=0, - mode='auto', - baseline=None, - restore_best_weights=True - ) - save_checkpoint_callback = keras.callbacks.ModelCheckpoint( - os.path.join(save_dir, 'best_model.weights'), - save_best_only=True, - save_weights_only=True, - monitor='val_viterbi_accuracy', - mode='auto') - model.fit(train_dataset, - steps_per_epoch=len(train_generator), - validation_data=dev_dataset, - validation_steps=len(dev_generator), - verbose=verbose, - epochs=epoch, - callbacks=[early_stop_callback, save_checkpoint_callback]) - # clear model - del model - if distribute: - del strategy - K.clear_session() - # restore model - model = BertCRF(config_path, ckpt_path, params, backbone=backbone).build_model() - if TF_KERAS or TF_VERSION > 1: - model.load_weights(os.path.join(save_dir, 'best_model.weights')).expect_partial() - else: - model.load_weights(os.path.join(save_dir, 'best_model.weights')) - # compute detail metrics - info('done to training! start to compute detail metrics...') - print('develop metrics:') - dev_generator = DataGenerator(dev_datas, tokenizer, label2id, - batch_size=batch_size, max_len=max_len, is_bert=True) - report_detail_metrics(model, dev_generator.datas, id2label, is_bert=True) - if test_datas: - print('test metrics:') - test_generator = DataGenerator(test_datas, tokenizer, label2id, - batch_size=batch_size, max_len=max_len, is_bert=True) - report_detail_metrics(model, test_generator.datas, id2label, is_bert=True) - # save model - info('start to save frozen') - save_frozen(model, os.path.join(save_dir, 'frozen_model')) - info('start to save label') - with open(os.path.join(save_dir, 'label2id.json'), 'w', encoding='utf-8') as writer: - json.dump(label2id, writer) - info('copy vocab') - copyfile(vocab_path, os.path.join(save_dir, 'vocab.txt')) - - -@ner.command() -@click.option('--epoch', type=int, default=20, help='epochs') -@click.option('--batch_size', type=int, default=32, help='batch size') -@click.option('--learning_rate', type=float, default=1e-3, help='learning rate') -@click.option('--dropout_rate', type=float, default=0.2, help='dropout rate') -@click.option('--embedding_size', type=int, default=200, help='embedding size') -@click.option('--hidden_size', type=int, default=128, help='hidden size') -@click.option('--max_len', type=int, default=None, help='max len') -@click.option('--lowercase', is_flag=True, default=False, help='do lowercase') -@click.option('--tokenizer_type', type=str, default=None, - help='specify tokenizer type from [`wordpiece`, `sentencepiece`]') -@click.option('--vocab_path', type=str, required=True, help='vocabulary path') -@click.option('--train_path', type=str, required=True, help='train path') -@click.option('--dev_path', type=str, required=True, help='dev path') -@click.option('--test_path', type=str, default=None, help='test path') -@click.option('--save_dir', type=str, required=True, help='dir to save model') -@click.option('--early_stop', type=int, default=10, help='patience to early stop') -@click.option('--distribute', is_flag=True, default=False, help='distributed training') -@click.option('--verbose', type=int, default=2, help='0 = silent, 1 = progress bar, 2 = one line per epoch') -def lstm_crf(epoch: int, batch_size: int, learning_rate: float, dropout_rate: float, - embedding_size: int, hidden_size: int, max_len: Optional[int], - lowercase: bool, tokenizer_type: Optional[str], vocab_path: str, - train_path: str, dev_path: str, test_path: str, save_dir: str, - early_stop: int, distribute: bool, verbose: int): - - from langml.baselines.ner.lstm_crf import LstmCRF - - # check distribute - if distribute: - assert TF_KERAS, 'Please `export TF_KERAS=1` to support distributed training!' - - if not os.path.exists(save_dir): - os.makedirs(save_dir) - - train_datas, label2id = load_data(train_path, build_vocab=True) - id2label = {v: k for k, v in label2id.items()} - dev_datas = load_data(dev_path) - test_datas = None - if test_path is not None: - test_datas = load_data(test_path) - info(f'labels: {label2id}') - info(f'train size: {len(train_datas)}') - info(f'valid size: {len(dev_datas)}') - if test_path is not None: - info(f'test size: {len(test_datas)}') - - if tokenizer_type == 'wordpiece': - tokenizer = WPTokenizer(vocab_path, lowercase=lowercase) - elif tokenizer_type == 'sentencepiece': - tokenizer = SPTokenizer(vocab_path, lowercase=lowercase) - else: - # auto deduce - if vocab_path.endswith('.txt'): - info('automatically apply `WPTokenizer`') - tokenizer = WPTokenizer(vocab_path, lowercase=lowercase) - elif vocab_path.endswith('.model'): - info('automatically apply `SPTokenizer`') - tokenizer = SPTokenizer(vocab_path, lowercase=lowercase) - else: - raise ValueError("Langml cannot deduce which tokenizer to apply, please specify `tokenizer_type` manually.") # NOQA - - if max_len is not None: - tokenizer.enable_truncation(max_length=max_len) - params = Parameters({ - 'learning_rate': learning_rate, - 'dropout_rate': dropout_rate, - 'tag_size': len(label2id), - 'vocab_size': tokenizer.get_vocab_size(), - 'embedding_size': embedding_size, - 'hidden_size': hidden_size - }) - if distribute: - import tensorflow as tf - # distributed training - strategy = tf.distribute.MirroredStrategy() - with strategy.scope(): - model = LstmCRF(params).build_model() - else: - model = LstmCRF(params).build_model() - - if distribute: - info('distributed training! using `TFDataGenerator`') - assert max_len is not None, 'Please specify `max_len`!' - train_generator = TFDataGenerator(train_datas, tokenizer, label2id, - batch_size=batch_size, max_len=max_len, is_bert=False) - dev_generator = TFDataGenerator(dev_datas, tokenizer, label2id, - batch_size=batch_size, max_len=max_len, is_bert=False) - train_dataset = train_generator() - dev_dataset = dev_generator() - else: - train_generator = DataGenerator(train_datas, tokenizer, label2id, - batch_size=batch_size, max_len=max_len, is_bert=False) - dev_generator = DataGenerator(dev_datas, tokenizer, label2id, - batch_size=batch_size, max_len=max_len, is_bert=False) - train_dataset = train_generator.forfit(random=True) - dev_dataset = dev_generator.forfit(random=False) - - early_stop_callback = keras.callbacks.EarlyStopping( - monitor='val_viterbi_accuracy', - min_delta=1e-4, - patience=early_stop, - verbose=0, - mode='auto', - baseline=None, - restore_best_weights=True - ) - save_checkpoint_callback = keras.callbacks.ModelCheckpoint( - os.path.join(save_dir, 'best_model.weights'), - save_best_only=True, - save_weights_only=True, - monitor='val_viterbi_accuracy', - mode='auto') - model.fit(train_dataset, - steps_per_epoch=len(train_generator), - validation_data=dev_dataset, - validation_steps=len(dev_generator), - verbose=verbose, - epochs=epoch, - callbacks=[early_stop_callback, save_checkpoint_callback]) - # clear model - del model - if distribute: - del strategy - K.clear_session() - # restore model - model = LstmCRF(params).build_model() - if TF_KERAS or TF_VERSION > 1: - model.load_weights(os.path.join(save_dir, 'best_model.weights')).expect_partial() - else: - model.load_weights(os.path.join(save_dir, 'best_model.weights')) - # compute detail metrics - info('done to training! start to compute detail metrics...') - print('develop metrics:') - dev_generator = DataGenerator(dev_datas, tokenizer, label2id, - batch_size=batch_size, max_len=max_len, is_bert=False) - report_detail_metrics(model, dev_generator.datas, id2label, is_bert=False) - if test_datas: - print('test metrics:') - test_generator = DataGenerator(test_datas, tokenizer, label2id, - batch_size=batch_size, max_len=max_len, is_bert=False) - report_detail_metrics(model, test_generator.datas, id2label, is_bert=False) - # save model - info('start to save frozen') - save_frozen(model, os.path.join(save_dir, 'frozen_model')) - info('start to save label') - with open(os.path.join(save_dir, 'label2id.json'), 'w', encoding='utf-8') as writer: - json.dump(label2id, writer) - info('copy vocab') - copyfile(vocab_path, os.path.join(save_dir, 'vocab.txt')) diff --git a/langml/langml/baselines/ner/dataloader.py b/langml/langml/baselines/ner/dataloader.py deleted file mode 100644 index 90aed9e..0000000 --- a/langml/langml/baselines/ner/dataloader.py +++ /dev/null @@ -1,141 +0,0 @@ -# -*- coding: utf-8 -*- - -import math -from random import shuffle -from typing import Dict, List, Optional - -from boltons.iterutils import chunked_iter -import tensorflow as tf -from langml import TF_KERAS -if TF_KERAS: - from tensorflow.keras.preprocessing.sequence import pad_sequences -else: - from keras.preprocessing.sequence import pad_sequences - - -def load_data(fpath: str, build_vocab: bool = False) -> List: - if build_vocab: - label2id = {'O': 0} - datas = [] - with open(fpath, 'r', encoding='utf-8') as reader: - for sentence in reader.read().split('\n\n'): - if not sentence: - continue - data = [] - for chunk in sentence.split('\n'): - try: - segment, label = chunk.split('\t') - if build_vocab: - if label != 'O' and f'B-{label}' not in label2id: - label2id[f'B-{label}'] = len(label2id) - if label != 'O' and f'I-{label}' not in label2id: - label2id[f'I-{label}'] = len(label2id) - data.append((segment, label)) - except ValueError: - print('broken data:', chunk) - datas.append(data) - if build_vocab: - return datas, label2id - return datas - - -class DataGenerator: - def __init__(self, - datas: List, - tokenizer: object, - label2id: Dict, - batch_size: int = 32, - max_len: Optional[int] = None, - is_bert: bool = True): - self.label2id = label2id - self.batch_size = batch_size - self.max_len = max_len - self.is_bert = is_bert - start_token_id = tokenizer.token_to_id(tokenizer.special_tokens.CLS) - end_token_id = tokenizer.token_to_id(tokenizer.special_tokens.SEP) - - self.datas = [] - for data in datas: - token_ids, labels = [start_token_id], [label2id['O']] - for segment, label in data: - tokened = tokenizer.encode(segment) - token_id = tokened.ids[1:-1] - token_ids += token_id - if label == 'O': - labels += [label2id['O']] * len(token_id) - else: - labels += ([label2id[f'B-{label}']] + [label2id[f'I-{label}']] * (len(token_id) - 1)) - assert len(token_ids) == len(labels) - if max_len is not None: - token_ids = token_ids[:max_len - 1] - labels = labels[:max_len - 1] - token_ids += [end_token_id] - labels += [label2id['O']] - segment_ids = [0] * len(token_ids) - self.datas.append((token_ids, segment_ids, labels)) - - def __len__(self) -> int: - return math.ceil(len(self.datas) / self.batch_size) - - def __iter__(self, random: bool = False): - if random: - shuffle(self.datas) - - for chunks in chunked_iter(self.datas, self.batch_size): - batch_tokens, batch_segments, batch_labels = [], [], [] - - for token_ids, segment_ids, labels in chunks: - batch_tokens.append(token_ids) - batch_segments.append(segment_ids) - batch_labels.append(labels) - - batch_tokens = pad_sequences(batch_tokens, padding='post', truncating='post') - batch_segments = pad_sequences(batch_segments, padding='post', truncating='post') - batch_labels = pad_sequences(batch_labels, padding='post', truncating='post') - if self.is_bert: - yield [batch_tokens, batch_segments], batch_labels - else: - yield batch_tokens, batch_labels - - def forfit(self, random: bool = False): - while True: - for inputs, labels in self.__iter__(random=random): - yield inputs, labels - - -class TFDataGenerator(DataGenerator): - def __init__(self, - datas: List, - tokenizer: object, - label2id: Dict, - batch_size: int = 32, - max_len: Optional[int] = None, - is_bert: bool = True): - super().__init__(datas, tokenizer, label2id, batch_size=batch_size, max_len=max_len, is_bert=is_bert) - - def __call__(self): - def gen_features(): - for token_ids, segment_ids, label_ids in self.datas: - token_ids = token_ids[:self.max_len] + [0] * (self.max_len - len(token_ids)) - label_ids = label_ids[:self.max_len] + [self.label2id['O']] * (self.max_len - len(label_ids)) - if self.is_bert: - segment_ids = [0] * len(token_ids) - yield {'Input-Token': token_ids, 'Input-Segment': segment_ids}, label_ids - else: - yield token_ids, label_ids - - if self.is_bert: - output_types = ({'Input-Token': tf.int64, 'Input-Segment': tf.int64}, tf.int64) - output_shapes = ({'Input-Token': tf.TensorShape((None, )), - 'Input-Segment': tf.TensorShape((None, ))}, - tf.TensorShape((None, ))) - else: - output_types = (tf.int64, tf.int64) - output_shapes = (tf.TensorShape((None, )), tf.TensorShape((None, ))) - dataset = tf.data.Dataset.from_generator(gen_features, - output_types=output_types, - output_shapes=output_shapes) - dataset = dataset.repeat() - dataset = dataset.shuffle(self.batch_size * 1000) - dataset = dataset.batch(self.batch_size) - return dataset diff --git a/langml/langml/baselines/ner/lstm_crf.py b/langml/langml/baselines/ner/lstm_crf.py deleted file mode 100644 index e2440df..0000000 --- a/langml/langml/baselines/ner/lstm_crf.py +++ /dev/null @@ -1,31 +0,0 @@ -# -*- coding: utf-8 -*- - -from langml import TF_KERAS -if TF_KERAS: - import tensorflow.keras as keras - import tensorflow.keras.layers as L -else: - import keras - import keras.layers as L - -from langml.layers import CRF -from langml.baselines import BaselineModel, Parameters -from langml.tensor_typing import Models - - -class LstmCRF(BaselineModel): - def __init__(self, params: Parameters): - self.params = params - - def build_model(self) -> Models: - crf = CRF(self.params.tag_size, sparse_target=False) - model = keras.Sequential() - model.add(L.Embedding(self.params.vocab_size, self.params.embedding_size, mask_zero=False)) - model.add(L.Bidirectional(L.LSTM(self.params.hidden_size, return_sequences=True))) - model.add(L.Dropout(self.params.dropout_rate)) - model.add(L.Dense(self.params.tag_size, name='tag')) - model.add(crf) - model.summary() - model.compile(keras.optimizers.Adam(self.params.learning_rate), loss=crf.loss, metrics=[crf.accuracy]) - - return model diff --git a/langml/langml/cli.py b/langml/langml/cli.py deleted file mode 100644 index e5ac9c8..0000000 --- a/langml/langml/cli.py +++ /dev/null @@ -1,19 +0,0 @@ -# -*- coding: utf-8 -*- - -import click - -import langml - - -@click.group() -@click.version_option(version=langml.__version__) -def cli(): - """LangML client""" - pass - - -def main(): - from langml.baselines.cli import baseline - - cli.add_command(baseline) - cli(prog_name='langml', obj={}) diff --git a/langml/langml/layers/__init__.py b/langml/langml/layers/__init__.py deleted file mode 100644 index 0b1e61c..0000000 --- a/langml/langml/layers/__init__.py +++ /dev/null @@ -1,24 +0,0 @@ -# -*- coding: utf-8 -*- - -from langml import TF_KERAS -if TF_KERAS: - import tensorflow.keras as keras -else: - import keras - -from langml.layers.crf import CRF -from langml.layers.attention import ( - SelfAttention, SelfAdditiveAttention, - ScaledDotProductAttention, MultiHeadAttention -) -from langml.layers.layer_norm import LayerNorm - -custom_objects = {} -custom_objects.update(CRF.get_custom_objects()) -custom_objects.update(SelfAttention.get_custom_objects()) -custom_objects.update(SelfAdditiveAttention.get_custom_objects()) -custom_objects.update(LayerNorm.get_custom_objects()) -custom_objects.update(ScaledDotProductAttention.get_custom_objects()) -custom_objects.update(MultiHeadAttention.get_custom_objects()) - -keras.utils.get_custom_objects().update(custom_objects) diff --git a/langml/langml/layers/attention.py b/langml/langml/layers/attention.py deleted file mode 100644 index 30f752b..0000000 --- a/langml/langml/layers/attention.py +++ /dev/null @@ -1,577 +0,0 @@ -# -*- coding: utf-8 -*- - -from typing import Optional, Union, List - -from langml import TF_KERAS -if TF_KERAS: - import tensorflow.keras as keras - import tensorflow.keras.backend as K - import tensorflow.keras.layers as L -else: - import keras - import keras.backend as K - import keras.layers as L - -from langml.tensor_typing import Tensors, Activation, Initializer, Constraint, Regularizer - - -class SelfAttention(L.Layer): - def __init__(self, - attention_units: Optional[int] = None, - return_attention: Optional[bool] = False, - is_residual: Optional[bool] = False, - attention_activation: Optional[Activation] = 'relu', - attention_epsilon: Optional[float] = 1e10, - kernel_initializer: Optional[Initializer] = 'glorot_normal', - kernel_regularizer: Optional[Regularizer] = None, - kernel_constraint: Optional[Constraint] = None, - bias_initializer: Optional[Initializer] = 'zeros', - bias_regularizer: Optional[Regularizer] = None, - bias_constraint: Optional[Constraint] = None, - use_attention_bias: Optional[bool] = True, - attention_penalty_weight: Optional[float] = 0.0, - **kwargs): - super(SelfAttention, self).__init__(**kwargs) - - self.supports_masking = True - - self.attention_units = attention_units - self.return_attention = return_attention - self.is_residual = is_residual - self.attention_epsilon = attention_epsilon - self.attention_activation = keras.activations.get(attention_activation) - self.kernel_initializer = keras.initializers.get(kernel_initializer) - self.kernel_regularizer = keras.regularizers.get(kernel_regularizer) - self.kernel_constraint = keras.constraints.get(kernel_constraint) - self.bias_initializer = keras.initializers.get(bias_initializer) - self.bias_regularizer = keras.regularizers.get(bias_regularizer) - self.bias_constraint = keras.constraints.get(bias_constraint) - self.use_attention_bias = use_attention_bias - self.attention_penalty_weight = attention_penalty_weight - - def get_config(self) -> dict: - config = { - "attention_units": self.attention_units, - "return_attention": self.return_attention, - "is_residual": self.is_residual, - "attention_epsilon": self.attention_epsilon, - "attention_activation": keras.activations.serialize(self.attention_activation), - "kernel_initializer": keras.initializers.serialize(self.kernel_initializer), - "kernel_regularizer": keras.regularizers.serialize(self.kernel_regularizer), - "kernel_constraint": keras.constraints.serialize(self.kernel_constraint), - "bias_initializer": keras.initializers.serialize(self.bias_initializer), - "bias_regularizer": keras.regularizers.serialize(self.bias_regularizer), - "bias_constraint": keras.constraints.serialize(self.bias_constraint), - "use_attention_bias": self.use_attention_bias, - "attention_penalty_weight": self.attention_penalty_weight - } - base_config = super(SelfAttention, self).get_config() - - return dict(base_config, **config) - - def build(self, input_shape: Tensors): - feature_dim = int(input_shape[2]) - units = feature_dim if self.attention_units is None else self.attention_units - - self.Wq = self.add_weight(shape=(feature_dim, units), - name=f'{self.name}_Attn_Wq', - initializer=self.kernel_initializer, - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint) - self.Wk = self.add_weight(shape=(feature_dim, units), - name=f'{self.name}_Attn_Wt', - initializer=self.kernel_initializer, - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint) - self.Wv = self.add_weight(shape=(feature_dim, units), - name=f'{self.name}_Attn_Wv', - initializer=self.kernel_initializer, - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint) - if self.use_attention_bias: - self.attn_bias = self.add_weight(shape=(1,), - name=f'{self.name}_Attn_bias', - initializer=self.bias_initializer, - regularizer=self.bias_regularizer, - constraint=self.bias_constraint) - - def call(self, inputs: Tensors, mask: Optional[Tensors] = None, **kwargs) -> Union[List[Tensors], Tensors]: - - q = K.dot(inputs, self.Wq) - k = K.dot(inputs, self.Wk) - v = K.dot(inputs, self.Wv) - if self.attention_activation is not None: - q = self.attention_activation(q) - k = self.attention_activation(k) - v = self.attention_activation(v) - - if self.use_attention_bias: - q += self.attn_bias - k += self.attn_bias - v += self.attn_bias - - e = K.batch_dot(q, k, axes=2) - - if mask is not None: - if len(K.int_shape(mask)) == len(K.int_shape(inputs)) - 1: - mask = K.expand_dims(K.cast(mask, K.floatx()), axis=-1) - e -= self.attention_epsilon * (1.0 - mask) - - a = K.softmax(e) - v_o = K.batch_dot(a, v) - - if self.is_residual: - v_o += v - - if self.attention_penalty_weight > 0.0: - self.add_loss(self._attention_penalty(a)) - - if self.return_attention: - return [v_o, a] - - return v_o - - def compute_mask(self, - inputs: Tensors, - mask: Optional[Tensors] = None) -> Union[List[Union[Tensors, None]], Tensors]: - if self.return_attention: - return [mask, None] - return mask - - def _attention_penalty(self, attention: Tensors) -> Tensors: - batch_size = K.cast(K.shape(attention)[0], K.floatx()) - input_len = K.shape(attention)[-1] - indices = K.expand_dims(K.arange(0, input_len), axis=0) - diagonal = K.expand_dims(K.arange(0, input_len), axis=-1) - eye = K.cast(K.equal(indices, diagonal), K.floatx()) - return self.attention_penalty_weight * K.sum(K.square(K.batch_dot( - attention, K.permute_dimensions(attention, (0, 2, 1))) - eye)) / batch_size - - @staticmethod - def get_custom_objects() -> dict: - return {'SelfAttention': SelfAttention} - - def compute_output_shape(self, input_shape: Tensors) -> Union[List[Tensors], Tensors]: - output_shape = input_shape - if self.return_attention: - attention_shape = (input_shape[0], output_shape[1], input_shape[1]) - return [output_shape, attention_shape] - return output_shape - - -class SelfAdditiveAttention(L.Layer): - def __init__(self, - attention_units: Optional[int] = None, - return_attention: Optional[bool] = False, - is_residual: Optional[bool] = False, - attention_activation: Optional[Activation] = 'relu', - attention_epsilon: Optional[float] = 1e10, - kernel_initializer: Optional[Initializer] = 'glorot_normal', - kernel_regularizer: Optional[Regularizer] = None, - kernel_constraint: Optional[Constraint] = None, - bias_initializer: Optional[Initializer] = 'zeros', - bias_regularizer: Optional[Regularizer] = None, - bias_constraint: Optional[Constraint] = None, - use_attention_bias: Optional[bool] = True, - attention_penalty_weight: Optional[float] = 0.0, - **kwargs): - super(SelfAdditiveAttention, self).__init__(**kwargs) - - self.supports_masking = True - - self.attention_units = attention_units - self.return_attention = return_attention - self.is_residual = is_residual - self.attention_epsilon = attention_epsilon - self.attention_activation = keras.activations.get(attention_activation) - self.kernel_initializer = keras.initializers.get(kernel_initializer) - self.kernel_regularizer = keras.regularizers.get(kernel_regularizer) - self.kernel_constraint = keras.constraints.get(kernel_constraint) - self.bias_initializer = keras.initializers.get(bias_initializer) - self.bias_regularizer = keras.regularizers.get(bias_regularizer) - self.bias_constraint = keras.constraints.get(bias_constraint) - self.use_attention_bias = use_attention_bias - self.attention_penalty_weight = attention_penalty_weight - - def get_config(self) -> dict: - config = { - "attention_units": self.attention_units, - "return_attention": self.return_attention, - "is_residual": self.is_residual, - "attention_epsilon": self.attention_epsilon, - "attention_activation": keras.activations.serialize(self.attention_activation), - "kernel_initializer": keras.initializers.serialize(self.kernel_initializer), - "kernel_regularizer": keras.regularizers.serialize(self.kernel_regularizer), - "kernel_constraint": keras.constraints.serialize(self.kernel_constraint), - "bias_initializer": keras.initializers.serialize(self.bias_initializer), - "bias_regularizer": keras.regularizers.serialize(self.bias_regularizer), - "bias_constraint": keras.constraints.serialize(self.bias_constraint), - "use_attention_bias": self.use_attention_bias, - "attention_penalty_weight": self.attention_penalty_weight - } - base_config = super(SelfAdditiveAttention, self).get_config() - - return dict(base_config, **config) - - def build(self, input_shape: Tensors): - feature_dim = int(input_shape[2]) - units = feature_dim if self.attention_units is None else self.attention_units - - self.Wh = self.add_weight(shape=(feature_dim, units), - name=f'{self.name}_Attn_Wh', - initializer=self.kernel_initializer, - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint) - self.We = self.add_weight(shape=(units, 1), - name=f'{self.name}_Attn_We', - initializer=self.kernel_initializer, - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint) - if self.use_attention_bias: - self.attn_bias = self.add_weight(shape=(1,), - name=f'{self.name}_Attn_bias', - initializer=self.bias_initializer, - regularizer=self.bias_regularizer, - constraint=self.bias_constraint) - - def call(self, inputs: Tensors, mask: Optional[Tensors] = None, **kwargs) -> Union[List[Tensors], Tensors]: - h = K.dot(inputs, self.Wh) - if self.attention_activation is not None: - h = self.attention_activation(h) - if self.use_attention_bias: - h += self.attn_bias - e = K.dot(h, self.We) - if self.use_attention_bias: - e += self.attn_bias - - if mask is not None: - if len(K.int_shape(mask)) == len(K.int_shape(inputs)) - 1: - mask = K.expand_dims(K.cast(mask, K.floatx()), axis=-1) - e -= self.attention_epsilon * (1.0 - mask) - - a = K.softmax(e, axis=1) - v_o = a * inputs - - if self.is_residual: - v_o += inputs - - if self.attention_penalty_weight > 0.0: - self.add_loss(self._attention_penalty(a)) - - if self.return_attention: - return [v_o, a] - - return v_o - - def compute_mask(self, - inputs: Tensors, - mask: Optional[Tensors] = None) -> Union[List[Union[Tensors, None]], Tensors]: - if self.return_attention: - return [mask, None] - return mask - - def _attention_penalty(self, attention: Tensors) -> Tensors: - batch_size = K.cast(K.shape(attention)[0], K.floatx()) - input_len = K.shape(attention)[-1] - indices = K.expand_dims(K.arange(0, input_len), axis=0) - diagonal = K.expand_dims(K.arange(0, input_len), axis=-1) - eye = K.cast(K.equal(indices, diagonal), K.floatx()) - return self.attention_penalty_weight * K.sum(K.square(K.batch_dot( - attention, K.permute_dimensions(attention, (0, 2, 1))) - eye)) / batch_size - - @staticmethod - def get_custom_objects() -> dict: - return {'SelfAdditiveAttention': SelfAdditiveAttention} - - def compute_output_shape(self, input_shape: Tensors) -> Union[List[Tensors], Tensors]: - output_shape = input_shape - if self.return_attention: - attention_shape = (input_shape[0], output_shape[1], input_shape[1]) - return [output_shape, attention_shape] - return output_shape - - -class ScaledDotProductAttention(L.Layer): - r""" ScaledDotProductAttention - - $Attention(Q, K, V) = softmax(\frac{Q K^T}{\sqrt{d_k}}) V$ - - https://arxiv.org/pdf/1706.03762.pdf - """ - def __init__(self, - return_attention: Optional[bool] = False, - history_only: Optional[bool] = False, - **kwargs): - super(ScaledDotProductAttention, self).__init__(**kwargs) - - self.supports_masking = True - - self.return_attention = return_attention - self.history_only = history_only - - def get_config(self) -> dict: - config = { - "return_attention": self.return_attention, - "history_only": self.history_only, - } - base_config = super(ScaledDotProductAttention, self).get_config() - - return dict(base_config, **config) - - def call(self, - inputs: Tensors, - mask: Optional[Union[Tensors, List[Tensors]]] = None, **kwargs) -> Union[List[Tensors], Tensors]: - if isinstance(inputs, list): - q, k, v = inputs - else: - q = k = v = inputs - if isinstance(mask, list): - mask = mask[1] - # e = \frac{QK^T}{\sqrt{d_k}} - # shape: [(B, Lq, D), (B, Lk, D)] -> (B, Lq, Lk) - e = K.batch_dot(q, k, axes=2) / K.sqrt(K.cast(K.shape(q)[-1], dtype=K.floatx())) - if self.history_only: - q_len, k_len = K.shape(q)[1], K.shape(k)[1] - indices = K.expand_dims(K.arange(0, k_len), axis=0) - upper = K.expand_dims(K.arange(0, q_len), axis=-1) - e -= 10000.0 * K.expand_dims(K.cast(indices > upper, K.floatx()), axis=0) - if mask is not None: - e -= 10000.0 * (1.0 - K.cast(K.expand_dims(mask, axis=-2), K.floatx())) - # softmax(e) - e = K.exp(e - K.max(e, axis=-1, keepdims=True)) - attention = e / K.sum(e, axis=-1, keepdims=True) - v = K.batch_dot(attention, v) - if self.return_attention: - return [v, attention] - return v - - def compute_mask(self, - inputs: Tensors, - mask: Optional[Union[Tensors, List[Tensors]]] = None) -> Union[ - List[Union[Tensors, None]], Tensors]: - if isinstance(mask, list): - mask = mask[0] - if self.return_attention: - return [mask, None] - return mask - - @staticmethod - def get_custom_objects() -> dict: - return {'ScaledDotProductAttention': ScaledDotProductAttention} - - def compute_output_shape(self, input_shape: Union[Tensors, List[Tensors]]) -> Union[List[Tensors], Tensors]: - if isinstance(input_shape, list): - q_shape, k_shape, v_shape = input_shape - else: - q_shape = k_shape = v_shape = input_shape - output_shape = q_shape[:-1] + v_shape[-1:] - if self.return_attention: - attention_shape = q_shape[:2] + (k_shape[1],) - return [output_shape, attention_shape] - return output_shape - - -class MultiHeadAttention(L.Layer): - """ MultiHeadAttention - https://arxiv.org/pdf/1706.03762.pdf - """ - def __init__(self, - head_num: int, - return_attention: Optional[bool] = False, - attention_activation: Optional[Activation] = 'relu', - kernel_initializer: Optional[Initializer] = 'glorot_normal', - kernel_regularizer: Optional[Regularizer] = None, - kernel_constraint: Optional[Constraint] = None, - bias_initializer: Optional[Initializer] = 'zeros', - bias_regularizer: Optional[Regularizer] = None, - bias_constraint: Optional[Constraint] = None, - use_attention_bias: Optional[bool] = True, - history_only: Optional[bool] = False, - **kwargs): - super(MultiHeadAttention, self).__init__(**kwargs) - - self.supports_masking = True - - self.head_num = head_num - self.return_attention = return_attention - self.attention_activation = keras.activations.get(attention_activation) - self.kernel_initializer = keras.initializers.get(kernel_initializer) - self.kernel_regularizer = keras.regularizers.get(kernel_regularizer) - self.kernel_constraint = keras.constraints.get(kernel_constraint) - self.bias_initializer = keras.initializers.get(bias_initializer) - self.bias_regularizer = keras.regularizers.get(bias_regularizer) - self.bias_constraint = keras.constraints.get(bias_constraint) - self.use_attention_bias = use_attention_bias - self.history_only = history_only - - def get_config(self) -> dict: - config = { - "head_num": self.head_num, - "return_attention": self.return_attention, - "attention_activation": keras.activations.serialize(self.attention_activation), - "kernel_initializer": keras.initializers.serialize(self.kernel_initializer), - "kernel_regularizer": keras.regularizers.serialize(self.kernel_regularizer), - "kernel_constraint": keras.constraints.serialize(self.kernel_constraint), - "bias_initializer": keras.initializers.serialize(self.bias_initializer), - "bias_regularizer": keras.regularizers.serialize(self.bias_regularizer), - "bias_constraint": keras.constraints.serialize(self.bias_constraint), - "use_attention_bias": self.use_attention_bias, - "history_only": self.history_only - } - base_config = super(MultiHeadAttention, self).get_config() - - return dict(base_config, **config) - - def build(self, input_shape: Tensors): - if isinstance(input_shape, list): - q, k, v = input_shape - else: - q = k = v = input_shape - feature_dim = int(v[-1]) - assert feature_dim % self.head_num == 0, 'feature_dim should be divided by head_num with no remainder' - self.Wq = self.add_weight(shape=(int(q[-1]), feature_dim), - name=f'{self.name}_Wq', - initializer=self.kernel_initializer, - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint) - self.Wk = self.add_weight(shape=(int(k[-1]), feature_dim), - name=f'{self.name}_Wk', - initializer=self.kernel_initializer, - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint) - self.Wv = self.add_weight(shape=(feature_dim, feature_dim), - name=f'{self.name}_Wv', - initializer=self.kernel_initializer, - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint) - self.Wo = self.add_weight(shape=(feature_dim, feature_dim), - name=f'{self.name}_Wo', - initializer=self.kernel_initializer, - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint) - if self.use_attention_bias: - self.bq = self.add_weight(shape=(feature_dim,), - name=f'{self.name}_bq', - initializer=self.bias_initializer, - regularizer=self.bias_regularizer, - constraint=self.bias_constraint) - self.bk = self.add_weight(shape=(feature_dim,), - name=f'{self.name}_bk', - initializer=self.bias_initializer, - regularizer=self.bias_regularizer, - constraint=self.bias_constraint) - self.bv = self.add_weight(shape=(feature_dim,), - name=f'{self.name}_bv', - initializer=self.bias_initializer, - regularizer=self.bias_regularizer, - constraint=self.bias_constraint) - self.bo = self.add_weight(shape=(feature_dim,), - name=f'{self.name}_bo', - initializer=self.bias_initializer, - regularizer=self.bias_regularizer, - constraint=self.bias_constraint) - - @staticmethod - def _reshape_to_batches(x, head_num): - input_shape = K.shape(x) - batch_size, seq_len, feature_dim = input_shape[0], input_shape[1], input_shape[2] - head_dim = feature_dim // head_num - x = K.reshape(x, (batch_size, seq_len, head_num, head_dim)) - x = K.permute_dimensions(x, [0, 2, 1, 3]) - return K.reshape(x, (batch_size * head_num, seq_len, head_dim)) - - @staticmethod - def _reshape_attention_from_batches(x, head_num): - input_shape = K.shape(x) - batch_size, seq_len, feature_dim = input_shape[0], input_shape[1], input_shape[2] - x = K.reshape(x, (batch_size // head_num, head_num, seq_len, feature_dim)) - return K.permute_dimensions(x, [0, 2, 1, 3]) - - @staticmethod - def _reshape_from_batches(x, head_num): - input_shape = K.shape(x) - batch_size, seq_len, feature_dim = input_shape[0], input_shape[1], input_shape[2] - x = K.reshape(x, (batch_size // head_num, head_num, seq_len, feature_dim)) - x = K.permute_dimensions(x, [0, 2, 1, 3]) - return K.reshape(x, (batch_size // head_num, seq_len, feature_dim * head_num)) - - @staticmethod - def _reshape_mask(mask, head_num): - if mask is None: - return mask - seq_len = K.shape(mask)[1] - mask = K.expand_dims(mask, axis=1) - mask = K.tile(mask, [1, head_num, 1]) - return K.reshape(mask, (-1, seq_len)) - - def call(self, inputs: Tensors, mask: Optional[Tensors] = None, **kwargs) -> Tensors: - if isinstance(inputs, list): - q, k, v = inputs - else: - q = k = v = inputs - if isinstance(mask, list): - q_mask, k_mask, v_mask = mask - else: - q_mask = k_mask = v_mask = mask - q = K.dot(q, self.Wq) - k = K.dot(k, self.Wk) - v = K.dot(v, self.Wv) - if self.use_attention_bias: - q += self.bq - k += self.bk - v += self.bv - if self.attention_activation is not None: - q = self.attention_activation(q) - k = self.attention_activation(k) - v = self.attention_activation(v) - scaled_dot_product_attention = ScaledDotProductAttention( - return_attention=True, - history_only=self.history_only, - name=f'{self.name}-Attention', - ) - output, attention = scaled_dot_product_attention( - inputs=[ - self._reshape_to_batches(q, self.head_num), - self._reshape_to_batches(k, self.head_num), - self._reshape_to_batches(v, self.head_num), - ], - mask=[ - self._reshape_mask(q_mask, self.head_num), - self._reshape_mask(k_mask, self.head_num), - self._reshape_mask(v_mask, self.head_num), - ], - ) - attention = self._reshape_attention_from_batches(attention, self.head_num) - output = self._reshape_from_batches(output, self.head_num) - output = K.dot(output, self.Wo) - if self.use_attention_bias: - output += self.bo - if self.attention_activation is not None: - output = self.attention_activation(output) - if self.return_attention: - return [output, attention] - return output - - @staticmethod - def get_custom_objects() -> dict: - return {'MultiHeadAttention': MultiHeadAttention} - - def compute_mask(self, - inputs: Tensors, - mask: Optional[Tensors] = None) -> Union[List[Union[Tensors, None]], Tensors]: - if isinstance(mask, list): - mask = mask[0] - if self.return_attention: - return [mask, None] - return mask - - def compute_output_shape(self, input_shape: Union[Tensors, List[Tensors]]) -> Union[List[Tensors], Tensors]: - if isinstance(input_shape, list): - q_shape, _, v_shape = input_shape - else: - q_shape = _ = v_shape = input_shape - output_shape = q_shape[:-1] + (v_shape[-1],) - if self.return_attention: - attention_shape = (*q_shape[:-1], self.head_num, v_shape[-1]) - return [output_shape, attention_shape] - return output_shape diff --git a/langml/langml/layers/crf.py b/langml/langml/layers/crf.py deleted file mode 100644 index 7ed266b..0000000 --- a/langml/langml/layers/crf.py +++ /dev/null @@ -1,159 +0,0 @@ -# -*- coding: utf-8 -*- - -from typing import Optional, Callable, Union - -from langml import TF_KERAS -if TF_KERAS: - import tensorflow.keras.backend as K - import tensorflow.keras.layers as L -else: - import keras.backend as K - import keras.layers as L - -import tensorflow as tf - -from langml.tensor_typing import Tensors -from langml.third_party.crf import crf_log_likelihood, crf_decode - - -class CRF(L.Layer): - def __init__(self, - output_dim: int, - sparse_target: Optional[bool] = True, - **kwargs): - """ - Args: - output_dim (int): the number of labels to tag each temporal input. - sparse_target (bool): whether the the ground-truth label represented in one-hot. - Input shape: - (batch_size, sentence length, output_dim) - Output shape: - (batch_size, sentence length, output_dim) - - Usage: - >>> from tensorflow.keras.models import Sequential - >>> from tensorflow.keras.layers import Input, Embedding, Bidirectional, LSTM, Dense - - - >>> num_labels = 10 - >>> embedding_size = 100 - >>> hidden_size = 128 - - >>> model = Sequential() - >>> model.add(Embedding(num_labels, embedding_size)) - >>> model.add(Bidirectional(LSTM(hidden_size, return_sequences=True))) - >>> model.add(Dense(num_labels)) - - >>> crf = CRF(num_labels, sparse_target=True) - >>> model.add(crf) - >>> model.compile('adam', loss=crf.loss, metrics=[crf.accuracy]) - """ - super(CRF, self).__init__(**kwargs) - self.support_mask = True - self.output_dim = output_dim - self.sparse_target = sparse_target - self.input_spec = L.InputSpec(min_ndim=3) - self.supports_masking = False - self.sequence_lengths = None - - def build(self, input_shape: Tensors): - assert len(input_shape) == 3 - f_shape = input_shape - input_spec = L.InputSpec(min_ndim=3, axes={-1: f_shape[-1]}) - - if f_shape[-1] is None: - raise ValueError('The last dimension of the inputs to `CRF` ' - 'should be defined. Found `None`.') - if f_shape[-1] != self.output_dim: - raise ValueError('The last dimension of the input shape must be equal to output' - ' shape. Use a linear layer if needed.') - self.input_spec = input_spec - self.transitions = self.add_weight(name='transitions', - shape=[self.output_dim, self.output_dim], - initializer='glorot_uniform', - trainable=True) - self.built = True - - def compute_mask(self, - inputs: Tensors, - mask: Optional[Tensors] = None): - return None - - def call(self, - inputs: Tensors, - sequence_lengths: Optional[Tensors] = None, - training: Optional[Union[bool, int]] = None, - mask: Optional[Tensors] = None, - **kwargs) -> Tensors: - sequences = tf.convert_to_tensor(inputs, dtype=self.dtype) - if sequence_lengths is not None: - assert len(sequence_lengths.shape) == 2 - assert tf.convert_to_tensor(sequence_lengths).dtype == 'int32' - seq_len_shape = tf.convert_to_tensor(sequence_lengths).get_shape().as_list() - assert seq_len_shape[1] == 1 - self.sequence_lengths = K.flatten(sequence_lengths) - else: - self.sequence_lengths = tf.ones(tf.shape(inputs)[0], dtype=tf.int32) * ( - tf.shape(inputs)[1] - ) - - viterbi_sequence, _ = crf_decode(sequences, - self.transitions, - self.sequence_lengths) - output = K.one_hot(viterbi_sequence, self.output_dim) - return K.in_train_phase(sequences, output, training=training) - - @property - def loss(self) -> Callable: - def crf_loss(y_true: Tensors, y_pred: Tensors) -> Tensors: - y_true = K.argmax(y_true, 2) if self.sparse_target else y_true - y_true = K.reshape(y_true, K.shape(y_pred)[:-1]) - log_likelihood, _ = crf_log_likelihood( - y_pred, - K.cast(y_true, dtype='int32'), - self.sequence_lengths, - transition_params=self.transitions, - ) - return K.mean(-log_likelihood) - return crf_loss - - @property - def accuracy(self) -> Callable: - def viterbi_accuracy(y_true: Tensors, y_pred: Tensors) -> Tensors: - y_true = K.argmax(y_true, 2) if self.sparse_target else y_true - y_true = K.reshape(y_true, K.shape(y_pred)[:-1]) - viterbi_sequence, _ = crf_decode( - y_pred, - self.transitions, - self.sequence_lengths - ) - mask = K.all(K.greater(y_pred, -1e6), axis=2) - mask = K.cast(mask, K.floatx()) - y_true = K.cast(y_true, 'int32') - corrects = K.cast(K.equal(y_true, viterbi_sequence), K.floatx()) - return K.sum(corrects * mask) / K.sum(mask) - return viterbi_accuracy - - def compute_output_shape(self, input_shape: Tensors) -> Tensors: - tf.TensorShape(input_shape).assert_has_rank(3) - return input_shape[:2] + (self.output_dim,) - - @property - def trans(self) -> Tensors: - """ transition parameters - """ - return K.eval(self.transitions) - - def get_config(self) -> dict: - config = { - 'output_dim': self.output_dim, - 'sparse_target': self.sparse_target, - 'supports_masking': self.supports_masking, - 'transitions': K.eval(self.transitions) - } - base_config = super(CRF, self).get_config() - return dict(base_config, **config) - - @staticmethod - def get_custom_objects() -> dict: - return {'CRF': CRF} diff --git a/langml/langml/layers/layer_norm.py b/langml/langml/layers/layer_norm.py deleted file mode 100644 index af991d4..0000000 --- a/langml/langml/layers/layer_norm.py +++ /dev/null @@ -1,103 +0,0 @@ -# -*- coding: utf-8 -*- - -from typing import Optional, Union - -from langml import TF_KERAS -if TF_KERAS: - import tensorflow.keras as keras - import tensorflow.keras.backend as K - import tensorflow.keras.layers as L -else: - import keras - import keras.backend as K - import keras.layers as L - -from langml.tensor_typing import Tensors, Initializer, Constraint, Regularizer - - -class LayerNorm(L.Layer): - def __init__(self, - center: Optional[bool] = True, - scale: Optional[bool] = True, - epsilon: Optional[float] = 1e-7, - gamma_initializer: Optional[Initializer] = 'ones', - gamma_regularizer: Optional[Regularizer] = None, - gamma_constraint: Optional[Constraint] = None, - beta_initializer: Optional[Initializer] = 'zeros', - beta_regularizer: Optional[Regularizer] = None, - beta_constraint: Optional[Constraint] = None, - **kwargs): - super(LayerNorm, self).__init__(**kwargs) - - self.supports_masking = True - - self.center = center - self.scale = scale - self.epsilon = epsilon - self.gamma_initializer = keras.initializers.get(gamma_initializer) - self.gamma_regularizer = keras.regularizers.get(gamma_regularizer) - self.gamma_constraint = keras.constraints.get(gamma_constraint) - self.beta_initializer = keras.initializers.get(beta_initializer) - self.beta_regularizer = keras.regularizers.get(beta_regularizer) - self.beta_constraint = keras.constraints.get(beta_constraint) - - def get_config(self) -> dict: - config = { - "center": self.center, - "scale": self.scale, - "epsilon": self.epsilon, - "gamma_initializer": keras.initializers.serialize(self.gamma_initializer), - "gamma_regularizer": keras.regularizers.serialize(self.gamma_regularizer), - "gamma_constraint": keras.constraints.serialize(self.gamma_constraint), - "beta_initializer": keras.initializers.serialize(self.beta_initializer), - "beta_regularizer": keras.regularizers.serialize(self.beta_regularizer), - "beta_constraint": keras.constraints.serialize(self.beta_constraint) - } - base_config = super(LayerNorm, self).get_config() - - return dict(base_config, **config) - - def build(self, input_shape: Tensors): - shape = input_shape[-1:] - if self.scale: - self.gamma = self.add_weight( - shape=shape, - initializer=self.gamma_initializer, - regularizer=self.gamma_regularizer, - constraint=self.gamma_constraint, - name='gamma', - ) - if self.center: - self.beta = self.add_weight( - shape=shape, - initializer=self.beta_initializer, - regularizer=self.beta_regularizer, - constraint=self.beta_constraint, - name='beta', - ) - super(LayerNorm, self).build(input_shape) - - def call(self, inputs: Tensors, **kwargs) -> Tensors: - # layer norm: specify axis=-1 - mean = K.mean(inputs, axis=-1, keepdims=True) - variance = K.mean(K.square(inputs), axis=-1, keepdims=True) - std = K.sqrt(variance + self.epsilon) - # standard normalization: x = (x - \mu) / \std - outputs = (inputs - mean) / std - if self.scale: - outputs *= self.gamma - if self.center: - outputs += self.beta - return outputs - - def compute_mask(self, - inputs: Tensors, - mask: Optional[Tensors] = None) -> Union[Tensors, None]: - return mask - - @staticmethod - def get_custom_objects() -> dict: - return {'LayerNorm': LayerNorm} - - def compute_output_shape(self, input_shape: Tensors) -> Tensors: - return input_shape diff --git a/langml/langml/log.py b/langml/langml/log.py deleted file mode 100644 index aa50e37..0000000 --- a/langml/langml/log.py +++ /dev/null @@ -1,22 +0,0 @@ -# -*- coding: utf-8 -*- - -import logging -from datetime import datetime -from functools import partial - -logging.addLevelName(logging.WARN, 'WARN') - - -def print_log(level: int, msg: str, *args): - log = '%s %s %s' % ( - datetime.now().strftime('%Y-%m-%d %H:%M:%S'), - logging.getLevelName(level), - msg % args - ) - print(log) - - -debug = partial(print_log, logging.DEBUG) -info = partial(print_log, logging.INFO) -warn = partial(print_log, logging.WARN) -error = partial(print_log, logging.ERROR) diff --git a/langml/langml/model.py b/langml/langml/model.py deleted file mode 100644 index e243aa4..0000000 --- a/langml/langml/model.py +++ /dev/null @@ -1,96 +0,0 @@ -# -*- coding: utf-8 -*- - -import os -import random -import string -from typing import Any - -import tensorflow as tf -from langml import TF_KERAS -if TF_KERAS: - import tensorflow.keras.backend as K -else: - import keras.backend as K - -from langml.tensor_typing import Models -from langml.log import info, warn -from langml import TF_VERSION - - -SAVED_MODEL_TAG = 'serve' - - -def get_random_string(length): - return ''.join(random.choice(string.ascii_lowercase) for _ in range(length)) - - -def export_model_v1(model, export_model_dir): - """ - :param export_model_dir: type string, save dir for exported model url - :param model_version: type int best - :return:no return - """ - - if os.path.exists(export_model_dir): - warn(f'path `{export_model_dir}` exists!') - export_model_dir = f"{export_model_dir}.{get_random_string(6)}" - warn(f'auto relocation to `{export_model_dir}`') - - os.makedirs(export_model_dir) - - with tf.get_default_graph().as_default(): - info(f"input: {model.input}") - info(f"output: {model.output}") - input_map = {} - if isinstance(model.input, (tuple, list)): - for x in model.input: - input_map[x.name.split(':')[0]] = tf.saved_model.build_tensor_info(x) - else: - input_map[model.input.name.split(':')[0]] = tf.saved_model.build_tensor_info(model.input) - info(f'input map: {input_map}') - output_map = {} - if isinstance(model.output, (tuple, list)): - for x in model.output: - output_map[x.name.split(':')[0]] = tf.saved_model.build_tensor_info(x) - else: - output_map[model.output.name.split(':')[0]] = tf.saved_model.build_tensor_info(model.output) - info(f'output map: {output_map}') - prediction_signature = ( - tf.saved_model.build_signature_def( - inputs=input_map, - outputs=output_map) - ) - info('step1 => prediction_signature created successfully') - builder = tf.saved_model.builder.SavedModelBuilder(export_model_dir) - builder.add_meta_graph_and_variables( - sess=K.get_session(), - tags=[SAVED_MODEL_TAG], - signature_def_map={ - 'predict': prediction_signature, - 'serving_default': prediction_signature, - }, - ) - info(f'step2 => Export path({export_model_dir}) ready to export trained model') - builder.save() - info(f'done! model has saved to {export_model_dir}.') - - -def save_frozen(model: Models, fpath: str): - if int(tf.__version__.split('.')[0]) > 1: - tf.saved_model.save(model, fpath) - else: - info('apply tensorflow 1.x frozen') - export_model_v1(model, fpath) - - -def load_frozen(model_dir: str, - session: Any = None) -> Any: - - if TF_VERSION > 1: - return tf.saved_model.load(model_dir) - - if session is None: - raise ValueError('session is required in tensorflow 1.x') - tf.saved_model.loader.load(session, [SAVED_MODEL_TAG], export_dir=model_dir) - info('done! session has restored.') - return session diff --git a/langml/langml/plm/__init__.py b/langml/langml/plm/__init__.py deleted file mode 100644 index 272b584..0000000 --- a/langml/langml/plm/__init__.py +++ /dev/null @@ -1,29 +0,0 @@ -# -*- coding: utf-8 -*- - -from typing import Callable - -import tensorflow as tf -from langml import TF_KERAS -if TF_KERAS: - import tensorflow.keras as keras -else: - import keras - -from langml.plm.layers import ( - TokenEmbedding, AbsolutePositionEmbedding, - EmbeddingMatching, Masked, -) - -custom_objects = {} -custom_objects.update(TokenEmbedding.get_custom_objects()) -custom_objects.update(AbsolutePositionEmbedding.get_custom_objects()) -custom_objects.update(EmbeddingMatching.get_custom_objects()) -custom_objects.update(Masked.get_custom_objects()) - -keras.utils.get_custom_objects().update(custom_objects) - - -def load_variables(checkpoint_path: str) -> Callable: - def wrap(varname: str): - return tf.train.load_variable(checkpoint_path, varname) - return wrap diff --git a/langml/langml/plm/albert.py b/langml/langml/plm/albert.py deleted file mode 100644 index a2b7155..0000000 --- a/langml/langml/plm/albert.py +++ /dev/null @@ -1,138 +0,0 @@ -# -*- coding: utf-8 -*- - -import json -from typing import Callable, Optional, Tuple, Union - -import numpy as np - -from langml.tensor_typing import Models -from langml.plm import load_variables -from langml.plm.bert import BERT - - -def load_albert(config_path: str, - checkpoint_path: str, - seq_len: Optional[int] = None, - pretraining: bool = False, - with_mlm: bool = True, - with_nsp: bool = True, - lazy_restore: bool = False, - weight_prefix: Optional[str] = None, - dropout_rate: float = 0.0, - **kwargs) -> Union[Tuple[Models, Callable], Tuple[Models, Callable, Callable]]: - """ Load pretrained ALBERT - Args: - - config_path: str, path of albert config - - checkpoint_path: str, path of albert checkpoint - - seq_len: Optional[int], specify fixed input sequence length, default None - - pretraining: bool, pretraining mode, default False - - with_mlm: bool, whether to use mlm task in pretraining, default True - - with_nsp: bool, whether to use nsp/sop task in pretraining, default True - - lazy_restore: bool, whether to restore pretrained weights lazily, default False. - Set it as True for distributed training. - - weight_prefix: Optional[str], prefix name of weights, default None. - You can set a prefix name in unshared siamese networks. - - dropout_rate: float, dropout rate, default 0. - Return: - - model: keras model - - bert: bert instance - - restore: conditionally, it will return when lazy_restore=True - """ - # initialize model from config - with open(config_path, 'r') as reader: - config = json.load(reader) - if seq_len is not None: - config['max_position_embeddings'] = min(seq_len, config['max_position_embeddings']) - - bert = BERT( - config['vocab_size'], - position_size=config['max_position_embeddings'], - seq_len=seq_len, - embedding_dim=config.get('embedding_size') or config.get('hidden_size'), - hidden_dim=config.get('hidden_size'), - transformer_blocks=config['num_hidden_layers'], - attention_heads=config['num_attention_heads'], - intermediate_size=config['intermediate_size'], - feed_forward_activation=config['hidden_act'], - initializer_range=config['initializer_range'], - dropout_rate=dropout_rate or config.get('hidden_dropout_prob', 0.0), - pretraining=pretraining, - share_weights=True, - weight_prefix=weight_prefix, - **kwargs) - bert.build() - model = bert(with_mlm=with_mlm, with_nsp=with_nsp) - - def restore(model): - variables = load_variables(checkpoint_path) - model.get_layer(name=bert.get_weight_name('Embedding-Token')).set_weights([ - variables('bert/embeddings/word_embeddings'), - ]) - model.get_layer(name=bert.get_weight_name('Embedding-Position')).set_weights([ - variables('bert/embeddings/position_embeddings')[:config['max_position_embeddings'], :], - ]) - model.get_layer(name=bert.get_weight_name('Embedding-Segment')).set_weights([ - variables('bert/embeddings/token_type_embeddings'), - ]) - model.get_layer(name=bert.get_weight_name('Embedding-Norm')).set_weights([ - variables('bert/embeddings/LayerNorm/gamma'), - variables('bert/embeddings/LayerNorm/beta'), - ]) - model.get_layer(name=bert.get_weight_name('Embedding-Mapping')).set_weights([ - variables('bert/encoder/embedding_hidden_mapping_in/kernel'), - variables('bert/encoder/embedding_hidden_mapping_in/bias'), - ]) - # 以下权重共享 - model.get_layer(name=bert.get_weight_name('Transformer-MultiHeadSelfAttention')).set_weights([ - variables('bert/encoder/transformer/group_0/inner_group_0/attention_1/self/query/kernel'), - variables('bert/encoder/transformer/group_0/inner_group_0/attention_1/self/key/kernel'), - variables('bert/encoder/transformer/group_0/inner_group_0/attention_1/self/value/kernel'), - variables('bert/encoder/transformer/group_0/inner_group_0/attention_1/output/dense/kernel'), - variables('bert/encoder/transformer/group_0/inner_group_0/attention_1/self/query/bias'), - variables('bert/encoder/transformer/group_0/inner_group_0/attention_1/self/key/bias'), - variables('bert/encoder/transformer/group_0/inner_group_0/attention_1/self/value/bias'), - variables('bert/encoder/transformer/group_0/inner_group_0/attention_1/output/dense/bias'), - ]) - model.get_layer(name=bert.get_weight_name('Transformer-MultiHeadSelfAttention-Norm')).set_weights([ - variables('bert/encoder/transformer/group_0/inner_group_0/LayerNorm/gamma'), - variables('bert/encoder/transformer/group_0/inner_group_0/LayerNorm/beta'), - ]) - model.get_layer(name=bert.get_weight_name('Transformer-FeedForward')).set_weights([ - variables('bert/encoder/transformer/group_0/inner_group_0/ffn_1/intermediate/dense/kernel'), - variables('bert/encoder/transformer/group_0/inner_group_0/ffn_1/intermediate/output/dense/kernel'), - variables('bert/encoder/transformer/group_0/inner_group_0/ffn_1/intermediate/dense/bias'), - variables('bert/encoder/transformer/group_0/inner_group_0/ffn_1/intermediate/output/dense/bias'), - ]) - model.get_layer(name=bert.get_weight_name('Transformer-FeedForward-Norm')).set_weights([ - variables('bert/encoder/transformer/group_0/inner_group_0/LayerNorm_1/gamma'), - variables('bert/encoder/transformer/group_0/inner_group_0/LayerNorm_1/beta'), - ]) - if pretraining: - if with_mlm: - model.get_layer(name=bert.get_weight_name('MLM-Dense')).set_weights([ - variables('cls/predictions/transform/dense/kernel'), - variables('cls/predictions/transform/dense/bias'), - ]) - model.get_layer(name=bert.get_weight_name('MLM-Norm')).set_weights([ - variables('cls/predictions/transform/LayerNorm/gamma'), - variables('cls/predictions/transform/LayerNorm/beta'), - ]) - model.get_layer(name=bert.get_weight_name('MLM-Match')).set_weights([ - variables('cls/predictions/output_bias'), - ]) - if with_nsp: - model.get_layer(name=bert.get_weight_name('NSP-Dense')).set_weights([ - variables('bert/pooler/dense/kernel'), - variables('bert/pooler/dense/bias'), - ]) - model.get_layer(name=bert.get_weight_name('NSP')).set_weights([ - np.transpose(variables('cls/seq_relationship/output_weights')), - variables('cls/seq_relationship/output_bias'), - ]) - return model - - if lazy_restore: - return model, bert, restore - model = restore(model) - return model, bert - diff --git a/langml/langml/plm/bert.py b/langml/langml/plm/bert.py deleted file mode 100644 index 0ca87be..0000000 --- a/langml/langml/plm/bert.py +++ /dev/null @@ -1,343 +0,0 @@ -# -*- coding: utf-8 -*- - -import json -from typing import Callable, List, Optional, Tuple, Union - -import numpy as np -from langml import TF_KERAS -if TF_KERAS: - import tensorflow.keras as keras - import tensorflow.keras.layers as L -else: - import keras - import keras.layers as L - -from langml.layers import LayerNorm -from langml.transformer import gelu -from langml.transformer.encoder import TransformerEncoderBlock -from langml.tensor_typing import Activation, Tensors, Models -from langml.plm import TokenEmbedding, AbsolutePositionEmbedding, EmbeddingMatching, Masked, load_variables - - -class BERT: - def __init__(self, - vocab_size: int, - position_size: Optional[int] = 512, - seq_len: Optional[int] = 512, - embedding_dim: Optional[int] = 768, - hidden_dim: Optional[int] = None, - transformer_blocks: Optional[int] = 12, - attention_heads: Optional[int] = 12, - intermediate_size: Optional[int] = 3072, - dropout_rate: Optional[float] = 0.1, - attention_activation: Optional[Activation] = None, - feed_forward_activation: Optional[Activation] = 'gelu', - initializer_range: Optional[float] = 0.02, - pretraining: bool = False, - trainable_prefixs: Optional[List] = None, - share_weights: bool = False, - weight_prefix: Optional[str] = None): - self.vocab_size = vocab_size - self.seq_len = seq_len - self.position_size = position_size - self.embedding_dim = embedding_dim - self.transformer_blocks = transformer_blocks - self.attention_heads = attention_heads - self.intermediate_size = intermediate_size - self.hidden_dim = hidden_dim - self.dropout_rate = dropout_rate - self.attention_activation = attention_activation - self.feed_forward_activation = feed_forward_activation - if self.attention_activation == 'gelu': - self.attention_activation = gelu - if self.feed_forward_activation == 'gelu': - self.feed_forward_activation = gelu - self.pretraining = pretraining - self.trainable_prefixs = trainable_prefixs - if self.trainable_prefixs is None: - self.trainable = True - else: - self.trainable = False - self.share_weights = share_weights - self.weight_prefix = weight_prefix - self.initializer = keras.initializers.TruncatedNormal(stddev=initializer_range) - self.is_embedding_mapping = self.hidden_dim is not None and self.embedding_dim != self.hidden_dim - - def get_weight_name(self, name: str) -> str: - if self.weight_prefix is not None: - return f'{self.weight_prefix}-{name}' - return name - - def build(self): - # emedding layers - self.token_embedding_layer = TokenEmbedding( - input_dim=self.vocab_size, - output_dim=self.embedding_dim, - mask_zero=True, - trainable=self.trainable, - embeddings_initializer=self.initializer, - name=self.get_weight_name('Embedding-Token'), - ) - self.segment_embedding_layer = L.Embedding( - input_dim=2, - output_dim=self.embedding_dim, - trainable=self.trainable, - embeddings_initializer=self.initializer, - name=self.get_weight_name('Embedding-Segment') - ) - self.add_embedding_layer = L.Add(name=self.get_weight_name('Embedding-Token-Segment')) - self.position_embedding_layer = AbsolutePositionEmbedding( - input_dim=self.position_size, - output_dim=self.embedding_dim, - mode='add', - trainable=self.trainable, - embeddings_initializer=self.initializer, - name=self.get_weight_name('Embedding-Position'), - ) - # layernorm - self.embedding_norm_layer = LayerNorm( - trainable=self.trainable, - name=self.get_weight_name('Embedding-Norm'), - ) - # dropout - self.embedding_dropout_layer = L.Dropout( - self.dropout_rate, - name=self.get_weight_name('Embedding-Dropout'), - ) - # embedding mapping - if self.is_embedding_mapping: - self.embedding_mapping_layer = L.Dense( - self.hidden_dim, - kernel_initializer=self.initializer, - name=self.get_weight_name('Embedding-Mapping') - ) - # transformer - self.transformer_layer = TransformerEncoderBlock( - blocks=self.transformer_blocks, - attention_heads=self.attention_heads, - hidden_dim=self.intermediate_size, - attention_activation=self.attention_activation, - feed_forward_activation=self.feed_forward_activation, - dropout_rate=self.dropout_rate, - name=self.get_weight_name('Transformer'), - share_weights=self.share_weights - ) - - def get_inputs(self) -> List[Tensors]: - # Input Placeholder - t_in = L.Input(shape=(self.seq_len, ), name=self.get_weight_name('Input-Token')) - s_in = L.Input(shape=(self.seq_len, ), name=self.get_weight_name('Input-Segment')) - m_in = L.Input(shape=(self.seq_len, ), name=self.get_weight_name('Input-Masked')) - return [t_in, s_in, m_in] - - def get_embedding(self, inputs: List[Tensors]) -> List[Tensors]: - token_embedding, embedding_weights = self.token_embedding_layer(inputs[0]) - segment_embedding = self.segment_embedding_layer(inputs[1]) - token_segment_embedding = self.add_embedding_layer([token_embedding, segment_embedding]) - embedding = self.position_embedding_layer(token_segment_embedding) - return [embedding, embedding_weights] - - def is_trainable(self, layer: L.Layer) -> bool: - if isinstance(self.trainable_prefixs, (list, tuple, set)): - if any(layer.name.startswith(prefix) for prefix in self.trainable_prefixs): - return True - return False - return self.trainable - - def __call__(self, - inputs: Optional[Union[Tuple, List]] = None, - return_model: bool = True, - with_mlm: bool = True, - with_nsp: bool = True) -> Models: - if inputs is None: - inputs = self.get_inputs() - assert isinstance(inputs, (tuple, list)) and len(inputs) > 1, '`inputs` should be a tuple/list consisting of placeholders and stores token, segment, and masked placeholders respectively. Note that the masked placeholder is optional for finetuning.' # NOQA - # embedding - embedding, embedding_weights = self.get_embedding(inputs) - x = self.embedding_norm_layer(embedding) - x = self.embedding_dropout_layer(x) - if self.is_embedding_mapping: - x = self.embedding_mapping_layer(x) - # transformer - x = self.transformer_layer(x) - if self.pretraining: - # pretrain - # don't support parameter sharing for the pretraining phase. - assert with_mlm or with_nsp, '`with_mlm` and `with_nsp` cannot be `False` at the same time' - if with_mlm: - xi = L.Dense( - units=self.embedding_dim, - activation=self.feed_forward_activation, - name=self.get_weight_name('MLM-Dense') - )(x) - xi = LayerNorm(name=self.get_weight_name('MLM-Norm'))(xi) - xi = EmbeddingMatching(name=self.get_weight_name('MLM-Match'))([xi, embedding_weights]) - mask_output = Masked(name=self.get_weight_name('MLM'))([xi, inputs[-1]]) - if with_nsp: - xi = L.Lambda(lambda t: t[:, 0], name=self.get_weight_name('cls'))(x) - xi = L.Dense( - units=self.hidden_dim or self.embedding_dim, - activation='tanh', - name=self.get_weight_name('NSP-Dense'), - )(xi) - nsp_output = L.Dense( - units=2, - activation='softmax', - name=self.get_weight_name('NSP'), - )(xi) - outputs = [] - if with_mlm: - outputs.append(mask_output) - if with_nsp: - outputs.append(nsp_output) - if return_model: - model = keras.models.Model(inputs=inputs, outputs=outputs) - for layer in model.layers: - layer.trainable = self.is_trainable(layer) - return model - return outputs - else: - # finetune - inputs = inputs[:2] - if return_model: - model = keras.models.Model(inputs=inputs, outputs=x) - for layer in model.layers: - layer.trainable = self.is_trainable(layer) - - return model - return x - - -def load_bert(config_path: str, - checkpoint_path: str, - seq_len: Optional[int] = None, - pretraining: bool = False, - with_mlm: bool = True, - with_nsp: bool = True, - lazy_restore: bool = False, - weight_prefix: Optional[str] = None, - dropout_rate: float = 0.0, - **kwargs) -> Union[Tuple[Models, Callable], Tuple[Models, Callable, Callable]]: - """ Load pretrained BERT/RoBERTa - Args: - - config_path: str, path of albert config - - checkpoint_path: str, path of albert checkpoint - - seq_len: Optional[int], specify fixed input sequence length, default None - - pretraining: bool, pretraining mode, default False - - with_mlm: bool, whether to use mlm task in pretraining, default True - - with_nsp: bool, whether to use nsp task in pretraining, default True - - lazy_restore: bool, whether to restore pretrained weights lazily, default False. - Set it as True for distributed training. - - weight_prefix: Optional[str], prefix name of weights, default None. - You can set a prefix name in unshared siamese networks. - - dropout_rate: float, dropout rate, default 0. - Return: - - model: keras model - - bert: bert instance - - restore: conditionally, it will return when lazy_restore=True - """ - # initialize model from config - with open(config_path, 'r') as reader: - config = json.load(reader) - if seq_len is not None: - config['max_position_embeddings'] = min(seq_len, config['max_position_embeddings']) - - bert = BERT( - config['vocab_size'], - position_size=config['max_position_embeddings'], - seq_len=seq_len, - embedding_dim=config.get('embedding_size') or config.get('hidden_size'), - hidden_dim=config.get('hidden_size'), - transformer_blocks=config['num_hidden_layers'], - attention_heads=config['num_attention_heads'], - intermediate_size=config['intermediate_size'], - feed_forward_activation=config['hidden_act'], - initializer_range=config['initializer_range'], - dropout_rate=dropout_rate or config.get('hidden_dropout_prob', 0.0), - pretraining=pretraining, - weight_prefix=weight_prefix, - **kwargs) - bert.build() - model = bert(with_mlm=with_mlm, with_nsp=with_nsp) - - def restore(model): - # restore weights - variables = load_variables(checkpoint_path) - model.get_layer(name=bert.get_weight_name('Embedding-Token')).set_weights([ - variables('bert/embeddings/word_embeddings'), - ]) - model.get_layer(name=bert.get_weight_name('Embedding-Position')).set_weights([ - variables('bert/embeddings/position_embeddings')[:config['max_position_embeddings'], :], - ]) - model.get_layer(name=bert.get_weight_name('Embedding-Segment')).set_weights([ - variables('bert/embeddings/token_type_embeddings'), - ]) - model.get_layer(name=bert.get_weight_name('Embedding-Norm')).set_weights([ - variables('bert/embeddings/LayerNorm/gamma'), - variables('bert/embeddings/LayerNorm/beta'), - ]) - try: - # BERT 并没有这一层 - model.get_layer(name=bert.get_weight_name('Embedding-Mapping')).set_weights([ - variables('bert/encoder/embedding_hidden_mapping_in/kernel'), - variables('bert/encoder/embedding_hidden_mapping_in/bias'), - ]) - except ValueError: - print('Skip Embedding-Mapping') - pass - for i in range(config['num_hidden_layers']): - model.get_layer(name=bert.get_weight_name('Transformer-%d-MultiHeadSelfAttention' % (i + 1))).set_weights([ - variables('bert/encoder/layer_%d/attention/self/query/kernel' % i), - variables('bert/encoder/layer_%d/attention/self/key/kernel' % i), - variables('bert/encoder/layer_%d/attention/self/value/kernel' % i), - variables('bert/encoder/layer_%d/attention/output/dense/kernel' % i), - variables('bert/encoder/layer_%d/attention/self/query/bias' % i), - variables('bert/encoder/layer_%d/attention/self/key/bias' % i), - variables('bert/encoder/layer_%d/attention/self/value/bias' % i), - variables('bert/encoder/layer_%d/attention/output/dense/bias' % i), - ]) - model.get_layer(name=bert.get_weight_name( - 'Transformer-%d-MultiHeadSelfAttention-Norm' % (i + 1)) - ).set_weights([ - variables('bert/encoder/layer_%d/attention/output/LayerNorm/gamma' % i), - variables('bert/encoder/layer_%d/attention/output/LayerNorm/beta' % i), - ]) - model.get_layer(name=bert.get_weight_name('Transformer-%d-FeedForward' % (i + 1))).set_weights([ - variables('bert/encoder/layer_%d/intermediate/dense/kernel' % i), - variables('bert/encoder/layer_%d/output/dense/kernel' % i), - variables('bert/encoder/layer_%d/intermediate/dense/bias' % i), - variables('bert/encoder/layer_%d/output/dense/bias' % i), - ]) - model.get_layer(name=bert.get_weight_name('Transformer-%d-FeedForward-Norm' % (i + 1))).set_weights([ - variables('bert/encoder/layer_%d/output/LayerNorm/gamma' % i), - variables('bert/encoder/layer_%d/output/LayerNorm/beta' % i), - ]) - if pretraining: - if with_mlm: - model.get_layer(name=bert.get_weight_name('MLM-Dense')).set_weights([ - variables('cls/predictions/transform/dense/kernel'), - variables('cls/predictions/transform/dense/bias'), - ]) - model.get_layer(name=bert.get_weight_name('MLM-Norm')).set_weights([ - variables('cls/predictions/transform/LayerNorm/gamma'), - variables('cls/predictions/transform/LayerNorm/beta'), - ]) - model.get_layer(name=bert.get_weight_name('MLM-Match')).set_weights([ - variables('cls/predictions/output_bias'), - ]) - if with_nsp: - model.get_layer(name=bert.get_weight_name('NSP-Dense')).set_weights([ - variables('bert/pooler/dense/kernel'), - variables('bert/pooler/dense/bias'), - ]) - model.get_layer(name=bert.get_weight_name('NSP')).set_weights([ - np.transpose(variables('cls/seq_relationship/output_weights')), - variables('cls/seq_relationship/output_bias'), - ]) - return model - - if lazy_restore: - return model, bert, restore - model = restore(model) - return model, bert - diff --git a/langml/langml/plm/layers.py b/langml/langml/plm/layers.py deleted file mode 100644 index 7dd0036..0000000 --- a/langml/langml/plm/layers.py +++ /dev/null @@ -1,244 +0,0 @@ -# -*- coding: utf-8 -*- - -from typing import Optional, List, Union - -from langml import TF_KERAS -if TF_KERAS: - import tensorflow.keras as keras - import tensorflow.keras.backend as K - import tensorflow.keras.layers as L -else: - import keras - import keras.backend as K - import keras.layers as L - -from langml.tensor_typing import Tensors, Initializer, Constraint, Regularizer - - -class TokenEmbedding(L.Embedding): - @staticmethod - def get_custom_objects() -> dict: - return {'TokenEmbedding': TokenEmbedding} - - def compute_mask(self, - inputs: Tensors, - mask: Optional[Tensors] = None) -> List[Union[Tensors, None]]: - return [super(TokenEmbedding, self).compute_mask(inputs, mask), None] - - def call(self, inputs: Tensors) -> List[Tensors]: - return [super(TokenEmbedding, self).call(inputs), self.embeddings + 0] - - def compute_output_shape(self, input_shape: Tensors) -> List[Tensors]: - return [super(TokenEmbedding, self).compute_output_shape(input_shape), K.int_shape(self.embeddings)] - - -class AbsolutePositionEmbedding(L.Layer): - def __init__(self, - input_dim: int, - output_dim: int, - mode: Optional[str] = 'add', - embeddings_initializer: Optional[Initializer] = 'uniform', - embeddings_regularizer: Optional[Regularizer] = None, - embeddings_constraint: Optional[Constraint] = None, - mask_zero: Optional[bool] = False, - **kwargs): - """Absolute Position Embedding - # mode: - expand - # Input shape - 2D tensor with shape: `(batch_size, sequence_length)`. - # Output shape - 3D tensor with shape: `(batch_size, sequence_length, output_dim)`. - add - # Input shape - 3D tensor with shape: `(batch_size, sequence_length, feature_dim)`. - # Output shape - 3D tensor with shape: `(batch_size, sequence_length, feature_dim)`. - concat - # Input shape - 3D tensor with shape: `(batch_size, sequence_length, feature_dim)`. - # Output shape - 3D tensor with shape: `(batch_size, sequence_length, feature_dim + output_dim)`. - """ - assert mode in ['expand', 'add', 'concat'], f'not support mode `{mode}`, options: expand | add | concat' - self.input_dim = input_dim - self.output_dim = output_dim - self.mode = mode - self.embeddings_initializer = keras.initializers.get(embeddings_initializer) - self.embeddings_regularizer = keras.regularizers.get(embeddings_regularizer) - self.embeddings_constraint = keras.constraints.get(embeddings_constraint) - self.mask_zero = mask_zero - self.supports_masking = True if mask_zero else False - self.embeddings = None - super(AbsolutePositionEmbedding, self).__init__(**kwargs) - - def get_config(self) -> dict: - config = { - 'input_dim': self.input_dim, - 'output_dim': self.output_dim, - 'mode': self.mode, - 'embeddings_initializer': keras.initializers.serialize(self.embeddings_initializer), - 'embeddings_regularizer': keras.regularizers.serialize(self.embeddings_regularizer), - 'embeddings_constraint': keras.constraints.serialize(self.embeddings_constraint), - 'mask_zero': self.mask_zero - } - base_config = super(AbsolutePositionEmbedding, self).get_config() - return dict(base_config, **config) - - @staticmethod - def get_custom_objects() -> dict: - return {'AbsolutePositionEmbedding': AbsolutePositionEmbedding} - - def build(self, input_shape: Tensors): - if self.mode == 'expand': - self.embeddings = self.add_weight( - shape=(self.input_dim * 2 + 1, self.output_dim), - initializer=self.embeddings_initializer, - name='embeddings', - regularizer=self.embeddings_regularizer, - constraint=self.embeddings_constraint, - ) - else: - self.embeddings = self.add_weight( - shape=(self.input_dim, self.output_dim), - initializer=self.embeddings_initializer, - name='embeddings', - regularizer=self.embeddings_regularizer, - constraint=self.embeddings_constraint, - ) - super(AbsolutePositionEmbedding, self).build(input_shape) - - def compute_mask(self, inputs: Tensors, mask: Optional[Tensors] = None) -> Tensors: - if self.mode == 'expand': - if self.mask_zero: - output_mask = K.not_equal(inputs, self.mask_zero) - else: - output_mask = None - else: - output_mask = mask - return output_mask - - def compute_output_shape(self, input_shape: Tensors) -> Tensors: - if self.mode == 'expand': - return input_shape + (self.output_dim,) - if self.mode == 'concat': - return input_shape[:-1] + (input_shape[-1] + self.output_dim,) - return input_shape - - def call(self, inputs: Tensors, **kwargs) -> Tensors: - if self.mode == 'expand': - inputs = K.cast(inputs, 'int32') - return K.gather( - self.embeddings, - K.minimum(K.maximum(inputs, -self.input_dim), self.input_dim) + self.input_dim, - ) - input_shape = K.shape(inputs) - if self.mode == 'add': - batch_size, seq_len, output_dim = input_shape[0], input_shape[1], input_shape[2] - else: - batch_size, seq_len, output_dim = input_shape[0], input_shape[1], self.output_dim - pos_embeddings = K.tile( - K.expand_dims(self.embeddings[:seq_len, :output_dim], axis=0), - [batch_size, 1, 1], - ) - if self.mode == 'add': - return inputs + pos_embeddings - return K.concatenate([inputs, pos_embeddings], axis=-1) - - -class EmbeddingMatching(L.Layer): - def __init__(self, - initializer: Optional[Initializer] = 'zeros', - regularizer: Optional[Regularizer] = None, - constraint: Optional[Constraint] = None, - use_bias: Optional[bool] = True, - **kwargs): - super(EmbeddingMatching, self).__init__(**kwargs) - self.supports_masking = True - self.initializer = keras.initializers.get(initializer) - self.regularizer = keras.regularizers.get(regularizer) - self.constraint = keras.constraints.get(constraint) - self.use_bias = use_bias - - def get_config(self) -> dict: - config = { - 'initializer': keras.initializers.serialize(self.initializer), - 'regularizer': keras.regularizers.serialize(self.regularizer), - 'constraint': keras.constraints.serialize(self.constraint), - } - base_config = super(EmbeddingMatching, self).get_config() - return dict(base_config, **config) - - def build(self, input_shape: Tensors): - if self.use_bias: - self.bias = self.add_weight( - shape=(int(input_shape[1][0]), ), - initializer=self.initializer, - regularizer=self.regularizer, - constraint=self.constraint, - name='bias', - ) - super(EmbeddingMatching, self).build(input_shape) - - def compute_mask(self, inputs: Tensors, mask: Optional[Tensors] = None) -> Tensors: - if isinstance(mask, list): - return mask[0] - return mask - - def call(self, inputs: Tensors, mask: Optional[Tensors] = None, **kwargs) -> Tensors: - inputs, embeddings = inputs - output = K.dot(inputs, K.transpose(embeddings)) - if self.use_bias: - output = K.bias_add(output, self.bias) - return K.softmax(output) - - @staticmethod - def get_custom_objects() -> dict: - return {'EmbeddingMatching': EmbeddingMatching} - - def compute_output_shape(self, input_shape: Tensors) -> Tensors: - return input_shape[0][:2] + (input_shape[1][0], ) - - -class Masked(L.Layer): - """Generate output mask based on the given mask. - https://arxiv.org/pdf/1810.04805.pdf - """ - - def __init__(self, - return_masked: Optional[bool] = False, - **kwargs): - super(Masked, self).__init__(**kwargs) - self.supports_masking = True - self.return_masked = return_masked - - @staticmethod - def get_custom_objects() -> dict: - return {'Masked': Masked} - - def get_config(self) -> dict: - config = { - 'return_masked': self.return_masked, - } - base_config = super(Masked, self).get_config() - return dict(base_config, **config) - - def compute_mask(self, - inputs: Tensors, - mask: Optional[Tensors] = None) -> Union[List[Union[Tensors, None]], Tensors]: - token_mask = K.not_equal(inputs[1], 0) - masked = K.all(K.stack([token_mask, mask[0]], axis=0), axis=0) - if self.return_masked: - return [masked, None] - return masked - - def call(self, inputs: Tensors, mask: Optional[Tensors] = None, **kwargs) -> Tensors: - output = inputs[0] + 0 - if self.return_masked: - return [output, K.cast(self.compute_mask(inputs, mask)[0], K.floatx())] - return output - - def compute_output_shape(self, input_shape: Tensors) -> Union[List[Tensors], Tensors]: - if self.return_masked: - return [input_shape[0], (2, ) + input_shape[1]] - return input_shape[0] diff --git a/langml/langml/prompt/__init__.py b/langml/langml/prompt/__init__.py deleted file mode 100644 index 298b04d..0000000 --- a/langml/langml/prompt/__init__.py +++ /dev/null @@ -1,3 +0,0 @@ -# -*- coding: utf-8 -*- - -from langml.prompt.prompt import Prompt # NOQA diff --git a/langml/langml/prompt/prompt.py b/langml/langml/prompt/prompt.py deleted file mode 100644 index 9c4e4b4..0000000 --- a/langml/langml/prompt/prompt.py +++ /dev/null @@ -1,276 +0,0 @@ -# -*- coding: utf-8 -*- - -""" -Prompt-Base finetune. -""" - -import re -from typing import Dict, List, Optional, Tuple, Union - -import numpy as np - -from langml.log import info -from langml.plm.bert import load_bert -from langml.plm.albert import load_albert -from langml import TF_KERAS, TF_VERSION -if TF_KERAS: - import tensorflow.keras as keras - from tensorflow.keras.preprocessing.sequence import pad_sequences -else: - import keras - from keras.preprocessing.sequence import pad_sequences - -from langml.tokenizer import Tokenizer, WPTokenizer, SPTokenizer - - -re_unused = re.compile(r'\[unused[0-9]+\]') - - -class DataGenerator: - def __init__(self, - template_ids: List[int], - datas: List[str], - labels: List[Union[str, List[str]]], - tokenizer: Tokenizer, - label2id: Dict, - mask_id: int, - batch_size: int = 16): - self.batch_size = batch_size - self.mask_id = mask_id - self.datas = [] - for data, label in zip(datas, labels): - tokened = tokenizer.encode(data) - token_ids = tokened.ids - token_ids = [token_ids[0]] + template_ids + token_ids[1:-1] + [token_ids[-1]] - segment_ids = [0] * len(token_ids) - mask_ids = (np.array(token_ids) == self.mask_id).astype('int') - if isinstance(label, str): - label = [label] - else: - label = list(label) - assert len(label) == mask_ids.sum(), 'number of [MASK] should be equal with number of label' - mask_ids = mask_ids.tolist() - output_ids = [] - label = label[::-1] - for token_id, mask_id in zip(token_ids, mask_ids): - if mask_id == 1: - output_ids.append(label2id[label.pop()]) - else: - output_ids.append(token_id) - self.datas.append({ - 'token_ids': token_ids, - 'segment_ids': segment_ids, - 'mask_ids': mask_ids, - 'output_ids': output_ids - }) - - self.steps = len(self.datas) // self.batch_size - if len(self.datas) % self.batch_size != 0: - self.steps += 1 - - def __len__(self): - return self.steps - - def __iter__(self, random: bool = True): - idxs = list(range(len(self.datas))) - if random: - np.random.shuffle(idxs) - batch_tokens, batch_segments, batch_mask_ids, batch_outputs = [], [], [], [] - for idx in idxs: - obj = self.datas[idx] - batch_tokens.append(obj['token_ids']) - batch_segments.append(obj['segment_ids']) - batch_mask_ids.append(obj['mask_ids']) - batch_outputs.append(obj['output_ids']) - - if len(batch_tokens) == self.batch_size or idx == idxs[-1]: - batch_outputs = pad_sequences(batch_outputs, truncating='post', padding='post') - batch_outputs = np.expand_dims(batch_outputs, axis=-1) - batch_tokens = pad_sequences(batch_tokens, truncating='post', padding='post') - batch_segments = pad_sequences(batch_segments, truncating='post', padding='post') - batch_mask_ids = pad_sequences(batch_mask_ids, truncating='post', padding='post') - yield [batch_tokens, batch_segments, batch_mask_ids], [batch_outputs] - batch_tokens, batch_segments, batch_mask_ids, batch_outputs = [], [], [], [] - - def forfit(self, random: bool = True): - while True: - for inputs, labels in self.__iter__(random=random): - yield inputs, labels - - -class Prompt: - def __init__(self, - config_path: str, - checkpoint_path: str, - vocab_path: str, - verbalizer: Dict, - template: str, - backbone: str = 'bert', - tokenizer: Optional[Tokenizer] = None, - lowercase: bool = False, - max_length: int = 512, - special_tokens: Optional[List[str]] = None, - lazy_restore: bool = False): - """ - Args: - - config_path: str, path of PLM config - - checkpoint_path: str, path of PLM checkpoint - - vocab_path: str, path of vocabulary - - verbalizer, Dict, the mapping of tokens to factual labels. - Please assure vocabulary contain input tokens. - Strongly recommend using unused tokens as verbalizer tokens. - - template: str, prompt template - - backbone: str, optional, specify PLM backbones, options: bert, roberta, albert - - tokenizer: Optional[Tokenizer], optional, options: SPTokenizer, WPTokenizer - - lowercase: bool, optional, whether to do lowercase - - max_length: int, optional, max length of tokenizer, default 512 - - special_tokens: Optional[List[str]], specify special tokens, default None - - lazy_restore: bool, whether to lazy restore PLMs, set `True` if train distributely. - """ - self.vocab_path = vocab_path - self.lowercase = lowercase - self.lazy_restore_callback = None - if tokenizer is None: - if vocab_path.endswith('.txt'): - info('automatically apply `WPTokenizer`') - tokenizer = WPTokenizer - elif vocab_path.endswith('.model'): - info('automatically apply `SPTokenizer`') - tokenizer = SPTokenizer - else: - raise ValueError("Langml cannot deduce which tokenizer to apply, please assign `tokenizer` manually.") # NOQA - - self.tokenizer = tokenizer(vocab_path, lowercase=lowercase) - if special_tokens is not None: - self.tokenizer.add_special_tokens(special_tokens) - self.label2id = self._label_map(verbalizer) - self.id2label = {idx: label for label, idx in self.label2id.items()} - self.mask_id = self.tokenizer.token_to_id(self.tokenizer.special_tokens.MASK) - - self.template_ids = self.get_template_ids(template) - self.tokenizer.enable_truncation(max_length=max_length - len(self.template_ids)) - - if backbone == 'albert': - load_model = load_albert - elif backbone == 'bert': - load_model = load_bert - if lazy_restore: - self.model, _, self.lazy_restore_callback = load_model( - config_path, checkpoint_path, - pretraining=True, with_nsp=False, lazy_restore=True - ) - else: - self.model, _ = load_model( - config_path, checkpoint_path, - pretraining=True, with_nsp=False, - ) - self.model.summary() - - def get_template_ids(self, template: str) -> List[int]: - """ Get template token ids - Args: - - template: str - Return: - List[int] - """ - template_ids = [] - start = 0 - for match in re.finditer(r'\[MASK\]', template): - span = match.span() - template_ids += self.tokenizer.encode(template[start: span[0]]).ids[1:-1] - template_ids += [self.mask_id] - start = span[1] - if template[start:]: - template_ids += self.tokenizer.encode(template[start:]).ids[1:-1] - return template_ids - - def get_available_unused_tokens(self) -> List[Tuple[str, int]]: - """ Return available unused tokens. - Strongly recommend using unused tokens as verbalizer tokens. - """ - unuseds = [] - for token, idx in self.tokenizer.get_vocab().items(): - if re_unused.match(token) and idx not in self.label2id.values(): - unuseds.append((token, idx)) - unuseds.sort(key=lambda x: x[1]) - return unuseds - - def _label_map(self, verbalizer: Dict) -> Dict: - """ map token to factual labels - """ - label2id = {} - unk_id = self.tokenizer.token_to_id(self.tokenizer.special_tokens.UNK) - for token, label in verbalizer.items(): - token_id = self.tokenizer.token_to_id(token) - assert token_id is not None and token_id != unk_id, f'the token `{token}` is not found in vocabulary' - label2id[label] = token_id - return label2id - - def fit(self, - datas: List[str], - labels: List[Union[str, List[str]]], - epoch: int = 20, - batch_size: int = 16, - learning_rate: float = 2e-5, - do_shuffle: bool = True, - verbose: int = 1, - callbacks: Optional[List] = None): - """ fit model - Args: - - datas: List[str], texts - - labels: List[Union[str, List[str]]], labels - - epoch: int - - batch_size: int - - learning_rate: float - - do_shuffle: whether to shuffle data in training phase - - verbose: int, 0 = silent, 1 = progress bar, 2 = one line per epoch - - callbacks: keras callbacks - """ - assert len(datas) == len(labels), "datas should have an equal size with labels" - self.model.compile( - optimizer=keras.optimizers.Adam(learning_rate), - loss='sparse_categorical_crossentropy', - ) - if self.lazy_restore_callback is not None: - self.lazy_restore_callback(self.model) - generator = DataGenerator(self.template_ids, datas, labels, self.tokenizer, - self.label2id, mask_id=self.mask_id, batch_size=batch_size) - info('start to train...') - self.model.fit( - generator.forfit(random=do_shuffle), - steps_per_epoch=len(generator), - epochs=epoch, - callbacks=callbacks, - verbose=verbose - ) - - def predict(self, text: str) -> List: - """ inference - Args: - - text: str - """ - tokened = self.tokenizer.encode(text) - token_ids = tokened.ids - token_ids = [token_ids[0]] + self.template_ids + token_ids[1:-1] + [token_ids[-1]] - segment_ids = [0] * len(token_ids) - token_ids = np.array([token_ids]) - segment_ids = np.array([segment_ids]) - mask_ids = (token_ids == self.mask_id).astype('int') - if TF_VERSION > 1: - mask_output = self.model([token_ids, segment_ids, mask_ids]) - mask_output = mask_output[0].numpy() - else: - mask_output = self.model.predict([token_ids, segment_ids, mask_ids]) - mask_output = mask_output[0] - pred = np.argmax(mask_output, axis=1) - output = pred * mask_ids - output = output[output > 0].tolist() - return [self.id2label.get(idx, '') for idx in output] - - def save(self, save_path: str): - self.model.save_weights(save_path) - info(f'model successfully saved to {save_path}!') - - def load(self, model_path: str): - self.model.load_weights(model_path) - info('model successfully loaded!') diff --git a/langml/langml/tensor_typing.py b/langml/langml/tensor_typing.py deleted file mode 100644 index 2f61c3a..0000000 --- a/langml/langml/tensor_typing.py +++ /dev/null @@ -1,61 +0,0 @@ -# -*- coding: utf-8 -*- - -from typing import Union, Callable, List - -from langml import TF_KERAS -if TF_KERAS: - import tensorflow.keras as keras -else: - import keras - -import numpy as np -import tensorflow as tf - - -Number = Union[ - float, - int, - np.float16, - np.float32, - np.float64, - np.int8, - np.int16, - np.int32, - np.int64, - np.uint8, - np.uint16, - np.uint32, - np.uint64, -] - -Initializer = Union[None, dict, str, Callable, keras.initializers.Initializer] -Regularizer = Union[None, dict, str, Callable, keras.regularizers.Regularizer] -Constraint = Union[None, dict, str, Callable, keras.constraints.Constraint] -Activation = Union[None, str, Callable] -Optimizer = Union[keras.optimizers.Optimizer, str] - -try: - from tensorflow.python.keras.engine.keras_tensor import KerasTensor - - Tensors = Union[ - List[Union[Number, list]], - tuple, - Number, - np.ndarray, - tf.Tensor, - tf.SparseTensor, - tf.Variable, - KerasTensor - ] -except ImportError: - Tensors = Union[ - List[Union[Number, list]], - tuple, - Number, - np.ndarray, - tf.Tensor, - tf.SparseTensor, - tf.Variable, - ] - -Models = keras.models.Model diff --git a/langml/langml/third_party/__init__.py b/langml/langml/third_party/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/langml/langml/third_party/conlleval.py b/langml/langml/third_party/conlleval.py deleted file mode 100644 index ac817c7..0000000 --- a/langml/langml/third_party/conlleval.py +++ /dev/null @@ -1,305 +0,0 @@ -# Python version of the evaluation script from CoNLL'00- -# Originates from: https://github.com/spyysalo/conlleval.py - - -# Intentional differences: -# - accept any space as delimiter by default -# - optional file argument (default STDIN) -# - option to set boundary (-b argument) -# - LaTeX output (-l argument) not supported -# - raw tags (-r argument) not supported - -# add function :evaluate(predicted_label, ori_label): which will not read from file - -import sys -import re -import codecs -from collections import defaultdict, namedtuple - -ANY_SPACE = '' - - -class FormatError(Exception): - pass - -Metrics = namedtuple('Metrics', 'tp fp fn prec rec fscore') - - -class EvalCounts(object): - def __init__(self): - self.correct_chunk = 0 # number of correctly identified chunks - self.correct_tags = 0 # number of correct chunk tags - self.found_correct = 0 # number of chunks in corpus - self.found_guessed = 0 # number of identified chunks - self.token_counter = 0 # token counter (ignores sentence breaks) - - # counts by type - self.t_correct_chunk = defaultdict(int) - self.t_found_correct = defaultdict(int) - self.t_found_guessed = defaultdict(int) - - -def parse_args(argv): - import argparse - parser = argparse.ArgumentParser( - description='evaluate tagging results using CoNLL criteria', - formatter_class=argparse.ArgumentDefaultsHelpFormatter - ) - arg = parser.add_argument - arg('-b', '--boundary', metavar='STR', default='-X-', - help='sentence boundary') - arg('-d', '--delimiter', metavar='CHAR', default=ANY_SPACE, - help='character delimiting items in input') - arg('-o', '--otag', metavar='CHAR', default='O', - help='alternative outside tag') - arg('file', nargs='?', default=None) - return parser.parse_args(argv) - - -def parse_tag(t): - m = re.match(r'^([^-]*)-(.*)$', t) - return m.groups() if m else (t, '') - - -def evaluate(iterable, options=None, delimiter=None): - if options is None: - options = parse_args([]) # use defaults - if delimiter is not None: - options.delimiter = delimiter - - counts = EvalCounts() - num_features = None # number of features per line - in_correct = False # currently processed chunks is correct until now - last_correct = 'O' # previous chunk tag in corpus - last_correct_type = '' # type of previously identified chunk tag - last_guessed = 'O' # previously identified chunk tag - last_guessed_type = '' # type of previous chunk tag in corpus - - for line in iterable: - line = line.rstrip('\r\n') - if not line: - continue - - if options.delimiter == ANY_SPACE: - features = line.split() - else: - features = line.split(options.delimiter) - - if num_features is None: - num_features = len(features) - elif num_features != len(features) and len(features) != 0: - print('broken line:', line) - raise FormatError('unexpected number of features: %d (%d)' % - (len(features), num_features)) - - if len(features) == 0 or features[0] == options.boundary: - features = [options.boundary, 'O', 'O'] - if len(features) < 3: - raise FormatError('unexpected number of features in line %s' % line) - - guessed, guessed_type = parse_tag(features.pop()) - correct, correct_type = parse_tag(features.pop()) - first_item = features.pop(0) - - if first_item == options.boundary: - guessed = 'O' - - end_correct = end_of_chunk(last_correct, correct, - last_correct_type, correct_type) - end_guessed = end_of_chunk(last_guessed, guessed, - last_guessed_type, guessed_type) - start_correct = start_of_chunk(last_correct, correct, - last_correct_type, correct_type) - start_guessed = start_of_chunk(last_guessed, guessed, - last_guessed_type, guessed_type) - - if in_correct: - if (end_correct and end_guessed and - last_guessed_type == last_correct_type): - in_correct = False - counts.correct_chunk += 1 - counts.t_correct_chunk[last_correct_type] += 1 - elif (end_correct != end_guessed or guessed_type != correct_type): - in_correct = False - - if start_correct and start_guessed and guessed_type == correct_type: - in_correct = True - - if start_correct: - counts.found_correct += 1 - counts.t_found_correct[correct_type] += 1 - if start_guessed: - counts.found_guessed += 1 - counts.t_found_guessed[guessed_type] += 1 - if first_item != options.boundary: - if correct == guessed and guessed_type == correct_type: - counts.correct_tags += 1 - counts.token_counter += 1 - - last_guessed = guessed - last_correct = correct - last_guessed_type = guessed_type - last_correct_type = correct_type - - if in_correct: - counts.correct_chunk += 1 - counts.t_correct_chunk[last_correct_type] += 1 - - return counts - - - -def uniq(iterable): - seen = set() - return [i for i in iterable if not (i in seen or seen.add(i))] - - -def calculate_metrics(correct, guessed, total): - tp, fp, fn = correct, guessed-correct, total-correct - p = 0 if tp + fp == 0 else 1.*tp / (tp + fp) - r = 0 if tp + fn == 0 else 1.*tp / (tp + fn) - f = 0 if p + r == 0 else 2 * p * r / (p + r) - return Metrics(tp, fp, fn, p, r, f) - - -def metrics(counts): - c = counts - overall = calculate_metrics( - c.correct_chunk, c.found_guessed, c.found_correct - ) - by_type = {} - for t in uniq(list(c.t_found_correct) + list(c.t_found_guessed)): - by_type[t] = calculate_metrics( - c.t_correct_chunk[t], c.t_found_guessed[t], c.t_found_correct[t] - ) - return overall, by_type - - -def report(counts, out=None): - if out is None: - out = sys.stdout - - overall, by_type = metrics(counts) - - c = counts - out.write('processed %d tokens with %d phrases; ' % - (c.token_counter, c.found_correct)) - out.write('found: %d phrases; correct: %d.\n' % - (c.found_guessed, c.correct_chunk)) - - if c.token_counter > 0: - out.write('accuracy: %6.2f%%; ' % - (100.*c.correct_tags/c.token_counter)) - out.write('precision: %6.2f%%; ' % (100.*overall.prec)) - out.write('recall: %6.2f%%; ' % (100.*overall.rec)) - out.write('FB1: %6.2f\n' % (100.*overall.fscore)) - - for i, m in sorted(by_type.items()): - out.write('%17s: ' % i) - out.write('precision: %6.2f%%; ' % (100.*m.prec)) - out.write('recall: %6.2f%%; ' % (100.*m.rec)) - out.write('FB1: %6.2f %d\n' % (100.*m.fscore, c.t_found_guessed[i])) - - -def report_notprint(counts, out=None): - if out is None: - out = sys.stdout - - overall, by_type = metrics(counts) - - c = counts - final_report = [] - line = [] - line.append('processed %d tokens with %d phrases; ' % - (c.token_counter, c.found_correct)) - line.append('found: %d phrases; correct: %d.\n' % - (c.found_guessed, c.correct_chunk)) - final_report.append("".join(line)) - - if c.token_counter > 0: - line = [] - line.append('accuracy: %6.2f%%; ' % - (100.*c.correct_tags/c.token_counter)) - line.append('precision: %6.2f%%; ' % (100.*overall.prec)) - line.append('recall: %6.2f%%; ' % (100.*overall.rec)) - line.append('FB1: %6.2f\n' % (100.*overall.fscore)) - final_report.append("".join(line)) - - for i, m in sorted(by_type.items()): - line = [] - line.append('%17s: ' % i) - line.append('precision: %6.2f%%; ' % (100.*m.prec)) - line.append('recall: %6.2f%%; ' % (100.*m.rec)) - line.append('FB1: %6.2f %d\n' % (100.*m.fscore, c.t_found_guessed[i])) - final_report.append("".join(line)) - return final_report - - -def end_of_chunk(prev_tag, tag, prev_type, type_): - # check if a chunk ended between the previous and current word - # arguments: previous and current chunk tags, previous and current types - chunk_end = False - - if prev_tag == 'E': chunk_end = True - if prev_tag == 'S': chunk_end = True - - if prev_tag == 'B' and tag == 'B': chunk_end = True - if prev_tag == 'B' and tag == 'S': chunk_end = True - if prev_tag == 'B' and tag == 'O': chunk_end = True - if prev_tag == 'I' and tag == 'B': chunk_end = True - if prev_tag == 'I' and tag == 'S': chunk_end = True - if prev_tag == 'I' and tag == 'O': chunk_end = True - - if prev_tag != 'O' and prev_tag != '.' and prev_type != type_: - chunk_end = True - - # these chunks are assumed to have length 1 - if prev_tag == ']': chunk_end = True - if prev_tag == '[': chunk_end = True - - return chunk_end - - -def start_of_chunk(prev_tag, tag, prev_type, type_): - # check if a chunk started between the previous and current word - # arguments: previous and current chunk tags, previous and current types - chunk_start = False - - if tag == 'B': chunk_start = True - if tag == 'S': chunk_start = True - - if prev_tag == 'E' and tag == 'E': chunk_start = True - if prev_tag == 'E' and tag == 'I': chunk_start = True - if prev_tag == 'S' and tag == 'E': chunk_start = True - if prev_tag == 'S' and tag == 'I': chunk_start = True - if prev_tag == 'O' and tag == 'E': chunk_start = True - if prev_tag == 'O' and tag == 'I': chunk_start = True - - if tag != 'O' and tag != '.' and prev_type != type_: - chunk_start = True - - # these chunks are assumed to have length 1 - if tag == '[': chunk_start = True - if tag == ']': chunk_start = True - - return chunk_start - - -def return_report(input_file): - with codecs.open(input_file, "r", "utf8") as f: - counts = evaluate(f) - return report_notprint(counts) - - -def main(argv): - args = parse_args(argv[1:]) - - if args.file is None: - counts = evaluate(sys.stdin, args) - else: - with open(args.file) as f: - counts = evaluate(f, args) - report(counts) - -if __name__ == '__main__': - sys.exit(main(sys.argv)) diff --git a/langml/langml/third_party/crf.py b/langml/langml/third_party/crf.py deleted file mode 100644 index c2d13ed..0000000 --- a/langml/langml/third_party/crf.py +++ /dev/null @@ -1,693 +0,0 @@ -# -*- coding: utf-8 -*- - -# This code implements basic operations of CRF -# Modified from https://github.com/tensorflow/addons (compatible with keras, tf.keras) - -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -import os -from typing import Optional, Union, List, Tuple - -from langml import TF_KERAS -if TF_KERAS: - import tensorflow.keras as keras - import tensorflow.keras.backend as K -else: - import keras - import keras.backend as K - -import numpy as np -import tensorflow as tf -from typeguard import typechecked - -from langml.tensor_typing import Tensors - - -def viterbi_decode(score: Tensors, trans: Tensors) -> Tuple[Tensors, Tensors]: - """ - Args: - score: A [seq_len, num_tags] matrix of unary potentials. - trans: A [num_tags, num_tags] matrix of binary potentials. - Returns: - viterbi: A [seq_len] list of integers containing the highest scoring tag - indices. - viterbi_score: A float containing the score for the Viterbi sequence. - """ - trellis = np.zeros_like(score) - backpointers = np.zeros_like(score, dtype=np.int32) - trellis[0] = score[0] - - for t in range(1, score.shape[0]): - v = np.expand_dims(trellis[t - 1], 1) + trans - trellis[t] = score[t] + np.max(v, 0) - backpointers[t] = np.argmax(v, 0) - - viterbi = [np.argmax(trellis[-1])] - for bp in reversed(backpointers[1:]): - viterbi.append(bp[viterbi[-1]]) - viterbi.reverse() - - viterbi_score = np.max(trellis[-1]) - return viterbi, viterbi_score - - -def _generate_zero_filled_state_for_cell(cell, inputs, batch_size, dtype): - """Generate a zero filled tensor with shape [batch_size, state_size].""" - if inputs is not None: - batch_size = K.shape(inputs)[0] - dtype = K.shape(inputs) - - return K.zeros(shape=(batch_size, cell.state_size), dtype=dtype) - - -def crf_filtered_inputs(inputs: Tensors, tag_bitmap: Tensors) -> tf.Tensor: - """Constrains the inputs to filter out certain tags at each time step. - tag_bitmap limits the allowed tags at each input time step. - This is useful when an observed output at a given time step needs to be - constrained to a selected set of tags. - Args: - inputs: A [batch_size, max_seq_len, num_tags] tensor of unary potentials - to use as input to the CRF layer. - tag_bitmap: A [batch_size, max_seq_len, num_tags] boolean tensor - representing all active tags at each index for which to calculate the - unnormalized score. - Returns: - filtered_inputs: A [batch_size] vector of unnormalized sequence scores. - """ - - # set scores of filtered out inputs to be -inf. - filtered_inputs = tf.where( - tag_bitmap, - inputs, - tf.fill(K.shape(inputs), K.cast(float("-inf"), K.dtype(inputs))), - ) - return filtered_inputs - - -def crf_sequence_score( - inputs: Tensors, - tag_indices: Tensors, - sequence_lengths: Tensors, - transition_params: Tensors, -) -> tf.Tensor: - """Computes the unnormalized score for a tag sequence. - Args: - inputs: A [batch_size, max_seq_len, num_tags] tensor of unary potentials - to use as input to the CRF layer. - tag_indices: A [batch_size, max_seq_len] matrix of tag indices for which - we compute the unnormalized score. - sequence_lengths: A [batch_size] vector of true sequence lengths. - transition_params: A [num_tags, num_tags] transition matrix. - Returns: - sequence_scores: A [batch_size] vector of unnormalized sequence scores. - """ - tag_indices = K.cast(tag_indices, dtype='int32') - sequence_lengths = K.cast(sequence_lengths, dtype='int32') - - # If max_seq_len is 1, we skip the score calculation and simply gather the - # unary potentials of the single tag. - def _single_seq_fn(): - batch_inds = K.reshape(K.arange(0, K.shape(inputs)[0]), [-1, 1]) - indices = K.concatenate([batch_inds, tf.zeros_like(batch_inds)], axis=1) - - tag_inds = tf.gather_nd(tag_indices, indices) - tag_inds = K.reshape(tag_inds, [-1, 1]) - indices = K.concatenate([indices, tag_inds], axis=1) - - sequence_scores = tf.gather_nd(inputs, indices) - - sequence_scores = tf.where( - tf.less_equal(sequence_lengths, 0), - tf.zeros_like(sequence_scores), - sequence_scores, - ) - return sequence_scores - - def _multi_seq_fn(): - # Compute the scores of the given tag sequence. - unary_scores = crf_unary_score(tag_indices, sequence_lengths, inputs) - binary_scores = crf_binary_score( - tag_indices, sequence_lengths, transition_params - ) - sequence_scores = unary_scores + binary_scores - return sequence_scores - - return K.switch(K.equal(K.shape(inputs)[1], 1), _single_seq_fn, _multi_seq_fn) - - -def crf_multitag_sequence_score( - inputs: Tensors, - tag_bitmap: Tensors, - sequence_lengths: Tensors, - transition_params: Tensors, -) -> tf.Tensor: - """Computes the unnormalized score of all tag sequences matching - tag_bitmap. - tag_bitmap enables more than one tag to be considered correct at each time - step. This is useful when an observed output at a given time step is - consistent with more than one tag, and thus the log likelihood of that - observation must take into account all possible consistent tags. - Using one-hot vectors in tag_bitmap gives results identical to - crf_sequence_score. - Args: - inputs: A [batch_size, max_seq_len, num_tags] tensor of unary potentials - to use as input to the CRF layer. - tag_bitmap: A [batch_size, max_seq_len, num_tags] boolean tensor - representing all active tags at each index for which to calculate the - unnormalized score. - sequence_lengths: A [batch_size] vector of true sequence lengths. - transition_params: A [num_tags, num_tags] transition matrix. - Returns: - sequence_scores: A [batch_size] vector of unnormalized sequence scores. - """ - tag_bitmap = K.cast(tag_bitmap, dtype='bool') - sequence_lengths = K.cast(sequence_lengths, dtype='int32') - filtered_inputs = crf_filtered_inputs(inputs, tag_bitmap) - - # If max_seq_len is 1, we skip the score calculation and simply gather the - # unary potentials of all active tags. - def _single_seq_fn(): - return tf.reduce_logsumexp(filtered_inputs, axis=[1, 2], keepdims=False) - - def _multi_seq_fn(): - # Compute the logsumexp of all scores of sequences - # matching the given tags. - return crf_log_norm( - inputs=filtered_inputs, - sequence_lengths=sequence_lengths, - transition_params=transition_params, - ) - - return K.switch(K.equal(K.shape(inputs)[1], 1), _single_seq_fn, _multi_seq_fn) - - -def crf_log_norm( - inputs: Tensors, sequence_lengths: Tensors, transition_params: Tensors -) -> tf.Tensor: - """Computes the normalization for a CRF. - Args: - inputs: A [batch_size, max_seq_len, num_tags] tensor of unary potentials - to use as input to the CRF layer. - sequence_lengths: A [batch_size] vector of true sequence lengths. - transition_params: A [num_tags, num_tags] transition matrix. - Returns: - log_norm: A [batch_size] vector of normalizers for a CRF. - """ - sequence_lengths = K.cast(sequence_lengths, dtype='int32') - # Split up the first and rest of the inputs in preparation for the forward - # algorithm. - first_input = inputs[:, :1, :] - # first_input = tf.slice(inputs, [0, 0, 0], [-1, 1, -1]) - first_input = K.squeeze(first_input, axis=1) - - # If max_seq_len is 1, we skip the algorithm and simply reduce_logsumexp - # over the "initial state" (the unary potentials). - def _single_seq_fn(): - log_norm = tf.reduce_logsumexp(first_input, [1]) - # Mask `log_norm` of the sequences with length <= zero. - log_norm = tf.where( - tf.less_equal(sequence_lengths, 0), tf.zeros_like(log_norm), log_norm - ) - return log_norm - - def _multi_seq_fn(): - """Forward computation of alpha values.""" - rest_of_input = inputs[:, 1:, :] - # rest_of_input = tf.slice(inputs, [0, 1, 0], [-1, -1, -1]) - # Compute the alpha values in the forward algorithm in order to get the - # partition function. - - alphas = crf_forward( - rest_of_input, first_input, transition_params, sequence_lengths - ) - log_norm = tf.reduce_logsumexp(alphas, [1]) - # Mask `log_norm` of the sequences with length <= zero. - log_norm = tf.where( - tf.less_equal(sequence_lengths, 0), tf.zeros_like(log_norm), log_norm - ) - return log_norm - - return K.switch(K.equal(K.shape(inputs)[1], 1), _single_seq_fn, _multi_seq_fn) - - -def crf_log_likelihood( - inputs: Tensors, - tag_indices: Tensors, - sequence_lengths: Tensors, - transition_params: Optional[Tensors] = None, -) -> tf.Tensor: - """Computes the log-likelihood of tag sequences in a CRF. - Args: - inputs: A [batch_size, max_seq_len, num_tags] tensor of unary potentials - to use as input to the CRF layer. - tag_indices: A [batch_size, max_seq_len] matrix of tag indices for which - we compute the log-likelihood. - sequence_lengths: A [batch_size] vector of true sequence lengths. - transition_params: A [num_tags, num_tags] transition matrix, - if available. - Returns: - log_likelihood: A [batch_size] `Tensor` containing the log-likelihood of - each example, given the sequence of tag indices. - transition_params: A [num_tags, num_tags] transition matrix. This is - either provided by the caller or created in this function. - """ - # inputs = tf.convert_to_tensor(inputs) - # cast type to handle different types - tag_indices = K.cast(tag_indices, dtype='int32') - sequence_lengths = K.cast(sequence_lengths, dtype='int32') - - transition_params = K.cast(transition_params, K.dtype(inputs)) - sequence_scores = crf_sequence_score( - inputs, tag_indices, sequence_lengths, transition_params - ) - log_norm = crf_log_norm(inputs, sequence_lengths, transition_params) - - # Normalize the scores to get the log-likelihood per example. - log_likelihood = sequence_scores - log_norm - return log_likelihood, transition_params - - -def crf_unary_score( - tag_indices: Tensors, sequence_lengths: Tensors, inputs: Tensors -) -> tf.Tensor: - """Computes the unary scores of tag sequences. - Args: - tag_indices: A [batch_size, max_seq_len] matrix of tag indices. - sequence_lengths: A [batch_size] vector of true sequence lengths. - inputs: A [batch_size, max_seq_len, num_tags] tensor of unary potentials. - Returns: - unary_scores: A [batch_size] vector of unary scores. - """ - tag_indices = K.cast(tag_indices, dtype='int32') - sequence_lengths = K.cast(sequence_lengths, dtype='int32') - - batch_size = K.shape(inputs)[0] - max_seq_len = K.shape(inputs)[1] - num_tags = K.shape(inputs)[2] - - flattened_inputs = K.reshape(inputs, [-1]) - - offsets = K.expand_dims(K.arange(0, batch_size) * max_seq_len * num_tags, 1) - offsets += K.expand_dims(K.arange(0, max_seq_len) * num_tags, 0) - - flattened_tag_indices = K.reshape(offsets + tag_indices, [-1]) - - unary_scores = K.reshape( - tf.gather(flattened_inputs, flattened_tag_indices), [batch_size, max_seq_len] - ) - - masks = tf.sequence_mask( - sequence_lengths, maxlen=K.shape(tag_indices)[1], dtype=unary_scores.dtype - ) - - unary_scores = tf.reduce_sum(unary_scores * masks, 1) - return unary_scores - - -def crf_binary_score( - tag_indices: Tensors, sequence_lengths: Tensors, transition_params: Tensors -) -> tf.Tensor: - """Computes the binary scores of tag sequences. - Args: - tag_indices: A [batch_size, max_seq_len] matrix of tag indices. - sequence_lengths: A [batch_size] vector of true sequence lengths. - transition_params: A [num_tags, num_tags] matrix of binary potentials. - Returns: - binary_scores: A [batch_size] vector of binary scores. - """ - tag_indices = K.cast(tag_indices, dtype='int32') - sequence_lengths = K.cast(sequence_lengths, dtype='int32') - - num_tags = K.shape(transition_params)[0] - num_transitions = K.shape(tag_indices)[1] - 1 - - # Truncate by one on each side of the sequence to get the start and end - # indices of each transition. - start_tag_indices = tag_indices[:, :num_transitions] - # start_tag_indices = tf.slice(tag_indices, [0, 0], [-1, num_transitions]) - end_tag_indices = tag_indices[:, 1:num_transitions + 1] - # end_tag_indices = tf.slice(tag_indices, [0, 1], [-1, num_transitions]) - - # Encode the indices in a flattened representation. - flattened_transition_indices = start_tag_indices * num_tags + end_tag_indices - flattened_transition_params = K.reshape(transition_params, [-1]) - - # Get the binary scores based on the flattened representation. - binary_scores = tf.gather(flattened_transition_params, flattened_transition_indices) - - masks = tf.sequence_mask( - sequence_lengths, maxlen=K.shape(tag_indices)[1], dtype=binary_scores.dtype - ) - truncated_masks = masks[:, 1:] - # truncated_masks = tf.slice(masks, [0, 1], [-1, -1]) - binary_scores = tf.reduce_sum(binary_scores * truncated_masks, 1) - - return binary_scores - - -def crf_forward( - inputs: Tensors, - state: Tensors, - transition_params: Tensors, - sequence_lengths: Tensors, -) -> tf.Tensor: - """Computes the alpha values in a linear-chain CRF. - See http://www.cs.columbia.edu/~mcollins/fb.pdf for reference. - Args: - inputs: A [batch_size, num_tags] matrix of unary potentials. - state: A [batch_size, num_tags] matrix containing the previous alpha - values. - transition_params: A [num_tags, num_tags] matrix of binary potentials. - This matrix is expanded into a [1, num_tags, num_tags] in preparation - for the broadcast summation occurring within the cell. - sequence_lengths: A [batch_size] vector of true sequence lengths. - Returns: - new_alphas: A [batch_size, num_tags] matrix containing the - new alpha values. - """ - sequence_lengths = K.cast(sequence_lengths, dtype='int32') - - last_index = tf.maximum( - tf.constant(0, dtype=sequence_lengths.dtype), sequence_lengths - 1 - ) - inputs = tf.transpose(inputs, [1, 0, 2]) - transition_params = K.expand_dims(transition_params, 0) - - def _scan_fn(_state, _inputs): - _state = K.expand_dims(_state, 2) - transition_scores = _state + transition_params - new_alphas = _inputs + tf.reduce_logsumexp(transition_scores, [1]) - return new_alphas - - all_alphas = tf.transpose(tf.scan(_scan_fn, inputs, state), [1, 0, 2]) - # add first state for sequences of length 1 - all_alphas = K.concatenate([K.expand_dims(state, 1), all_alphas], 1) - - idxs = tf.stack([K.arange(0, K.shape(last_index)[0]), last_index], axis=1) - return tf.gather_nd(all_alphas, idxs) - - -class AbstractRNNCell(keras.layers.Layer): - """Abstract object representing an RNN cell. - This is the base class for implementing RNN cells with custom behavior. - Every `RNNCell` must have the properties below and implement `call` with - the signature `(output, next_state) = call(input, state)`. - Examples: - ```python - class MinimalRNNCell(AbstractRNNCell): - def __init__(self, units, **kwargs): - self.units = units - super(MinimalRNNCell, self).__init__(**kwargs) - @property - def state_size(self): - return self.units - def build(self, input_shape): - self.kernel = self.add_weight(shape=(input_shape[-1], self.units), - initializer='uniform', - name='kernel') - self.recurrent_kernel = self.add_weight( - shape=(self.units, self.units), - initializer='uniform', - name='recurrent_kernel') - self.built = True - def call(self, inputs, states): - prev_output = states[0] - h = K.dot(inputs, self.kernel) - output = h + K.dot(prev_output, self.recurrent_kernel) - return output, output - ``` - This definition of cell differs from the definition used in the literature. - In the literature, 'cell' refers to an object with a single scalar output. - This definition refers to a horizontal array of such units. - An RNN cell, in the most abstract setting, is anything that has - a state and performs some operation that takes a matrix of inputs. - This operation results in an output matrix with `self.output_size` columns. - If `self.state_size` is an integer, this operation also results in a new - state matrix with `self.state_size` columns. If `self.state_size` is a - (possibly nested tuple of) TensorShape object(s), then it should return a - matching structure of Tensors having shape `[batch_size].concatenate(s)` - for each `s` in `self.batch_size`. - """ - - def call(self, inputs, states): - """The function that contains the logic for one RNN step calculation. - Args: - inputs: the input tensor, which is a slide from the overall RNN input by - the time dimension (usually the second dimension). - states: the state tensor from previous step, which has the same shape - as `(batch, state_size)`. In the case of timestep 0, it will be the - initial state user specified, or zero filled tensor otherwise. - Returns: - A tuple of two tensors: - 1. output tensor for the current timestep, with size `output_size`. - 2. state tensor for next step, which has the shape of `state_size`. - """ - raise NotImplementedError('Abstract method') - - @property - def state_size(self): - """size(s) of state(s) used by this cell. - It can be represented by an Integer, a TensorShape or a tuple of Integers - or TensorShapes. - """ - raise NotImplementedError('Abstract method') - - @property - def output_size(self): - """Integer or TensorShape: size of outputs produced by this cell.""" - raise NotImplementedError('Abstract method') - - def get_initial_state(self, inputs=None, batch_size=None, dtype=None): - return _generate_zero_filled_state_for_cell(self, inputs, batch_size, dtype) - - -class CrfDecodeForwardRnnCell(AbstractRNNCell): - """Computes the forward decoding in a linear-chain CRF.""" - - @typechecked - def __init__(self, transition_params: Tensors, **kwargs): - """Initialize the CrfDecodeForwardRnnCell. - Args: - transition_params: A [num_tags, num_tags] matrix of binary - potentials. This matrix is expanded into a - [1, num_tags, num_tags] in preparation for the broadcast - summation occurring within the cell. - """ - super().__init__(**kwargs) - self.supports_masking = True - self._transition_params = K.expand_dims(transition_params, 0) - #self._num_tags = K.shape(transition_params)[0] - self._num_tags = K.int_shape(transition_params)[0] - - @property - def state_size(self): - return self._num_tags - - @property - def output_size(self): - return self._num_tags - - def build(self, input_shape): - super().build(input_shape) - - def compute_mask(self, - inputs: Tensors, - mask: Optional[Tensors] = None) -> Union[List[Union[Tensors, None]], Tensors]: - return mask - - def call(self, inputs: Tensors, state: Tensors, mask: Optional[Tensors] = None, **kwargs): - """Build the CrfDecodeForwardRnnCell. - Args: - inputs: A [batch_size, num_tags] matrix of unary potentials. - state: A [batch_size, num_tags] matrix containing the previous step's - score values. - Returns: - backpointers: A [batch_size, num_tags] matrix of backpointers. - new_state: A [batch_size, num_tags] matrix of new score values. - """ - state = K.expand_dims(state[0], 2) - transition_scores = state + K.cast( - self._transition_params, K.dtype(state) - ) - new_state = inputs + K.max(transition_scores, 1) - backpointers = K.argmax(transition_scores, 1) - backpointers = K.cast(backpointers, dtype='int32') - return backpointers, new_state - - def get_config(self) -> dict: - config = { - "transition_params": K.squeeze(self._transition_params, axis=0).numpy().tolist() - } - base_config = super(CrfDecodeForwardRnnCell, self).get_config() - return dict(list(base_config.items()) + list(config.items())) - - @classmethod - def from_config(cls, config: dict) -> "CrfDecodeForwardRnnCell": - config["transition_params"] = np.array( - config["transition_params"], dtype=np.float32 - ) - return cls(**config) - - -def crf_decode_forward( - inputs: Tensors, - state: Tensors, - transition_params: Tensors, - sequence_lengths: Tensors, -) -> tf.Tensor: - """Computes forward decoding in a linear-chain CRF. - Args: - inputs: A [batch_size, num_tags] matrix of unary potentials. - state: A [batch_size, num_tags] matrix containing the previous step's - score values. - transition_params: A [num_tags, num_tags] matrix of binary potentials. - sequence_lengths: A [batch_size] vector of true sequence lengths. - Returns: - backpointers: A [batch_size, num_tags] matrix of backpointers. - new_state: A [batch_size, num_tags] matrix of new score values. - """ - sequence_lengths = K.cast(sequence_lengths, dtype='int32') - # mask = tf.sequence_mask(sequence_lengths, K.shape(inputs)[1]) - crf_fwd_cell = CrfDecodeForwardRnnCell(transition_params, dtype=K.dtype(inputs)) - ''' - # Use L.RNN - crf_fwd_layer = keras.layers.RNN( - crf_fwd_cell, return_sequences=True, return_state=True, stateful=False, dtype=K.dtype(inputs) - ) - outputs, last_state = crf_fwd_layer(inputs, state) - # Use L.RNN end - ''' - # Use K.rnn - (_, outputs, last_state) = K.rnn(crf_fwd_cell.call, inputs, [state]) - last_state = K.reshape(last_state, K.shape(state)) - # Use K.rnn end - return outputs, last_state - - -def crf_decode_backward(inputs: Tensors, state: Tensors) -> tf.Tensor: - """Computes backward decoding in a linear-chain CRF. - Args: - inputs: A [batch_size, num_tags] matrix of - backpointer of next step (in time order). - state: A [batch_size, 1] matrix of tag index of next step. - Returns: - new_tags: A [batch_size, num_tags] - tensor containing the new tag indices. - """ - inputs = tf.transpose(inputs, [1, 0, 2]) - - def _scan_fn(state, inputs): - state = K.squeeze(state, axis=1) - idxs = tf.stack([K.arange(0, K.shape(inputs)[0]), state], axis=1) - new_tags = K.expand_dims(tf.gather_nd(inputs, idxs), axis=-1) - return new_tags - - return tf.transpose(tf.scan(_scan_fn, inputs, state), [1, 0, 2]) - - -def crf_decode( - potentials: Tensors, transition_params: Tensors, sequence_length: Tensors -) -> tf.Tensor: - """Decode the highest scoring sequence of tags. - Args: - potentials: A [batch_size, max_seq_len, num_tags] tensor of - unary potentials. - transition_params: A [num_tags, num_tags] matrix of - binary potentials. - sequence_length: A [batch_size] vector of true sequence lengths. - Returns: - decode_tags: A [batch_size, max_seq_len] matrix, with dtype `tf.int32`. - Contains the highest scoring tag indices. - best_score: A [batch_size] vector, containing the score of `decode_tags`. - """ - sequence_length = K.cast(sequence_length, dtype='int32') - - # If max_seq_len is 1, we skip the algorithm and simply return the - # argmax tag and the max activation. - def _single_seq_fn(): - decode_tags = K.cast(K.argmax(potentials, axis=2), dtype='int32') - best_score = K.reshape(tf.reduce_max(potentials, axis=2), shape=[-1]) - return decode_tags, best_score - - def _multi_seq_fn(): - # Computes forward decoding. Get last score and backpointers. - initial_state = potentials[:, :1, :] - # initial_state = tf.slice(potentials, [0, 0, 0], [-1, 1, -1]) - initial_state = K.squeeze(initial_state, axis=1) - inputs = potentials[:, 1:, :] - # inputs = tf.slice(potentials, [0, 1, 0], [-1, -1, -1]) - - sequence_length_less_one = tf.maximum( - K.constant(0, dtype='int32'), sequence_length - 1 - ) - - backpointers, last_score = crf_decode_forward( - inputs, initial_state, transition_params, sequence_length_less_one - ) - - backpointers = tf.reverse_sequence( - backpointers, sequence_length_less_one, seq_axis=1 - ) - - initial_state = K.cast(K.argmax(last_score, axis=1), dtype='int32') - initial_state = K.expand_dims(initial_state, axis=-1) - - decode_tags = crf_decode_backward(backpointers, initial_state) - decode_tags = K.squeeze(decode_tags, axis=2) - decode_tags = K.concatenate([initial_state, decode_tags], axis=1) - decode_tags = tf.reverse_sequence(decode_tags, sequence_length, seq_axis=1) - - best_score = tf.reduce_max(last_score, axis=1) - return decode_tags, best_score - - if K.int_shape(potentials)[1] is not None: - # shape is statically know, so we just execute - # the appropriate code path - if K.int_shape(potentials)[1] == 1: - return _single_seq_fn() - else: - return _multi_seq_fn() - else: - return K.switch( - K.equal(K.shape(potentials)[1], 1), _single_seq_fn, _multi_seq_fn - ) - - -def crf_constrained_decode( - potentials: Tensors, - tag_bitmap: Tensors, - transition_params: Tensors, - sequence_length: Tensors, -) -> tf.Tensor: - """Decode the highest scoring sequence of tags under constraints. - This is a function for tensor. - Args: - potentials: A [batch_size, max_seq_len, num_tags] tensor of - unary potentials. - tag_bitmap: A [batch_size, max_seq_len, num_tags] boolean tensor - representing all active tags at each index for which to calculate the - unnormalized score. - transition_params: A [num_tags, num_tags] matrix of - binary potentials. - sequence_length: A [batch_size] vector of true sequence lengths. - Returns: - decode_tags: A [batch_size, max_seq_len] matrix, with dtype `tf.int32`. - Contains the highest scoring tag indices. - best_score: A [batch_size] vector, containing the score of `decode_tags`. - """ - - filtered_potentials = crf_filtered_inputs(potentials, tag_bitmap) - return crf_decode(filtered_potentials, transition_params, sequence_length) diff --git a/langml/langml/tokenizer.py b/langml/langml/tokenizer.py deleted file mode 100644 index 383e770..0000000 --- a/langml/langml/tokenizer.py +++ /dev/null @@ -1,525 +0,0 @@ -# -*- coding: utf-8 -*- - -""" -LangML Tokenizer - -- WPTokenizer: WordPiece Tokenizer -- SPTokenizer: SentencePiece Tokenizer - -Wrap for: - - tokenizers.BertWordPieceTokenizer - - sentencepiece.SentencePieceProcessor - -We don't provide all functions of raw tokenizer, please use raw tokenizer for full usage. -""" - -import unicodedata -from math import ceil -from abc import ABCMeta, abstractmethod -from typing import Dict, List, Optional, Tuple, Union - -import numpy as np -from sentencepiece import SentencePieceProcessor -from tokenizers import BertWordPieceTokenizer - - -class Encoding: - ''' Product of tokenizer encoding - ''' - ids = None - segment_ids = None - tokens = None - - def __init__(self, - ids: Union[np.ndarray, List[int]], - segment_ids: Union[np.ndarray, List[int]], - tokens: List[str]) -> None: - self.ids = ids - self.segment_ids = segment_ids - self.tokens = tokens - - -class SpecialTokens: - PAD = '[PAD]' - UNK = '[UNK]' - MASK = '[MASK]' - CLS = '[CLS]' - SEP = '[SEP]' - - def __contains__(self, token: str) -> bool: - """ Check if the input token exists in special tokens. - Args: - - token: str - Return: - bool - """ - return token in [ - self.PAD, self.UNK, self.MASK, self.CLS, self.SEP - ] - - def tokens(self) -> List[str]: - ret = [] - for field in SpecialTokens.__dict__.keys(): - if field.startswith('_'): - continue - if isinstance(getattr(self, field), str): - ret.append(getattr(self, field)) - return ret - - -class Tokenizer(metaclass=ABCMeta): - """ Base Tokenizer - """ - - def __init__(self, vocab_path: str, lowercase: bool = False): - """ - Args: - - vocab_path: str, path to vocab - - lowercase: bool, whether to do lowercase - """ - self.vocab_path = vocab_path - self.lowercase = lowercase - self.special_tokens = SpecialTokens() - - self.max_length = None - self.truncation_strategy = None - self._tokenizer = None - - def enable_truncation(self, max_length: int, strategy: str = 'post'): - """ - Args: - - max_length: int, - - strategy: str, optional, truncation strategy, options: `post` or `pre`, default `post` - """ - self.max_length = max_length - self.truncation_strategy = strategy - if strategy is not None: - assert self.truncation_strategy in ['post', 'pre'], '`strategy` must be `post` or `pre`' - - def tokens_mapping(self, sequence: str, tokens: List[str]) -> List[Tuple[int, int]]: - """ Get tokens to their corresponding sequence position mapping. - Tokens may contain special marks, e.g., `##`, `▁`, and `[UNK]`. - Use this function can obtain the corresponding raw token in the sequence. - - Args: - - sequence: str, the input sequence - - tokens: List[str], tokens of the input sequence - Return: - List[Tuple[int, int]] - - Examples: - >>> sequence = 'I like watermelons' - >>> tokens = ['[CLS]', '▁i', '▁like', '▁water', 'mel', 'ons', '[SEP]'] - >>> mapping = tokenizer.tokens_mapping(tokens) - >>> start_index, end_index = 3, 5 - >>> print("current token", tokens[start_index: end_index + 1]) - ['▁water', 'mel', 'ons'] - >>> print("raw token", sequence[mapping[start_index][0]: mapping[end_index][1]]) - watermelons - - Reference: - https://github.com/bojone/bert4keras - """ - if self.lowercase: - sequence = self.sequence_lower(sequence) - - normalized_sequence, char_mapping = '', [] - for i, ch in enumerate(sequence): - if self.lowercase: - ch = unicodedata.normalize('NFD', ch) - ch = ''.join([c for c in ch if unicodedata.category(c) != 'Mn']) - ch = ''.join([ - c for c in ch - if not (ord(c) == 0 or ord(c) == 0xfffd or (unicodedata.category(ch) in ('Cc', 'Cf'))) - ]) - normalized_sequence += ch - char_mapping.extend([i] * len(ch)) - - sequence = normalized_sequence - mapping = [] - offset = 0 - special_placeholder = (0, 0) - for token in tokens: - if token in self.special_tokens: - mapping.append(special_placeholder) - else: - token = self.stem(token) - start = sequence[offset:].index(token) + offset - end = start + len(token) - cnt = char_mapping[start:end] - mapping.append((cnt[0], cnt[-1] + 1)) - offset = end - - return mapping - - def encode(self, sequence: str, pair: Optional[str] = None, return_array: bool = False) -> Encoding: - """ - Args: - - sequence: str, input sequence - - pair: str, optional, pair sequence, default `None` - - return_array: bool, optional, whether to return numpy array, default `True` - Return: - Encoding object - """ - if self.lowercase: - sequence = self.sequence_lower(sequence) - if pair: - pair = self.sequence_lower(pair) - tokens = self.tokenize(sequence) - pair_tokens = None - if pair is not None: - pair_tokens = self.tokenize(pair) - - if self.max_length is not None: - max_token_length = self.max_length - 2 - if pair_tokens is not None: - max_token_length -= 1 - tokens, pair_tokens = self.sequence_truncating(max_token_length, tokens, pair_tokens) - - tokens = [self.special_tokens.CLS] + tokens + [self.special_tokens.SEP] - token_ids = [self.token_to_id(token) for token in tokens] - segment_ids = [0] * len(token_ids) - - if pair_tokens is not None: - pair_tokens = pair_tokens + [self.special_tokens.SEP] - pair_token_ids = [self.token_to_id(token) for token in pair_tokens] - pair_segment_ids = [1] * len(pair_token_ids) - - tokens += pair_tokens - token_ids += pair_token_ids - segment_ids += pair_segment_ids - - if return_array: - token_ids = np.array(token_ids) - segment_ids = np.array(segment_ids) - - return Encoding( - ids=token_ids, - segment_ids=segment_ids, - tokens=tokens, - ) - - def encode_batch(self, - inputs: Union[List[str], List[Tuple[str, str]], List[List[str]]], - padding: bool = True, - padding_strategy: str = 'post', - return_array: bool = False) -> Encoding: - """ - Args: - - inputs: Union[List[str], List[Tuple[str, str]], List[List[str]]], list of texts or list of text pairs. - - padding: bool, optional, whether to padding sequences, default `True` - - padding_strategy: str, optional, options: `post` or `pre`, default `post` - - return_array: bool, optional, whether to return numpy array, default `True` - Return: - Encoding object - """ - assert padding_strategy in ['post', 'pre'], '`padding_strategy` must be `post` or `pre`' - all_tokens, all_pair_tokens = [], [] - for item in inputs: - if isinstance(item, (tuple, list)): - assert len(item) == 2 - item = list(item) - if self.lowercase: - item[0] = self.sequence_lower(item[0]) - item[1] = self.sequence_lower(item[1]) - all_tokens.append(self.tokenize(item[0])) - all_pair_tokens.append(self.tokenize(item[1])) - elif isinstance(item, str): - if self.lowercase: - item = self.sequence_lower(item) - all_tokens.append(self.tokenize(item)) - - if not all_pair_tokens: - all_pair_tokens = None - - max_all_token_length = max(len(t) for t in all_tokens) - if all_pair_tokens is not None: - max_all_token_pair_length = max(len(t) + len(p) for t, p in zip(all_tokens, all_pair_tokens)) - - if self.max_length is not None: - max_token_length = self.max_length - 2 - if all_pair_tokens is not None: - max_token_length -= 1 - max_token_length = min(max_token_length, max_all_token_pair_length) - else: - max_token_length = min(max_token_length, max_all_token_length) - else: - if all_pair_tokens is not None: - max_token_length = max_all_token_pair_length - else: - max_token_length = max_all_token_length - - batch_tokens = [] - batch_token_ids = [] - batch_segment_ids = [] - all_pair_tokens = all_pair_tokens or [None] * len(all_tokens) - for tokens, pair_tokens in zip(all_tokens, all_pair_tokens): - tokens, pair_tokens = self.sequence_truncating(max_token_length, tokens, pair_tokens) - repeat = 0 - if padding: - if pair_tokens is not None: - repeat = max_token_length - len(tokens) - len(pair_tokens) - else: - repeat = max_token_length - len(tokens) - - tokens = [self.special_tokens.CLS] + tokens + [self.special_tokens.SEP] - token_ids = [self.token_to_id(token) for token in tokens] - segment_ids = [0] * len(token_ids) - - if pair_tokens is not None: - pair_tokens = pair_tokens + [self.special_tokens.SEP] - pair_token_ids = [self.token_to_id(token) for token in pair_tokens] - pair_segment_ids = [1] * len(pair_token_ids) - - tokens += pair_tokens - token_ids += pair_token_ids - segment_ids += pair_segment_ids - - if padding and repeat > 0: - padding_value = self.token_to_id(self.special_tokens.PAD) - if padding_strategy == 'post': - tokens += [self.special_tokens.PAD] * repeat - token_ids += [padding_value] * repeat - segment_ids += [padding_value] * repeat - elif padding_strategy == 'pre': - tokens = [self.special_tokens.PAD] * repeat + tokens - token_ids = [padding_value] * repeat + token_ids - segment_ids = [padding_value] * repeat + segment_ids - - batch_tokens.append(tokens) - batch_token_ids.append(token_ids) - batch_segment_ids.append(segment_ids) - - if return_array: - batch_token_ids = np.array(batch_token_ids) - batch_segment_ids = np.array(batch_segment_ids) - - return Encoding( - ids=batch_token_ids, - segment_ids=batch_segment_ids, - tokens=batch_tokens - ) - - def stem(self, token): - if isinstance(self, WPTokenizer) and token.startswith('##'): - return token[2:] - elif isinstance(self, SPTokenizer) and token.startswith('▁'): - return token[1:] - return token - - def sequence_lower(self, sequence: str) -> str: - """ Do lower to sequence, except for special tokens. - Args: - - sequence: str - Return: - str - """ - sequence = sequence.lower() - for token in self.special_tokens.tokens(): - sequence = sequence.replace(token.lower(), token) - return sequence - - def sequence_truncating(self, - max_token_length: int, - tokens: List[str], - pair_tokens: Optional[List[str]] = None) -> Tuple[ - List[str], Optional[List[str]]]: - """ Truncating sequence - Args: - - max_token_length: int, maximum token length - - tokens: List[str], input tokens - - pair_tokens: Optional[List[str]], optional, input pair tokens, default None - Return: - Tuple[List[str], Optional[List[str]]] - """ - if pair_tokens is not None: - left_len = len(tokens) - right_len = len(pair_tokens) - if left_len + right_len <= max_token_length: - max_left = left_len - max_right = right_len - else: - max_left = min(ceil(max_token_length / 2), left_len) - max_right = max_token_length - max_left - else: - max_left = max_token_length - if self.truncation_strategy == 'post': - tokens = tokens[:max_left] - if pair_tokens is not None: - pair_tokens = pair_tokens[:max_right] - elif self.truncation_strategy == 'pre': - tokens = tokens[-max_left:] - if pair_tokens is not None: - pair_tokens = pair_tokens[-max_right:] - return tokens, pair_tokens - - def raw_tokenizer(self) -> object: - """ Return raw tokenizer, i.e. object of `tokenizers.BertWordPieceTokenizer` or `sentencepiece.SentencePieceProcessor` - """ - return self._tokenizer - - @abstractmethod - def tokenize(self, sequence: str) -> List[str]: - raise NotImplementedError - - @abstractmethod - def decode(self, ids: List[int], skip_special_tokens: bool = True) -> List[str]: - raise NotImplementedError - - @abstractmethod - def get_vocab_size(self) -> int: - raise NotImplementedError - - @abstractmethod - def id_to_token(self, idx: int) -> str: - raise NotImplementedError - - @abstractmethod - def token_to_id(self, token: str) -> int: - raise NotImplementedError - - @abstractmethod - def get_vocab(self) -> Dict: - raise NotImplementedError - - -class SPTokenizer(Tokenizer): - """ SentencePiece Tokenizer - Wrap for `sentencepiece`. - """ - def __init__(self, vocab_path: str, lowercase: bool = False): - """ - Args: - - vocab_path: str, path to vocab - - lowercase: bool, whether to do lowercase, default False - """ - super().__init__(vocab_path, lowercase=lowercase) - self._tokenizer = SentencePieceProcessor() - self._tokenizer.Load(self.vocab_path) - - self.special_tokens.PAD = self._tokenizer.id_to_piece(self._tokenizer.pad_id()) - self.special_tokens.UNK = self._tokenizer.id_to_piece(self._tokenizer.unk_id()) - - def get_vocab_size(self) -> int: - """ Return vocab size - """ - return self._tokenizer.get_piece_size() - - def token_to_id(self, token: str) -> int: - """ Convert the input token to corresponding index - Args: - - token: str - Return: - int - """ - return self._tokenizer.piece_to_id(token) - - def id_to_token(self, idx: int) -> str: - """ Convert index to corresponding token - Args: - - idx: int - Return: - str - """ - if idx < self.get_vocab_size(): - return self._tokenizer.id_to_piece(idx) - return '' - - def tokenize(self, sequence: str) -> List[str]: - """ Tokenize sequence to token peices. - Args: - - sequence: str - Return: - List[str] - """ - return self._tokenizer.encode_as_pieces(sequence) - - def decode(self, ids: List[int], skip_special_tokens: bool = True) -> List[str]: - """ Decode indexs to tokens - Args: - - ids: List[int] - - skip_special_tokens: bool, optioanl, whether to skip special tokens, default `True` - Return: - List[str] - """ - tokens = [self.id_to_token(idx) for idx in ids] - if skip_special_tokens: - return [token for token in tokens if token not in self.special_tokens] - return tokens - - def get_vocab(self) -> Dict: - """ Return vocabulary - """ - return {self._tokenizer.id_to_piece(idx): idx for idx in range(self.get_vocab_size())} - - -class WPTokenizer(Tokenizer): - """ WordPieceTokenizer - Wrap for `BertWordPieceTokenizer`. - """ - def __init__(self, vocab_path: str, lowercase: bool = False): - """ - Args: - - vocab_path: str, path to vocab - - lowercase: bool, whether to do lowercase, default False - """ - super().__init__(vocab_path, lowercase=lowercase) - self._tokenizer = BertWordPieceTokenizer(vocab_path, lowercase=lowercase) - - def get_vocab_size(self) -> int: - """ Return vocab size - """ - return self._tokenizer.get_vocab_size() - - def token_to_id(self, token: str) -> int: - """ Convert the input token to corresponding index - Args: - - token: str - Return: - int - """ - return self._tokenizer.token_to_id(token) - - def id_to_token(self, idx: int) -> str: - """ Convert index to corresponding token - Args: - - idx: int - Return: - str - """ - if idx < self.get_vocab_size(): - return self._tokenizer.id_to_token(idx) - return '' - - def tokenize(self, sequence: str) -> List[str]: - """ Tokenize sequence to token peices. - Args: - - sequence: str - Return: - List[str] - """ - encoded = self._tokenizer.encode(sequence) - return encoded.tokens[1:-1] - - def decode(self, ids: List[int], skip_special_tokens: bool = True) -> List[str]: - """ Decode indexs to tokens - Args: - - ids: List[int] - - skip_special_tokens: bool, optioanl, whether to skip special tokens, default `True` - Return: - List[str] - """ - return self._tokenizer.decode(ids, skip_special_tokens=skip_special_tokens).split() - - def get_vocab(self) -> Dict: - """ Return vocabulary - """ - return self._tokenizer.get_vocab() - - def add_special_tokens(self, tokens: List[str]): - """ Specify special tokens, the tokenizer will reserve special tokens as a whole (i.e. don't split them) in tokenizing. - Currently, only the WPTokenizer supports specifying special tokens. - Args: - - tokens: List[str], special tokens - """ - self._tokenizer.add_special_tokens(tokens) diff --git a/langml/langml/transformer/__init__.py b/langml/langml/transformer/__init__.py deleted file mode 100644 index bfcd0c1..0000000 --- a/langml/langml/transformer/__init__.py +++ /dev/null @@ -1,18 +0,0 @@ -# -*- coding: utf-8 -*- - -from langml import TF_KERAS -if TF_KERAS: - import tensorflow.keras as keras -else: - import keras - -from langml.transformer.layers import ( - gelu, FeedForward, SineCosinePositionEmbedding, -) - - -custom_objects = {'gelu': gelu} -custom_objects.update(FeedForward.get_custom_objects()) -custom_objects.update(SineCosinePositionEmbedding.get_custom_objects()) - -keras.utils.get_custom_objects().update(custom_objects) diff --git a/langml/langml/transformer/encoder.py b/langml/langml/transformer/encoder.py deleted file mode 100644 index 0d92661..0000000 --- a/langml/langml/transformer/encoder.py +++ /dev/null @@ -1,104 +0,0 @@ -# -*- coding: utf-8 -*- - -""" Yet another transformer implementation. -""" - -# TODO: Transformer Decoder - -from typing import Optional, Union - -from langml import TF_KERAS -if TF_KERAS: - import tensorflow.keras.layers as L -else: - import keras.layers as L - -from langml.layers import MultiHeadAttention, LayerNorm -from langml.tensor_typing import Tensors, Activation -from langml.transformer import gelu, FeedForward - - -class TransformerEncoder: - def __init__(self, - attention_heads: int, - hidden_dim: int, - attention_activation: Optional[Union[str, Activation]] = None, - feed_forward_activation: Optional[Union[str, Activation]] = gelu, - dropout_rate: float = 0.0, - trainable: Optional[bool] = True, - name: Optional[str] = 'Transformer-Encoder'): - self.name = name - self.dropout_rate = dropout_rate - self.multihead_layer = MultiHeadAttention(head_num=attention_heads, - return_attention=False, - attention_activation=attention_activation, - history_only=False, - trainable=trainable, - name=f'{self.name}-MultiHeadSelfAttention') - if dropout_rate > 0.0: - self.attn_dropout_layer = L.Dropout(rate=dropout_rate, name=f'{self.name}-MultiHeadSelfAttention-Dropout') - self.attn_residual_layer = L.Add(name=f'{self.name}-MultiHeadSelfAttention-Add') - self.attn_layer_norm = LayerNorm(name=f'{self.name}-MultiHeadSelfAttention-Norm', trainable=trainable) - self.ffn_layer = FeedForward(hidden_dim, - activation=feed_forward_activation, - name=f'{self.name}-FeedForward') - if dropout_rate > 0.0: - self.ffn_dropout_layer = L.Dropout(rate=dropout_rate, name=f'{self.name}-FeedForward-Dropout') - self.ffn_residual_layer = L.Add(name=f'{self.name}-FeedForward-Add') - self.ffn_layer_norm = LayerNorm(name=f'{self.name}-FeedForward-Norm', trainable=trainable) - - def __call__(self, inputs: Tensors) -> Tensors: - attn_output = self.multihead_layer(inputs) - if self.dropout_rate > 0.0: - attn_output = self.attn_dropout_layer(attn_output) - if isinstance(inputs, list): - inputs = inputs[0] - attn_output = self.attn_residual_layer([inputs, attn_output]) - attn_output = self.attn_layer_norm(attn_output) - - ffn_output = self.ffn_layer(attn_output) - if self.dropout_rate > 0.0: - ffn_output = self.ffn_dropout_layer(ffn_output) - ffn_output = self.ffn_residual_layer([attn_output, ffn_output]) - ffn_output = self.ffn_layer_norm(ffn_output) - - return ffn_output - - -class TransformerEncoderBlock: - def __init__(self, - blocks: int, - attention_heads: int, - hidden_dim: int, - attention_activation: Optional[Union[str, Activation]] = None, - feed_forward_activation: Optional[Union[str, Activation]] = gelu, - dropout_rate: float = 0.0, - trainable: Optional[bool] = False, - name: Optional[str] = 'TransformerEncoderBlock', - share_weights: bool = False): - if share_weights: - encoder = TransformerEncoder(attention_heads, - hidden_dim, - attention_activation=attention_activation, - feed_forward_activation=feed_forward_activation, - dropout_rate=dropout_rate, - trainable=trainable, - name=name) - self.encoders = [encoder for _ in range(blocks)] - else: - self.encoders = [ - TransformerEncoder(attention_heads, - hidden_dim, - attention_activation=attention_activation, - feed_forward_activation=feed_forward_activation, - dropout_rate=dropout_rate, - trainable=trainable, - name=f'{name}-{i+1}') - for i in range(blocks) - ] - - def __call__(self, inputs: Tensors) -> Tensors: - output = inputs - for encoder in self.encoders: - output = encoder(output) - return output diff --git a/langml/langml/transformer/layers.py b/langml/langml/transformer/layers.py deleted file mode 100644 index 96c8b1f..0000000 --- a/langml/langml/transformer/layers.py +++ /dev/null @@ -1,241 +0,0 @@ -# -*- coding: utf-8 -*- - -""" Yet another transformer implementation. -""" - -# TODO: Transformer Decoder - -import math -from typing import Optional, List, Union, Any - -from langml import TF_KERAS -if TF_KERAS: - import tensorflow.keras as keras - import tensorflow.keras.backend as K - import tensorflow.keras.layers as L -else: - import keras - import keras.backend as K - import keras.layers as L - -from langml.tensor_typing import Number, Tensors, Activation, Initializer, Constraint, Regularizer - - -def gelu(x: Number) -> Number: - r""" Gaussian Error Linear Units (GELUs) - https://arxiv.org/abs/1606.08415 - - $GELU(x) = 0.5x(1 + tanh[\sqrt(2 / \Pi) (x + 0.044715x^3)])$ - """ - - return 0.5 * x * (1.0 + K.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * x**3))) - - -class FeedForward(L.Layer): - """ Feed Forward Layer - https://arxiv.org/pdf/1706.03762.pdf - """ - def __init__(self, - units, - activation: Optional[Activation] = 'relu', - kernel_initializer: Optional[Initializer] = 'glorot_normal', - kernel_regularizer: Optional[Regularizer] = None, - kernel_constraint: Optional[Constraint] = None, - bias_initializer: Optional[Initializer] = 'zeros', - bias_regularizer: Optional[Regularizer] = None, - bias_constraint: Optional[Constraint] = None, - use_bias: Optional[bool] = True, - dropout_rate: float = 0.0, - **kwargs): - super(FeedForward, self).__init__(**kwargs) - self.supports_masking = True - self.units = units - self.activation = keras.activations.get(activation) - self.kernel_initializer = keras.initializers.get(kernel_initializer) - self.kernel_regularizer = keras.regularizers.get(kernel_regularizer) - self.kernel_constraint = keras.constraints.get(kernel_constraint) - self.bias_initializer = keras.initializers.get(bias_initializer) - self.bias_regularizer = keras.regularizers.get(bias_regularizer) - self.bias_constraint = keras.constraints.get(bias_constraint) - self.use_bias = use_bias - self.dropout_rate = dropout_rate - - def get_config(self) -> dict: - config = { - "units": self.units, - "activation": keras.activations.serialize(self.activation), - "kernel_initializer": keras.initializers.serialize(self.kernel_initializer), - "kernel_regularizer": keras.regularizers.serialize(self.kernel_regularizer), - "kernel_constraint": keras.constraints.serialize(self.kernel_constraint), - "bias_initializer": keras.initializers.serialize(self.bias_initializer), - "bias_regularizer": keras.regularizers.serialize(self.bias_regularizer), - "bias_constraint": keras.constraints.serialize(self.bias_constraint), - "use_bias": self.use_bias, - "dropout_rate": self.dropout_rate - } - base_config = super(FeedForward, self).get_config() - - return dict(base_config, **config) - - def build(self, input_shape: Tensors): - feature_dim = int(input_shape[-1]) - self.W1 = self.add_weight( - shape=(feature_dim, self.units), - initializer=self.kernel_initializer, - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint, - name=f'{self.name}_W1', - ) - self.W2 = self.add_weight( - shape=(self.units, feature_dim), - initializer=self.kernel_initializer, - regularizer=self.kernel_regularizer, - constraint=self.kernel_constraint, - name='{}_W2'.format(self.name), - ) - if self.use_bias: - self.b1 = self.add_weight( - shape=(self.units,), - initializer=self.bias_initializer, - regularizer=self.bias_regularizer, - constraint=self.bias_constraint, - name='{}_b1'.format(self.name), - ) - self.b2 = self.add_weight( - shape=(feature_dim,), - initializer=self.bias_initializer, - regularizer=self.bias_regularizer, - constraint=self.bias_constraint, - name='{}_b2'.format(self.name), - ) - if self.dropout_rate > 0.0: - self.dropout_layer = L.Dropout(self.dropout_rate) - super(FeedForward, self).build(input_shape) - - def call(self, - inputs: Tensors, - mask: Optional[Tensors] = None, - training: Optional[Any] = None, - **kwargs) -> Union[List[Tensors], Tensors]: - hidden = K.dot(inputs, self.W1) - if self.use_bias: - hidden = K.bias_add(hidden, self.b1) - if self.activation is not None: - hidden = self.activation(hidden) - if self.dropout_rate > 0.0: - hidden = self.dropout_layer(hidden) - output = K.dot(hidden, self.W2) - if self.use_bias: - output = K.bias_add(output, self.b2) - return output - - def compute_mask(self, - inputs: Tensors, - mask: Optional[Union[Tensors, List[Tensors]]] = None) -> Union[ - List[Union[Tensors, None]], Tensors]: - return mask - - @staticmethod - def get_custom_objects() -> dict: - return {'FeedForward': FeedForward} - - def compute_output_shape(self, input_shape: Tensors) -> Tensors: - return input_shape - - -class SineCosinePositionEmbedding(L.Layer): - """Sine Cosine Position Embedding. - https://arxiv.org/pdf/1706.03762 - """ - - def __init__(self, - mode: Optional[str] = 'add', - output_dim: Optional[int] = None, - **kwargs): - """ - # mode: - expand - # Input shape - 2D tensor with shape: `(batch_size, sequence_length)`. - # Output shape - 3D tensor with shape: `(batch_size, sequence_length, output_dim)`. - add - # Input shape - 3D tensor with shape: `(batch_size, sequence_length, feature_dim)`. - # Output shape - 3D tensor with shape: `(batch_size, sequence_length, feature_dim)`. - concat - # Input shape - 3D tensor with shape: `(batch_size, sequence_length, feature_dim)`. - # Output shape - 3D tensor with shape: `(batch_size, sequence_length, feature_dim + output_dim)`. - """ - self.supports_masking = True - assert mode in ['expand', 'add', 'concat'], f'not support mode `{mode}`, options: expand | add | concat' - if mode in ['expand', 'concat']: - if output_dim is None: - raise NotImplementedError(f'`output_dim` is required in `{mode}` mode') - if output_dim % 2 != 0: - raise NotImplementedError(f'Not support an odd output dimension: {output_dim}') - self.mode = mode - self.output_dim = output_dim - super(SineCosinePositionEmbedding, self).__init__(**kwargs) - - def get_config(self): - config = { - 'mode': self.mode, - 'output_dim': self.output_dim, - } - base_config = super(SineCosinePositionEmbedding, self).get_config() - - return dict(base_config, **config) - - @staticmethod - def get_custom_objects() -> dict: - return {'SineCosinePositionEmbedding': SineCosinePositionEmbedding} - - def compute_mask(self, inputs: Tensors, mask: Optional[Tensors] = None) -> Union[Tensors, None]: - return mask - - def compute_output_shape(self, input_shape: Tensors) -> Tensors: - if self.mode == 'expand': - return input_shape + (self.output_dim,) - if self.mode == 'concat': - return input_shape[:-1] + (input_shape[-1] + self.output_dim,) - return input_shape - - def call(self, inputs: Tensors, mask: Optional[Tensors] = None, **kwargs) -> Tensors: - input_shape = K.shape(inputs) - batch_size, seq_len = input_shape[0], input_shape[1] - output_dim = input_shape[2] if self.mode == 'add' else self.output_dim - if self.model in ['add', 'concat']: - pos_input = K.tile(K.expand_dims(K.arange(0, seq_len), axis=0), [batch_size, 1]) - else: - pos_input = inputs - pos_input = K.cast(pos_input, K.floatx()) - evens = K.arange(0, output_dim // 2) * 2 - odds = K.arange(0, output_dim // 2) * 2 + 1 - sim_embed = K.sin( - K.dot( - K.expand_dims(pos_input, -1), - K.expand_dims(1.0 / K.pow( - 10000.0, - K.cast(evens, K.floatx()) / K.cast(output_dim, K.floatx()) - ), 0) - ) - ) - cos_embed = K.cos( - K.dot( - K.expand_dims(pos_input, -1), - K.expand_dims(1.0 / K.pow( - 10000.0, K.cast((odds - 1), K.floatx()) / K.cast(output_dim, K.floatx()) - ), 0) - ) - ) - embed = K.stack([sim_embed, cos_embed], axis=-1) - output = K.reshape(embed, [-1, seq_len, output_dim]) - if self.mode == 'add': - output += inputs - elif self.mode == 'concat': - output = K.concatenate([inputs, output], axis=-1) - return output diff --git a/langml/langml/utils.py b/langml/langml/utils.py deleted file mode 100644 index 964fb91..0000000 --- a/langml/langml/utils.py +++ /dev/null @@ -1,104 +0,0 @@ -# -*- coding: utf-8 -*- - -import functools -from typing import List, Optional, Tuple - -import jieba - -from langml.log import warn - - -def deprecated_warning(msg='this function is deprecated! it might be removed in a future version.'): - def decorator(func): - @functools.wraps(func) - def wrapper(*args, **kwargs): - warn(msg) - return func(*args, **kwargs) - return wrapper - return decorator - - -def modify_boundary(target: str, content: str, expand_range: Optional[int] = 3) -> str: - """ - 分词修正目标字符串的边界 - Args: - target: 目标字符串 - content: 目标字符串所在的文本 - expand_range: 目标字符串在文本所在位置,向前后扩展的字数,无需太大,因为一个中文词语大约1到4字 - Returns: 使用分词修正目标字符串边界后的字符串 - """ - - begin = content.find(target) - - # 在content中无法找到target - if begin == -1: - return target - - # 目标字符串在文本所在位置,向前后扩展的上下文 - context = content[begin - expand_range if begin >= expand_range else 0: begin + len(target) + expand_range] - - # 目标字符串在上下文的起始终止位置 - context_start = expand_range if begin >= expand_range else begin - context_end = context_start + len(target) - - seg_list = list(jieba.cut(context, cut_all=False)) - - # 找出target头尾在分词列表的位置 - seg_sum = 0 - seg_start, seg_end = None, None - for seg_id, seg in enumerate(seg_list): - seg_range = [x + seg_sum for x in range(len(seg))] - seg_sum += len(seg) - if context_start in seg_range: - seg_start = seg_id - if context_end in seg_range: - # 如果原始结尾在分词的区间第一个位置, 那么这个分词区间不需要;# 否则需要这个区间 - if context_end == seg_range[0]: - seg_end = seg_id - else: - seg_end = seg_id + 1 - - if seg_start and seg_end: - new_target = "".join(seg_list[seg_start: seg_end]) - else: - new_target = target - - return new_target - - -@deprecated_warning(msg='`rematch` is deprecated, it might be removed in a future version! ' - 'please turn to `Tokenizer.tokens_mapping`.') -def rematch(offsets: List) -> List: - mapping = [] - for offset in offsets: - if offset[0] == 0 and offset[1] == 0: - mapping.append([]) - else: - mapping.append([i for i in range(offset[0], offset[1])]) - return mapping - - -def bio_decode(tags: List[str]) -> List[Tuple[int, int, str]]: - """ Decode BIO tags - - Examples: - >>> bio_decode(['B-PER', 'I-PER', 'O', 'B-ORG', 'I-ORG', 'I-ORG']) - >>> [(0, 1, 'PER'), (3, 5, 'ORG')] - """ - entities = [] - start_tag = None - for i, tag in enumerate(tags): - tag_capital = tag.split('-')[0] - tag_name = tag.split('-')[1] if tag != 'O' else '' - if tag_capital in ['B', 'O']: - if start_tag is not None: - entities.append((start_tag[0], i - 1, start_tag[1])) - start_tag = None - if tag_capital == 'B': - start_tag = (i, tag_name) - elif tag_capital == 'I' and start_tag is not None and start_tag[1] != tag_name: - entities.append((start_tag[0], i, start_tag[1])) - start_tag = None - if start_tag is not None: - entities.append((start_tag[0], i, start_tag[1])) - return entities diff --git a/langml/requirements.txt b/langml/requirements.txt deleted file mode 100644 index 7b41db7..0000000 --- a/langml/requirements.txt +++ /dev/null @@ -1,11 +0,0 @@ -typeguard -numpy -Keras>=2.3.1 -tensorflow -jieba -click -boltons -tokenizers -sklearn -seqeval -sentencepiece diff --git a/langml/setup.cfg b/langml/setup.cfg deleted file mode 100644 index 1a4478d..0000000 --- a/langml/setup.cfg +++ /dev/null @@ -1,3 +0,0 @@ -[flake8] -exclude = .svn,CVS,.bzr,.hg,.git,__pycache,.ropeproject,__init__.py,docs,.eggs,setup.py,build,tests,third_party -max-line-length = 120 \ No newline at end of file diff --git a/langml/setup.py b/langml/setup.py deleted file mode 100644 index 77c30e6..0000000 --- a/langml/setup.py +++ /dev/null @@ -1,48 +0,0 @@ -# -*- coding: utf-8 -*- - -from setuptools import setup, find_packages - - -__version__ = '0.6.3' - - -long_description = open('README.md', encoding='utf-8').read() - -with open('requirements.txt', encoding='utf-8') as f: - requirements = [l for l in f.read().splitlines() if l] - -with open('dev-requirements.txt', encoding='utf-8') as f: - test_requirements = [l for l in f.read().splitlines() if l][1:] - -setup( - name='langml', - version=__version__, - description='keras language machine learning toolkit.', - long_description=long_description, - author='niming.lxm', - author_email='niming.lxm@alipay.com', - platforms=['all'], - url='', - packages=find_packages(exclude=('tests', 'tests.*')), - classifiers=[ - 'Intended Audience :: Developers', - 'Operating System :: OS Independent', - 'License :: OSI Approved :: MIT License', - 'Programming Language :: Python', - 'Programming Language :: Python :: 3', - 'Programming Language :: Python :: 3.6', - 'Programming Language :: Python :: 3.7', - 'Programming Language :: Python :: 3.8', - 'Topic :: Text Processing', - 'Topic :: Text Processing :: Indexing', - 'Topic :: Text Processing :: Linguistic', - ], - entry_points={ - 'console_scripts': [ - 'langml-cli = langml.cli:main', - ], - }, - install_requires=requirements, - tests_require=test_requirements, - include_package_data=True, -) diff --git a/langml/tests/data/albert_vocab/30k-clean.model b/langml/tests/data/albert_vocab/30k-clean.model deleted file mode 100644 index c91b8acfa56ccfc80e1cdd854ddcaf9b6c44ab2a..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 760289 zcmZUcd7RhN_s5k&L$Y)#Q6X7UnrY9TB`SONgwHlJpPA3r=l%K2G+9#FLzbju2}KB5 z$`(rYuO&r<5?PW$2?_Z<&pq$Y9goNF^VdDE&t1+v_uTE=bML!s=d$L9=OXbVWgC9& zwk=b-n5hlvrb-V#_M~AW{`3FvVaK25=~iXi4L^C{u%R9(D{FF~MQ&C`_@MuU_x(?} z`+vfRl)^ieZTs~Vx0R?J%bLFWK#9=5#?3BKWl)pHO8a&@EhuYQwjJR@bwc9fj$2T+ zLs^qmS-d* zyS00z^k;P>E-fc`vLRcP^H)HUNnC#ZY(XhiG$B_vUFh&b<-!54mWr)U4bbd2dY)s4l4WVWUN|(=K-uSsv~s?xpJ@f90w6;dKn@62YqXhE3UJD zj*@F85VA^CC)3hx;rlL0LcZK)iT{I!KBOa1Ko z12jZ^8Ut8O2uXp^&)>m z()ek)qwS}qoTvw_6`ctXcGdcm_#^qH)5&aNz_PiJ9v zY5A8W?qX>CuahCER)h5VnUGh2jJ$lws!}%f33=!iDB6P#{P?zCl_EwXv0B-2zNhQ8 zLq8Y!+C`Qh~xv=F2AnS zg6RmN8wW|RK{~R>7lbYIc(y(x`~3}F(!D&ow_W@7r3mRPbxEBJZKX#Og?jBM*@Zqz zeUffF<5OtU?o75`X4U>w%CeY=qi$R8^#Bz}FdWYH0E12{A$?Z>7+3WPa%{cR&rTRU zrB#}c{S!+T8l?Sazm(>J3fcSMUolBTiN_q$8k)~JeH6ZpN?c2zU-O6^P*)x$sGMkB{WZ0!( zmSvELWvSJOk9;a7puBY3ZPS9X)@3b8Rm>zAJOY(kurH|P9c2iRp;ex)PB4viUJh-7 zL`ecvYPa7?2~?$I+X2uz*alKHjG&379_8w_5Ykk!Dl3<4_j@U$Vy2Kx$xm$nEOu3b zsr(Q~x>bcd+>4O0l&C|g9vSXas`N85c)CxSt*n$??)N0(k^e3B$?LQETG@Mvrz?}G zv@C1&M@dh5%58^3SXqTcBrSWyp{=?BOr~U?w|#_E7FD?POXyM^^YUen&8`D!!8>0_ zxYV~}5yp-)MuUX8B{Q*vG#%FnF#cA{QCImiG)e*8sF(<1QY!}X#-C8eUv-l1z2a|Z zE4~^QEU;CmBPJ_{t}%&T0Vzn{ROqj?#@9LeR3z!(Bn{y9gj`x&}0&_b7|YYGKF?1dXqN zj{f7jknmM2_Z{$8smLG^39=bE;s}tiQL@=u**qB9ipga2NNv&OK0+#4nUIN#8ne(2 z7s$PDfY`#Ymz=%HN6%=pyx8jRQvQL`nSP#5MCiX4PJ*`1h>+32ylkEdWZcJ5?XCAh z8b`TQgogd&X#jcwA{_mi1yP<&iwRmq(mF8A*y8DGomAPcxcjWNRBwSL?pu;QpRYB`OPY%aPFGSjC!BmkrI&12VOVv0OuqcTa0*$KNv|J#4(SL>fa6>ITPieD zOh;j3kbszA-0a)B%G0R`L+Y*LppElbHl5S{G2}`Q1=`YR^@y8%s+w$dMjrkE8bS7w zCzca3o)ZXWq{Ci|+U%h*e$(;e(a5I@Cup1zETS z+9VK7RM8KHZQG=jYd(>pXOl;#GB7H}5_umX2%}YUY6lDTk$hJ|R%j|&C@?RM831C1 z7P48{coZb*85z$yfuQy9-qQU(ke(0(9QuX*Y2kxqZ`8aS=8<2k#AOQ+Jgv`!neT67PF3sBs;nb(2&z$OGv} zp7G|MD1fn9&^BvU1#LVO<-WlG$w(8GifPc+IS>MC$%2e|3<#aoQK0f&!n9XW=By$V z){WtrWbPta}4c5%ZPt1rJwxvc57rHC~}BGxzebiG#Ti5;MghpI%z z^~Mj&e3U?^ym#9{TZae|xkAEq{KxkJgt^|bv3uj+46)i8Rnnq2pv|eQxX(Eh%H$St zbNU`f16boCSQ#=1(rVM73y6_}p~*Zar=3p7G;;}Dijy<1`iIRMKhU_tX)BU#BF za7mtjt!mj=A*;hx?}CSPoybB?4jK<+W!DtZyPaL;uNF=nHxBKG#dh}0UlDY_7? zRwMf#0A^)Ulh?XInW!qMs*JDjDdLHkRpgxBK1D?zIqe9aBASgi$dsd?tx$G+Y?jJT z{7(c{e6ESpU%Cj|W#cSP075OH4h#sNddV! zO;)*lLYE>;a+BZpk4lYRi!+zk&v}WB+$8c z`)#%_DL|o^&wz~B76kqnF}jx#wAeXzGI_aO0V_)_9WB~GYrI~rXQG9Jf5tq#1uxwA221uRWv0+m^t@M&TcTVxJc)2_eHc0{K2k3) zJ>tn6gV#lKAx%^^KL^t76(BY5!R-9S7RK%)&3+^t%DsTutsuYr>=SdiP{<;)Q~w3B z(yJ4xoa`VwloF+F*Y{&PkWd%vBedtw9RNa2hQSNUeF_c?w7L%|Vx6#`yj0sx8Z5p=r9uRAYc(N`T=sfr2 z3@~Gr4H%r!$nIYP zguPrBT$~MI$N2%!n!~p830bxt$ZFqT+HQa_1`4{4t5w=^O}RBeQ32}6>B#C9ElU6C zjy#a(S^|UvX@42o8p?{oM4c(ncmvx2S?(!anr*wMr|C3tIiowYm6qj1BO}M01Yi|r zO&mvL+0#KxA~8%8(;7+L-+z8K|5}+rE)mlWd;5q_P+#33HF=+7CEcIZ;FvleAf(UyncG2yG%`%sBLB|8GIf$`2`R@<4=)jMb9>tW6`a7}J-k?`|`EtVmi{g1bKIv*}sR z%JUwjQIdK|KW3p3Qu!<)Q^zb;GB;#p7J*rDY-%WO?%M#yePt1T4td{4sA53P$Xg#a zMqrgH)ytqQ*HFDsA;rQGfLTrTzV$agS`;HnCV?h@{e#a6TUH?JmA0m55t3rpandG_ zBr@(;VdZZis*HJ=+oG%_$co-_{_apFC)U1cHDWf%+_r$B_UWqd^Sz)O6*R_rf7*UP zR;aTt)rA<^cVRh5m?52Btv1K>29mO!*>lF}(Wz|C zZIb^!1~}9bj1pHI2Wf(@&#KY(`V#=CSf0b|GYA^j9ARhVw_(sGV&-mUBUE^=v%wfq zb@;D6*T+xkdB|fIKwI8v*MrAj1VG+wLPkd{m`F*7%LrP{vDxZ=q3UuFQ_XZzy4(mA zszQ?OYX3==v=EWWVUQE6in~FrUKx0aJ?68h=q2+PSdw%^9$rk)a>MMJk!wHkG#XnW z-zeYE>ey@=g3= zQIip=+vxv{q%Z+8Vl>;a#2iBeHsa2nuGabFg#)0Cmt^3^u{KBiCkFlGos*%%VW^nP zX;)f)IuOiZURZgyPajFSGpno41F`C|*<(oQ838Cw7A#+w`ec`ck7Nf#6Ker%SQ;Qd z6(B;17HOZcS9ltU_LSyRp^a&0eF&sR5$hv~c#&PF_ROcJ0a~7Qa>i_ku;)hdm_OsP z^Bf@KR6A~!9Q2Hj!}(4j&q?9JML@<%&+_vA((4UqE1Ie>XvuAj2!~2)3Tw8MI9B1H zP}Bu!AWJ{>={U*LIdseSAfcR+38tqzegr_O%miIF_}F^D0+4iUmbO2b#G`Y&D!I#WBgx; zy07#--u{Y5WcpzLS6b)RcZNY*p2?)lI@2OzhUqfgN2K*QaUB62j!kODzYwxbSt~}c zSal?wLra3{Bvz*=xV1$gTVSYrQ~^sD!BqP|0@CVbgBig?SDL> z)&n;>KBcJXou1bwIRQIxG>{iOd*bV$ZCs56K{l2&^^M*DOzXN+`#Y5|4sGq&=SH7N zjFq$O{UEfl$e~h_?QerDn(Y(ivkg?M=Ntel37aTtV+*OmGr-1UB*g@U&7kQ^9>PxH z7I*5e1grKyu()Mj-5ZS*L{c8@547jN{ub1qsI$UEaXn zn&m(!1FV0til8s7x19FXf9Udlvhq8hI+xE@grM#!6PRCnHJ`ah zaV0B7-AbN59mvG*c1D5By5C2N=54n$X&$q^p{8JAUwteUJ| zUebuzOt;fA5Mzg>9F?#5#7A+RKPAgP2eF*diyEd(Nw4;iYS_t9){q}SLQy;A0c-gq znAHqDiOW)@5eUnwzc%;`botGQQMM7prj%Tk5rfm|lw|(^v=JhiQDd!*MSZsdhayw2 zwx@U5xkS^>1!>+I+BlA>nGIf6w*@lgs+D3#2rDa@)-{BlXT8-KFdS8LIp!o%{nZ7` z3euIbr1yt5X~o&##-(ddAEB5-dNU985u#aL(cEwtfaMz6Ap>cC9GJCBT8)(j=|0$J zgPJB}-btQjiP2ZSy5PTbANlJ-pF=d_&dr{Vf*5ByM+dBFe3S&%PL%e>N}owpGM|!E z$|s3pXpKv|kv>UKOsiqM%Q%l{qp*CMbt8z0R*kbd9L&4fL+Zz(Ej{3NAnQR@WISv# zBqJAw23hkEVUv9%!(Ib}WL(xh0caA5V>PSF$h0RxO!Cnb*1SnCL8CkL>f>Mbe_=I1 zoQt5XFpf*5&)bkDaXUaI|GPf`+o7yUoou(5kd@@TyD~CQ5u3exl}qk(DASX2S--+Z zuFOZ&bh_^<5HDsn=94x6s7`04&F=(_4K3+PRuM*TVxrP7f_V z>jx0_M?H0ZxIZ*fsgda6giI=&8>-&+KguVj)6rwkRRC6<4^W>IAi_<+0C{96lu0~M z%(G*o_V1qzRvI+eOrhjG&H%DPf{|D`6Efgz5L*B-vQ)BHWdx#|T{YY%R+l{O;*Ujv zLcue>;=@tn0oGvbHd?2AB36Uy-69`kfWm6o)@D@RN3sPop3C(>#=Ubk(HWukN-(Qm zJTE&>fHIXuJ7f7|6mgGH&=jRwj=vScB+GgzC%aFAHdTnSgYI|-WXMOpLHo@6_ke`G z0OJMwS!(ddOu(>R0T}Nxpz9w6wVLZnIWE6E?sH?=m|<8S{FINvYKx^ppQi!na11W8 z;Ta1jgR~UpHYR2B&VY5y^B~4~E>cWM@0Xxa!fYTbUh#ji9WKby1<+RGynL>NwQs-- zuYF^;_koO2hQ>rzcKe_)1J%Eul~x5$OS8rPuPQZ$y|conWvXB$-fbm-Nw5KP<%*wt z{CZsuRR7}t<_t-?Y=X4*>e)vIZ-Fv#r<3tG3-8E(kSyILBe|`OaX8?oS3S~Xmy#X? z+J7|GVcU6(HI*%hy6ymG5_3D9^ILeDMJ(>^EupC;UgxWK@qg)Qirlfgr*&g3|0->j z}r;t@|r71@MgdJTCKrN1f zHi6_5x-pVDM}t^VY+)FeDe9ELU@(q>;@Oi4hP{_l0M*!I&Id9^P*;|x_f=YS`q}XG zfBw_G>@^vHus>+mAD@Lb&2|TkwjLgr2enqiRs6{!lnH}ld>LH_Y2~R{@jk5wF!eh^ zKE4#f__uycp>K|}2zVq^$%yNG@=7MEyqr7{fG(ky&LwvfHujt}mfd6jB^kJWyw4|u zRd^pg3&8lQC@+`Uk3pJfSm-&giR|M(iMkZg<(>ebEOq10&mnAOv5)K{-JgZF?3le| z%e(*in^VT}4=t%S$aS9(wo0;`tt#rNRri(lKl^wYuHjJ6F%VP-a@$uPaTfMKZu%O; zWSq{+h;N~2V*IP8tnpFv>YPxJSJ#4A%@U*7j?!=X`~>8gFP9HCc$%r7iG8C_l8+?S z#v^}h0y3szYG2}f@-Lr=gVDHbY_V%82IESR1Dua{1+kJt&mnoLjgQ2sQyQE2L+yQ} zG`ABXtbuRe6Uf+O(G!=)IzUrBjKGho-K7QvVLd8C%@G?hL6NS_5Ww{2)2RLlx?4hM00=s1wD zf4Q^yyc{qH$n-t#{O7hC0$|J))N614P-s(}fF;7{Qz4DlNIY(Po3hiu&^w(l=MN)n z`MJYZIrBmQ<06wt#NjoW1qnyZ3i&`O`=5D+vp)GW0HMb@KkU=8ZGVK6*z3W$k_`5>>l z|M^rPnu1$2>FGXx-n>;_QN+ZP!dqnRgFbnzn0Kd<`#%a)8c}q;dxZj41ilMQS#i1P z>Hk1MPS@fao&};*_9&k`Pta!VFjE$0kG%k>fvA8KD>sZ@d z{|1bmz(7Yezxf0p)apb6*Rs!{{ou*@rZd_1Tn*}#D#oNgYMn>0GOO<1 zwB92)fT((Q{RzbKroIt5=nv?S;Vg^HKmFfnUBylL3%a!OaW;1HSg4@YfDsTcv*cC) z^rWB{I?mf+w~|oZlu3e(3L(KvQV!aQpmB|LTKyS@w*=9|dYfghwh&g;@O}ddB(ErH z1;!IPrnYYfV6|XO#T&3awAF%jq})1HeN8Omh%4Iv&V($N4z)w?w7-6kUHzeO^H#v3GorZ-!$ld3 zjzN5R-bc5i)CF}Oz&1vAKj~77T$`1+1}!TF^}McLs}w>d2nW*h3ZIrG6Z1gxu>fHw zBmv_#Q|0vWfF{OxQm(!l%ETC8XPa;hq$)sChFt3tM>sv;5E`MLub`kO>tRd|SO|!ypQ4xn?0KDUa}Q2J3C{M?n?e`1|0IFn>B`0Rv3urZ6M49n94 zo>_A|jT2cQdp-wkT;ocgw0`#SB0%Gs2?dARKVJ8#@F6J3ON%|N-bymA&p}MaYPZ)NZvG1(xUAv0R)hAhnrn3dv3fO-3C8SlNHh73k7ft?fy`S2 zWc6dG##QAF(AIFY{-J+ESw*-y%W2Br3RpopOsFf#7h8eCf;aIsStW<>3S=ef-rSjCr7f8C zmpTT++mu8$47mI6LD0%Y)vz+IZx3L?tt@J9mGe7*7$=b!*EpFs&*=mdj_W;T!@f`^ zrCJ=>W#E3$VO@%7tDJw3k3hGH%Yq)zp~{)<;kF8&q$a|37Wu0efN73e%FO4ibzeZn zF8t{wuHmpln2C+OaG;>gUpPMK*_1krZ5jYtl5GPG_w}IwR(@b6f`<!uPSZYMMFJZ zF`$3BbUoG6%w2e_D{btlS3i{u$2YN5lt+}++l#-@Nws(Se# zft|z0iA8KI99i$7N_J-I-Lhm9P$+vnp$O#Au^<$ii^%a;5wtwh%<3umaH7wEJPYb% z`sY+2?&D?(6~=L0%8Kfh%DnChcrE5%46@ZJ@9}zJ{49s=X^RB#3Yl_ z9e4e6&{kn{+2X3aLe}b)46byIxcqOvPZrgM!oUTd4w9oeym|}TDx}T;)w1oo9;kHF z+i4#HSV7MFn%QvJCqQ;Mq%5QS?tpLPx4>b=*eiUeq}7~_rTW+0yB>t@p)We@vXQXW zr&8^TZI!lSumDDMBieP7kHRrgQqKL|)2U=Gkad4U(=P0TcWox6ex+M>b=XG1&T0;7 zWfZEJQ?K3uTJ@*DyuBkqD~`R8JMucNrH{=dT_Jz&0&V<9^(?DecG)9L-&a<*_mS~g zWQTl!r%BvXCLHK#Tsl+IsT|tc#*H6(zxRRuU{-*;)5)2}VIVd<;Ag>>)Kz2Z;h@GV z#&zee^Z1cIVj&T$&SX>Bss_1ppwE!gU}pgu>Jd%?l8iv#pXM{uGo(1HtPjrsGTuT5 zw?M|94Q6`5T7xzpIvfDmvAFqFgES*6J!yLZ;ZQp;AM5x&QlYSqu$5&FxDbF2QR&=U zURBB(g%h^^GCb;|?a_3L9Re^Dbiz4Rx}ANGI#6THttu|6hqeZC(`8oPyu|0l_Q%%I zZN~UmdXb8DxJHpsx0SzkW1&ljsrZCochQPII1U)Os9$_Sve!eobuZ67OduR;MkJ{X zdG}2osnhEU_%~1T2u3>H%#5B4!Xn5i&8t%&Ol0b%diZomYm{8I4u)qaU_4d~=vOYs z-3N^fv(@s}41!j=ZdEV|-#6R-tcpm(;{)A`X&4IFPF`;ln{O%_K!m6v@w|^Si z^3ofybfQi3L40%A1a|rYFk?2#p~9#|kh%?3;eGWEgtaKnG{`NGpB1u9dAdVA)sydo zgo9{xo+(oe%Kbh7w32Z8h~;@uMD|+jlVXQZbv^wf5ah094gJKY;BsItqUWJaz67%x zVU|cp#VVfzRwZ=_8Tvg4q8lBNBi0ZMyK0dgBwVyu2V`7u?VHsd*a7Q(9=hP8?G|kS zfeQ_vw#lc!=uzi9Y6kxXW*Ji`Yw5V``@7GCYrc7oM5q7Z5snU3CI0vmBy4tkb66lM zVBF{y+#N4%_qUJ4+a)OG@+NIc))<@@BAMi9voBt-EqH0FQtxM7K(19VQ~~zG)l$Aa zfVECMp&lZ#Z<$A!V{|`t@{S&H*RccHucgn1mw=GbTMAe<(sfQSTOQ(2rVsNRI?_#JaVehn%Q@Htq#v&8h}usow|Msxh*tUM>Ch^$}3*26lOYZ_xDi9kklXGv(X#gTtHL6%E9c1yKy&YtCl`9K($`!4x&v@Ax|Gd*b33T zn(E3!y@0I4p}%GQpe(z9@mn4{9NMy@uTp<$IS|C8RE?#@Iq~*V%u;c;F)rT^f<|Mb zS&_jO<<^A&RyP&_m_agf z%SS+D6GUYBGJ>TsCaz|>23hFyM1=oVT%P&~%*s&bc=_>XpAVKob`xL!;Q`#V7=|AC3m_b0^fimP zJfn!^!P8=l0)In?TH!9o2GX`k+Y-b<6T6>4_HPPQ5-C1{+d)zp9V4F6u>DobT#?%e z((=cmg$GAVXv;s9jOKNBRoBWxmH6XoZ3naivf8@0LUi1HdQUKXNJdKiUW6zvg{Tr8 zd}3C-?ym6t9ev_FHV)_K@lY2qV?!k>OZWH5Ftxf(Ui=^*g^4gDYm~NDQ75KAUhd`r z)|Lzf($8nYDwPZ4Ol1Qa<7hKUkHZ1N)<2DyFXlGtJ@fr6Aub zZS0|4MLq7l{Td*OR8Qb#w-Po1Gg7Fr;-}j{;4Ph%4!2uGJs&&g4#JkNt3qUoPl!gU zP4(C5AXXA%o%6hU?s1^7A^ORKbD*?b)}g(gB5VTZp(vFamwn{qxu8~GCV5tg44BIm zvw|6v;}Uz;a?u09zn=HGIF}Dw20izJ&xMJtpa&sx>MLN>ihCZj->_h$T5eiG&;+hy zHg!q@j5+<~t5wj*NnLDr{D!azHN|PY4uPE;AvNq}nCxCyODtm&ewetJ zo7O1iTDc(2))Nky;4q^g{eSk^vb%P2?)nQ565{^msT#CqOUGo}4N%4&9_$4ft~9f< z+mfBR5yFN~%$4%mCLgzAK;Lqi`vnU7MwdhPcRCK6y^6`1g#+YJs11;ILzmuu^Afr9SdS|=CZTIj`t~W=;k2k_Y(n(lakW| zIxyuFP%BqoLgVZ^CMORAGkG&7T&q-xGgW3(ey5AUoDc(<9U*MxCK?hlvI^3kGhywT z&yHd)!l}MNwy*Z_QtT-1P}11Z(^$OT*o(`O6sWZboBvn@&ynU?AlrJ=QB4(z`EU+6 zlt>Pr3|Xc?m{gZIKu?bHar67XTMGV)PzXBP>?pZxPRwJTXcZyaQ#N0%f&~yE7M^hw7IC8u#iG?gNEm~4BO%MVTWC}qzCT5mL|DtgP@ZTYJtF|~NpSnoIU7{dowX=shFntP1irkms{ zY25Ma=&(UY|m{;a1WV*}g z^FJ5(2x{w5QJoqGGQHygIJr?t6Ej{OfefpJwnEgLg(h5^Y($vq7y>t>d=@&x?UwTq zIIz(kd0!sHGS$N)c{_kMIpH)0<3ASwObygRge#A>&!bm>ny|tb!Dxx{u|6##MGUEN z0AZ!w5d}AV8X=zIbvIs~zLHqzFN59h8Z=dK??CBT*Wp@^={ZGOU8jyw%&MMZsA9Nz zRS~O)9%snW*ZCN{Ql-nWt&Io^Rb2wCn?M|^tFv#)0XG6zXVfe6v1AUj8jFywH-TGi z$s3!b&S(QC0$PcTWj%3S_PKGyOZIo(^4|!3WWnvw#0`L_+d!VV7bF}Eih1|U-SzhYSv~YA)j;l4z{IFaqP%)aG`-(PitF=Na_>w4 zV<(=)fR~V?AM{9|PB^>-qlh(rViaSIT_N~*mXGHiH;v0?Mf^C^# zA!Weh046dXA}dJE6Q0&Biu8UG+UjOo+EFq=A(Vq&UH1$@V_5eZXyKo8L2Tus*O8LE zMxiZp+_S)8zoB>TKOfTAVAsPrX4jWJz~yxM&6ouMxG%e8s7676)&HZn09K=U27|GX85YROhPY{uUr6 z1AU4|UMTa4>{ud@UONNnyxU8TXho0~*Ow4S?dD^$UUN5GH@60|TJg*cqgAw>2h>s? zNL>d2s}+x?Ch*7(GQWNU85f-5t-{_xCxe#VU{`3Rs`8MI5~r5nX>U zu*pU5s%6|{e)b_gKX<-B(>|_H*pg@{!rQe6h%v9%>uRN-fN`OZr|Z&qK)Hw1w@lqb z->mQ%v53>zX{92Tksj6sQta!aV5!t9PdEm|8VU!B>yGvRGlZ*Cz&|H?B$IWXxfh=X z!eWcXNFc4wfS?)Fd^29dRvL+D^SZ*m26VPieQ|QYMG(ua%A@ah-IlZE(Qd) zwTf9L0lS_~Gkl^13sa0>O=g0ap!D>L>rhVulxmA*zvolXVSAyjddBk6LLl0g4ZFl& zwXoV)hb#)iC{^b-eKNP8rkM|X3n*N|gl{E)PEpjjR_9>nzcT9`FsqwgNtQYP^RZG9 zuEFY!?Pc$S8E5P|-PZBK4}jX0?TSxfByM-L%oHaJ^q+77=qA&b`s{)t3ap<)nDB+i z^f_4fxWsFUSt`!mZdeJ$NK=nf(JF$zHF`-zX%nOFR|4txl?S+s#13ST0+v;(CXLc3eVoj_@C_J(*6q%<-xH?rnxq`LmY@~Jtq8`kL5+a3F3FGU ziDB&FXb{K^KSNvL>9pMSr%z9BL33Je0kFXe3mgZ`YOIaR9)ANHllX+FFX&$X_>`)0 zfsEVgfv8(+22J-Yl^o47alE9oRf~MN^{wZR&B2U+#)O{Tq{&VI)RV=jEZK#y70M&H zY8}0ESCCRa<@GOjxc;xU@AF{Wi0g=Zo9~PPptc6r_fTvpNiR9( z2=G$dl@H(+MkC<79AvQqei))Q=-;zPf|(R~giu{V4>=0NG?F`!6$AbMTtLfF&R55R z&`R8OEI*N8IEK}7GCJ7Db@YC zguK-=`L{|7s}JVFBw?!>&(6wGHISB*yVqY(+Hz6@ryjIUX@u;GL?E|hiDlKdj~q13 z`D8WDvo0ljDP#?xwj7F{SOlQ~V3{ttR;f^BSO9cufHX!JKY3gC68|?gd)e+%NXsp% z8_{aHqY;Vg1I~FFIfgi;j$g$n!^CmI6=23GgENtS8S68uw0HgPALpY4xYhGA>6HM+ zSryj#TdsjLk?8KD3Uwbe0SMu$W5(qgE~#fl?`|^uMgXfxPH(m*Zt^sJuU_`M724Qz zFQ)1~v*m4IRz0(5O2zFUmaRHyG{`gsLJ1@|F66b^$sVcX0uz1u`Kch5wV4c2>ocZ# z48yazZeOUFv6!vJ-mq>aG^)>hy<(OHE0gljV+4(bRJO<}>vIK&hPVG+kNf|ax)8(B zPXbt$Y-rf6D(wbXzQXg2|1YiI3i@)c{ikEoKN_}l6$9`)_-P)rRUtI$1ai%@VAcZe zu>+FLeGbTY(-DSE?Q1?C7DRlA=?!QTmwulJLG1NrV-l9@897CPQbVvX)U&*Ki+vmCu981~gRqe-nv@g&fU;_^`!-j|BmV@W zrP%ZSqCpd$8mrSx{FiU>5Mw220=Z5hYX<1-)DQp!3ZR~zIb zC9M{9xTxuqMVGhsIdIUX`;6Nau}W~A2`1b6L|iiG8d5~gYUiUQIS!EX_VhGP>;vR4 zrNgFSDb8MRF955kdhoCq|Fkm*vaL(XYy0`sjB!uJ z)*m|D`w=+G0-l#X!&Ti-D}snW(mpL0Q3-*%-6JU2%ZY=+M8v zJXiy5b>Rj_7H>_~335U$sEJ)~#o-!;J8=puRC{N=WEfE>EGsE9^H5d=*3ShBTcwC) zVW zJpfksnruQQC~0lQ$ft`kHR^t6>xf7Rd?*|GOfr(5eXh?C>hkeNj zGr;Ksd=_x&Lj+AAyphK%tB*okv3liZ;cQ52MZ4#tt@5O$=JAm?G-zBivi9vJmpu(& zOz457cH_Cv`ZzWCy2*oO z#4tHjau6rG?FelmRo^MMIoWP!u+olD?+L4(T;9q@4BT3hb-~`df`ubgk|r`Qfm0Q= zEZuz>O?`7)FqqUAh)!!y7(L)L>h8S=8aGw?tYA$CXsaA9`Bd(dPCf$eBYYHQA0Hu? zWD1aOoqdFW$E0P9(%Oz}CEIl&94Z1gpv_fjxq_h%X+PEDp}GUWLX}Tc$+-tYTHE26 zmSyB#)QIrq0o@u->rNcXVW5iB=!pCuwhRmq+KuuAP&bwE6 zK%Zm_WO+3Jv=KSB$vc1C_~2mM6Iz0Zh$U)%BHICqf%r9Aj|dLLxVVSds2# zj}FE^C>D+btli|Q$7|Q6G5Z0S{f01|i^lWU| zgMh|1t9?!s@;vGXD$X5A!vN?DNi-CJ5?eQ{zwFg@#bp{CJ z^jCZ&PL5z}_yPdyusD$4w+PBts<$+G4ceGyp{^&`i{J7HcD}nZt3?~210&%-y!`eVJlnD>*TgZI$mUE zOE34SosA`s!e=1XDlxtBB<(&2uo~4Saadp&obm;b@quC3SvcgU6+Rt`Nf*0$C4eb$ zJX@5PGpaxf-3Z3-+E9#M50!{f*kk*pfxNEUGpQ9 z?sfG7@^9;Wd~B}lj@4W;`6ocD7QGigllOk{0KR}IbKi{smLqr7vPvO!-d(<0gP|h3 z1{?G{K&Z%i_Hsuf&2dm56`T1#>pVATE2w3wPwBAisA<-*)HLc{q^FagHTMvvH`WroIkN+hrNb`9T}e5j z%tzv|-FatE+8L-MA6@ed6c4cKWzDlo8vv6Jmfi_%{olnr*8$|*y#RdQ>LcwtK~qI8 z>`vL2pj9V)2v+YO%~Z6cM7RvAOWeZF9-~j|gT;JT{17l>zlt*oT6;}z5YrNUY{6XP zcI^XbG;2TnX*5y`{r3J|Zq&7Bjte5P0oKNel-AvE-o#@lDL#vl|LwpqXushq@4-{fJzzij;hY~hf>LDtt z^ixjuNUrF$iCO$?(%5O&Dx0N0~`~je^E9M*|JAKoOcOTPMekCuoAgf{nlC)jl%bdTIe2sffj3w5^q?*LoUrV1q=jgND`c z1yn8v-T*-Eyj*zKZ3IhWN0v|e(1lh`viO`4>FHn~LvIJLme2=*be3D8kd>L^2^i@- z)zj`lo%g0en-Hm{K6vDh9Iq0vFZ>VM%2pe7T7q{0 z!j@pw!*byJMx-jm>tHEq_8xJl38SN&rQt9GcS`-J0^ul&yCc>nQSql$o@+` zS>R;wuaA5d>SM|`vOWf|s&O4ECHF4(5nvMa*`k0ksdw&>#_`{Sn1Go6+&gJwe+CL0 z6cg5a8z60v>)S^j`4x&P=z^xxCc@SgxuiClf6c1{)Da9vXW!q!~3ZqLk9RP_|~&NAG7RGkLUo3Aln=c zVj74cpk9_A0Uh=L_hoC&1&#zVC5RW*^YsScOKdoOh*yT9rQXg>NHQM`l5X()M@~Qw=C}h=9=OMfv^*&PHL7>J5#wr^3uAx39 z>r7`B_~9fVlaU&b#-0jkYGRH_?7u!%%s7Z*R%GNDa+=S_o}>vR(+Dxps(#6JrxVMH z4|2H7%F_y%9;4NXGkmr+`j{K`u`@x87hP!Xr=&@OKHF1fo$YBxUL3p5g*IMwhILom zdY%VnW$I@%xSu&3fHL`BDGf1ygiqpb2dO{uDHnq=&DIp<1`S$G)x5%@Xigl&^5Z=_ znChSKIfP$f3FL<=Fk=)e4QC|PK91U<+8?BEP$1dLzK=N zyX8Qvt`F$uu?eD9BS#Spf#s5N%OwQ0OEG(VH`ZW|9fNTMt$6m& zjDl^(1DJlYSJn&NTK{_$waVe>LqEhIa;1kNQT_T1pU0a3WL%k#ft;y`=@HLG?R_)U z|M#+DayV80DJcjKf2d3N;kSU9j@97JvFELjmbtCc<#|P@9p`)B-bT=>5pf5TH%@WN)9zNVRG@Am1L^vJkB7ws%dCDF{)idAfNExRI^7eB zP+wk}+V3HPw5C37dqx=6dnMm%xYQB*4UoCBpiTZ5a5gJtMPsUPO}6}D59!xj^wRF# zvwa@)5gzb;%;$k$#NChkf1TQYtu&l)rYu*@A#C}xRn!HRjDN~QJUof|;^y)UP^j_A zQ54v0o(J^9&vCg@0n3L^eshyDE|)I=3OlZT$#36Rp-r^NFk;_bIz&NBr~QpqkQWuQ zw!}prvm|*neI3k%!m{eHXTT*2lp2-e<0Z>{ zF77KefgJV;h}BYW=W!iBE<3LBse)>D{O2fb9ow0e^d2iuPbz90@zDh?v`O%d&x^SM zyCL24JH@Or?1r^Ej0y2?0j+=Pxk2rENaHfl+k0y_`o9Y-_s`!1X%%&!3MIvy-#x^b zrdA|5`wyV7?z*CpwwnP;b?;vxPj2-QI5lA;Jmy~y(8XB!RyN(cR3kMW&{p%Bfs|Gd z*s$DlX>$1Xp!BAyqzv1^M<_jpf;O*i0cvW(Yd>%71ZAA@Z3=uJo3#Wm&e))(B&W1R z&?!8S$9M4&Fj1xChFyJxN<1m}R7Yz7IH)elLJgMGv`X(Su#HyCnkHRzM>C&yY((^) zXGS{i3u02``T>tZ@F0~!mW;y!eX??4XAoQBHC_S2?6E&^NwocX$}**`J$VOGIv)UO zS+jw58<#l;`V@S3hmQqxg|?!iygq``eR;4?L=V(QUnJQbDAdh3$G|$oOgaRNK|?=i z+PVkfP`BK36l!#wSpjIgsaKAibd;xg!K%O9FwoQ5X=T=N(8dXFfZFk6$Ag5k2ZAa; z(I?=9BqddYp;^f3*Qw;_Ax7xwr7Tv$+EEX;3i4+ofK3wM-l4>Rd$!kd@yQnE7(xC$ zjj$;U#=2k6fHL{jC!%yDuHX&>GDUQs^T7EOoj>wS(6ArTeuK|}wDR=@d0Yq12QXPM z(&gp0;hxqjbaM9yXcHh_XIKJsiLw4-KodyN5Z7rUAMw$c>G8J>sH9W3r zM7TVnv)I5Waf~7K8d;_lutaJ*#7H!)5(J5GnM>wsIBbd_uOARtq=;3Jxl^u7LZbFP zdrGmEplK$3ITM7Ze$೟ijeo>0}xRnJNf|R4JFfvQn>!Mj$Guwf$l$b7R)0Zj0$ zSutVjrmpQ6K;wbol$8PNqW2ZE+mLW>FCjT=R@W=|!|I^#bgB&`KMsg0>TYg=hK*qa zmy_48gbwS+kuc^74g;?OGZ7{-IDls}F6SMu0k*ou@e;w7euW~X+V|@%S6%C4(A~MT zB5fytSbf|k(=F47-vDT}#xokz%M%J%Yeu6nxo9G!@x+|3cUt%W>CIqPl)gLRk<;SnEId+e~sAT2Yu4?uedKH;IjJr9M8fI?PV_e`Z4 zDP}+EF=r^${`lcj9xL4tl6fzHg(HhwF*zk@_adkXlr=2F>iGEp#t55)sD3@cK}e;d zi`?-F|5`KYj*1bT(ms0?&;-M}rd9^N1x>YiDo*~@u!*slaTcX(-}8u$m9YjXTMR<} z(V|RSLeTOry~u)x=_eixidDGf>e^+Ig2uRes#)Io!UHTL*-=hk31BsGPePFBnJ{^{WDiX!5U6a-)JyYJ*MVrdHNdwYYd&d^~gc?{tnFe zN7dO#=`b`-L5rxXemv=Uk$4T5aZ<2%5S~!Pl5(b!#E7p9H-a44*(GUtPeJ1(U#!AW zal#KiGkbzcdj8^(m>zZTG2=#rw`=s_g;O>Vhh|D*`MYc*VQa#AwZzr@3T-Uo+Kwdz z%R#5#eH=b~oRD=&n|u+aI|18qGZ0y(IMaAe!Q)e%f*UTA|0QUm;yONkS*Nq5+w4=?Nmt{t!S02pJyCcfNDpRQ^RWGWcrMveFgI@hXcdyzunpmJ?4RWCGDu?CMh>ja$rvw3@D>7M})awZb~XxmR4yIvvPLR5yk|ZdSnJu+4Bb zqSqSZa3zDc+Bcj<9OEh*b6@v~%UkDwS^1PEr=1Jw1=>r_9S&{fnA7?b3K)Z>H(D6u zF7P1F@-x8dba%oCKpo)gWa5PcE!UdJ=+Sa_1R7B=$H`I+TZVcdYzFX7Q4hLTmo-b7 z83VLNi`qDQQ5A?)+I{_%F4?vg$hsug`_(e04hR#|pcKdsE{fRQ!VT37ySxa%>U%tB(k}7ctRrb1!u$4Gk_3@_5 zp^a1hb}GguGHqn^hQ=k5kH6 z#m}6NIn06%B@lkD=YdCn!fuE8G$Ma0V0k(R)j;-s%;!?8A6JPhZ87++rq*_?A|^)N z&y1M^88$Z0%Hii6$keBOCRn5zWYqJ}#tKifxGD3C1wIO!{|Z^5G)uBzX?W%Jdm!zioT#6>hHyA| z*h|l}P|F_xt+se->wBD$wIE0rHR-XQpcSc;^AaVkNPL!9It6mh1|aKhdK;aOw%XA0 zqT-?Cxpc~rD-W4%1hb;_dk-LwD`FYy;!LH#wh@ZNv(Aut$L~H}6}=y(x7iG0qQO5S zA=m%y^Wl;=4=u;#?WX&dqOdTmlD&6;wyGp~E@?uU|C_f32gu|dJ&k)d-y>8y6iYVE z2*yVQd<^FoGqELf*uKT^t)?$pfms7`OZ2N(kyDm6+ov<;Up4j=@7+zgez<%B7&R~NaeH^Hz! z(loewOzI0_MHMsJBQx@?Le{)RoJx1<4{7Y{2PasY915W9vsF2aU}?a#w`6gQJ=*^7 z*-y4R-luKAYlQofg8<-*!wYG3g8x$&{5+E}7@(xoDK+5q9s*+AagyU6=DB$&kS-{R zAb%)ftnwilNuT7S>-tic3MZTlWO+uj?!!GZ6fvQpuKi@wX+Du22kN4_^%+2>dtB0+ ztCTUpOskIK^4Bn+P^I0o`O@S}AIS`dIHsKqWP-yfo3XFcIRG}z>g{oT;Z9k6`+Q(y zC`tL!YlKh7YL;{hF9a|tGx@QR)9K*mivW!)_5ah^uG7Up#+5te4x~-gXT{bKQ_g`3 zSSoH`QI|lbDHNts=XGwuRDmF3+=WKUze>>B+>9Pl?PJ>7P99JsT%K{gQ168xo#r*5 zR-yVV9~rnv>9F%UkE3q20IHFF{b6BcTi`Kw5Qp^Flvs*tQPD##MDBz<6vY%Ci*@E6zrbz4RJI!k)@}iJwos z2iPg_-pk-o05(!#8@Jb_ij7$K(Yiq1YapJ}^Q?5ajIfo1Qu5f7RF1WO)wSza4V$pg zc)TdaLt6iO6((I<2JBDJL5dovhf9?(S&yoI1wAr^i5 zgwFK}hQqFX5j&6<{)6Gr;HHGfZnJ#qveJGMLF1OCT1u8R(zQwYcgHFGPrY>}Nom-) z#(2x=#hR%A)>0{2>a{!l{|pB-`SN=j0ll&(zbRm??cO(n=N9(@8PB1wZ6GtIgN1Yb zp)zm=lqzgmsx)X~!d9wJ8vdh5CN*s}BIfYR|%pT06Cb&o?C4{CM9qI>lm5UWDCr)iK!6bt35{z&CdL0hRg zJfsWqj{;Vbe;ZLwe+JOx6IyYk$6O$706txM_B_JoBH&*XVd2I|F-!kJM*X_T%IAC@ zjBffii0u8m{hKXH@+~!6gQkP`~{PIi0uqyNEJeG8_RgqB1 zb<@^!k&oeQl7XE28i-Y;G>^iy!5Wa_1+j8i*y^Q(Dk=LA%qoe~4MwxROMEhXWiwn- z9=g;=;ge)oFHiXBKT%vaJ^B+6Yc#BPT;b5HM}O+0MN(0N$fZthAEUG4ZEfDmj$f)}}eQ-YlID|1(`C5-m)#h$-3XvuH^;b5*odj1Gx zO`eOZBXkc4?wT;iQK-6L43AC)&^u^4mV$~_ZbDqMb7*gI_&0sVZ~R;@4E@e#KSoTGsEt`djR_rBUH!D0LFVP%eig+U(kp^jgnIF zkB^;GOO9+-pmY@FkBiv7^lRGL@u8=!FKVA0*{?XYw1?m*!XNe{nKNo!M1m-KDwmaRd;&Z=+AsJuTC zFk^!^%~+r8;p4D~;$8+zt;HR|{*S7&4zRPh+BlFxaqU493M5zvkd238En3_up547S zyPH+^?k3sbS{#B?tdy4E?!lb^!GpWIgy8c1o_XFom+!AT=ehHaoH=7>&YW?=<(|fP zMkK}J>mODk=wh)YW89p)GJt!NJZ9^J6+2sjg%mf&cY~m4FVq2}SpD?G z>1zNXAQhze>mh`*GypueHUN2Z(6YojwNK^78-|S%l>2g_X6!!{(CeR)-o@29Mkx*w znoZT%74Z7Gw#%mrcY#=DVV+Woesw@*WHOIJ={^iZ4Kp^j9G?H=N|>xLCkvtcj3#l` z2*TzZXX5e6s7#J$#64&Xr1Ro*ii1+Nr(=O!1C*M{K{yJ-^#IKU22;2&VSNBM8h6^e zW7!RJgt82sV#Z%HkZzB}Mwq+8iXcO5M=-UPK`}Jk!o(bmJD) zzlV;Av$rw9+HSL!}0LWU-`Qpyq zAlzETI$EVW{~w?(P#oM0#2>)MAvG+a@&cjwdJpx>)R^6ulUUVV(>6uknz0Q6a zGaB(VmpnJeXK1FBJNR1azL#4JSQ%|{DTvv|JtCa4iFReIm}GZ$IS>VFr3Bk4 zOlryf+zMAfxB}eFjo~6)y2dt~B*iXQIx_1Ho_-VIe~~t(*Y>LbBpgY(bYVd;2DbOc zMOX7*AsOY#8iB7DVtLduFFoYPxBb4I(T9ip?hcx&`qPTpFT9xP)?S_y;YYods+zjOUj*Zq^A)F;U{@CX> zNJ#=OIp0n&PsPl7JaMnl0rr;rQ4FP zfw-ovY_ipH`2O3%ZVgK zL$cS|QlN7h-;3eg)n7rogsr&V5=#ev4J0k#gcn~DeQ&fMq%zV$vz$fMY_j<^9-uy#QlYGtk@6Q<5Oh8urCIf}I~Dh{MxM=t?Dp`^%}e<{MQSur81PsP%pRT;2F{BeSoTX0DR zqW`afz>k&wsrVa`FKyFcMVWa`^HV&MUq#^9nHo3E5$ z)XLCqC!QwLiQEB$atzeWt+Csx&@Lzn7;f9+!9x(4bA3E!Dr`QcC$M}W(Hg3>wFS656;?3YiY%lBEmZ8d6*NLA zKmFa?5-y~=4Fy3@EVCVmQ{(D5vhw3D0PdB#E{Gw7+W6_+ax`6vY>oT&04SutMeknV z&|z;NCr(nj)^X&1AVsCM+L|renN?5{lwzrIIYNauM50S{p~EViQfQ@fNIh`Tq8!n} zPt2(sGS*d(mn@k)eAft8tsd$FE>n~<($X=Zm+uBQWrVpxj$2 z_1mNzL*A2E2wXTBq$3a4fK@qJ)s3{F`w4OZE(J~;r`rR4&5OFQ?CZa*+X8t65o zZgmh46-+lxPd^yKZIDg|;&K6Q@bL^%#TIM$A)xdIG$8vb=u8TUh_?>|a9Vr3v-%;eVluE+m^T#t6y4 zwwL73xcICQX_09l9$a`}f-RK>yR`&5L)PNyiOC%WQ3)9nj=YR8lEmGTrr1D)xzFW= zI7ei`S@aK=LzzV=U53SDqDh6NdAy@AvW4HtH?J@(H<6>SBJ7&!`VK|B;c5`G#6GU* z9fPj}%LxyUmv4l2DTXnMuXhuqtP;8Rok=q@{y=crgov_(OFJL=^kj3Hxo%u)%&^M})4ZVHw>K**+w7LF??s?ri zYXC;>nC0IE@VmxjL31yNi|9A~@SlAjP%$3ZGaGh0_h+nL_u=Fs^F?9iOu9C<>jOC{ zRzR?zFMfPDLmj?~-Pv$H|&a*)mUgt<&i&3O3~jR0vG9<47zm_Nx#B(8c1K)h#`eOzI)2K`uxCEA%U zgE)PLZRw^;G3He;w@UTyK_!k7=ybbyPO3Ae)c|%SH1cAv5knF{DoWMa-0r z`V5N7Vq*7F5p3#>{l5Tp*4$n1X-?O!&JbA58vB^Vzk+tlOVyl)5(;pPU`K0Cic4dWfcYUC9`WOy6@iM?qMod0KLYxd zP!|^8Vx957m2xZ}J10HbS}TKA%c*0G?FE=4N$=hfE3E=TEt|VzO9hJ-q6u}mu@d_W z^cQV?EHrqRdmxC*nBGldx>;;cj?~qOlQ6tptO`;cNtg@Osa9Pr$6|igOK-cbnGsH# zRj_A+M=Crs@yEqq)- zew=> z+X0xue8Jt!dTid^{%9U$TE57SHck`%)_-WjAgoFxQkty3R!w z-WkL-9Xm9x+9gvRz448xqQ}uEQK;kbdbf;e{hF9@r!X_aZwP2)I$-x4k=iD|5wY%G zU@juAbep1Ev@4R%2HdHC6pC=s4`Z&q37bFid4^5BfU3yQPswTieH|Zxk8j2imdMG` z)XEJIh1AMmX#>$nDiwWGLE^Cl?28K;b36uqv@GMH%@fWPuATrzad=xXerhFbdBmqj z{H?wCtCM$S6gF!ydXuTze>!Ujml7C2pA_N(;S~lSbzPaBz)~#k*&n(P5{*N}s(054 za4|eF^LJJ{@#P%n_JF!9vg=%GBBUFOONBbrY>c-jffZvDBW80PI0b-eCzap32jqX# z(mBQ+1mJpet8NcbRne45@lS{NV@_>2$2=SYUbak$-xMsm2R=MDT zYH{D0&@P6Z|5W0LvwEXl#8kl$$*{TW^mmrh&j?t@mQTOY`5!Ni3S4%RpRgy6N!P=yGVv zAm`-mSLE0g-Rr^*`l^h``#)uVNJ!BE&_JmJta>$&<%9dR)m`&Qh$tARQFRm1u7cFv+z0;q^*IL5PqxLF8=+~A5o2Prn+TdsJfX^cjvWNJJUr@+ zlvQH=n}N(~E~&5=r_ui|+X1LAYN$A5dXA6KB)%Pe2auCwDC~>ZL_10L>1iCB_f8;}o1Ry0 zl0(wR?*=1PDIoW_m$3P)(UX%&HOOc8ffiGN&bQMsfBpS{MJsV4sy@*t$dwk4r#=Ab z@?cff7Slx+OyHP7wU2lX z)E$s9beCCBh2ar}Pph|d=yBLmJLVN@Ws(7~_PzCdQs zyS)bBv}r_aS5VKTn9ID*AFc*^fx37|wDazM%-0qu4I- zES@mO*JG9|z6I&@xjfh!i@uXTLCvfkL@C~`VT}K+JVd}dQ}5<@seyDn(k;v~P#kc? zY3~EUV^*JW=Ldw%&91H(_8}BK9k192e@w7i#}T7q=%>&wBDV~p>odn3IwI~;u&696 z_tq~UNnLhgzkW$LCxS`KSJ1AzY=IcPD$(@~nA$)m825Y&K>@h&xc+wp-TGSY*Q38c zdpU{vFaVmxJ4Ko zWxaL4`~-`#ac^J4!BjyWy%;gtYy|PZLV(5Cs>?fU2LYV7yo$!*HJTcXijPFQsn8H5 zeG9`%+ftx3O`4>7m(EF`^+1ch3^Y>0dp&XUviUz=;+Yg@F9&Ub;#eWR5a}}3%hO9T zmbjdA%vg60P<3%GFJ9^VOa z))TmoK5KPIbzEh!{~8cQSLux>)`D`Yp%h1XPnOFLb#xR%!();N@^4^NTda;S`A_MK zUq%otn9G55U&KiN#|7${3YyRGbxbTi2HG{J1E5;bp!=;rm%6(w1q_?qO@Lf^U6w+K zcit4ls~4W&Nq)4`^Flugrw%PsRNmp6J&q9OR+9sjV?=r#Ep?Pm1EiY2QLuAkHcA8eTeT16UiI3Y zbK3a3@*MZ?-N1?hsW&h2kDQ8xl~FA26Xd$VMph_tn7{cRfMyXVY7AiU=3XE!R!c`S z&h3~^m}@WD8`w3(j-DFsun&NHQ}J9L+nLyMUr$`!$vcTda|&6lHwMngA2 zXM)XMa<~153Q#dr>Jdnt^{v+fmPV4cn5wWdYwD%_V%v!TZUv4fBr9z~d=udR4evCB z{xMS~X~szdw~1Yjg2wo0D>;A#vkQ%o*<`)S1}odqbB&_ zkQ~p(Y~}dhp+K4Q>=ds!0-)G@P!vz*2BC*+iy(99n% z5^mrjaKOm~i)NRf!I)>N|EqMxISM+R_7*H~@I7@Z2yMvw8*#P5F0I~YZaB?aMqUV1@Iv<#Dsib0 z>M(pPXHq$SBi&VpFWX)QWY)HIvOQh*@=Rj~Scw+V&LSPm(wzrf0pvn!UKkR$2yh1& zv0jY1GJnC|8G9%!%&r1*ChQUG;tkOhi3QrLR}*x*B!zcca}2u%&{Dw@wcZpid2LQZ z%bfT^v}}*FIp!jzY{1=?d_OaCBQz!~h*o_J%*nHpVSDyCw7UqNS)%I+NOO&)D%X_d ztKma|P7Ojq1U^zXu}Ba>c@3qc&|AXESgpOw7lg^U zp&@Qouo&g^4l3Mzt@xKq!tW{Q7LvNhR^A)U&R{yf!p~AEzMTVT_UKfsK0f#!fc!dX zmZN{jU(lv)C0*{1w*{L2*k_mHkH12@B+2}aMECg(sAx`Dvf$jSS4)%a?xItmImd2A zkM=$+#N%Tzut=`@%>(M>QFoPEQ1oshsOW6Ixy<71+kSxNX*vqjw@>{6%tb|&-xdqa zpJ`SWt#Qu+nbvDQvDbpo7RuI1vCKkHMJqLPpI9jlUKkAS=vAwxMF`Ux!|USo#R+<_ zDO`W29oKDw)pqoU#}pQSPU##qrirGs zTywc<06}L`nple2BB_&>F`KMJ*vYfxW`)szWdIjEc_`JIf1y=!q#iV~tucEbK<l;U8jWFHQ=BQ+U zIj&@DzKtc<1!90o)mnEbgfl`}8>iPnx;?NYX=>(TJ_Rnt^}?MreH)usr1#3<`BRZ! zi8Kd%(=HYq1p>=3eWyd5Evn#9588H|{EP)r)3J(LY(2sf-qG2rG-zJ2*wP1WSbekNTIj}WG zYzOVcW`2)| zo^d%glU%yawOT!p8In#P+Tx5x5Z6LtD1|X?Ij9Wk`l1`-7BdUx+iMu(uBwX@%keo2 zW?($1Vu&orSy+7#Khz?@hGZ2utBFW(Ni)gm%??kYHe*@|n?pQ%#85lA&3|(K9$T~% zcKvkx5ly0t)|KHc?>csZ!iae3{`oUp-F3wM-Ov&N)-hizT+ABse#=^F@g5*a z*YFsrVCs>KS))W0xp4rDfb1-!D*qkPERuBF*%>|9>n~wSN7PM(D9Wv;(0&kI3|S*$ zU~?cScp z?2f4KnA+-G+e zyNE2hB@^tk=~x97k8ic9Pir*h*L83Hh#S?ifmr)Ke>7@r zyr!UeElUBN(4TxiklU!Etb>0T*70DDhJ|R-?A}p>CUwgfeJS>Qh*+)!izX6Nzq?qV zMAVLBbZ#mE3Z*!!7SFFwX$-sRcVMAoXNYY>wj1oK>{8Vdwn@=t5OJXi|mpTx(QQvy}-=2m9yD4NPh> z03I|CVG2pttXHrY?Jy;X2SgW5H<=A>GKX074}j*ypt|^EUMNyhb>}GTewlh|{3w92 zk;Nb0YUYD*V%bwg93#*TkRBQ3IADRC2fpSwHPJ0g$KuIvg84(LEk^l8o*yVo*aCC*wU;)k(U0`e=5*D>gWFJq^ zwcuh2hRwP~5laEO785WyVsW?EpFmt9ox=@@dzJ<;*GQ#dStz)stM22L%TalEjG^LY z0ZvWt%poSHEe~Qb(IXa;)A?7(kz|O%HRnf#c<@gSdwqOfiG^1LcTsc_!`=EC(12C} zH@*VQQl1~>fCCBX`7;>hW!cT*=KGbPT!3U7&3N(5%0LApbPS(tz|USK$Ezf#oy~E} zKp=R>q0{z*9OUTwc?B(L6Lk9jrfAohi+H{8v~4vISj56LUQ^h4p?;r)Y8Mu7ygHyu zjeSU3Va0F4%w-NdHe3UWMrT@UjRQou3OHirc5x-{734y20@55Wi>9c(_0cgT$CkqZ zO@KEFA~ktvjyWQ#a!a@1^7K0Xc+7~Hrl9}CnhDeHctS`apggnM5nHbd;Ks`8F*WPW z!d*&@)av=42(m0PAH>+9kWO5@V7z}oh!bbvMEa)<18}`Ktm=uIMVnJxz?B6EJG)vO z{0z0m=n=&6@S)>vjZQSelB04;aD3tGzoNx z)5#l70mt}@Qg=*JP;!>$y1`?iimG($Tzaek^CS5RrZbe+19I)SmDLod`~@08;a!Z_ zW&QjgT8g@OPz{#w;pK>9VVQSYaQCrn_`$9!U*e+M0ig z0gqcrZ6e_iO~PpSswfw=t&?7`#kSC9ZiPog=*{m5p*eUIWSQ;qpR5PvYH@iXPP?0T z@7JkCz@J2gwa^YbEP{jJ#s0&hqg-Ilh~<6i1B%GE>tog8f;X*8m2;aJ?3vDr^R$vSD)irV+pfLu@pq zsqN(o0rI#=i9hJ5x~>zyl%0gM89O&QjGb;gFoCeMOP6}p`JNSK-s;fo6EID;T62B2_cIiPjp+{WxwW{B_>WAo^rU%$7@jGK|VSUA(r{ao>5(8*~3B1G2X|n#2KQg{g|2%)Zh~cI?1}RC`B7i%-;^nanvhb=do~C~!F2CF z1s&hUB%JFCq8-|q5Pv%-e~ax4*6wk~xgd0u^uS)+d>)i*g8nGBKOYj7u{InT%Uu9L zI(h~9fqxS=Gf;c9#?=>Rx}nU-_~U<}U0dI3962pV!0e?GGcPx-rL%0vUbzCAoYGu( z+*J^+gzs?iR^c^3mNCZOG*iop`}J#qs}h3IeI-u34#YXr1q9p(K+5!o=D6x+2-i~_^$2}o2XM(98Rc=# zHg3*I%HOyX)YU8Xb+E(ii_PxIkS_Ua$ZZ$osxdXlCT0D5b0j^1qDaf$mm}dVLweo$ z9|W;jRi6;RqV%EsC2Okm5Xwc5<}aI>s7Y(=3=r3JLNAW4_Ymy@a0;zm-vvU4B+_{WL1UbtF>_6j+C-dhx_hztP z`lyqkOrAq82z}1z5 zusB_`Mo1R&OTR$a0+bXFcJ&pbyt(YmJ{Z-?`N5nY_g15;KYIZ>|V3gycH~7a@(jb25n~<)<#7>>FUGp{oOkma2 z#`!aHv(7spWY^UkYrdCb;{<}D9Pt4_ZJy%ZRcGw@p;N%`4DX{Ug_ni64wONU6USGA zNOV$5jQlvK;oGt_(e|H!xmXq4FZRTMPXWx@x zX}_Gz1Vr!(k;OWL8`muRsqZR(05k`1*e2oLPe|2jofCS72ZbiuL~Eg5dw?VR8F{`Cl2R=yJuNMS)x(ahD=C2=NHO zu3QIuNqh$`R{OR%KD=0v8I=|^tVKD59=#MO@}M^;7#SX2I)CTa>DVDG=NR&+gdNRC z%R{=sxwDGp%L@7LIxJ=z20&7NX2a1d=6{B9zjJSq{4;WRoT8waB|poZ@y1F3Rlm`^ z6U1S0gCC`SZDsy(cAV=r$2+3^DYux=Vb!eyP)u*d92Hv&BP(1ZEjNf@A+j8D>SST? zYWa&wSr@;NhP8wtkaY;;)HU+|v|L}3r{xBNx!cH;{xFd)Rg?V9KPlSn!T>Kr?PJ!; zF&gDf;kO~sMU`>2fyKZ&If5?c$B=cQ3xnC@09IxjX@B^!{&C`Z7M^dpSgOdSDYK4{+40CmEs3?ZPr`%@oZjs~(cY0N5|7R2piYss-Q zVvX^$5IBt4#wC9t=$^yYP#0wIg168H`3ss;KJQi*;%FF@^G1>;(u)MTRGO}({%GG2 z$gJh1z1G<3Z<%h8)yf|>`Q0b7IWNchg8WH3I{H?$877CNH2I;M<&WACbeXKYEr=H9 zOf@#yf-toiJ1Tk=EV7q}`01jZ7GsM(T<-5V29NiZ;gqGKlk-xL=q*U~<< zxP`tQ7HqmNkSoKrQf79}J>mv|{*c#DQ8w&74!}AuyD}`C5)ZG>Uo+}4i%1y93#2(< zakMB*jWIjfrGcO;Ak_;Oa_5vlJc>h2Ekn6*tS`C7(h-Bl1GzmalUjPPOh`TW5Wy}p zx_IAUi&4#hE^|ZT=l2r;%*6Ecl8W|^Rxm^Y+vN1<`sJei5t7Ub=>2v8H`wr@L*j%E zNSC>Z{)+7H-UZ^k8Mc#rRN`%c)Dm}YPxcUWigLn+{qH0IxWRqp*tiI5RC!!sSDuHj zm!AUVd|8Lb8wWya`J-X+ClQ4-a3vAL5Il$+3??2k#a^qh|EK-1RHh#-b|{#c$ucrM z0rl4-fLs?wN}fcBTaR=iGVnO{pM(n;M^(S%asG=fMr^FG|KemQP88{+Thg<_xFbFu z$d%?kC)%<}Cjz)gJST2l^_xH;HsoGTbV~4+5xZBQK|a zb_!uv0dZqn9+#d9BF=Zlk*7JL?n4bei?F*sh6r6J zxwLa1?iE%H2e>A=6^at^ zJVNYyTmHPUk1H(kvH;gXTQ&M2jkd;gK$i;3k`~khlZCic+%<$5OWy@Rze2?_Caw|T zHlxvb-lIm>jjiMVyZK*zj1}Jt_Yij3FgsZHUMOd;9>+d|?5`A9496NqlU_5v5o*q% z7l?K4&*`w^eDnb*mmnPk&VCfSnl47g>0;x9GXOpI7DoV9xNr0rIK^wh(dRn~BW}D% zwA$kYUB%HcQ-l*_R_bKvU~KqBpxam0cxYbZgqc8v)Nq>xm#k0b4~tCMT750hvBuZS zvDK8P0L+!1mN@tsC|9)${r}&eg`|A-lyAdXgqn!&MA2qlS4;fxAyjp-#uk~uj(tlU{1LF5ucAxLNz8v1XgSltLoa(o zHnJ;zlB2SDYwMFrHU@kK=z3Y_S&4yy%u`-@X8n7U02tGS4a%1UDHDzH`+GUOWK6of7OAa_Sls-RzaKd|W+-S*GJ?}u7ySYN zE3~ql@oP>DSLQ4?)tnpu21p4hU`zaIp21aSReF=P%nTte0P9L!-lijN-4Du3@sFROudA9LzlD+#r4y z>Bbx{BUxNtE&*a`((813C}LMZmST?H`!5Ama5Oz3v6t7UwUvvFNU*EJch}o+>X}Zz8$|_(qlQvgzmx(us^#Wlf-dzj8RUXE&^{{mzsq&QGXdOz>S*ImeTih(fA2TvC_&;0+;K7H3F3i`F z2V80`KLXfk_MnJ7Z)E8p3ZQUB3(Zjb)X=8s}_Np z#AWLffnv2b$Cev8$a~AgaaH_ZYt= zVM*1P7`hcf_gi+P9g{e`EXOo~#6^!BqqcUqwR2(&-JY;>sbeoWYX?Z`j<4wEn7AWE zktGTa^|?Vi0Xc1%w#tkmt)xpg-Xmwg!ep>y_tbZYpu(iL@f(83(08CA(a zdqKKTEMKcxKD&30BoD7E?~^0Rr59aFy8Jo&f|?l>+5RC2kL?F!iA#NRk#W$p0n&MT zeU6P13d_uLd??7}$BQVh97cB|h?&8DVZ{3f4`Fpiq99N@J`Zve!6KenCXFGFUCQcVpL}F8cmL=|- z1Oy+)4vU#ZuoLfnlR-T!uq{G`#05{<<%lW36p}4m8n<2-T};LZK}DB}OEKes{IL$G z<@-iQz;_=4T=X%HNVhl)k_yU0-hm3cT#RXQa}@&)2XdWZs2-K+65>cr_1GXYQ5+)3 zOk?KfG_e*19RvHDN}O;cQPfw5#ViGtBlpr?RM_%c-9*IC!dyT!!m;AfkWL(@BHX(= zHh)qzA&bev9H*p*f_@e4GO~0|OT*?9fZWp3Voi>Jo|pliu)|N$uEludR87gDi#~Ou;d&m6GaoKqtqVFl_>sJR^UG4O2WX5@wg1V}-K_S~Tq0 zGo5H%cs3}#h&|ZQ_(4QbA5M34zvUM}6i)`%)6Q|2#b?~Cu!Y=J;#ezi*~)amplFH{BNa`MeNttK*QV~S>`Qs9Yof+aN5k9&=hsZ z^}y~{Qm28OTtnz*=+xptA(A-kMp5%h+jBE2$oD#fceg1F4s zOZCO-H$xYzEG=tg&QveVanSql%86(vEc<)C2Xx3SK(qkHHnI7wge^-r43X@WI82@@ z)CucIOouUXzA(PRTs%fhCv0Z7qlP&74oIwm2gO=<7Lm{rd{Tt#@t3geUEr=u(o1y2 zmqJ`F3=h#<_QgN$0kXJMy)af{dJXJsz`qcNIxNNo`r~rPgyekUg?oW47hN@%g_T(0 zK5*yEk#IfL|KULpR}NM)fWo!49|BY5m|S0fgfMNS-35LWW|)$us4qSeMT=pQa{prl zU0T_S@Z=tyX_LnRi`-ZTkn(&_l|7%0lv zv!C%4R8{Qt-Z!b4JMdlH6n}mL(iP>_h@U!|_Ga<<@EG+D z!KyeRO^o%O@BR+bQl%2lz6a#`vPbWWYd?f`eJlIN>!Oknw8y<45q8~WoVwn}ko5nw zk@@0N2p5GN1!i<~?7O~l1hhdNJX{0e!qD8ESRutfW&@Ek`e7Xp#ZjUiWfJBklAVjb z0kS}8{J;|d*GOXypjnFN4~DYqzXfpS4LtJLtV{Dx2y&5H)TQK!~t01*aPg)%F69hc6$J!r6S-^Q0j*Aa5>t~Rn(a}Zp z#oINYaf;q(xae166kNxeD|Vb~txQYF*(%z_$GkLc&wB+q8$Dh?q|byn8!pyR{%>nQ zQpLwoa}$FKjAdgu4?!~tgBAKFEzr{sOhY)&y~nYC$Pw_-i**3P`1pKaE@rtMo6cFH zb5+x|(Ld&|FgW3YD5{uVVTFn*JzmTa3^VNE^8;J5+8Ux~0VpS(cI3~CM$+VKV$6d1 zKO8gQi(WMUv8s$`79w0spd3Fie4|jfcriei3p-_L>sMSnCxHf`Csq|rRapv*jL{-I z8c6NTE7KCTmL))|^35Z)OF}v$od7EuPpt_w7pt#i#P&;NOnwOZl-9<70&{kw;x`d) z%r3?NvFNh^a?@dCNzWX#G=OV>F^djAeil+lFl$oX>YryBAexhT@{ncozg^m@A!NHP z59G4R%Pl+oO8l|Ezvyj<%@uSGr7{`_Znq5paUqi9fOuYjv#ctBeq1p_n1iOpUj89?vQm%}<{FReFyC7>N0NgVuF1!Q)pBad$*lJj9YW0m zty;=)VGU?+;lsE_fb%OnxW+fD13ABRD9G978X#0&zIkH#H6dIpEVtqzk)sp z84Tct(&<52mW;dn4rA?=-tX8~7>VjpRU8fERAjX|goj=MT!{3(PhWg2#QZ{G)GO^b zBk!F1_Ab8&^n40~(vA1D5g0lQ+zc3x24CX+>u?}fiLEw0 zbb}E9nzcs9Ulnw841TeEV#PWNsNk1u<9Q5Qh*>1pD7%k_ba~RzfegmuLV+$ghSsc9 z&_3-n1`L)oqkoGbf5{Q5PTynE^}#%>Fl^$+dV@@J(lRzattdP^b5Xl5$@GA~1CgtiVC!v7xL}yChazbE3Up4G0gu7z zKc}IV*Hk%EkfU%6#G8xTLDO!${MfmDj*UiGSEl0Goq;@J<6d~#U7%bwR8$&Ne-`4p zbBf3lPLM7XD|_s5wBUbEpug&F?(1o8k5hLCsS1c*59^6D1W`5ZPd`)GAC$Ce?uUUFO$ZGHHWkSDJfIpUUjHHho2U65w1osE>2N+Yqfa~h>2kmTR zdb?sogFi^-PVt2(GQ{3bwioj?Lb{6SkyiE#yjn0G&=u0zpE}6ff{@cTY3q+`f~fX) zZi;CQd~pkyi#5JI)}N45V9AP3sxLMdWScRj)n1vjVuMT4v-Jnu7&{`yw&u_Lzz+7$ zZ5b-sAm$h3>^VJ<_eTuU+riAoMs~PUJ0S}Nj1GxuO-&F#2__boo22xaxPSf#v5j{{ zR>h46Bo^w1c4IVRkJ%j8R{$t!OGDK45X`b86SOHp9Gi1jGW%{KfJd+7UQGToD)H!~ zjFveFW2lti{bzDc4u|Tx|JSb%#FZohs~0%6j<8(7(Q)IHOk>~C84rs#6WGtifP*rr zXH#z%=^|@RVLF`d$(}FRO*yfGi3C)^?OyIyC%dOZ!HNNdf-!O(4xj;q z)0syUb}2b=D#t-b_&+h}vLgvQG3}K(nCF`IQDEj1^AV1hlQR1lp)T!shB8*boBb2S zrKLq>c9~WLj|nDg42EOqF%HW``|}Dr+2lHe8JCgn!DB&PINb@2=R{j7(W$fV6$i9! z*z-94a37Ed0kMCP@-MVMt814{9u z0QWrE*!Y;M-$^+M)R-ew%-5O0*h2DTe%9N;6*(h9BF!85Ur+}@WHDc zX1I=(t|9E4@pxE{o34j;9d!3fIzb_P$xbm^Zy@Z1>roFhQId}YxtVY;g-)8x7QG3~ ziE{O-GaeP~&$#d@Rc3rF$Q3}#%38a8O9n8A#ZmPLLaTrITrcrbs;Xd*MyJs!%Ravp(s2*NjICYXy*-`yB< zKM7eBK`xeQsj?t=AZIJ{JeB`uNh}W!u}KZW{S%XKC5{(Vj8S?=i>;5W^}wu;nwV~+j>h`>nEVX1D?$gt!cI%w)t&`(jd3CGwG<@MHU-^{TJ+s{f=-T`x-a$RicIpy8_>BN?9Jydwodmt_<+uqK2?0smu zeP3@heL&EK;aCaQpC!NbAYj1}yiGEy*#N7+|t@-}<2sR(hQTd3^G*qSS zum~DLJHR(SA?!kzuyWJIm`beqIbcn7R=5=Gj_tnihn(od%&!Pj4c4gIzQxO;J^0`N zezUI~vyGAQN`+ksooj0{sUhR_mU?&05mFsViknVYTYZzioY1R>U8Apt=rjVk8$E|O zW+&$6yf!M@a>(v4juz=QuU=+}Pldq@8GyyeZ}a!;0EWhPh@Ba?U`8A>T{-s8iSgo$`y;Ijnq4MwZ1GJ0N+1gf*-i}wYe*)8(#2Vu7KNGgZ zCr^%i)rD2gNxuRkBV&fgPYSxen1+mx<$r^A1M*aY%r!7hXcg#eD!u7#FK$rJJ*0|h zZQ81(^C`kCP3(&&%CGl`d2%$rltJs9_XjZNq0J_)ieUT-^X7flXCnC7b8TRy$@=gKbc3{xy zD6#aCj%u>tqPJjk;cF2`3UsAeWen#@XlSxymB1{$3 z2~1)&Nnc<1&mb<8o?C2)vH(ilK>M9m`;#*XP6Bpcg+I++Y-Oy$Uv^*(!|?+{a$9UT z2+XzdZ9Cp26I93~!$P`9caSjGkdtHP?AU%)5SZ85DlP455QsfX;=0xI*K!`gP=!W9 zn2TOwq{eV!4FHQ9CS6QRRIwE22z4~tl9^`FH33{WJQ*cnK2VTHydrrY0X7fLQ5jv* zJ&8kp2lbTMhTt8(2I=HSnI5nfA6A88*qB&)2z0Kg4tc2 z;)xN^5?P&3o;ec2MV0Xel_`$`anmIok^0O`Va^060HoP78o*pl>Sj`!EvTrp9{Q=o z(PKbdEAFd}8e5|}a_fx)wt^}OSZ23Oz0VR^5&X^m|~Q_fL!(O&xt!Qt7TZTYL{PWDn)i50iYpO^G(+QXs? zMr+LyF9>jJ59dv(8RH+q%83?kBI9F0MZd2OnLq9hX7=Jy zsByLJx&1Px7Y}tJ7Pks>dX)~D$d%%)`W&sqsE~}*{?q_wj!a5s z^y>+5IU6Wwtk4KeXJ)+tyF~a;870OYC1^P&ciyp&`^E6XVKM2f8qHc@-9-5=baYDBq5PkZH zjNvz@y-Qk)`;W|@F(}7%M?ty*+5>uy`$V97FrGALi^}7fj+G8P8pN%x^Z1x9n)rV2 z?PpQuymYlZFnTP2`H>!YMvON;}R_s0_mn-91}il0w}EHa~PdNiy5NkC2rKiT`ofK#AdK$aq!IR%*ONR{3rO?tWk zr{<)1O&WK+eX-hU8N%v3Z8yfA4&=5$XOPaeVq0P6YN=kn<26}y3v@2kX9Q%Lccx&M zMpr+EMBf?tJNggg4| zB>t=OoeUe-So1={mMD&$j}S#m)=!C36r}Z#a$RkBOQh>0ab$V$pA0l4oxuzNZf^Ny z-0XjlE`3)or<$Fy@+BZHF^ju~I9)VZV*o~%xKfleKtYa_EjA56-A|k14@6XJJ8VSE zb(R0bysRhU8VJ}TN7koa>py6*5pjhGFETNx$MhRxKi&hq&e2(K#j-az+{CBfDQwx` zecH4`Yl;PL1f&$n0DF!ISCLEqSR+BYimdZGI8<&FVqw6rg*`4WpWg~Z;X29fV}+fA z9VuxD`O|d3B2m_w!$dk!y&ggjyzUOC(2YxyrxmW&D0%3UwxoP#M%%GTz~)j;4Vr~I zB~~z+7C#W8valE1^De>`3@-nnc!%Ye+zsaPRd{vMy7!arseuSQ<{U`=}Rp=0xh{YR(#D{Uo$ zB$z+qkVgo+c&v6i5MO4=+XND!2g|MAM+v*eXjf!-+J6R!bMrOwIm zjxhHDF6H-s9Et>yQ5<~`u8JLZY)_a8?c{jep5^*00-T&*RwU0~g%zc+l4kBFYe*^i z@Lf%a6Jqbjz1#-{(DN9|o>$O9)Z5CrE5k$or-3XZn5D#YkG<5po zr@Rg3GH`#8Lx5>DKucyj;BZjM#J=?G z{1GdM&!uQzX7;$>}ocx4z8bT?dn%0#^k@w4VeoxGQJk=Z14)MYk$Yj146p# z5KiOibODrVB4f%u3cCzaeScH@HHqPLpML!1>^av;n=T4<$h@Ggu)NAi@-LkasLJhj zF6qAd#|%``-L;_$0Jumv}oI83Bt}57c*1X-;?V^f!5k^Pan;TOvMnOQ)-b}f=(>UI4}k+ zMP%oOp`f&t#|Uv5F`{UWpKCM*5~Jej;D5IgiO0mHA?ZQM_~x@^@_$^%i^Z4CNhSAz zYl=2Ma0J6?-Jg~N`2Wj63B|t4=XjGiXQT`@07v#*51)GlVwiC}^o0L)nxsKk(S13j zQC(&Uf>$_ikEQ$n{%?HD^u_*yTvbkInq#RIp$o-_UTS{$@yv?~=~f8Cs}?u9hQdjg6vi6?W0Lb;;yPMA)9liR)l zb^PI)G4QYkY2w?>1QspM;M63tdJe*oGWI&jqV$Mi;7CI1Wd{z2aEDFqO*&A^R^p|R zpe}l;6V>D?qo5g{rc8;AMiW#gWIctU{d!OqOIE;oNNsZ==2Szn${F<+0Q0+^M`rax z*m@i0IFn!mM%SCyTY{M{ z%+rX3EEMkC3J~eidDV{F5Uw`L(6MoZXiK)vf;t&>wGDf0TYsYS!v5P6c8!v!wb)L8 zD~)|UMzc{C;#4Pe(hm+6U2qj`RmHZn7wrh@yozJPG&n!B6R?|Y0&BfpcZQ^SSV!Ps zeOCxqn{)SM`cStUkgJ$RXHM$cV!_=3T}Cb)Gq{WrP>fETnz5z3bFcgzL$mf=@N43} zfV3v2o4TpBACya?rQYaqkWN&$jJaYgz{1Ij3><|;DJcc9E_k;92M z>w#Sw6iw;%mB#!rDtBg1+WbEyFr=&(6Voz5n9!uxo7NZ);d0bt;9ic;1<;^c()DX1 zY!0!rOpcqI1vxia7r~y#gz$kB0-r1Fwqk6@b9FPcE5*g8w?q|uqf?RlYAqnnU?StR zjxF{R#3y)K#HeykEkX~MWaNV3z)m8#jief3%44*=QlOKjDQT1VM^{cdZ9|!Pnrjed z;=DY-gBklfH@r=8h2}F+FbUVHvlSE@&@5cvO}Hx8!$!rcqMex@SYm$Iu>#`ek`WY} zueNxv2h5zMmoYZ?_GW-r&oEwmUVv-Qs|oU58%s?Ds?PD8O|$-E70@m;w|p9HG>#6K z1Y9lG&=Ju(8QLPoIz3(%2`5Jmk>9g7MY+%np)#tutS=*oY&{nvj-3MH0?DO_M)WrY zxfX1**kBGh0Dx4JsZ|^+%70_dPoj4n2;efYAsrvP9Rv*@wdv@phH=Djioz}qD_?E- zcR3uyveMNU4~z2ucqQuQ$Y=K>K%5m*k~VQi0;q|o>zPO8KXF{cGVH$s%nLeqd@Iu9 zwSA>(bfA&mKH6zu`4s2mzw3x$WAcS%D z$zVmlgcCaQSm=}t>C$;Sda`2$nPGa|9W)K1 zNS;LlSCKCTa9WMJy3!GUy&S|6v_C^<%lKsS-|q@g%O=I>;3lzm#=XL6uKJ0w$(00M zQXFe>K3|R#1UWlqGp=bLcU1;3TxZlc{2G8_4yTKy6NjPK=7d-Za0_sJv|X3K<6MFo z?|D4{wPJb9yJR=yM06d7ajQGpZv>-Y*qFA>-IU{3nq?#dBfb>oHmv9H z;GJ9ZH+WDXj}@i^m@Qg@Hn2*;-SJSNW*^-}@xHtxBT0!@iH+|DDdvK9nZ!#)+9J>& zcAz_CZhi0`5Vsp!|8jgHIyXGax1QMM0U#>PC4|xO!h;YVitxxV?ja~=B0m|(J7e!z z4?Dgb7{wPN%xU{crqahflE3024r>{Xq~cD2mdwJJEkk^pVdsG5yXJM~((@iCZXt>- zl@6Bb{}F;Ha_utaDC{iLjeDIjE&T+TtEHWliusZts?}VE@w?1~a69Ngea9yuNe*ui zar;va>jYtqrwO}FwW#Fkser23!{8auL6fLf$8pm05SCuNa<^2lV@osg9P6Uv(Y zT3-M_YB&`?Q9%;W4l(+_m?KIL-5URU$^UZYk2kYLST-72lCi^6*Lqf{Ymc2;9x_$^m#u4aW?EPSdPhT{-{p@%^G=TL-5Mc?=vuG$1qfh3q%(m zqDSD0AoaNSbHIYrzQHhsS_hO+BbwPQO&9Sn&$wxklH7vb=_&g_@I%4?1jE1>;k6MTolEiTi%d5X-vc zvAp58oC5wx>m%k~r*9(%cohigG#Sb1rSa z_7!G^VHC|?f2sf%yo0L8qoSP+yNME$2?O^5^8&gB*@d*Q8Ial5O7rEkc!iJtHBNvl z%A<7TSBhH%!N&&F({C#5^2nzGIwh|8*3!U96K*E{{6``o7WkOrU1kwZkP(1n~Yp2(=Lku8bt3ed(RImPI^-MEc*T=a?mSip=*nPb zp}Vu&49j1YdOPC;kySa<=?HVydBT(lSDSi=6L#G(tQO(oGdB0cog@4w3%I)YRD|=# z8C64Py2WzHNI-LdshKvsvo*i;=qiWshi&fH!UNq%~}GnO6=;ryh$gRQVZPN}_<17OXZ(>DYwItJ74 z2O^z0LjsO5MLTor^WoI;8|6=!!(*aI7^kJuYYMwuXgSiFt7l^%bI9JJHEo?DkP6q0 z4L-JW6@>>Zg^Qupe$|P6U;+*^-ha)38xBn z;u?_{w{O@7#3iN=;I(syeF0n~+Y?t}h9G~14wMcayN?5Lmc{tm!*#s;At!k0cx{#- z8ccV1XEx-&txLryq6Fl0Tcr-_ju}FVs_MY~fHJg8$G!y#KTLp2SK@d5%*j-_#F6U%%zi2leKI7wYk**X6?a4qaeiY{Xv_I7;`~O;i zT&86B9=o*WIB2oyIi+~5EywAQ`;%yIuK^rX@)o!N3m%=E4QCH+|Aasn5Sjzr&P=oQ z!{NVZmynzBI=sLmoG_;Fa#MVzpyjrL(Hwd?$=Hrvpma~^oML|wPN8~HIM&`D%(BAR z$->ju948Bgi%qD#uj?jUZK>pjet`-IsiIo#i)kXv5(W|WNjvxC_z011R{UWih%+ws z&!yN^Sk(!9ak0REcQIG zfVm0&aS?7}X*>ELaEd-&-b0r?7{WDUbtw_sQHU$Ui9$n5oO%d=woQ%koq`qzPJlRZ zXp73BIr^kBZxhDA!!m#cGesIv1K5J{$zewlqiAMMyW$nmPPLhHdMs6AS|6~^gABF%~?)fm6>1_>sDcINL>o(L^E;*2<_I^ z6(=a@{L)DiJA%G5fr|XFAB#gp`+Mv&G%v4qHV7r)?XNgiVPuB$>{2Xo4g`aGSDLs6 zpKA&W1jdvh=b1vC-N>UKqWDbf$JkwjbHtYb3XB?!WnxEscs~ETR=irt@eWh=xC@;? zNqeV$|Auf8aUG;PBIAV=ZNba;-Eq-HISM18+Wo5kfWU?Qd*dzz-4wnAtDVu#7Xw;c z(2>hOUpltgTQDV0hbw1^aLF;w!foz7@ycEQZlx{oF7q1cIj94Zh2~#cua7nlkG#p3PITibZih3cm z8q;9>bOmAO+tkZyPK$(bSAtpYi!(HFVb!ZZivn|wR=OIp=tKEouS!h32H3^X-QCvM z{8|8Wlup{_SCdCw59pf7>n=m^0ylwZfa1>ZAcb8^?Qj`IVhuq>7ip0Zzcd892y{)+ zEa8&(W@x7>FZY}ipCqKZ!e+im{ea=+JmE!aN$E1HMpNp}SmYM|FItcFI*yJ6R6BiF zj1%cK3x|C@qMTZz_O9pN3T^(?T!_Suw}HA=Ec(#4^~EDK$kugu8NZ!a$YSsK_^*QM zQ0n`0Pls?GEWD|^X!ylqBmQ&;VdvM-k`A=xVdcQPK%E~al-xlm#lP;(P<>ltr#3>% z+>;@O%e0u@{$3!91dc&DRY2W6Lzr2Mk5V0qJ|@HkYSxQR+uoNGLg$p0Kr;nZqhOYH z^8GoH&IXy+#jipvL`WK4o)s5L;h_%!R~g9Bw)JUmKMd+}X%9oM>WSqZ0fR>rydzG2 z6vC}m>Xf_J*2e%~66PZD$Hxg5?BIHa)FO`y^2Q9)=fbI`7MOp0f zv^|~zvalon#d`@WKb_+x4GCEddJc$UYGD}fh^Tfvo#lQffO1QV+Wox491X|66}Bjg z*H^y)DJheU$nh^h6mrkB(HTp=0)U`%X`Zu)heQ{x(?`n?~-z8{1N=JzO1XF=9m5Vi6{8A818H3`8_xz9CXvNy^ zLzvwxCEDY8(JFA4c(CpVQ1AdQ#s&&k$FCOdrsfY3rLNfbLui+<9WS*q9UA!&kh#Hl z!Vq}c#{gouyqqro352^u@=VQBP(qx9oV>{dWV#?HLGhRu=K2(%7&Z(420Ea-{xe{6 zKz6Bkr>ewqpMz0&tm)$a$U5sN%Zuaf<1PtF;ch_|SQmo(;;spBXXcLVD063acXqMG z3GM-c1OfziC%8lK0Kq-M{fCG5^YqiVFXz1H+&{XW+uxRIudb@TKw+mdDXGv-`m_L; zFEaUk^mzf8L+SkMd;tJ|Y4U@P3x;`5i8*Gjoag8ibxPBqyqtKDax)&G+~G|f)fg++s6AkGm@3A&BUni0FIq4=*LwEzl5Uo2Suu2tL8Cg{Ci0WlZHwP{ zJ^we3jnI;rM}*rd`FFvNPe|rH7j^Ki7FYkaU?_)Sb&TcDhCCdheDtvMpu#S)UMB8A z)O)HRug+6D;_FPwB{J6$iMbvaMaQuuJ1rQuJd(G*T0NY>6sRb zE=$m*K(b6nxI=(bkP;0%+`De3086``FjcBZUj zcM5O>)>>ZXUJ05;)te--#>x;>Yp^5MQ7~64SrqGzcg|J(|N6g+eHF~3k1K!pcH^oA zVNR{!`DesxAm$`%N(-;O$K=(4a`u|jcN+#x^J*`(>{D z$H$a($eecoH0ahJ3uvAqfs~5kH~<&XHiAAhd?46`C|izLbUdK@f$k=7{D*PX?+b>T zY|b2XxrKz88J;?m_Di2oXWiA+JJb?S3xI#gh-MwaW$w{|iOrM>ywtk<;XyKbTr9mF zluN)>j&Evi7UpyjrBI~@)(3FYaWCJcQvP*=5{In{!+zrp0bD(uUY^Nop7&sxg1Xu@n#AUR^w2zybGE6aH)9UV|l zVy--Svl6$pqmAP=f+9h#9a24BYPxD7fLVawD=TBJy%iXo#4$k}yKVWv)6A<4pwiWc zqvxjWiQ(?28J=sc({=!<_tP{FBvq-icPdG-J0srB0@UManDurh?5d(^nw+d1FUTFR zzcMKn-UZS;o+3A7$*yqft_953^Njo%yOp$1SCHU5P7>s$xkt(qI0i_sI3BVmcpker ztALy5?p2T)H&M(sd;Fmwm70v;W0!qEm>iJf|E!=B(1H)w$2Wo0YoCq;bi7*3+YD^Z z`;@j<3xI2kh)bRU;@fJ8LpNhD_V?BjhgmzRq+BP+873DkcnEC+p)`G6aY+Y3v#f@h z?>{F&!r(z%6TjO@IQQ#{94x%m1>l5`Q0tMI#kw86iHoMa6|UDJUAZPD+I4z?-KQt% z)ssp4`4jAhVv~NtPEeMYjNGq<CuB$Q#DRpJ?KIv%i~A3PcKI<|=SdH?)g3bm#{EgPTlWZu915n*x%$|> zhe0?8B;fR)TMh^Cm_d-Dm(*zZS&snBJqQ^zTZf$*2FQ?G;Z1q>EPv;|c|dJDDYPhm#1Ct}G)4;tNqO4nA>oqDs^7;->)T-oo8VCC(J! z=ITV0`BCG4WU#pT9ypc%U4C{?tf+CI5VB{|-u^TP(Sy8R!MsT8@P^hR`=K3A2cMzLE{sD}u~awBV)3(GriJ+rZfFBpdg=&jZUP)}RyVlw^mF z4M-dzh+La>tXll9B?)%I$rD1XazVkG5hW!{jOGi$Tv05mbdKy5lGiar)Lh##B38Hv zF!!onIn?~*;_{vL;56C-mz3}7w+Fm;Au#tLDpHMMe+PgYY|dkeOUs{Zi`jk6a~VK= z>gtUrE{8O0@@qlNPgnZ;X~_EbRoLSt$wN1~s>IjSnN;x46XrNg+VFiP+66);OS>L= zb%}s$wehjxwIxEeqFejv0$hrur+`{u+#}4Lc?w?5L}~Jpl;eTxAY6wY#`NqrK)Rif z=ChaWkG&d@b%$`*aAWzX9hbhli6p^x=?OkB!Y#x&K^rKRy1As8u1D!H#|m;kqB%p zo)QV*{f?}wqZbs;Qw5jDh)kGe`yK$Si?{5bK>I~@B@gn43nSZZGG6r|r&Z%PH0hC& z7BV@#g~<4vCeWq9?GUoF%A)`@4*EmYI9h}gOlF0(Sl}@bYN9K<`Tt4S1;=Y|d$fpl zY#LIg-~SVm2OEBGn6Vj2Yd={)O=1|oV2HZvQ-I7roa-hjNEV&!yf%5-VWb=Jy236h zXE`Krb3X&%{P7Vs5Wf-a{1HOp4KX^N1)(xYCOIG?&rY09Bz$dqu8~5uX&{al?T$}h ze@avy8a?cSbwf7S3nh^(&xz$<1ah{#xWY|Q{7DEkpjXDV|0Z1DWzc>y!=Vi~eYwDu zX6^;h0#$o`AlPM;;fDItkFNl^+Q}z$eEKSYnJWG<%~GyYUIQe{W@IZ1zE0TXmaZP6 z9lV6U>Hl@MoawESK-$VDHRkQ!2CPeV@{U#u?qA*k_qb?6jLB9-7s1a6HS2qLgera% zZ5~K3iizj^cR}jhw!@=^|5HAK1-zXgx?U04gzD&g#RnxN7|cCmto|WLorC508#fE~ zOoZ)G+#}NY;i89>7!Ds7h&v>$NAa~Fmy^e5#h61sDM&I6?~1XXf|%jDrD%`41mwz9 zv9fE8H9iB$vmo8b8GlTyD$2j>i}GCy7MyHvw)?Um$$xq+?)X2a#E8^$ajSm| z=~gJRAIXmn5KhO`O)(lI-<4#fCr-Uq_yNT2fn%l4m@b;`(8Mj|n+m%=D7BN=w*u;X z&mLCe%^v~X^~a2k??pLEkxaz}GYzk2!jZo}?iXz?=yvJVSn(rhvNUIC#H~F)I*u zlG6WY+1gf!xy@k3@I3)JSK_eTovJ7lD@$S?Sh0M;{(%PjKLM@@remo|H&_Ws^ETb% zxRo82q0?f&Bka;L=G(B9ABgo<0n0s+=u5=doXE?iw4+iSu8wzx)h_dN_lr1&{%gtG-b;eo^x~YRL;QFE|Dnk4C zPGQ%hvr4gI$&CSMdzlNxG9vu17IZXc1@NhqKt5MEH@G!)V*gG2aq843i7=OYFrgmW z6w;+aV$KU$qDiU^A#m5N>=#x zj<{n>Cou+_!$)(tf(CofR^T2FYS?}jHD;Dmg}Sv+%*x6KF9~#-%p36KsjUHA6lUjI z8=7@%Zd2mac)kf0Z~?AjtJLeh7VZ34Ls+wuSZKTL%4ZyOcocp9?E&0|d51C-O9-PG zH0{Kw9U#ofDfIZIcZ7s&`iN9S9uI)KWye+^*?CjuW zj>UI|&Uy2K8yeZwxKtQ@w-5Hpkn#Q@({ZUA$u8awJGe+y(eQ~K1`Ui=+b(1 zex}ivMe@}i|Js%R%@u4=d21o{tlM@kDIu}Mn+_?RvDF;(zkSPBEpj6y4U?OMk&kZKr&kEO7z}EohJzVy4Xk6kU*D4 z%9lx|^N=vtkX?S<+zhGe;9KfFg2wPJEOZ5nhK`t zwm40c8WVS{BOgW19%0Z(`V1y zwHVg}TB~bbLda%-o}RpP3pw zD#TscxBNV!Ajr(AFn4{`h{5(luYbhQ{v{dtum(A=fwXc%339U#Hw&WCj(A11YcV8^ zq~rmn{~$+VT&BI-G|_I~v{9Fbqi+u`ALb1`6?t)nKVMQNVPue}9_uhRY;nf%gk3c@OPpKb(Y_}XEInQz)ujn1`WsEtLpdx_ zZ{;L#7ZwXd+MaEP;6tqu1UU$DIM7fzinYp~7Zc7kj}o&T1r} zN8pnc^gQPQx`*&s8Gg-0J3)zghT{42O9b>Fc>MdX(Ah9h*I8O?EvG+M|2U~MWM;jf zB*h_(^Wm!k+|99jO80GBURWUM)aU`j{sx5V7nh&?@mK?D!X>9PL-+d|AA0c|8@G#a zMX`m8O)i3T|6oGU&5<_r6NQ@B+*!-%;p;-+m5zXSTte7oqx&XV&>DXSa?_$D)glwi z_`5KD!eDB@jIeWU#+mH=mzNZ}xVRJV#t3qjlGk#m8+%1T@=KKKTnR!&(v{|&BJxC_ z4K;&m!K;AWAUKtx=KTW9X5DDTtD;GOL(M?!dUc7d_dK{9xwZf`**?Uy>kEL;8V#~f z1US7B@*XkEjnJeg%kp?O6C);|WVhQ*{9}foe9QF$J$SpD!Q3lREk@Z!f}ewKbrS3| z@jiYV1fzj%#l+hQ!accl-s&HOT`wLI$6vtd0xW3dcKsKR4ENsIh{<~tJi>EV0XTM` z68Y5K0Iq^wl!~84J8e`CX!{@U18_q$GeQ|Suig)0PIF9Pzk#Isfda8BUC!pBg}MS_D9N}$eKqDi_rqS#~Cv={{ASG%h0OFqMPGWA-My= zwSPSZNm^358+hDdU31KMf^cr|-WEJoiH4!A{jube1oH@IZ0`FMq#H;#i%IM<+tXlP z#94Z=g!EutNw8~ze+#C$zGndPps5YX`$R7Xj0OeUNUuZWrRd#pac3 zOS#CO`BgyIv3pQPuk3Il#8*>bc2R|$kxCPYi;d3Fmn~jS3 zK7uMOHZDF9?SDIaV)>67U-zf`|BZyWMY$f7I#2xblLATiL}m%IdGsQ*lsjciO7mg}CJ8Aa!pAaIx~ z>{#imk_d|jZqPUa3GxSUTdULk4Mayl_7}5#O&n)b??f^F|G;v4%K-7QZ=fma;I#Nk zK_|&Rk2h=L-fv3+*=iOal;455&m%9wKa9uP8-gh=Zc*YJh0P(}eBnGd%l80ug!B~I zDnFEenJY#Pi>C!RUldPdg!qgQw|ghsnA(q!?t#AB)t={f|7(D_{qU0BDKO6hI84AF z9&^*rV3Z80d#s+rhzH^kh0TfP3hP^SrV;gGU?ixc-Aprs@Fm(TvDPevU50d8=}{Su zo3(s`rk9NNIMUW7D=gqrTI3dkq41+{lH%?wVh+M^BN--NHYbGBWkmORTe{ZVfM#GT zuUgx`+6`^IW#%if<)E_`R|qis`i}854dD;r3=U3?v6~EJTM1cE4sqr>0%8-$MS3<)I}W6yYi`p&`WY z{|!LdxoW>C4)z788;m)%n(j_!Sp>|LWm(k|q00(!d6|FWbCE7D$NfsQFA5EFb&XCnX!^JcRVSI zHm>x>+A9*wLpk}SWZpSdn6pdW_0^T2-BMD*Y~l7n7X*v10_-f9DPjeYWTCfm+TsOK znyF~MRSCjHseVsbov@RZB3n!q?W8NMZOk^bIPihPfa|S?`vIjmX$>$s52BqhF@8;m z%xJD#cpzAS3nN+4Eo(V4Fv{khqUUvkD)7QaLSCG*wjAB-XDsl8k!tR7g zb(g;T{%HR#KX@M~?7t;Z)ta-@SRhK5cDajhI$hs@Y8`mor<2UIVTqL`8!?|C&t_Kg&>im58v)YCnvo@M zLXbKlu5P1Fi)`wD@W-+5W(3{Tj6i-AW1h_mrt_B`B8=Y(Gncpni|ra@H<|&p#urGF zq&mmLLR;`f?#rmb#tx$4M6&UZJw=%lJWedD;Z`9Ocd$9O*^(fA4L|pBzrt=&Eo0nE zZB+p7JvfbQC%{RyV{+Be5o>M@l6%o0-Z8EaU2j9)an!rtJdV6g`L4CX8&teACd6#i zJFz@{M7c(6TR_||^LZ=?6gF!*xyiUoq>Gb0X<*p5T_Xa0{27tCbTW@P zX?tkbP*PK#Hy1#k(4I8D7vT;xV(s{B2PpEbRj0<(9SOS+rg^J>Fg+b{yI^-BN%onG zV!oY#NDzgYj<{lHh_WEin+J8xy4fzEE(DK&aFx&^K;LL%^(PUzW47xg+Y=Y>T9V2B zVYR~DA(TeMa``0%{f)LYQmwvu51@Siq1|;)KE`jkXGu#emMj^@UoTX3MUmr#~3Uib;Tn^vc4oO|K=cc5wVh1$M zq!P_g*q`eeV>CRuMx6xaY;`4&o|cZ;I|1DZaZezn2klBO>;`p>xh_HY_3Iu0($>2Z zH}6N-JVeqyDqa%pBy<4Fw!L2ptq;bYII|xzk7##7N_2xjrOG|je-w6!Ie&8iMVB;c zV9p7JitZQ^%@Aa{VWm4xlp7t54$X9r32`ReW#NNLYxI8x0m+2ZTwFMrunUC|Q9Lfv zZIib5oI`e>0^}?w_44)jsnF)cD80V%Q=oz{n#u|G&=9;&(R{G;3{Z-#%dO`QA?!M}54FIDqYedd4n4@bH$MW>O_4-b+SSZ`B$!#n zE|NDdhGL{33duIBH|`hV#$bynHya-aAxGUZuX04r=_b?6;==2#3IE@!gwfb?OvD+zx^W?__DM8Ftrvl|s=rtDiMW=%~T~>9j zza{+I@(e&1hF-{G`stqwz}}l_;*&E0oO4dm20`17CyP4xG_lxQ@MWT&y^ zIVCB?lr-!W4FLWl9r{^79=JTIz>AHs*ttNosa|Qv1N3<%2{~`5#zyA@xRLt?)dABz z@kF5-zzA)kMFgzD`DI+Guv;9Ty?XHV%LbCxqFNmFSK^oj^fi2nT`M5>KPi2%m|p;5 z)=8|0(1xBeLtwo(CEwj22q`^~Q)W7vtZ@-2g=4r?;tCOY)N@%FKV1xMR&tNY7-v8p za!J7ue`pZa;#FZ(3Q<7(?(YsynKC6VQaHDLQg0uKn*_N&lG*pg)0YBJfIi6rJ{D2$ zUGl1|33u9MWr@HE5T)F?uPOj1SCqFW3&_(Z2B5274M{V~ z$f6d*Mdi^UHPeZrT|_B1@}{W(hRa}kOum+&*~)#F>={110fh2v`HRJGgmC#~@W#ae z<)13h>EpY1LYyd?FPJ4;V)U&L7VB|A!}d#_E3{91Pk%TmoB~Lwigf>dfi9Z-UJS(w zw*zDjw^!57dhUM|NOMtzL0%P9F9F`ld+sdBu))Q7*f#>qpC$~E7r(3gkMIdnjyn^`uv|M?DPS zax-1VJ0fX`bj>mOQ4>iwYM#d+NCnO6cw1qQg7lUvHHy9d3FeHk*h+lg?uimjo)s#* zKNs^p3Ff+S0>pbwI=c&WUDzL`8mnzrdm5N5i4`NBC0tkE?U8;A8zvUje+YMa`L!f8 zqFxi|KH0`;htDg|f#e=7d*P~Rmlk_r7VDunPY`{Y(Q>1Lo)~Z>B=62T+&&}JtZGA? z_Q}5>orxUnauf8!^Cd!0dsiIxLWv+feKo4ik1zsauW~)~1WB6t*p=J1qQ?I=a;>OA9)7U}_bM^bAs5kiy=v@7dt~C3< zCa9h~QgFHxO>p&Fp!5eFY2((n%U6;!spXb`r$E>Xv`fdJ_FjP)wk(MQ@xXt9oOZge z;E73+`&R=c-az|)gF1H|^geOnQ4J-_miR`Lo3|#_4ETtriVq5iZwndr13oR#jG#d! zbiMjRkUT_Xoxk))(B}Twk+JZ{P-c^qr4W(#$GXBaQYhUf3cIzr_>H|9(X&-7&o+KS z6n9(M(^grI#HK%d>QqK?vsY0V{z<_mZWQ6lqyuZ(zkVXnP2uawq3HO`AEAWY9p`-x zk^3?iWE_Lu5K?bo{9DNB#KvEM)mu*wMx}N3v#&v&c2l(j!}+#Y`~QGkts3&Z6Gb}p z=6+L{{gw~#Ysdh z&KBy{p4=M`it=ZzQn#YRtT)rh6ahz8Fz_}}&J5SP-PJU6-Yw82Vx1Zv^UMsL`m?gICgxcD7c`G2o+{ek%TokO0zI+z68^rw zqciqY*fl|B*3})={HH7v&uje26vv}d151|JP044#*#h#w7^Hs47=$qKX{C;*MdaMI zuF!xn(^BOV`6_@-vkK8%DaFu*mxf?9u1$*#mm%n~S+j3P0q{xAcvf4Mu#-kHLDOto z+#oD>P_oxL*%DtY2k53r(lNQRMQdq!P_ubjZ*RQ00whJ?5@B@Qyds1vB~@$E`1MK! zsZPb3uNwQWToA^>V1H9wCWOMVafk(1A?(!Azm45jgLDzl3!(IMcwSQ%>THmAHZh@{ zw>pTYt`$eero+nr+{eqXdteO^mvU6>y%vNSVBcYsbB^I)FmIqaey?C&qd39K!@DF+ zD~|xK&q3;_;@fTlofJCNL-wyj z*g4}LD{<_Ib%ES9r6=7VUkNa~SO;a;{=Jag_jxW7nfg%tdcBfTR_%*ng8U&ev_Z1F ztbvRep3GVP+xQF>jHI^um-YF~U4;%d--b}soR*6vHzHhSgb}go#?USYz8Z120TVtF z<{BjfQ$G8q5sgJxMwHl`Zc4OL%f5lA2p}KyBI6o`UGP>ZH({c%Ifxrn{sLnQNM~Yg zM~Ji}s*E`oO!Y(#%+5d%)77x{}&Y zh%3}7PhyOm(*-$o+;sRM;t4wxOj-?T$Me#TU@)$aeM0L_B^hd=j)6A~AXiM=rj8`Q zM3KEjWLv8%jc95>wgMT53A;FH1pD#G?u2uj$Pq_NydgwA1K*Sv?LpXmhMSyo_AGJr z^a(ZIV=oZ1MLWKj_YWloJ8MnOCkP=0bLc@)dHq!Bm@4tozBgd*Gkr46*hGM1C0SlN zKC}yTQShervM3iDy>HDvZwql(LKYX}_kr}phil{tMCLiua}w46wF%6*_Uf_0cu@fL z=I$`&Y%YJIl*OK9r#1jmPtzD4mf9hmJ&e$3ZfzjaG+;iNxsy1~G}-OzrKihPo`MX9PKBt!}kW$DU;hFtw2T%bgT<&KPCH;Ub*~r#)(bG<2$Cck*RV z4oe#OiNY>qa-=zIsL(76oiS0gE6OY)%>Wp<%QQe|hquSraC(UYOU>n&C{SG zsh}e=zxTyjCquhbylEG^i*(m!*EC^RoGrlddCZ~`N1OufHs{68Cn_g$A&M@AncM;5F2Ow?$2Q4p*t1!b1gALfb)>aZ=508A5GS#KpV^tgt?rE^y0QN z3)zBD_RnV(5|f;GS)@7GH`v!fISx7-#GRWPIxAh1^J0G~5t~r3W^6AbBoAflDM=S| zTq9l|r9u3#ju7{!Npjw-CmUn?Mzki}MRB5hUI@HsqFM`|N7&s3F$xx)2+%dX+#}po zYr;_Ti}NAPVeb%m$lwB}B2~?Q|BZ0HLGZpj*G15-E0c)$zjFhTJ`2TvN=Qz!4|_Rk ze&8iQEj%l&a-yyXIGqMzPzd)$06Se@lUmC43&!td|!nBKd_i_m8 z+{Jd`_$vszvU~Bo~B5TJ9Av&A0~8J)n;%IPK1UYG9}{c#nJ5 zwZwD9*y2gt9iIux{HaW;#1hv*Q?#Tcajpnwk62UpV-GZt-l;=Ovhn2gB?0F4DZJ|C z1UP47$#nyS`7nta9Gu?X2w;|R?HrJpJ1d<@WS zA1bH>o@l7a#3iBTt>u;sy_p{-CS_pP7_%zu0;7+bT)SNUNP$ozPsjFa1myztvJk!~ z+I@rD4Q;^RX~aO6r7!k*lo+{9*{>$)$$P@cmo|;XA9EP-YAp6RVMZ|C+BQ+pJ(u+m z8Ouuoa#wBV(b{H75xy7b;!t@W^m(Fug~W)7cl475;PEOhcoumIKv`5`DFtoWQtLp@ z!2zJk>5IMjnfm7!E2XZ2)CDdQPPt_)cjME9T^=c#v?Q75R(q%Zac0Z#~}9 ztT1I5>WEGSbIfY1B=vEOAh)pYRM~*n;;j62b8{u`QrLZDNJiT&vEXYUZrr|#BpC|} z@O)5}Hhr_*KCUG=b4cFec6%L~`e1-IZfv|M%0)!y%%VAU6I7ub{@;5;# zJ_?2}E9i{)fLApBm@Bk}$@4LoXlVaod z2)mwm<})Q;QYilJ}i}v>_f;*lc0;rbi@z7DFznbJSuV z@ITdOIi^VKeB>{u(Lg;4`%7si^v4MT+#L}9U>d3!Z_Q6iECeSQvz;%%v9g*ov2Onq z(ACiF$24)!XCPD_Ie5INFua`HAIE%7(Cwc5wCP3azYEJPHh{m24@DEbw-Rf8Ns!7Q zw$bH$RitC$?qDDe5KSh?dE$J9-LlPklZ=EP`U=QH5;-XYh|6fnlAiw>9A@G)q849> zAPq^vJO7Wc>n3ll=&#ZfR{RFgd@^v#w*bzmg)@#`RQdEfAd1}2Zu9#_be1FDnEwI5 zLkJb&_~Va|o#n>2+V z^D~gkDP6IlIBKR*_1aK<78wM^vC}LClpcA~#6x}$2t#BY9Dkh+!kM9YsR!Lg&0Y|> zt|m^C5I*RvAkJTZP6#;I#GY}-xd^-W@(dIL0j9{I_@B^R+T^lmD1J4!Q^06!LQEA= zMi>i{+v(4O%{lCk;vtc)Alh@ohsB)p0Aw>m$>I^)W&OmR^-pG4rCYnyDGg*my#uA$ zd5Pmf`8?JfRYBCGjec>j!cLq;p{J&Oj*Io^d^r|psMF>ziRdC&>&x|mNMwM?d!q%) z-*R}YX6hDX4)x)Kg!d^mq(t=rv3`p9i9akGcVDkjc4~bL*d*Fr2#;d zHu*JBy{iqyWg^WmM2YB9eUSg}#*ZTd{`H0U--D6sZgrzdRDV-2nUD6iw$@@$m~-OR zfRTk8p8%o*Op;OfX(Dn-dUY95i+?Q)y^vHRjcuC8=>UT=`nM*UKx2Qv&sqAv0IsY?QC zpmxTi3OYfZAvBEpmnxqigU1)J=FF!B=5?kn*I;xlyL5?*3_K6v*96i&Si;90%Q)P` z9I(`~g!8mF*wP}4m-t>-9%q^e+GDTfK-^wz-PyVgTONSYws*&<6-sQo&W;C#Ftei} zh9cRx6`?Z!q=kH{Xs2Zd3m0a96GYpf6m>2W;EpKGy#D4PIb}b1Rj0~AGpQr0t3lDs z9F#}I#UgTNPg3NXr7~v>${JSFy z2FWH2;lXFZ+*R=Aq74fDCq@;pw`o#VFK83!Qcvz35*z!3cz-cw?bvHHR2JW}yY8=Y z_mu=;3ydirqKP2Q5h;8x@5lvrhaAyL4I zHAFg54%HnD93Gik8%zzyGCWG*)MGG(t%-1b*y6D(cufGz!i0yJa<1P)xskccpB8hA zb~9uhV-g=Oki>f_>z)cT9$K4Y<8=tSBAj7*SY-aRZuy$=KF~YBTU~Lsz#L8PDQfYz z^*|_~?rmf5^~*PvZtajz0FT=?03=6=Sq|8cu#1Sqn?5Sq>9O`}=H6jrklaLh`xqw( zbJH?YGhVClfuQ_hrBjvpy73{Ll$JTqqisekvgUp}j!@W%=rJ(0-YxlW*5z1cbN)7O z`vt$qh2_Z`)6>+V?&eCEPq)HQkoN6~m ztfxf!d!!Bc(2FIv1aUc#cq5I!u>sVk$c|*jRwYJ1Lh_;br~&BFx@w%V4KbXrd>v_6 zUAb+^h?B64^=8`+go5H!A$k?gOy?>#ZG0~i=H6pNGjVLb9RTZtrDqTY7D@Zj`xIX9 znS%%kPZZ!`jNE>a9ieiqIYX>2vc5mTgJTvwJS*5aqSnEtvll(QcLh?+L7MpBod`P@ zH2M*TpC`cGslUpBuy1E*=ZcQsN4r4f{@;W9n$#uM+ZE7nOeDcV{kXvr^!wfT%axOQ zA$kbb*Vsh3o1VG0Zsh%i&^#Sbm=5IpvD)rnE@0wvtg}Y}xEyAUeRfX(H@L4@E|8!=ZFmlB@1l8<9Au48*d{B@(tUHE##6Z2@Fbn!=l)Rf4%&qI{C3>oZ%y{=XjB z67LCjpZ9f6OZ-QWdmWbzv0NKuZX8~X8Hfi3z*nhJ|4(6Om2Rih*-vjT7;inJ!p=5! z?@3@zb27)plSI11F}Hsx3Z^7Yd1i;zJE7g!cobBUj|(BbJdw1=kD_RzF5N1w*5$uY z5MeIAK$Q8*YCIwayP-?hXK(e0fYP}K*?_VhT-?)$g%FfG(Ov+UIXE@u=_6R5z}Ow^!;CNCyPfi(MJyMFWP-rUK1;`Cvf=SB))%nRi%~qp}_gO$DK-x ztJRj6dm5N?YfpC`wK!god$=Ck?&dMw)bXbS*IAJq^y&a}$Nr#hT3JiqaDbCTp$*j! zj;}4T?14be6&Y(64t8sCi7MW_7`NT-Y5rxcKnXdr%>G?qTJeA0%|&0Y->F--hXBwbIB^9;n2 zhe4TH+%BfttsX0`dtk>yJqLMJ7fa|D^qy*xhNkBc+O1x6hO z>^{U9n<9@n8lZIQv2mVg*AYi4(SKY?ramicV}GPzVrdmZ{CtW?r`j^a?mJqK2XLwb zGTPqt1Zet+9=2#xxIV1ekVx!9@~h-5`hbk{-~V6 zcP@ve8EG)i|L2lC9%tCme9{2;66gB=IFlGI5>icx)t?dK5^!4~%bR##kQ0|qpIk-K zHnW{oKIPmYor{%)z!*fsamLw%J)4dhA3yvB%2UbsSp8f_)6QkY`Tk={6;-r1{tDp+ zk)N?70zTmaFw((1tWu53MY(W#i$=%R^DYE(J4>Pxm;MbpGr7_%KPW3+4B};G5Q~{+ z)L?4z-}=KP;O??aCUM+lkZudzIo9Hy%K@AjO9n2%I-~CjAQ~1&k*6t`MmYU;^Q$1t zq2%*YYHCc7SA)V2wncGh7<0GUPmRpJ^^E;lbZv1f@ph4_;+5LpxsxDLog z?qm`E$Muk|J2#G<@t$ZiP|~TYF4KM#=4wgy#VeLK061B_d#jm#H9<~?DVR6mMLQjy z^W=EKmESTqmUOrhXE%3<0H;$)YUh>sNKh^h+l{#W=8}%zl%+hszXi-w6K4^5H>LnX z0-YAyvh?og2@MFH!em;o{jJ0@i+CPnpuHA92!X?TIO2rc9ByOG?0S1ikBinGnPhk0 z0hH&OBz(M30N--Li1q$Kn8r-~WxhMh$JA7M>d`ES|I>2Tl?mi?W8zQ|q*5E|j%O8i z`E>n954hlNkle+Z@p5wyr0cF_h%0cI{j|XPxfoqqS!*XR2z%XIV#`yoyk=D60D-yn zvSaGS?kn+<+N3siaoq!eZVH^oHb?Ix&~!E(ZMx%3Q63VAm6IK7()4*)xEsE?H+hn5 z;|8i=^3s7KIohoa49y&>!Lj7vM~Ua!qb@hZqH&@SYVVnmhcHV7rtemU&5#fm5=P_J zRDuW9c=jznH;_s)bBR5kC623u zm*|1GQFNZq^rVljAfFXRw$jmyUq1&y9?9U22}h(`CB1%3gQwf}4~4tiFgmac(WTFb ze*xx$7t>X;8R8fC7TedD9CQk@stV31WwPZagu1uwUIg^O6)!Y*ar{{pxOoDD|DrJ}tij2#zOzYpaO(Su== zt|8$n`}GgNseC&}p*s|Ip&MGUdT24``jCHI=QqG4`Q~D=&wyQH zwy%A0+vm`vi3<~63w5}Yu5*#XE~4J3lQ3GUP2n%$-iQ{8PVy)a)w*z<5Ixg_tJgtZxasnzD(K75vQK0l8ds!uHs^ zL8GM0n{%SghPo+UOI#w546zND)$FkEAzgCC!B07-mmk2~oXo!%r(P$3a>$rdWlyXiLg((uv4Mj14#;etHcvax z4d{ANK2EnS(Jm_ntb zH}AaV3r;-pMkxShXg}UGA7K}c1vm5WEP*bGTu#OfqMbzt4_SO5vc7Lkol}~ro6Qdj z!{FaQ^oVc@lco6bq-Yq(Eg96C3qZLJ2+io6b1&$>xg;4oHhvIA`FO%19{3euXRYhd z%0iHNdf?JAy%xmL>3hNCoxG;Z{Tm2#K(a7e|2rZ4t*va}maJYh`bKBmEV{mv(xosjVXiE~R$iW71lol}OD^qJbuB+#u-R7k_yOCl z6lz|uCt}xl@1g)=m9{0Z)nZWa0z0?3RAJ2rGK7l-mw?I*%}c=axt1kCT;OhWIHx5k z?&$)}K-q>axfEnQJA5+4ga#l*%JvwsborngDadxqK{^|zb9L=GmM=+g*knV}DZqW% z>V&m;Nsw8>5Ua#GE0k}Tuu$>8Q2_PQ#%u2t37au3JP=%0yI%>E+E%!lY>Pug5x=9e zH=0)_>^9&qK)0m_yd%tIU>~8^ed7J!0nzGo`QG^Tst`I{_r)g)lCT%)%U6SPNjc9C z#oVhyyYXzxZxQfjg1unKssovjFO(M=2Chshh^G%&(*!~ZHcTSSxOS{=P|00%EfC7k z+!q@uNOkZm6;l*;(I?9wh%N59f^rwu?h4aLA?m`s`W!Dc{+5*@e?K$4q`{M9yu5=3 z;Rql%{3NVsZWQT;AE->FJ3cAEc{FL-?2p%kxE5i&EJ!uA5LI;LwwuU2H6*-n|$llSJ2hAc`zh=2$_lFHbbHh_APHiPMKkp{%+7Eyy`D z6y#*)-E}~m@Q~E@w_3M+ge-(DKBiUc15tC<@k;b&0-;`4TrR>{avw)APuc*$43+0D zcDSryFaY^7M`qI;XKc)$W{G_Y#pOcWqPkYY;qXA5x=D$J zG=P;mUK8Tp*3~f>%WMh>lPcY)$Q>lYX(op(+{Mi zx2-=wAuXQRzWj|JYEF&a@tYlhG$GLghhjBRF5zUhXS8;^klYF7R-5w75ahL`*b^mL z-!VJ#hx$LP>)45~tAY@N=haw2u`>`#41^f5&d!8$ch`BgDjH_zjs1qZK<0%?Ze7#G zbvneUp(XmfNVvytuo|=O=I^EThD1|T?gS}Uy8CUy z+>bgrE%wA7y8}2ARKv1^*7)xpB^vK9ae&%)PXKd{;jL5kg+l71j>&%D574fV9z)in zRkb)>pxN8XETHS7=LEqcY4^|aN5b{?;1YqyqlCE3cv+Y8q-tEhHyATjWomq+AhnfT zGS=A#!a2%$RWqg``0EqsVzF`Ri{nJ|MU4iES4GrY+fDZ1zQ2eMKQ3x2G>@2}6(QQ6 zAg1n+&fwC`KrS`Xb-HbQA%qgLaXYGopc$+~T6c`E0=P!H%SdcFP#ArILdnI!tgR+# z(jIiY|0Fhq7DJB9P<}iAiR~^31t2u3T=tgx}e=ZlKvbs2`l$Z-6bVt4@h383&_#f z>0mNQkBg&)=JFyYNe)%jNC}5u7~Ye7EGNW+-X>1)K27oaOy&5mt9P>A%YStY zOpA{db`7|ZMic0(2A~T~-aMOH62{PdC^|)(3kWAVu;f^4T1g(?gfUU1rU^jH3nD?FW^w(*pr+i8T%`U*k?8T^StRfLPfj!j0Kx z5Gzk0>FowO#5Ka4FBh)3?&d^x2oPl-pG<4*;1>KrNu;u6u0!)di6J)F1v z8DQ?@_!C+)Q#cuC-FZ=zGuDL(3;kC@a>i0)GLpYKaCHWQ416 z==A_z*6Ooc64pL1+&t>(^&46j-T>s`jAzy4?29tKBQ(z}pzU0_0f;4dpkMhW!me=( zmtFgc%r#{5K-0f=Gl;X1zLN&b#9RD*4~7O`DeMo>*3+6g&#nGf2HhJg?5ta*@Ef1y zKe?ZarSEV=rid7m!;*scD$IIaZHi|Vtk3LZ=ec>we}KA3T<2i4Rf|Uixfty{JwiJ? zB?J!Z^bw2S3E_t1e1dt5XgJW1e%-8hJ0jd487qq551GpyuCUWgx(Vot2+1>5I{D6g z4?v#EeF3c7i5Ws2t+z?7z3jaJ&K|WBUReMRevN z3U33^)rf#>e^eYTn$&dA=g=-nBa7yXH6MU5r_hG$kap6wf}9+ySaWae_F##FH4OWU zTKrd#%ZtawuJ~LuC2YqikX2-rhar^(va?uA1i2$rV5a^|6#Q%Fy{|FKhtjp5vlgGM(`DJ#ng`NQOyxXRE zsK?vvT?AA0DLkxp*^?y-Q}cix71sgfdBNo80&VgXRL*Y*pXt4bWVR4SjJHmo(T0<2 zQ7}4bkfB5SGi%OVpF; z)jUNdFgGr0p7H~`-m4`Gj-DuzU`)lC?-If8K3F)(QRN*%{4Hw@3nmW{yaq%wRJe2M zif2V-#w3UHqhAMbk8Ed14Sxd?&dSH*8*e&{KZ0m_i?FleajY6f7&i+cW(BLH+Z4{j zzP%;(cpK8yvZr-)tKt}exn~ct?TAYSI7#e6cqS+Q`!0yPg|)QOUUl?)B_3?!%n(!m z1CmFUZtk@m{F^W*kEa6iyH9{wftd+A7dGR9V1=1_?EB>lBvmZ0*EWC=6Go327Poys z4CkZgG*fA|`w+}^Q;%d}Vig(j5n$p)U(EM0VRwflK_q2Oq)P~P`M5tu)xE0$;NXF! z>=^-RgdoECUPNQ1)U{ViX6a8Hi7A_VHW6wp*7t`Mc3Baja^U9w?}eG4NLn~1B(K}c zed@2I^02kSZUYQ$qyw_aX9a;Pl7{Rd#Er|86eo!^UsRU)+y4Di6o z|3QlxtOJ{VOV~wjVqsOs2yJMsy!|~9T<4Y{ zHa&3e9YIbLaW{;6_ZM+`2f0W^AO8p9(4s?3z_GIkrj`M86BYE#$P=P1qMSI~ONtjC z^1tk-q|kMfAZO0TYV5FhtN}FZd7F6RCt|ot90F?i=UC={AY_V)Gs=fY z{tN}TdSTCJ3cKsHN^ey?deTf|>V?Aoirq?A>^n0MwL#3yoAV-^ev9TJe0RS7Oy??Tj2J&|eDux@P3h$}28+Rxhz}cL>TLpDB^Ftkp-_NXh^|H) z{u>ZYF=&Ry_}@CIZmuNPQP^F8nL-B}loO(0I6`E%Oeeo%;etuVpJwCni-9>Cyv|7U z^{fy#subPnFkJn8u{fantQ2CZF=B}ltJ1Zk%P@c*cALt(%2qLd#MYMyCneqSUr-?a8vdrg9xg!D3MY$3}1M203_;cgOGZ(Mms+Gi~Q%E|V0 zD4IpUzZUHT^S<#=VQxxk>LIdar-RqI5x_3R*wMq{VUZ*wCAnxH4dG1Wjd3VW72x_) zcLpsYctI|m7IO7to|X|<7_FIb^D!W9(R6CT^fKNSrnb@b(XL}5T#hMKj-?{q7(9Qf z4TLhAF4U%fB;fJ@U;oub!9xs=?!0VZ)( z>S6Z^G!q#zgR;lK!sWh3R8Cx20Z6F*+bv3_BXA8nUZg96NFb?4&oi+k#@2~z|1{Qi z*%H+3#{Hp8nx>i-W zQ-HaZrp=|cbp%~JvfXTnkpdinNx9v$Q$QC1hCZkWZcVh&V!7=g%dLUm(9!^$a|dur zA;H|^3OfzNz9?qRyAuGTa|(9G3X)t_Lz^g)&&DChctK%*hR+`cOzaFmH8H^(iUUNL zsWKCgeb2(X0GWNYYBIFCcvq0jzU-MQOy>#+hZ>g{$FoRNGtZ12E;j=oA>_Majz1q3CW$N(k4N!*c4e!RzRzYXLGVxOI)0tB|fN zErv~XtSrPummx-594sJjJpH5#*Mle$3wA;@T>LE3EmZ4bfw-g%+6nXEdna7nVp56G zJjnKFl}>0E4*T_VCv%!0SUA9*b;qvqH|ew2t;K5H{+neoR_Y<_>?d)bcwH}~`9i6E zdC`KmLr`~^yzjS z;lyAK!WCuul0VWB1LYI6G6vHVeh)V=&Go6Hy)4X}*7kB*JTVAB^;@t+dRgH-K{Hg^ za6iGMG1KINqO-&)E@`~nB-BNa8Y)ZXzl6BdoDdP*)6YAmly9>ODa&0vGPmseJq}5Vwf-E7cfwc=^gAzgk=^D6g^dU7B*7^@#Fe z4dE7UrUg(}7T1orzws}pP2?hbA6cTK+*u}!9pCn-)3UQVU1^YsY zw~z8CgS=Kb&(Va<73oK=AkuvpMQo0aqA3iT#F$ky;&xKdtNz4)t}>S09PQ#5fZQPl zd$3uIsX`nDZ;_Pt5&`O`%%!7_Bb-Mu3W3ttI7bi*VlUpe8voLS@D$rGLAh}lhG{oa zJs!*zZ0hJ`Z=jb=zc`_!+*O&9jKsD+5r~Y3I7m!Vn6b@t%XDynD3`js17Ag5@v#th z4V(a|18P;Bd=es=IVH!JF4wlFL8L6Dc(A)D z3e(3VFzIx{RJpS=9#$|jR96MD;GY5VK}nC{u*uXJeWYOLhSUPJJxaHWFf&uW|LD$f z;h6V}uu2pth?XkPa^6l6-Rdnt{Qmh|{M}@eB zD=o=)G}S%f+!9S^273A;=YizTAxX40U#ALl;`l&geiH4ZywTI#a+N?grDUtOh;$>g zrfZ6!^8w7+3fJE{Wc^8y^U@SmlY^h9gt_3{)kx*$_zOx(xJ&08ccuWEy@HMO;Dv-; z6f_-pHc%(r&jjX%<<2JQzwGT_YHqSlSQxtTwFOi1RT)}dC(K_L>%(fzW)-JeB&I!g(Ozzq<$BYsT`_>p{)MYF85%&{y6FU{0grEW?wS_oiP!c-??g zw+OP#fr8@Io24Pu{C79=hr1?Q@Yqfy9B0RlzQgyTTtF^0q=$UTEsl;tH!`kR=2l1s zb_=JO+X$K!x@%{X)Dy1@%RP{JMKTpM!EOh17Mz!l6QvHzboRc&v;wN7)wt^ph+KVN zkZV{>`Uj{>gyO5D497GOE!|}BKm%#j+oS#Qr4Ta>FQ6z#O}MipK6w!L&%9K?S@h3B z>GpC{B^OwCiKaX##&pC?cbU+t7f;^};mW2-N-FUm3!^5?3-Q0k|4HB`vzZO=;s0E8 z?va?(_7vh_#__!~*1WgGK&mQ^ye=fiKqoHVZO~I#hvL7DFPITfRErJn;|o`{saLAe z+X?U(N&A%kd^O!GoXR108Hkfakn#P+C`v0lP4CUwFx0F+Ecfr2a2R*O-k}I5xEtc5v(y-;|^i&o!u?*u_#X$ zRBrMR5*}UHJ@+uM%ff1bbL~e8J!1Um;cYYA?iS!uJ%yaIWQ%+#Yv(mH+E+o@qXh^oPc)5evkW438Uj25u}2eRdoH6aGo3J zP})_TCn)!ier_(}`X~G`vm>u}h~Q&A#<|XugmbeX-b|~<8^UrwVFw^N@()h|F$MJW z#V$`1bd@A3huv#D1LA7nJgG0X67Ad(?Xnzo3UF7zm^BU)nG1}ESos_~S&*9`yMRv; zwN0J{rlj(_w7tUqN}l%BwD125$Qi*hGWu8m3~bjzdinDZd2X4;D=m=@=?0WQpVGT(Q4gY@$ef2b5~>k9>={|=t+`hB-)(7n^-?j4=nIjiGl7>E%p*^ z&h$>>5j7|{&1%>mtB7#>HgRt3ZIB#lV#9a&*VREiCfzi}mcraNMIeX(RVaz_AUIx> z8lPeGpKg_6{`ZJLg+{Cut0)KuQ9Ot-3O5!}tUzTxaYh5}=;1zD7eBRF>3!n5qVg5V z`t`C9x0$rAtu6fE2PIlEKJ1SjJ_Iobaq>Mr+C;nAIPP#66#ChtvM^#p;{a*mPRgx<<3C36a63kii6cBx24FQhCF54ccpA_aCxbc@i zjB#IqP<*vyd@I6fp!mRCwEWiqv{`RQY_Fg>#I_lm9?psX2jr$>%c99fvV%>8=7MlP z)fqp213-=2InYh}mN3~>d$6o}Uqoq@aq+QedTFvGjOpJ&<*iAT;|-#-ftdMwKsc5r z?OH4?Qpss9-Bd)q4K0g1L=ah{uMubd;P5!!U0C=>!e%^n?Xi+bXT@-=PUHMniG2mS z9-O+l!02y$#O5sa{K@I{p|~{n{|Gy4IWgB;H@_3)&w2fWb?eTV#?~{z9e=tb8;Db8 z2FycS4x4A21)2hDqp*X*b@q%K86VAB=t&iv+x;looujXp{dw9hqVYPLli>Nict>Hk zcY4YSpNg}WLrsa3t`9R#G z*|S;2eivctGpHW5#Ggf}Kh&BBW7GK|)c6!@dxbNfyD*NMz5uj&*P|T+Nk1)ZTw28wzb5RKN3)ta0h6tT{5J|6v6aGRFKP>MtjIiw zXm06RO#Us9v#btbxhD^3%Lf?M7&&~z_*i>k2y&Bx++P%?wz|J3IAm>T>7-~N@q9i+pxMd}xP{eMm zf1Xs>`5+q7y+ORRa!Hb7^FqMOj{qB6#eCW_l8?H1C` zaZ`aVIdafS>?GQ~i1Td|8>cA^q>n)Z%P$n7DNU!8RmVV>|5|6%En zohZ@`?CD~aaUiZX!p_)zJR~V%pfC`Nt_@MIA$kYMA~c6B^m|~Jl&67OqFJ<)Kn@u5 zuLJ4Yab#u9)Hf%r`-^YbJe($)rqiJ(Yv4R5$jNAGeLcrOmVupQ654+v$Tg(&T%U1O z)V)3!>}Ee5`zcJ}(fw?Xjt%^WB0ZGDQgfcZ5qRF1)UD0X;ucCWx^&%jW5RjXoytb8 zgA0V+Hz^ou0ad2hTI?&V-YwY{vSm&?(b{Iwq7LOOdALLn-3 znhk_HOM9nBLuQ&V_wJ-#%W3U8L8MI6F_XQQDLAy^nAmK~l5h{os@Wg@eL~&kxyoW* ze^h`AEn%s}IyBJCTZ6l;>!zO?jaLgMNAf^V>swK7TA7`*lrXuiyDea@Aj{A{L~6th z;GtvI?I7G$q!1QMigp5scG&4i4*sz~X8Pu7vGn!?-9OQ^kh7m%b^xJano$edM`5Ri z-D5wFU7^i2bf5K5L`&R~idqnAn!v z9WYN|*b?Z>eR2arIXd;Ty9BwsdM0QnuGymiST*y}K6?Vd^T}$mw?#N7+)JU&E1Abl zdjaMSW)Vhz-0%l5=ibVSpl`SQV}ZDHPZxk!3v%vBX(JZc8z9diavX(@)IK1&9fo@F zPffRP5|&$@3)py1bgn9w!4g~jdtV?Jh|`kTx!>k$MoxwH z+=MW78&UqGySyN^`4C|4yliuM20(zPgmT?U557aNKTc1_(@9$5t;WZlI5kHlZW^(u zPn#~c7oHB`(%@FU8e5BYR!kzy-_sirrHS7Ind^Xp>AaoxO{0Z5`F=fnjJe8zAn>P4hnVOR1rg?zGYIEpvr^;wCf%zH9^x3fFF!(I7l3(P?vZ9X6vQk- zMWi#95ba^bJyY!8Amvl$)!$2sHydD3faOM>97MTmJdw78m zJ*Hu>$`L@hSJ!F`uj2*yGaewW=uzC$j|9qnjgH3U4in*+qsxb_Rcxu_@IL|MWsTcelj}k^mtDcMHC_`|p10seYU5`~K;x z&eQdlobprWoC2h25%ts2z80mS*~XfA$f*!6G#8ldNpbl5(~2~j*zZQhRGu&mrvEA@%aRz_IgrfVEM=HcYRCd{@Uxjk2`ju)6X2#G~HnntY}U zAk0J#xY)SdRtH$3SrpzBK)yV$7^_`K*zMDfLh+>{&5ObQmTt_D#|~b8A}MLbR*bjCPvF($Rv<6Zs!yuAkw05a);G4&HrOn>G|i zf%t^C9Yi=44xQ|bs&VWMKsh6hm$AW(^)%RUBtLeS3zJB4DDF})Hw1SGIM#SXh$|$& zvFKmaQ=sp4B~67zZz7U2mU>KudQZ3+h=S20%5ks=Hw4~t;+#6!+}IXR-dcRE-mK<- zQIM-DjWAAS2V}RzoG#Iq4*x{c*7C8M*D8P`M?_d1kqDhWL)Fp+$0_1G%@mCRMU>CB$ zQWfQ_3x(NOQmG>=(ivTXx{LFtvapP`pCFoB2X}tem{ON^7K}H*cLh>tr~VV$!&%C^MNeVA`E+T8A3ZB2a%?<2hnc zkL=~@X_5XY&w0`CJW%f0df|sV5GFW*<{d97x5tH|&8s1afn(_x04S`47O%cYnCi)C zb4#r85>)0~Z+~ngvev%I!0M>qAr*Y3Rbtmyia1GSj+^q=KwK!yDG^6WOKzmVTw^3P zIt;)0I#6wG&R%IMvD+Jw*DPk`hqE9-;oYi|deAKY+}gS|+Q@e+W&(V7_k&^0oq8CO_twkO!;QFJP-Z}*>tV+E5B_LA@Qx>;GnP`;V`ix)k59#uPQ4IT=eQAAT2sr9zVrN1hG8Ap&*QA(=VoFCxv_CY}I^PSHgtX=-QZ+8L7t z=J~@OYLEQ3h=yQR215+Pvjv(nT3Xrj; z^0nXiony$JJ=uXDEdU-2G0}bceet=}hIugH2LKlV4??Jx^~S|N0=Wni$3^@MdSv&>?XR_Kodrfh*kkkP?9(tKN+HV(zU_7zZU6DX={t|zZKuhzf(sXBfze}$~DR(gU&I;hcqRo6KQ*rXK7q`yFA5I?y1g1>dZpAskTy?fY z$TR!m9YM9-2ao!t%_APu=K^-M&@996ZX7f>h;v3{2Gh2m2Y`ObD+DJg2>*~wc0}{M z5N;3Y%AEU$;yc;yj)*Dq0n~EjJ|gc#mz&>daJcD>;UbDS7_o4VLKz+xoVz1?T0M)h z;sOOkLO>m{x1ikN)4NPET-|v=Kv*kT`Ed&u-{^fK*#_Pq$c;K-Z2UQ()F0TwM*kuZ zx#9y-$eC#|04kUjo5qQ(F-CH%;{>>rHN(OM7Y8ys<>Z4JUa$m6(foQh6yuI1!OS`7 zGj%TwNhx@*u_Iy`h}`ff50vBHVE|M}FS7h?+2T)5hopW@9pG(Ww&9OwK&(u{%NLg8 zlRQh{buE4tZH`NHrS}sxdgfgoSS^e4d@Liv-{9V@678bR=+uRofU0p$9pvsRO9Y+} z=+aBWt~Z)jr~@UeO5;iaPK)l^$YWoePNuF5Xig%#lz~xvCMeI5%5rRogKBAQ(nuTf-$sLApz8x}gK1|311%jAC&uh0V{H0!l{Z6!wj= z1(d9pf$kd*ln3O5Sbahfp;0$z6mt_n=3&yKta)%hwH}qXR+G)gOM;vhu1+qW2<7%d z@o)lfDnhH7*(`p!mcw$Gd+OSRb9LxtY3n%CI$&;-^zKbHwh=;;v0iq^KI=l5bv*ru z$!crd^5^1}^GO1WL@<71IRNX81N_81b?Yr_~|b`|0%< z$Q{%H58R9xq^{%Os+$+FTL*i(qf4|iXvP+krSK9g3tXc$XmOhCVlL+qN%gG_uOEv1p1WClj&d z4iK&-FZyup0n;|w3CwBswQ8S_ZQ#y8xiOe(c+p7!r9wS1?pD~R%Osvimex9E;-8g& z$O^3k%n35V7QY%>?#e&zA}wrDJ`!15K4rp#y%-HT?k~VDiM8c;-$sxNjBW+e=$7s{ zZ8tEph3i7OTo}D4i027}!kTm8-g^Qa4by%(Bj~=zR#f`06>|iuAW!`?SaG`}%Jg1~C_JC6a7-+ajha>{$RqIgXEM*UULe zc;+xlepBOh0q_o4TsihCLF8J?VGRz$<9T6p6LgljC7YoUD)%XN2pXi93nJS_Ch7+j zcJda1oYMqA@@dOiEjy;J_OH)jJZr}374W>q($YNTB^UCsOEa*mE6?3=Xq|4DFnVPC zvxWb2<4U+9($NtGw8pBf#owrZ#Lgn!ESl5lTwe*H;L^-Eu#K>nPhB|6tb$ekb)jxw zydmg*nGW`mK-Y0fTh|~@kxwdO;RQA`x}_b^*~v*V%VVdIJll?r;T=UPB+N!;O93u^ zr@W{AAlfC$RzzC)e-R2l<#8e=cS2Bs4z#L{Qkc{mwG71R`5(3`aZHy#;n3S17j`=u zhdrK=Jfp{dA-NqBb5DkF)8c+xD{Jg3$Q86#!= z5wUr-h~LESPEQrSEy%S*65kW+_d~nKktu^225%(H1?j*JNqy`9K~x(_I`eV;e@BIyv&SZ_NhS5NZ!ln&E;6Pj>#sfQKyt;2c1*$lssHSZhs4E zDBfoR-Li-xbh9|e5Qqzmv4_T6TqTGC_v`9wt^JB*=z2O!kj#q$-RVgqc_q;7@w#A_ zv#W%txB@n`KbX@;-5b}xeQ}qd+?mG2e?*a6i*C*4IRL^ep41Jyb`)Kkq_mfjc}k~1 zw-w7TbKuDWiv6P>G3QcMsOw6Lck;UW%m)^TgtAoRZXv~&-Yiw4=imZGeGLCT14846XcB#K9u0lYO2dS?m&rft zHX_|Dh~CPw&1yTUfFv81lqJ1gI+d`ZO8_r&Grn{eY zViAp3`y^~V^<)sUj>Gq0+*YTX&~A?(L}zBBXHN%M_ml$R$pu~dd@96gB!5ujPla}0 zFFeA~O1}warQ<1sM@}Q?{#@;f6;6jTXAwiN+wP2ZK~A#7d(g4-83oOx&>S0{4NY1d zQ=(l#GZ@t~pVwwQ7tE#BbJ{4$93{k!*@+yhZiI_ z2sa;luvm~eC+o)r#phUn$WC>!3qdH*6x4eabam1@aKwK~kOvLc0L+YO=KE174ag;W zEPoMUmw3QF16IEngieA}`BH2ng5t9TtFXt5bQZj7gep^4oGl2JA|~gS=TcF%4M96f z_MGlz>07x3JWm8{!rG%a#;b%2cNtOPP-h)Wn-U*)<#?b0DlHqy)RT4ZqUH3 zG44tTv$Kk8X$mE#vHcqz#IVWUutZ5B*0OSRxA&$PY_(Eq>=}5mO$Y1Dcsv6%-1IS%~ z#v64vB!!#Y-yH)A*X9&zPGM@VM;(*RVammBJP{#zt~FAW-gx&W6$#%EeT ze-q>(>4)z~V~b~sXj*wCs60^+d?`1^rS*T=4fF3{yi$i)KGDv_)=-eELqj4RjwhZ4 zagB9hRF2i2E3%OimEHh2UyxhYUT{^%yX)~7-Moj+%UXi+ge0k%Z)Di9{%{SrB1{uW@Z#jUi&RD&kcHOD4r4Rn$Z5z=w9aS;;UAs zaXMo)7Jdhe65$su{-toP0*BP3Z8PqFV88R*Tla*!+PnNi8?;Ft{MYxK49dT;)BA*- zG4{T)V3_>_5Z9p(V~Q4OdB=hR-9?$Clj8ePf+&pk5hp8b-Z6>O^;Z25fc)hBIL3*{ zm8D0;ZlZJ1*&*W%xi_Z%E{?S3M}0&b4|8tbV;_<5pQa+gdqt5tzMVUxcRGa2>nTi~ z^OjElDO?F@_spOA+ky1{83b3X~JV+Cw$VeOAQdVhR!0pa3$ZA*$F7 zLbwV#SRrfR+0@U$Tx8AzG5m`nO0|+6qOQhYg;A__YWxp{UGAa_MZ=fHN0h{i_nyLB z;>P|m+t>XCxchNvFQbCN%T1CPKcYWiG`6_OEanN(6ghd~8unF@3^vbfCeIMSznI1L z#@ixX8XkaQQkUiM{NMPKNhMs_>lws3z6EeMun8_cTm_jE1Kr)_q`0=tcVJYr6+Njg zh2aV;Qo~%G|HAAvu2I;Z_V?uf&-)&%HVWmK`U?Rbz_?q{iAwq~OZ-rerhBz032^!K zQY8xw^VWHFu+-6l30YrjXKejb@o77E*G@aE zNxu{jbBgYn;y6L>;@ly#EQxm2usGq6-Q6Bjeg$*YIxv{yrLNxqoN*Zq9uByx2w}40 z9qubSH2P1DUieRvCfJ0ughbVH+;t4e$z!X?x~kH4Bpvw>(}v5>u`Fl8!DjvZ$&BI;#w zR0Hmu1B7;G>m{dI&x_2%ZcyTZHwB2tl_|0GoP;So+tX3eBf<=)Jjv7MG(ov>xkQ%# zyh@bk0we>BHKf|uEYcZBznm9x1h`@_aAaIukHFOPprb+AVYj!31;@qxhHA^L}gqG!J1%Vbl|hdk^j z(Cn2_D(n7qAuf|vXZAsOuAU!^=1iv7an1roj0&=&)cL;^<}t#A+h-3;vG9VRp4ez< zj(3RnNN(yF?kUPR}Iy3y#}<$Vg(`z5|y3nk05zyS5V;gzHgLJmrovqc@(1#B)^Zb z#p1*uqei{lu&W3OEu$)Sx zZ6hIGEZBC(XChrr1{&`6en*S9yD!K86jJ^UW6>2LoC6XxWPPl_e-h?$X-|m|gKV1x z(slb$()&SSXV}RzJ!`KBnG&Qh4~xjfYimRkB^Fx=#N}y`oObq=ix@q0XU5w!A*79O zzgT=#!t_w~3W#BM5ara^W)H&Et%f^pBNwEvE9`$chUqeXjS(Q`F{g8sJPr`xy7UdO zvBH5+Ydj&)ou#E4Z^c#&TxGQ)s?H5|>wc=hq6Z<8U3PT<*QST1EdC*gwdNKHRTq|uU&n#D98L7hm~(tVOQI78i1r+!o2N9rF=ZSl*riCK z=IEUO;PP|k;eCg`=o94Zbl7H3-4%}r6F-~UV!eq)8d!iciiQMG6WOA~q_rX3O_+$= z=w!zVF+VsR=#eXptOwQs&5YBVd8G4}pggT0CPCX*d&U{oEl`9U>=Dvk$7(`dzkJt` z{1_c9n4(B0H;(=@gp0z~uQbT%ObFG$%X4(CN7&WuY~qZrz57uc_;WpX5jTl2i~CzB z-X>T(nCj z7nn(Syqhp**;4TuL=H!74qEFO7$l>j_N1Wvao42ogg7H~Mz~9FjXAdj@^Gl49WiyJeY$ecRq^~z7 zi*m=tXoLH-7q$X$xsV~SPl(oS`~lKY9)3Jnlyl`mBiZ>~ylwFbZ;|NUVUg`YoU!hE zq@7ufLv{dk;W(VfIU=1i{hzTi-;Mz066X)JU`S}n&R~{j>K;N~b2N3=ljIA+T1GkDJJa&soJ&o$4v@nURBc5sLSpRLh|V4^~ISYh>F{nxK&}N(u?P@ z&vHCAxuavTefZB+L*b}BR^Asn_mJe_S99BQjeu@#y^Yt=He?l_9h$)1Rm!{!Fc^mj za34m>b(tvV%MLc46X~RpMq!HDj~3!_6~N4FwBo4qLd_tw@8~t+0tH>Tc3o_o*aq!h zlT09x(y|7eE;M&oxW+zJ0E}So(G$ZuAk5WCTPOvj| zISs`7JaZz#g_Q3A3VBd>f#esrKNsT4q8Ak>_CUH&_^#xORVM>D)20&g+HFPCKs+24 zKPc=nCV^#hHOBT9(b0+IrcAVx$0R526$z6@tr5>F=)(2cx?+44#EfpP^rGse&Cr^C zfO!-Tq6)#h9_vm4%Ok`-hha}gR0YF7ROJU^g#i;BpE_fd2p1H6y>zpCsUT<1>o}7* zs7@2&>^b^KJdXZ7+#Z!)P@h!cq6&p zEG%E_QVj-bc2)mX{c~ghEv?n49#JHyS96%V&JmJ(Sz5QsG53)`6qqYN&X4S(MrA-d z%5*pLg8+ZT_~I&{BUU)7NI9v`U>j9O%Cd_^A@S(qv+5ugpu8dU%rQWDmXW(3y*Q8Z z(y{f3Y1!aK-Q$7GMfRGgcl`YX0Jk4I!=_i%eRH2EdfYLtN zPsXhx%u+_M#&35la%zDgsjW!b7fT3p36PMo#H=iUSp^NW*z7dIq==xo6ly|@*_rOht$OwiIs$EK4V9HjKWTa zCygjqN8BpNy>_6j53z{MX}&xg(8cGHgK@OzIRGAabh);e@!TRIrjkCr7B)f<`7lw( z2KB%DFg}$s!a0BEZ`X-yTU|bUc0LH)&szO6UH}PK*n5{^B@rZsGECflp~LI};=zk* zk+`Zp=wgUm%GM5ilU*!;$rq{qB?^*SW2v<(=D!5O?c6YKWE>*WeB$Aj^aL3l?oOdD zpezZHNImyEq=|QPO7WTy^AGd-F5NJEAt2qH} zBsi*fJ@-`DWy0({-p_w^AiuitO8z1@HhH~q)zuL0?Z_OYhhB}{t|`9dMTah`%lOXQQ$et^;!g>3Lcrkp`3a#(?Q5P&OQcLMeQ@ocSyhT<*5Tfj1N>Nb!Y@^3aWrt4qANScDmZ=i#_tWG+}+ zRqiROvHVS7W-@Mjx?+rI$H6LDGTw6Z3v=Olp^lNPW92|SA{Uh~k@5ASF!v*g`6PsW zQ;_SZ#e-UpycvWR>+PNzyD043Boj$3dW^8lPN<++**)wInXWAJ-Rd$AJ?gg<739#{Ga69P4T!Wmq1rT49SMuL0nEYd=ehw zTJMfJhH`0|RJX5Vy!(`$D;c$4lIp z)Ajx>%q8M(Q7_+}csB@rf(KdKVvBnr$U?pvZ@kZcFtD5AIT4;p%H7f-d|rT?lEVmd z9P*xcU!YU3GLh4etK458jW`xUPIIylH*Gfyv$kz-34)<=4c8SHJOJga*yxXEKlC7g zv$C$AmeFqn=EkMN(;cpPsEAhLWQPESa^E1({HABggIG(<`42Ev6943@C`{I@NnFm1 z7L_N=ejTq8P+J$dB+(#b96k4N5f7mNqP5QjxWjOL9VV;=*|=Nh(tC|@=TND|KlGAav@vV8Z|UO5~3c*;cK2J2(xyyHpS)& zx}!-D6ubP6mOA!{qWMgUo1f<}j*#N8e}kL7+-phEK!EFJ=IT^`+EYd95`@LCqUoTD z5$pU1A~(CN$2yE;M#>Z#=YkWSCX)ISPdjqs@LwqB%DWcG3I6m9fH^`hVMpR#xVm5` z)ZfDfo6)+HAom_tye2fzdET^+NhOjFg&Trri%&HcWdgVCb44cXsPyCreWw!V33f-( za~cOfUyu!GCZG2LBt0Oz*5PohdG0x(xfB@N<65vBUkS@I6td{`UW9}#^)5On#I<35 z#=xvU?tcl0W|3#}bzUV5Q`y|MMxO{bgRDT?xVXd+PN3N~AcgnX`85Ezs%x8a{8N*T2Df$ zrQZT^MX(i3r;VKiDM8*2?o&7~J5sE9Tr{O*d)?9(U)Mj@%CFJ?ogf!n%DkD?u=KFE z`NI`1m6@7i@Errq*r}(>;I9R^a9T9kobLM`h?|ButT8m#Jnw_Kz`W?51SBH_d1NDI zLGGQVy%|0Lr495FZ0u7IV<*IwAM%eYg^QUM)6SSzYju16m}0;J?9XD%M}%GFacjor zqFfDBN$H6@3Gl~KuAyna7vd5kC+a{l5NCc2?**}AF9ax?QO8wk{#Lu4>U=wGN zM(%?U$9)0le9`-q#Z5UL7UnUBBj)(#OGuhvhzsy7zak7D^h#5_B7#5I631p=6LyZp zdxEjQK=UQ39U{8wRDh#dzu z=Wo{mB*d)W9|~}3yLc1qfZrf<9rK$ehYE5-ryA@qJ91()OcIOq=$POFDUhe`b;A^xIa zW2hA(vH}|u#7o_y9LFe3`ZU4BI6*{hF0ImbbN1oGlD zaa63ZI25hb(-MseI&KxSLEVyEBFL<$aHdICAg?X~M&Y24YAk7@UwwJRQV>?flOBC< zGHg$Wqa&Agw2JQiZxLaR%hN90m?nhURB^yQ+c3fu&jus&Ws0i+=J*XnR-^u-vDjSmubC<$echrLo7O~0MNYRfOlmb;AWkf zgM6+QZ$SOq0L&c@`bgcoO=hgd~SRZUFPiU#}=Ic zLgGAn7<(w}#3lQWPejvlTv@cnyb~cvms0@kahWJr1I+`3K2HlE9jV!GvL<0?T4gJ? zxkxuJ+H|_v&}n2ys2h+T*{UAJHUC<6}_iq%G3tj4xSH?Gl*bqw(0DqhtfoTDd zx0u&6Aq||^Y-9d$Z>!AgS*XUv zc_N%OrcjJ02AcgE}g_Q z&y2|Q`=o5a(dWc{L0v%P5K?5jRtT9U^T#_xIF;%EdUP?aRHQ;Lk`27(vA2X$wpO%) zk7_JFkwVpA{8xZ`4W@i?RuiNvJYiJ4AOVb;gJZ5TAVo-5(6@`o{av@`7=H+H zAL*05FGJvoN)d_GL}&lonn9dvJKAb@iF8He|Bw3@0Zs%RWM=V7R9lKfI5mqGrwM_d z%&@=I|3ti~;WMGNND>a?2XuTJ09@dzDMqvtrk2U&V_YT5jgG{#D?S%Z%t?eF>>%v= zC8L6Bd@979P2SP8fsBPa!Calr?$+2zq!a8xe<^P7g3e5x7|V7SksDcv$B4|GP%npe z#55r=m}}okY}5l$>nY>MkBD<81DG{>bz2M4AA9}5U_VRuY9jo9b+8kQe(njYKvYQ2 z8g9}@*x4cZm{O`lmyle2mA0ebu}9%M`dWqEEjfE*E}4AE%r)@4G_WDTkVA;m;NGSy zJ`qh7QuFUMwTPbf#??4d2n>U3}iGcgw1AKH_w-E~ybM7)Mz8ZO-ea<6{?Bqiym(>{8T z!)+|Zk13p&Vh)>r7IKSPNA>|x**AIXdWBe;C&f3g0^O^Rz=Juv+bLGBjJ47jJ7=Lmq@ExAQ<4 zY8`YO>iCNv3y}8+6(%7`oZ-lJg54tWNg96_O&^d#P;WFH2LYK7-`HKW z^OW^79sVF8xhHUi$MhiQ({~6ZjRrdIJN0j*(@sTx6yib1v^UT3P%cd?9*1M@6QJ|3 zz$k(84hbO!k837o&UO;C8$nYPPcFs6g7UZ?6YZkR%qn+*w~BO%+&W0?apB1zxy?FC zXp4R%z)`q!)Z04?ol+n;@zi$bOd-ye!ILg+_B##8wNF=aez0cI(~F4gmy-jG(wRW+ z6Ygj*dVzDmT=BH|zFM^7AQzx}vMV_LTre2fgsoon?}VK{0=}erceo&r21z{nc;%Vh z-FblU!s;bWqH4L|TlLlRq3MYn1$j>R0*K6O)ZQr6dl!P3Gsp~C@;AN+z`3G+lk6Km z5M=h!tKyc6i%(E$;k32KCH`MZnW!y1Dv}&g1Zs~@MC68Qi0?&FIF#LzmD4Yxof%Gw zD^2X{+Aalhfp9~`6gqgBzhO&Skt2y)M0>0jX9GMulw+35`6GADnq-4DQ>e4(sdOh> zn6v5-9&k7~m1D6hidfPKZD*mpMi7%s6Wv?E+`llCdQ_x~NN+^0G3iQxJV`Y(rjkC` z@mB#lWBE|h;JHnZTb$|FZ&l27HJH3P8#m72*)pMWe_erbj;wIt?Tt@`(et{v44C73!tN&Y30($V zUq`s>kudxoA;hO&#m5S}&vgtk9UOE6G(DhU;^>KSjtKv$7rW!!{AUYq`@}OM+-4YJ zVKSPOeV-Sqw2`d;^+v+3BeM-VaRl~)oMH=4cf|TP<>=f}E`GDaQ_(E>Rbg7NZF0KhFCsqMR5f0{YVjcNIXXT;ft|zi9w2qhA53#^r)spjL!7&xmyEC$CoA z7uCN(KaH-7Pv^UfNV$M3-vdGc8+9YFwFr-htSHYn+X*z|5vok#l8pnTFwYO;Cq~1) zP+q`_8*u7=w_q1gHkI#-%mw78AHB*|?*nmmop`0Ou%P??0+j7~J07F@qDNq!0sG4X z`26V=;>7Xp6MYXsnm=sQ(drqDeg6UEa%V3j)i_m{8C@Znu2|qv0IJ`^SwB7#k*klG z!8@Ms1Zr+aM$z;bVHcx{tp}a8SBMjwf}{*l{XYRnkcpD##6&njHd);FYvrE#Ux4l? zL_%8thaKG9Jzk*9vNb_oLY+W`Ud2da^L+L1qm~eur_p!%6C~g%D7gT`zl+cE9dg8pNpy3Hd4e_?ZR9LP- zV$uIVm>ozb*)}u?aMxhRfjJX(V>W3M>;#eYHN-=G+a$(HbUT@&uEztEx z52+Gsy#Y;mkvYaT3K#7?A=*Tf4TdIdal)GrZdu9BxiN@O1esSd-9-qu>02OL6(+?c z3cB(wsDD2o($z?xBh!vAg^@SLUa{uegq=5c)QyF)Xs0}YL`_TmP9Ffd-0au7@M^-Fioz%=kHW`e3j32%8T%G`@ogUh ziOo7CZ~PI2ha#H+q#ayH6K7Mw9mmYfV@8gModm!z zG+eu4wr?PErKBV>HTs08H`oK?mfu2>T=JYiMPB*NG`%Cu>DBLx1eht+wH_5hd(k!G zONGs$o)T{`ql?!Ttv>*&0LU`p2NA^9ZheWL9Ok4N!+s&`dLpClkB>#WMR+b9;M zJ$@}P?EksX=R9@uZw1CptS)BIftq2>TCYGMP{+k|{yuglV6(fUdk`tXV7w@Zq9HUM z74L}1MW8dqtTRJqABpCy7v& zwDV&*+{m0h^IYK0jfuD|8A{wMEVH^akc{E~HaC!SZ0_b}3>C;~#5{mx!2Sl2sR%M? zrA~J#tZijS{HS2A9#_4+an!s3wGqdT6agm{{F_i`shhY)=K8k;`Ah8#tMOGm4(|ac zo0`4nBTi-nvQn&N*zoKp&|5(~eZ4q8l=}rL{^+7C0PQh^`HuXZZn>c2r}-yZMAgd2 z2B{S-rmh&fFlc5;@@Y|x$$}hF+Z$exsHUdps=KtZAbXja)OK zY$uQs^|YdBz2ssLW-zBdT-Yu1M*zw$#p#a}CMGQ6YJ71Br%fNld7S7x522e!^!6n{ zJeAkZ8sf$=g4J)6wrD&rk_>PY5tEiI(qO{oqu6;VM`p6Z15}hmI#ZsL>W)(~ZF5%S zb4%BwqdvX6NJr-_=!x;pGSIo5F(0FhXAdh7};QV`F!bZYw=#jdiR5mn}Izz1nI)z zY6(^0j|4bH1`ls5#DOapU$kQgahFI^OSjhdW`b$FA^s=AS+f&M65ekFxhHdN(}L)M zB6h4&B#4!MT(T-8V;(aW#`wI$p-7&gG8m7GaOoKEoB$3R0Z^-5^7$IC2yz@0w@}Uh zMu7P=AR&{E2sf_==32L)3i0mh#W&=`8RU>Pif`)bpBi!0C{U`0sGuu06+uT*3653RU6I3LbNpR&t~z%5 z9KZ#@rYbq`yvk@OmjsUux``f)_3Bs~Z%C)-(YwYF&kc~I|LLv6{|O{tj3i>%Si;Qr zJyYV3;|NkVx?3q$6XD{shfEGq*f{Mo-e30Ne)r&sgv}pqFtqVJUJz`ylr7E^=|XZ@ zuGNr*XH77t%Qb@38?l83&3f`0R z(vo2F64}mRtgdJ-2NrsLX}5N}Fr7)UgYSx8*M;&I%(iS~{tWF=P?bVlH4a`61fF#w zE;wd=!Y*w)JH;h8@L!n9Mu);A+m7e|rZ`fRS;TRk^|Bf-YzX8AVK%8&c@(rWHroi$ z1*F|rCt%58!d#?*q=&vSw0Xk86A}KY0&;{(V`Ds0ryJpR?6V2~yAG1aFt!?nxH#QN z4^^!pK~$@qdzK3oCI|eYQB>BwOX?|b<0G$TJ8Vi6=gCofT>K{5t*I?3+S{6yF5Jus zrPV+xKgVni;Ebync*!gLc3S|sbZiK;!0jT0?#F#&W1LX`yNcgLW{qh=Tz{?oNCUP6 zfYp*}SE3@yCBt*^U^Hz7?O};UrF%vjE6FKagS+jzFn&*@ONP%B)?@j_FJfRk8Q*OK zS<4qWK&-JXfIs2Q=Sna8z83|-#WwCT7Tk_-W;->Z-hHXLow% zdCHzZxq8TGI&hcH(dY`H9%Z`6;l&g-UI}#es1lZX;#I|>UacH5cHfJzhai$2yLEY1 zn2X=bf$gk)AoC<79fYjj@`_*=3h`o_)`^ApEg&9jqny<^vs6H(uBj*)pdZu(l#@sF zuxp)c$FJN0BApwD;w;0%+gTadJmPH79ZS?{M&zitU9?M+jQAMW4-3lEUu$-X{#gag zY-1BRl>sI9N5h(n#I>u933Ymsq%a4F&V#CUGa=Xgw+PSEC3i~nx+PmcT(?PB{TwPX zXD8iCJF{544U~?{Do}}&L^us;7SY-ZP6BaN*jqKX^>)Tz1UXrjlNfA=bj^CCRIZ+V zmoOb*s_}t>Zg7mVIo$jvz}IgQ9tGgdcHWcg1a+y(-FjRgrU;=3 zW35Zv*HuKoFii?!@79q4d`)mWcXT&#$X51%?eU^0Cz*_UDzRn{2z+SK2ECLClo%^< z<7ECZ3pz_&ozQFM?FGuMiCg@%2YF4HlSI>qYs#2b1<6(K=8`s+?gMbYVTmcl`l20y z^@f@b>j!ZC@!KTDam^l$Lg8j_Yb-W}Afsg>Uf>SMVLcza^+1u*APR~MB>^s>+L`se z8jDRWB4N#f9@hi`E;3s%$y3f0;u4~5S&2(TdknKvXu*ygr#E*9q!2R6yN5nA!RVw(e!VEyLJmi1>)UbylTc&7N8vo-aH~>^X9c)9)fMy%$m07KDKriCAd8Nr zgt%I=yJqZ{V?|*qIH|6wFddL(Pq()>))SE5MXV+^Jb(!9<<-I1S(IymV>P5pI!jCw z=#r&3k>i{L0mN5E$yWyvb}4%+T!k^~uY7O;=^|6jvyC7+tt6E(`Va_bxx%>E`%oxn zsmu4aK3ToqBhXp0igMfjpa2r!NUaC9O|XWIiDgC93Q%p5cKZr~^4F|arMOXm^YDH} ztv|!zfNt-`4y*x|5bfsa>rQv0Hwy6tQblF!rTPbDM1wKuh$4X&yJhKe~v7U9XNxl{iya9u7#3D9TL7 z6rW+_jtu1>0p>AcxmjZ)4nK~6 z&1b!>t*hee{su&a@hKfE98Xx&k{%Y=Rs^}TePg4)y(lvpAwpZ+EZV$~+&8VvKMHdR z#Rp_VlyHd?09`_lpw$F8mR?4;&GaOJ<_7038M{6sBxiuVCQ_M7ymum)=B6nz_elg@ z9tIwF3a1naAXLV{A!ZRmeFlway0gq^1P(4rQ`X*P)3c-+3b4 z?8t5P2tllM4v-7hg4I$CiuPpxXlsH|o##Th2#EAhdY7NK8wI)s zllpPu8KcfC0G+i<(I>$9w<3CzK>jvC=A10uIaT2<`+P8J&gLzKUr?lB8O#&`PJ`!W zl84rb7Xs13ZT&GtK`{+`+HVv#kGXx9j^q{>fp}+??s!;TwB6WSu#=RLjs(E>3CiDM z%RqC?b1?`h5AibD#tNIQrKyO8L^`rMJ0o`YOF&#Ji7)7fWn5wSqcPq-{2~&5w&;ps zhf5*cdS%u~)%AC}JTH<&dD=`PTv+i^D8e>{nk2;POpDlA3$hf>#&ONQ=bA3os*a zd#1DNF+!*U4uRrXh0W%Yo|a~HS?C)7tsT#Z9G2I(uN8IyP>^HVneo~JkY^iiRs}dQ zW-zWQcs@dq1{~J&agm7JuVvEuK>icmbmk8cZXT{dyO5%^MD@A?(`g9{mvX#R$8=?m zeiwSE!pv6gn52!($BSGKSTqD)B_|5VbxpTuy|F<(4rV6Yc0Ey#!~$lEMxw3=UJ>D(QCCN0X78H-TyY++ug15c-B&T2jL|nkdVEV} zS$}N%ulmFBu;-3P>m(O(@!Bo?o4X&K&|1Fm6|Yt_7#Mw5rlW z%0kVx9ttw+G)UJSAL4A;Ce{HgZ&;tU6TpDrX{*>@VTz5zUj)h*iE`bvuFFA@?!&Lo zA7CaBH!JMQurKC7AD;>#LuL#gf?DndaP1I`(QDN`@3{xirNq5ujJ($$u^DJYP=Tmh zfZ04K&ChM`DJWBEa zM6DArym+99PH>=5^Q(&PS$jMvfNyxM2D{x%Xwi@FGl5+-E%adV9dbT)z7+v{$IT17 z8xbxod1GW9FV+!eXnB_(dWbl*Ln{THrm#za4>s;^|C9gZedL(%52xHL=Mfu;@WjEc zlB-Xcd#W(kOjk;HyU{-TJfZI1+?poSOlH!KcqAu>ZDwyQ_b8EQ7w$T>*MCT4(RNcY zd1Pbxvp{Ob{&;lk@EC+k3fJl0o&RzQH09Wle~Q+}i~mv7B8PqfHMY}h?JTtI2~aZ# zch_=TaEuV~U2F0qBIuX4vHCFo#ja;$9QP!Dx!JR7Ykd0@kUNiDG{nfKp>vz!&a4tY z3dj*;;6Cerq0L0ipXs%(#f0Ua&88D(EF;8UA>J4r>poM&V1pxPQ5!r9ViQq&1!ZFL znRBZCsSPDsL<-$>p>v)C_AqGDeYZ%uKxwEgR(#%JULlV03cHTIcw18&Z}9>U>}f_@ zIPQKC!e!+l6e-@_C&Xn%H>w;@h&BrljoG;o@Bn#4I^QD5A!HTiezs;kRTK7rx9Nt{@VNcv__U6I=Hr*}_2R6~H`& z`nl*Nhu>MS<7%(K5Mi=ls3_GW>g0g7Q(>?*{`^>k}XzncKMBYnK3Cw>-1;+<`b+y&o) zaDkZZcw&g5SB{m0(y(~ijopiIQ+%T^pYqgCU(EClgn6aMO8y|Sus6;IxT%dc(?9O6 zI2hF1oILa?%=KWeEd!rpg}9lLyBAvHEI}^!#4)k>yQcJnKzl4FiY@EdHDWIX{bf~4 zINfc3LAfz{xwfKTRO8s3KqCUvmKggUQF32q@7*RccO;Zju*He}1(}bX7{vF*bpmRm z0=GfTI_kV@y74*A$grg`pt5oUM?txPBTvW^U~ z?z0t|Z+ekvD>h)LX$tU1lv7GcPu8PIJ$XcYD}Zt%)$NVhK82u?4ZLeyQP@3efM;>> zW~j|y^JkzmX|k-2k3>0rDI~H1?)@Bu0izoqNl(reP4YOk?v5`-xY9bxlwzqb9h;6l zrLCA= z5mCo-UR>iSlfYakH01D~!UYhif_PHGc&2T!SdRFU}Y3DHBJW3=9@DG&p0zPvEdr zlX`qD!Wk!P>X`Xw|I36}iN!>?6ll9}i0g}K`G0opJh&jjS@NO_F7oT~H5X~1KbPYt zt*W;~WOiUIolbRE{aWO~H&mn=(*#k|QLLBO{YE&m7gd*z7(T;VwSm9`ezD|?kp6!X zCjVUN2=M-#Lmsm``<2v{{x~y#xU==(_Mc^-NeG;vCy$H|M0m29FfOLd0_Bo2@=INM zE#{P2!7_u{_eRrf&`waoC^oA%2%+GO+)J%KM-dyjel_+I?OulaJ$k3wZ1y<;&EP&x z0NN(cDJZu{xx_Wah60>zwUtfX-lCn5{MMor#B6roTtz}HSm@|*al<@CJTBLhO&01B z0zHlBG3r(3g(Ph@1j#~Y9no-vD)+_SBB)I(b+0JwQlVN-FF)W904}+l%{%H)Xx_}8DZ|sZXL@?iXw8V1? z=7UdmI+z6Ik1Yu9#F(3V(!GaUyb0L1&7!Xv05(cqvJC z8F}Bew_vA77l~s7qn}~Wu2?(W=~t1pxv8(Ms-vBz`^}aGryP3r`0N~>gx%}O%YnPyu%U%DUHI3J zS(gWO$}5C@mkp)MAb>%~~TQY0OqwUq};2-ao?HtB;gaa9m!Iawt=RoM@S1^k`(6dMz=d|5^UVk`ke48e*+ZL+>Q5@Ng zaFRPDlTrs^jQ=&0+KqA|yhx-+g3i)3S=uy?TLaj|kqQk`r@=^=v*K!6rySlyAsWN1 z)CK>35#c%|-&xT)vH+&E$?xw&0+{3x5z_155JfrlEENxmFVFz#PR5xkIen!|E-I8R z*~xf2Phn?}+^@x)qYFS9fsL`KfLfa&9ZJ2rQ6Pmx9lte}9s}WuHOc{^&b0dpbIx3? zu(L^Gsu&CE+;nst5sl-VPGgDAKTQPX;_1CuWP<k!|gJYk`pg9@(S3Heu4N4kF6wj82hGQx2r#cG0j^PH8zk ztOKQ~Py2;+MYuGbO*l}^|52fd@sSA60u%+)&o&u-m1FjGom`U1#BHKTA!|hcvK}PG z(lh2G)+g)^k+qDYOOTnSMFce!0p=~m)7u?V?0Z9~D=bwi+PfU*ZUE*H%i^VN+0Gk+ zP?K^u#C{^g4^FsmC=3IV0xZki!W%(56ZYQidP{&C(T#+1qY+?pk!#Jkq5c_%A*|0=*o6PZaxGAsig4>p()HnGqWy8h z__6VZNSBJ^if#)wb$mULqYiY7Xex@k&scaf!g;A6G78E=bp*u*y@C7W=EU*NsdFHn z5=BvvoVCUuwt&bpG&UA`kQl3{Egd7hCHt)i7mnBaVwtTVonLw{wkzHf;+8^!)YmE} zqHAwc#F923b=X~qWAOqHcTr3MnJ^Iw&6n z*uc>6*9wFmm~6!o+ZSJP_aP5)RA>`{W_Y?f+^bGEw{ds=>F++0Nlu#JPT8UO2rKP8xQDa^3!xF!~Rd<7_PF+6{_Iv-gcP6sFQry^1|W^#6TvCd{s0FU|m4F#iM&dk~77Knf4-F zYYqG?bE~}X?;-4k;QQFUiB%imCDdkS+Q&&$@Mp1%!g*LAoED|3$V&WD5yc#gheh3; zj@j2SkeODaEW#~XdnZTxqiKR&M|nMrjT#GD?2Z|l3L429-U38ZC9IHRw8E+_M>%$6 z>xeXabbRE#>l-1iGx{ssZsJ6t4CMSeWze>}Xws7k*vN{*dZpxOg|$1!jbt-Hr;=QW zlgc%Ms5`rX!5Gm3K{2!?r^|G=nq)VCJS92eGSsj@}&Jg6zhr$Ktb5x#qtVgIz zCfQ`n-d4~pQj%G05;S=-9k;~iBFt|zyV~WX2KTD%fVuIw3F?k_1ehZgbPL&VJlFw3 zS+k+u%Oa^g-lAi4m%|-&obwbW8g&>bO^t6v)>=2&dN70z>n=dHMfo+>-vs7y#Ziu4 zti^ba9#E>LLzo(UFVT4(OKR>13h*G}bZg7?V}-f5F}XEPb`s($%^k0Zb_r#Sc~}+F zCCuLH=yEIf6`&6D^a-6}1-c*BPt%ncBRI1PRXVsiK?wO{XosEf38LUW2hUQRmjA-t z1FP(>qF^E}`D2BC!Y&rBp5nwQkWLk+x{{U5Hvr=7>9*SVqgUDzy9qV}x^TyqmdJ#e zm#myUSQzT9?}U<@yo7Y?D+#9C~y$VjJzR+(lF z2{WhrTjM=Z?yy$$WfB-FK0=JeO&{yicEU2plY2sK+m5YAWHe|iHWXI~BXuufZ`VIl zrMfZv=Bd8@aug1^mDp{6C>H>shHi!9F+r*{{wUv2*!4umA9q5Z34rHq&FRGdQ~h&o zuq5SQ;lLurq!vY;=ROF?4A)jEZJ}-vmivHj_)3Qqv2Z@&>$FpZxp?VTm^;Yx1?B$C z>c!FH&?1hkv2^lyUXU}SfBBy1iNnAc7d7LIiw-a1Fr<8dd{r3iWUIB~5&YAx$a%?4AC zgLZyQ2D;*m2Lw53nE|IsW7zTjj2QqQtvIGS0b1h|e_MDbIuVM>C4=SzM5Nj@#_#-2i8 zr>4{Rwf;9=hNNQp&-3^@4@jqi%b4?vL>js0V~?@F5TEF1N6tKIT~^4OFDSm2@lVof zSouOQPXmlr%Cw3A^RrtL(|tu#4Z85u{&-VV9;My=O|41ICqBOjlu{$hrUfsC$bGPv z`JgE-76Kh4AVJFXqdu$wfiT|5K`5sr;|DisQlEI|~&3wnZK%(3UZOq zI%Ye0RT0Gw8msYVLC#7dtZPJ?p~;vkZm)lm9vR^N=FO{%Pf!kxm9K%U^$m9H3~`h} z1X45lW1M|$5ua0Sd@Pc`P|l9w*AaFtTHF&$Lim>{CazJ~#b@R!#p|MLV^UKwi{hKY zXgnU<;&nn1t_()r@wrGhx8@zh_3G>MUk~ak%J(|AF9OK28)wBgDC`1p4bsk2GTtq|nf z$c@v{3TrA)7DIRCf6A2NGlk8=Dgv!}Zi6&Kq=8ex!bXT&r3>4j_><_oQc0JI9?E5u zK=LZFC;lXd)k1A|fV<=zQ1SGS@wXt#IG`ttuFQlU3yOzDIH#U|WU&2rI_98s=I#^W zl*(-_X-oIEAeV$in7yX%lnvOAR8#&_h4=$0!Mrchtteq-SG;mRfSQ|Z=X;?3Cx$+KafkpHnGJJ( zdH0M50cjkZYjHq)QIvaI(wEGp=3fbBO<18JW_yUB%h;jkAy@oILF1I4dtK2kVZ+FA z@v=ylkV%L}d8G~@GlsYC2%yNEC1Rb237gM4C`f~I@kiuVh|A*FLZ;Z?TVaFG9Kf!;L4AYQOw1`kkl%~YwTA1}Po&?WLhEp8|o`5{Q z&=k?7^S=bSRwb#5Rb$3~J2j4uv4g^7gZKPu?41d2(7IztgufeQozq+ENYd`F#_d9= z{vzCDN`41$O zZ@^0JJca#zm6vijsQ1PF!kjHznQAmV4V}~D@r~BlUw|XvWN>6WE7~bH1mB|+#?#^&JeBAgsnfgBc5MVKtiEJR`|LEW|WSbF1v6H#w$`8Kig zsFX8l65HqMYFR|?@c1e@_Q2kMQV zg;GCVj-!fWf-A0;I7Ebo5gvkH&0%&5amWYY&Rk-_n?9_QSX4hDvNo8|D2@X@0&u&l z)%6;9Uz}YBd%AnFg!C4H{UM+-%OAh1MFD$6HRolNOwPO!dPR!hIXF#;pbBH6#@4Euv7{gAY|NA1T+Lnw{Ph26`y-<(XrYrV0 zh2@zp+k=*3rXK*^uE};!=4GuHrm}&E;MW#QXgUnR*eoIQNV2e>}z%kL3T-6!@eF^8x`89=$&n zK>J9V*&5&1|HdOOGK)QCSi4p}-sphIoZawbBQ)1T3rabj6+*h6cbIDzpAn$e)w`SY zHui>s{FNazZKmV6MBAmgf!!LVuEFG${Z2uS$?V>* zH)DE8;6H-RNohenEz-5g4rCcn!{z~WF<7S<*>Q&uf2Ha1ZIS*82l33{S`?b+1*H2* zjjmf^7rWHPi2PUnuQH`OrYr2m=t|Z>@BRTG7v3+u#N_#$7IOQzMq$Sm=X9>|BVr{1{v0;~99=2XslbBB4sApQbz}UptrgBwbE^RuB zSzug^&6WXoXBlFPh4Q`tCs--7C6o;9WnnH11`#afE%Aq81=P-+lAx6YIVre7ukR7y znwL5-FR!5B1VT6H=6q99*#9Cg)Q<9$^3&$`(x$-D$$i zK{iq)G=%6RMAXp)a!%6&WuOZ}oe$`DHzhJWeEaQbK|#-de2%Kw|fPLLyO74O(xvBdgd=CY2l2w_KW00Ng$6s*Kp z5&oohF&rNXBSX&KB>GjRH~|p9x*`ANMGhwZvrfwLa@~#iH}e#oL6oB62tlrOQ-347 z!g~d{0^GWG#Zemq0x8Vcl*euts z2xFGp);X{=@=US_=PAvJqL9{y48hfGlMUiPk z!?;*&C&F$Xj@a4YcsGI0nO!;~=dU{hxa~F0IP9G+#NXLaLsffGAlZybPE5+XKv7Yx zyzw^?PLll_%iK!>Jb_4?jG0|$$ftG%H4oB5q@UL5PM%YUd;Y@zUVwEMidd1ucyFA! z8*uKf60^`cay&gb!$iYGmp~Yb=r5-08<&tV$99kgpg2DWcE#jVCWh?|4Xes&r@4tJm!D%q z61MIj$c?S_KV8I37e+peff&0FVHX5b5hiV>*eDBhJ0WP%-f^XUL6lFLGM8#BJ}T)o z3D(Khct)Uel8c07Q2SdwB2M_Ehs$iZY!eallENwSRgo?Cy-tJ#(m92lxB&?e-iCl*50?lS8fZSyAI`HpS_$xR{0JuNKpwAMp{|BtD&4wI|M+Bhyjg5&_f7S}*B@gTd{q6;kU(mmZH znVIg%bWbJ|ba8iCZ1Lb5U~!kl-CY(4`yq?VV$1h?>%D!O=jlJ{yj{2I)G0r8>J-^B zZ$(We<3q`+UONREDb#lphk0-ASc2wi6-Hx=2sj{tKI%0q%k;R zP^5$A9V>ZCw45|E6$CN1wlkS4NR5nc85K7+WAX~G)&=pTAPX(|WI;UY+OG(92{p(d zvkj+!m^q!@jfme1u-G{A$1PhQG$q!ej)adE2@93B_(DN{%E}l`_plm(%g#;G)8gh3>sVF6-*&SHTo?(F4I; zIT$7BY=5*6GR1NVlLrx5%hC)?&WAI>(+)COWnuTO9&qzI9`S3pe#x@lY^w;4!#3 zM`35rd_c?oM1UJ2^Ka^_YKZIp1vqPE7=g!gheKx#6O(Ir={N$!nalANmelc?AdeX7 zz#K&uqvhAlh)l2;a`1?#Ag9I|sHX9WM}m-_{84FRe`ZEAmG)|Vv;9&0-(XX>0KHrL zS#Tx+ZBWnyEpRlDWmIBCzEG1a_P54gj^STw48>9{4i}LL1Jm%qSngN=w-X$Gvj&&h z$wmVCgeU&GqD_Q3FQa*+mJSf&M0j-#1|G}ev-v2*xa0WO^-)A^p5F6*UYMC?_O0mo ztrrBTAtA>&`gjPJfHi--C6fQ7_K7u5fN0!-L2<~mXA8}f^@lTJW5ihwLOoTOGs1d+ zfvgl43Ua-+mAU0U;iR0VQ&eJ8(X^EohOG-uCTwXit}_A11bOdM04)G+;Z->wxKxO9 zK|78^61D(>T!Ib^6!$+ZkC7fyq8!%=%6h02UN4AF`A&>mPbZvBJPqfcgK_H_p!5w| z#3~cw>x{A;?TcsfU&bk`Uz>w1dKO@#3s-pJg*j(sVdfs4ic~GfG-Gkzj~#%{Ergl5 zsq*gobCc#4V>uQ(hyTsW%41^BbD>~eJ}+k|?1F3e{)|YoKz*pCmtu$Wz}#MHNpo=7 z`8iNePnq8*fC{fliTp2|W5xo%160Wi5(OtB1%q@_T_YGF!uL@_Y zfXt!QbOzazE&^8L#l|8o7GXB%Tqu-8=PL}3ebbV1tBXOi4u#*xdh8`YontCJ<(7<~ zU>y95$onf3rdsF+0$u#l}M&{t?3?D|e}VP7!F!}Hn3Hv*BE4o)st*ojpr;8!C3Jv%c^Mw|QtB>#iP#k&d!`WC+@PqDkePNq8^65@Q>+F<;J_=n#MM(tv*TZs!qQ1E(ZSKN|? z%iu@fmnVgfElpip-49}^X^7H1w7no#TGFSbBl}$hl43h1f`>G}85q>#bnUU^19>vN z%=og%*+39qpl*w6vvAA!QSs4(dGfTJPQ9Ws7<2s-(5(vtli0aQ)_5H84w2?49RVNs2Qjg+G2f?{w}FU z7{R&(c@e>5M%7|x<7J1p^#?5r&sfaSOFasebqv|ta;Kw-*oHR#DFo59jGhorDcopN z%;_JAcHN?h)m0IWR|;eJ;^Au=~HplbRjwJnPIZhYg3T>^*TdJm@Gn=twM~NCn0Ak|yP%Qi`VKwjM_*_I*2Dt`; zkt3f2au%{uCeP;q%)?~aknAYhg+zmb4ggar5Kq3m`JipNbO~{y;H*MWw8qsh<{wI# zL04PsB@pL@RU1I3fGq6}J)|AqWl^MTN(!gvU(Qoaqt)Om`6tW`eZ1~_gb)k32mh10 z(uw1M8-=<#Os;nLI{PZGf?0a>1lgXT0C`KGdB8|VBg}}`@&ri^Gt9IB-$-a0C)j*m zD#9fhK+#o;F9oP&P8c6Ay^(*9DTUO0QlsDYX8wr`AG)IaRt})DKzls&Z2&ble67U4 zGJ?sg94EZPKZq9XRJFgoBmO4Z1!;Iys>Fi=U62yKMyROe{srQpyR{fKQT|Ae7Q4mW zAkZJtTBys|?Y$h4_iZ>|?tKs!c3i5Hl?7PhT%>Pn!%UU>KVPT>gndNJ_5p;4g~`mQ zONrz^=I_qfLIkqn95|j(IBStSda9>c-W6m%d4&f3rL43LnFZ*^Rnon`k3~EEcC??f ze+bza*lDBE{4XcWMU!V?M!rXdIAt9jqLko_=Q)8+xx2kskLR18u^^Iv@?rl+44Btx zY0MO1Vb~k*>rH?=bo8i0KgwgsYN0QF_c4H(L(##)lVm0eYp_BAQ`>%8pbJ%KYmF;E zh0I1Mu9L{pY|4M~q*xrfiTs(Ovv~C0wNpjP$D2hapjrZ3kIM6P{>EA#&UB3b9yNI_4b_r3>X^A%&L%s#GT)54gPQEu0 z)My5M+=W^5I{=qKF3C0$Y4(c!B@DOYZ6R=?J5#ab_xa!LdKnWl<^O`19qB)joXQy! z1)H68+fLQAi!hXKBU@ti9|+QwSd_%t3Y$yLI8ztcMUamxSntS-9N#nMCEVQU)RI%B ziefq+7PY(qLbYu5V~(+A?oaELpPN{EY^s3ZNB@+^ODj;uytr7{Z)QCjFEJSY@`JxZyA(D20+%(K zuQJ<)jr2SE{i5zVf-LJcEfteaqZZo<&gv9{gL3TN1mtRkqg(-5Z{W`KVzWb15%sn> zV2=D-+%DoKY?c6O2G`y(-<h3jZ7zUp%#jbvPSKVY8ewLz>8j^Lgt|0Lyj;Db znanj07@}#FEo)tbs}c9p%zSa05OUSye2dOU*n(wlr6-nRmmxsTCp{>K*&40ky9N9a z57x&b3lb)My`&yHECgXTIgYExaZQ?yMIkN{O>X#?i*FS+FBLfeWzoMdh#Q}5H99N( zT>2)vr-fV0NCR84r56EkIi(?BTxOvo4AB-R;|Pf$EHNvV<8l%16wVW8o}Qy$&JHk=2*nDE7sHi-S4kbZ;}+mfbFpytxaG&Ezl$ zGtL=Htv?PHKqj0p#J)k;nb1{`c2tG%FUrzbUpBDl5dk*k?%)#LT>f zD-wpOjAosx?Ni(@+WF%8j(RwKDFC=Cm2pddfe5$BG3*l7S~@3rxHqPYbW>;Ksvz!i ziAnyHCY*WnkVQ)@zf2w*qdn&FLb|GQreI3K8EO2eutmpY=0ovsmIZ4FMt3geTMob# zqN{dl%ohk^Q0JVCwlU}Oc`C_#mo;(h^1J+_qy<6`e3T$3j7=kEE_Vxn6P&xn?^Yme zLCWbp*^X}_JdCZA@q>go0WAS|ZDmD(Y?7#OH8j<7MW9pCZ3(951Dl9uDA|&&L>zKv z2NQo)*fQV%3(Fds)W^c86I`2fr)3ogvMu&wGNICMw<nOZd$0@4DB0d(mbVuF(HME9Aa$f6YeTy#@qn6kDTfF$myC5B5^-UQXQ%xTVa*NgbMGLM2*%*|HsX0(l9YW3HKx-_zE)>#5IX@WxYY?&? z9y*eLoIaPE%l$0+C0(9wH(nFb-VRIUF1@A5VlH9KzI5F zqqKgWPCA<#x&gHF!uZR}r+b7^pS6Be`iE}_;f%7;SPk+2gl3%*LnC_CT)zjQe2njs z?4=^rBUx^Z{zIMw*9p6OF(#x$PYZRs>|peZg*Jj#g>oi`UR{*`O;3ogE7}#)%1S}z zPTg^rK(|#HSwFEcBz$wZ607n}^8b1nh(BwR18mjT*_3}RC|36@e)biRHM?#`xFS1} zH8ull%#qTMY9~b#zfU;%V3<*gwf~rZ$XLWgOncp4Sc6&Cb&Rp)=oiQ=!)EVX18I^|lVG&JjP0b)Mob-P`pzmaoG@iJ48zhPGG;!tzl zEkVq+cGtOwlySn%HAnnxORn0Id>>vA=?3z{SV7R$(|} zV_J`4e}Zr!bqfId>I;OxE5}~R2Kw)!E#d;E1@6*|ZVQ-oM%gaMu>xE|u6(z|8%-K# zS9n_4j{oNyGW)90su0<;tZs=5L}WdXv9D%d97}Ew>JnzpI{Fy&7~!s@LU(c!5qq18~6Vz})W|0MFA+{BbOv?4?v5UfP4MpaWy+x+VLyUbQT)U`2 z=$p(W(}g)Lc0Bm8Y{t>ZpDy>ly<;AShunxGnnc-K)?&S#AS^&R$LAjW&H%0m%vb6i zHGE2em?z!Q{ACwNvr)ysIaT?pyXH}lT%0b_T(N4Y#3iEL`82yVZW=AP8?bAXduNRJ z@`<#UKr@6H61(f3-Sb%3Ot*3GoIbJV9)OgArw96Ch6uBqUUjdnE1<{pN0w2tEY`^Xu|RWdhmc4Q zW8M9JgQk~!bcy+4p$uCr;+UHj-ye!H$obCs3L``g>bv455te&V=KgU@7L#Lvcu`^V zi_QlnORQ1=$;K(vIa-?TE64>+&ZNX>MVLRVaNx!SGPDR{))_UV!jXaH?5#N}4|v>^ z(p0;kP^YLWNjK*g6Xv$XO0zGfigpg%lGCB^uRNl{lmg#EpZeMB`5)NsWpt#T6nfBo=;LLb^wQYe)KO?W1ZjrXA2MA!cpH zdWAS=94C}@<2Gu-;0z^PjOifkJW)r)S0Wuq1~gN51QJ=l{~QyJ*5k3CZ~Bs178* zd1niQ*wNlB?g3$ikfts()=5XDP6#OyNMLb zsb%iimnWgu?qTF$Az5kB3&?)tM?qPy>_?*&zY55z0;71YuHn+44o2m1p*VW`2{)=1 zwHl+A5H}TRlj9Z9u939OPlx!YP6ecKup7EbLC3FYn!axU+AI{9n0Zcp8i3iPbtbLL zN`m~2mZq_aXmiPBA3O3GEzIfQ0)^q{X8~GIF;LXv`RPz*oHut^aK+jOfMly29Ltm| z12i5Q@@~Q%lLHWS^1lipCEb~;#Q7Q3TN}g#W$6R?&#Xwz+sjB9txb$~w3(6+(3_Tb52vaR>p>8g+oBx(pVBU4EtAZqP2e9KiM#14WSlFI^TOvwA;9BgS*Q% z+DitV%i zdN9?yQeku3GHOD6EYfNBRp~?VZ5Fr6lfR1`#h=ax#c%<)0z9aDG#L4`Od1vYE9?UG zXl}&6gAlqF%Jb1N=~xJ}k@g_FH))osBJ|U06lvIeTL^~C>6w}dM7Gkp#!CZVDbzp{l zQV!J0I4_7TPX@5O(7{Cgl>C48ZN(}cw*bsB8^UB5!eB7(X`to?oeV7{mJ#B@7SLA+ z8X?G;<8GGBs{)W7k1G}83K3?PzRPuN)>6Bj4uC16AzpPAZWE~n!)3$w6eiD>bTl{Wd?+`Tu~E1H!tBvFCPkNM z=ggZ-uu>7=@)qbRyxWIS$^F?^y_^_Gr_uShJQdVW%ypt0t$kt)zYx;w4$vdhC5nTE zxdI!i1D1WK359Fq%)L|N(&ZO4X8GXxG2JAK6GT&exGv@$mzyDAlpb2?h)+fNMn}3QVji!gXCO>hM=1^q&Q06=^f*O8h9yRiXvX9JfI_YerKU{H!YkfwVJv z?V>PQpsMSSyYGN-7Rg(DlEs{N0uCRt7zJSf)KO%9K(_f^{FSv3B%nj~L+%DLL-cgc z7wPB2?g1kYEoEbC5!qNSlO@DWZ@oZhCJo-CVJFSIlJ|nS9JOjO{wNZGB3*X>cZqVT zSe45e&)Y)GJkF>v{hp4}ZH4>tXnKT?ZP_1$xJ9yx;@VRJoXvDh9Jk2+m#qU!1Ut1w9))y4ndYhX76BGe zQiibM>x&ZvnyoJGCd6%zL7N3#Z`JEgTRaZrbak+Oph#z&lzr?NguoZqEC%C85zdxF z2>Q}(PXJJY>C>xm?o)&I+WYz}Rlxjp{3;DFuz*kzVuW(lL z+}S`Udzg@{Q>%*qDLU)ajm;Msy`LpgL5uRmGkGF6Vv%170Gwu?dbtUfqvi>N=EMd-? ztLEKpvB4_{(rZ8&vy2z9iD)y+W~7_N6SjBFIL!CBxPARMaeCx)4oj6L zh7&$CmlW~=VcBpth|-D0*kH{02B7O)cis4OT_GwF7A3nYY`L(9<1Xo6o6#|$tuY>c zCd8>?=fRAs9$0)c2l3F^C6`6DnAHTi2#p3q+Q^>;G6o}1wmIdup)3(;vos$)BZvmZ znNn|D_YQ>l!Q_seE$Nl1a+}e#uzb7SeA{nJrrZ*-$WzZ zbUk#uFz1F28;gr4-Uo2)bZG*e^+BGFN+g~AkXb;MXQe!#`Ri&S83XJHlCEjgzroy6 z{QO7SS^OXr$>WkIX8*rD9VrVLB)%7tRUcEe9E0Hd;-fqo_9QZ{pDBbj*P|l#Ra$$+*z%jPIKV7*exTN^95K|_&~?g8c(o%+5C=;yvB&wQJBBu?RYxN2LfQAm&YThtItF_nIgv$ zy2motS3qW&+}YTQraWy7E8bnbT`?~p##Sw^UfAR`D36k7>$PJS*GEPe)aPPzflwU{-9 zz#My59#9nFdPFs!Y@KWIy}(S6D0pJTFVIdm9df8G?N|jkvQw*fns#b4&}sghs)aTXaN?dtk2a1PZwks$@KR5<;uO zZkR1XtTnI6nk+}k(Js;_I_MMO&h`U1&D9^7V7TX}P2~ae0l6?bO4UNV9Ipw4M?6?5FoemUMk@E1t6U$?MD+nTDv!!AR~&5fN59%U67b= z2U1^a`%Hs;ej!j=7j7Z?V%~*Klyru(kqEk$Tu^VWu=(O>tvwDC?PX==51pZeRyF5P zaOXjD$VRi+Ola03nBUVDZ#!XbNt|0ykcR|VU|8ic)DFf!7sg*#D^D6~uu(6Na!CsSBp_rz4dx5!cGk~6lfd=-# zM~)_jn-&*0(hVB8?i!n;^gBlGv|UeVR@;27dA>&xDLLK)@vf8+ESL-NxQMJ7XXikt zjstR0yQQ74OL70OK*y6dQ1(u9j|Xxy>_c_VN@uDNjYsIw_W=Gz;a}UIdkBAEx_k0A;qj{SsxoA&64->#2ba2|HI7db*l(rx5<- zo@mVTdxwkFt{ASc`IT4nnEemXWMfaF!$p}__>!}LQXC}ABH>Om%c;|v0G7LSk8_#; z2RZEe|1N;Rsn{0xD`?L2`XCa0O$ZXT^WS(wWFyO}H$NWUSp&ih1p8^T#NXXveXS4~6N0$cJA*$uFaSyy3K2O7??BjWD@oPQk?z&2J7$881V z%-AQlCl7`^g$Rh;nNnqKbJNz4ma&>x+%Gz7rab&1dzaYvPk9_>ol3kdI_n*Hc<76f z+X6Tv1_>$6Nckv%Zroi37AGA{DV2CcC}qX-04aaJ9h7t9qzbQ%G^1JDgJnYR!55f=#7YH(A=!=6D_Lr#3SiD#8(gkEm zREz26s7@7M+7;ANBnP&np9vt95)XlWt1z|1^$M7Z8M{G}n+EN;NrcCu7M518iFApu z6V-lm@!dgOr&^H4A4RLt>%8@Rd9&|o5{ZbshCzyFg#gZ1ar#2xr{Atm@>RwKU zy*4j3itr~j%m<}KJwN{+mG41&=h+n4Or?X0tA)V_T4}c9B3%4Zzn%e`vJZgE!7URy zP@KIlNVX%vZKSQ?wZ!5EURJ=^cuM%^nxx7>JK=1)%y-825I>C!(Bfnr`~yCm~r!Dsx+TlM*zA zMXkmuM;XGYO~t81IbLl8aHC^o!R}WY#jV=`&1Jn4V`I9@?t+{TuYq@>fZM1e|1$Hk zO8eMSpfhIzF2^OJGpVrfMYZ!>CkX5$E#+pD^S?Q!la6~AA(W2YJr~n{5@klv&Gt&| zHlhp2ZJ5;~W+_Q|^!sj5%R1>(rTksK2Mj6JQ9!PwuoJ>LS?_cPt{VjT6BY!O&JykK zCSkCTrDamXty_V13uo6Idx>;u2Ff)Zx_l$V;$zLgnuRr0%vW_P45KJ=$HZEqNd+yA z-uT;IBob(qS@;Pe%$SV)xp)>U_X0Uh**&t{pfGy~OntH*{Zj~g`IkJaCo^WWpMAiY ztmQ$Z7B32+c}^S|v)2idX&V=ZVsR0!CC)~BV>Qtvt_#DPD-5&kR5A;^<3%=_eljmp z4`MlcP4*2=&0}akk({%xJ29rLD1>&Vr8@fx?xzT_wB-hC5Y2IXCoEgWatnoSqrc*? zsd-d(Pnbnf>njg{Y0SgdWLK;;4GJFRcAMMz>xp!uuBAoLT>@M_7It{|6pfIR1||)x zF*pchmTA4xLVPa7b(*Nw z`yL97{4qLY`+LY=pj>fGvy|Jz>P3Rdwu{r5M-?`o((uFQ+d{GyfE)a@kXZR}e^F#r zI8I?o-=jrOIVOp80*pV>r2IjM<$;fd_DVY8*|!<3q8oa(xL63~z|R<0Z!$uTsN;kq z_{Y_k^b6d-C)qiUbo>%V5ivxB%9-31%n;>FG8(&F0hWSR zWK7Cb_-e-jIwx7u$bnZ}Doi6OtA=`9B?_q^%dYt3IEbv{VJY5N9^7(#o{C&Jv5l_9 zQ^L$IeOV)ayxWA@s!|hnMBfR-q6kv-|D>?LV9c(tYKgf{1ajBHGCh_&2@=j2AKQDP zcuM|f1&z;Yr$Sl+?7XfLoF2!0X-how zY@kNZWXU(=uh6dgw2ssP#RI}fuY&`pw-k1KPTdPJa1ONV-kw^0dHo^5PR6h5(bQ(0 z3&!*@eq;RW^=hoWA`FB#RY82z(O`zoGM1*UAN*peTBxIPYAz+4RdIU}iIBVSKGXKl>3`#w5v}nty z*w?Q!!|R2($Vn$mb1cQ&mp4D_XC1M@3~2M!Tj=fQE~5Z5qP3Qm%44qpa&bw*4rWdk z1~WYP3TvBP3FWMKSwIKDj3!lqS!=;MGF^x{S{U_KZ7;-e3cGzz;t8!MMbeP=SwH@* zptanrG-(9ws+dyjcon!))N7ULF`So#x!gJ#pd0=w#I>4fLN%w(b2TVA7yG;79fcbM zsC-%%t^sguVR6U9cGp5@em6gP?OUlQi%13KuPcmuSVL6eV2H_HI8nrWW53ZO!2oCLh9uts8)ea9P{N$EPzfuf06 z=<1Jk|KW)A)crJpOnEe0F6KC*teiO35VO>u#Hh~vC@-jbmWQJgQ#BGe@gSsq+0 zNL7Lg;d+IUh;-O-s|e?zQ$xne?}a!;rq8m>=Hl>s!7QVeQIq0!ky(M+Z>BeXUdf{1 za!%Fp^L<2d^Foi-N;>RGA+=n17xW zCfbD_^G`6!B-6|H6m~J>SDEp9#fL!L-FY-DoviB=X=TCY3-90P@E(Sym$XieBNepR z(w2f5{WL-5V=~(P?zrL+0JSFhn7&1XrGjoLUK8o0b*(SPJqq2Z8r>#DEEfyo6PBGg zw2Ci8@=4O4@%MI*`ETY33^w9Gk#IzV#;z?LUA!a6iL$ZeD3RfQmN54t<_#7ta*T2I z6l!Z6YCdIfXAj~}Hah3R^=uDv8jb+I*LkO%F%W4+! zsz{4Q*Vs`3JPBa&vFBxN&vhL^X3Q6nG&wEzR1UJOWc*N5*hCS zh^$gr7HF-!@H0SJ&br+diwQ8VZJp^vc4;Bb*t3zuwAizGG_6x`ka~y^3zIRrj^n6u zto|GroQ%V)epiKE!KjR4^z)D~CNtsa6G6k7G%^->fuQq8?E6 zPms%y+GgA@z*3OEJx*xkF zNCK-yLY!M)Xq5ny< zi-B?YEW(XOpBD7(@ue_xfuCrp$@l*-N0PM-?wp1AyV@W}_Bhvw;r|9B-Ih@;algWu z7?=Y3STU^m5fD6-3LV`sUPRU>z0qeb`jbF6kuHo(?-1!m)yZ`RY#ju+a(TlG8j``p5a-I#G@@MK^emm&$saBgjSL5*OoO9Qp}JCIGpG)O7XTr+F;KeqFa);XgT2 zkRy>&Ocdf8WF0o0COwtOE{+i_*|H_RUt!uF9yidqKau^z;Yj@W8UMJTcxH{RFCbme z$!I*7OsKz$}$QPTjnCEN43`RI)U0FeY+gHxc zj879rRGw0d3%@075tYhq1yrK(h#)h=<5A2Ko!`Ciljz*;jg90NHqZ-2BHz&Ex?jxch4{05MrTp;UX-q{S_L4aep{IRoGdy zO2GpwyUq58)aba`h4ruq;5|hSxnb=e2mhiIE2DWfDDWcD~I9 zD7q}xX$a>ofzCWFr0Ck?<^VFUxFjsbKBAo`w$$jK7z@9eGskKL&IwRz#X@s|S@3cn zI3iAJ0(#D?9<$F)47aajSXD`WCgz?ePm2Oc`8yc%G_l$sI&W!lwiagoQE=9H%}fnI zpflw{K2yUJ0y1f`CDb|GO7rF!aJqtxJl{Pl%u{j0o*5ajRuoQm@9RX@^^J&364DGT zJs)&q>B<~4-OBCD1!r?q?z}HX&JXIATE{YUdXrS=dsn0Ip z&V-YESu0~sFH8w(U-m*Xf{uUE9r$4j5h1HZSWSvkJO&CCZ#1e?6n0Jn8XsG-oV65Nu=jgeh0Ex#zZt9URS_#7#~$@g>drJvo_<$|)w zq@a_Xcu|POpH^bcZ!#mp*myBwz%g&g#DNOCrdfIP#PgyVrN)koRfiFDZl$aq{v1H& zNam6Qv8Mpbo4ab9t?G1qsU-m2T2du-GJtT-u#;fdJkLaYF3PE60Gw1nt1p>D=`I0D z{UFH2Lm!nKsw@TK9FtzX4LD8}m<^7cj@;KIyRrTFT%@^X>&754*Khzhu?xzfqRg)C zh3OBdVRjMh+Lnzg7T7w+oO@|dvyH7lk8HqK66EBuOc*^PUJ_t#`g(h!V;M*vZOQD> zHLP1`8!gKpxtx6HMPt83u(QyhAZPLiF9+l-P>f-WeqIyMMc!ImC%|c8szt}aoS!-R zy5)i0&N+KxvqSn5eg|guYW-8=6OpurI{W|gRv_FMX|#yOTUp#9&~=~--K4tliXi3? zB~f}(@-ab7*BJtWZl-?jIVfo|V=DrdVD@^Xz4w9I6-0?FQpcK?szir+8IiTAJ0FZ>gp)@(OWlnUKmwyjjAOgs-u#>Sn;TJTN9xOzZEajtcXt&NjjLbvqK^~ysR}i=AvXh{vevstec086?C4oPTt%(dJKT` z?5&oy(K}-tNY+|764Em3YC(?FS{*1>2cu&=2rTHmKL)5*MOsGM{KPxIrTcp04-@#` z0$^>W`|IkKTMLDmjqvO#!sTJq88aeo z7XT;hmg<@(?-T8u(TK_XRkn7!Oajfu2{*x1^aMM99i{21xQ`XnCBxNyTZ~-~+Wbt{ zHV<1nA&rkJIDak09qR)j9n?j-F#C>3H+YUxX|B{DEi_o0p^3*yF2FF5ZbvW2O?D5u7aFvOUvkZK_u-|u2<&%Jz-?l-^W9hS7ihm zkM?*{gn7dNh&>k;6$|_UtkEXY^u6syAkK|xDk(dj-57}EwdL7<6T;?}^=tpMI7Wb3 z>8wwU+eD`RuhsYPO`+Ufc|RG|iB_kd3v~HfCbENEVl!y-kZc^dBPqn3`k6jzcX?qj z(ThK&y28$LvaZ866TnAC6;0-IS!B!{V)j208G-2BEY=Z`4M@o)ELAvsb4S3&u@WOi zWZj&N38%W8BUQC$eL?@YEOrPim-gRo2?$pc7$JU8I4dkqarnC6@T~yJor9#lcvOUA za7387!(L@;KueURGFBHC2%vPyGPo2oMY>t%Mkz>k8&J}fVN(=DIEgy9q8Ky_w{=VFvu!d$F z0pJkg&roobOpa%YP?OU@QmQ>*7 zxK)5tf|o-4D4JY2IgQzN$|K{;hV$DH06%Ec%CW2nSe>5EAZ`@Z;0U9PU3Z4Ii1AQ3 zol`elt;gO%oxNINEd~TwgdK(HIw5^ch~>=5CpJdt!UU0Ro0KzOW`tf^izj#CpR83U zLpF+d!>(X(($6MGR}XF!Z8`LCbKBPxZrTmdjBpE&J<}Sy=PAi&G{a+GyeG_MO7FmZ zA=<2YAm`9~4R!NJtg|4L-h+99fhOT* zmCFoBOe1yzz4YVUx8_R@nz+*+W`|ael(}`Jge55*Z~Q32|1(J9O%cniy>kc!Xljgm z39=-xJK@$%rvMj;gBK}RF5f3dv|^#|pV>D@Si)n19bX8cHE_B`y==H2R5n8-r;&08 z*caCcrg6258y`<746BS`^;mR&2s6P%gz?Ht0{FL3#0=nd5w2y<$Jqujg8$gWbVCKr zK`AyX5YL^o_jCzXJ*X_v>wSw84w z^+ur-lzkFw=%+>bGxSc$ir^bT=C+Od!#Zz`p=B`l_;yV99u;Xu(T(zQK|CYGAC)nh z<}kPv)7x?kT{ePcusytqaXr&D_!~@aJ#c;vmx>3MT%u)?jSeWJ$>Oy=R>}z74v$G9 zoG&g-b>>)$orGl#Ku!;7HbN{3T3X{$d5=(+9rv9K34JlG`Kf)m$EiY8<>SZ43(bE^ zg|t$fuhaj^?)+AToe8WoTx)(L)ROD&FUDq*A>Bi0iv8{F>E?w%_fs7272~jGBw6D7 z+2y&rh~!dXZ-{T0*iJ~23N>_n^KUtYX9jpih;!x+SZvx2>73I&qGU%fTMuBP)o_f% z{5+>1OEh_Bq$$M~mHbBHT=|n{Jci$@r-GEi3cRc(yl>!@{DH28YF`fSD!C z>2>u#)^0*w+(hc(aQW>fgqd@Cu<1QPmUdS^woCW`?#q)$jVRmmj#yWi+1HD4(IeU- z(Vnmpr#2(-3|mLMCfdoS1p}^4Yk9J0(mIoi<5lZmw7GT^s{8j7b{4W7jG3aH0zE|o z_M<{98<~Kycj%5~raFZRdaQ8@TL#@#c31SSKM86~ZgRm;m+@D-P$$H3xt>yJkM8Ej z3{%W1T%Ho-hLnyllgZm619^)2u3xT>TjNln&RS=;s_`cUnSZnZa(p&y8VEvT$smu4 z+>aHIb(u2i6_Ng;(1t^WO57yG$rieGoKTHrrUS8fF80Lf3O3plo@9RzjWmmck-6V*DvXj$^)x9Fk3YUVr<5AIMjdmw~RoHcteA9L^ z8$I)vJU;VdUwk9l6~j!;PDAU!B@P3$Fb8;TceqHi)rL7QehLLxBIt_MIEEb#l4XS_ zHSGc8Az^MXs&g8uH1yjZ0cwVOLE})-4BBXyi~Vu$kx**I9p%{eD8g{T#d%G1HIa>F zg>2DL_W_?SxKT*Xs&wKtQy8gKnAvYu*t{|V$O>o0qd`1gpgr$HJz}Noc;U($tHVnb z_E)Hqr4nB67!V6euF^EsPLF#9@<}V^bt@iAIIBGN+~qh*fJ=&9#X!t)Tu#$y*_Dbm z=W;KWv}B7M4`#`?F#2sNG82}jv5T62e#~U;kqh?XJ?n zG>S7doS6bEySG!PkmT4l;Rsf7A?AZyoI4f{XrNFO`FF;YG+qx| z<6+Urn~PnQ`13gs$hRBq!A%M~b-b{#|F}nhQ{oo!*tq)KobE#>ADf?-f1rgAt^a%g zl4jxG7sD>dW0$387%AG#M6(elgxIgej?Gvs$)`tAbXLT)wjJ^}0E>Z|O-koQ1d$D% zrwcJ%gg@Zufj!*`0$fcT70Q9)MHhm&96fAs8tSb)SZX;R5#i>G_ zozBF{@#o6{D6mw+@nS}>=$R0Y&fp(2La*0q?+GEqC6CUCDziH#KULIc_t3H8u~?{^xx zTt=O&s3g}ia&*i&ldvVh^W!l>q?%^|73l9pxGkgFESWZ|J-S3so9j>%B{i`n4#>j1 zoE@hs?0m7&<4&vGf?VDNH4C?PuqTOsHbIOmQGX(%cv+w;g!Pv+t?vslFD&*@a9y9% zs0;AYCmP0kJ7{KSi^!Ue_Cj_TyUh)t@QPhbT&=J(KzYJr@EC}KxSp_@EOe@URd38= zp)YLJ4FTkWPs7+0@QMJ)8QHsq}_ok z|FC-;#%v~@SD4|@)86QNq0AEc2?pma1i0*6Oe)2mqOC&b+F z2vmnAr4zDm810yTqVOm&+0Tz76WRq zmJxB4fNUv-PNc*;w8>=X6XC97&Lr_}t}81lNcw|Gs>}{8P83abPRUmM?00i4xlh!I{r$oup~>2@JeyHm>fp#=(!cnRn$V^>Hp>Xj*0GNW z4NK!E#<>c+u;`!IW5;4C==e^gdk}rT8W+xjwrpiQZ~viB3v?nZD^NtdCcs}| zE{crONh+MnyQ}n_ogw5KZE=#>H+A=Bk^>a_A6zhEo3t>;LLb` z7QaYov095ggr|yRMYi7;Ce%=)PXyz^imS)>3R-OaJUqO^mylW6Scu1eL}y~tVL2!0 z@yJ(T&X4=AsJQXdjF{pR;pRNOWEWoxAZ=OTBa~gfhHSJ)&QJzpKOz2tYp)pYPZf}L zS}C!S7i45uss(>R#gq!kGv%E5Z0unEBL;JzRo_%8x)!k-^`KvX z%p&`9ZDFz15=N_Hg@j;V{2x@t9nyl|p}+p-8+0#Patv=`-iR?ZtR>7}4kV}8Q5NEE zBMq#Y8}V*wew*3fVHG>uMyWS+p7FHB=N5T66WxwW$* zpr)Ri(;qV7a+78BTu^Q?U3l%S$IAjpY0Q{Waq8R-kDfRx9#EM4x;ThK8!yT-w!$V{D-LI05vLdZ0F9Q6TCqU0;tqM45T~P+(9RZQ1`QJ}{J?CCc4ust$+KzULQ#u-M%> zE#_T}aF&B?q+n?cK`y?|)O1jaE}d2FCi=s@h{>{tJ$7HLzBriqXQf4_K1BfhL`}0NQc@;P)juvRx_8d` z;|w9rpl2%jQjz8cGn46s_)37q&EQyxt(I_n_6r#K#dacLmX+`5xK>0qj=@;cC*Pk% zpdE4|w`87}wij{9QqXRgGUP3kZECXga3@OX3bBm{H3t+jlNGkCnPJllE6XgMLmZ@Y zldcx03o^?%$-st2bXI7zRk-P2V;K;avWI*=*_7UggO^_J1WG70?Y_?ud|nXmj@vay&oL2MELJ9 zzS6hU3LxZymWGjQTTw1OI*U?`wz8KXv!%zdV&CiowIr^cteAa{uJp*kdDXI z2GL0+-X;PO_x0n>aFr~~8Ps1C&Q>ohiBN=VP5fV>E|#1Y4aQ=t`V&^MF-&1Igok=` zs;fh1HC*qJmP3Zqv4>!%f!#e9;@=ejb9(tH=34_I8-h?0?j#cSFn5cS6}Ajy^Po2Y z?h)j=lQN4@sTK#U36@QUwn1bdzf+(y#qlIcvj+wEOZH>kj3%X6X)Q1q!7j2AYp)G~ z{LvyZWmiS{d(Nu4jF$l7a+9Dlb{fIIS>^KnCrKUFM7VFH&a?hH#K{E8we6aAW4Nyn zn(>96XnGtcz}$Cnb(3CziO|980-9Oro6y;o<3wQ|4${8bN<@5>30GBfG8>1EgrE?3 zx5pdQnW9`F$tEZ5hU)Qw;EV@OyK1pOOAavVp_Usa!1-4=c9BcASh^Xhos(gFsS9xG z4E$1^FcX&JW5I3}Xw|CGIT|_}Guff&p287Lh$g~%sS>{*ljq2(C6Zx>xM>q(b&FtF zIe#vU_Q4gZD2>g(VdLYAA1??)0PI9*`LBplW5>MwpmBsPXiTrwX;8s^F3_UT;}|1i z)$#fFjL3(HLbiHGCqA73;R>aX>foV+MdwdKoossUCp}y;|3pB`k9k%XsY}r>%xwl& zgL*{jcp;WlT1VH{gU&`gI-gF-&tD%XYebx1(krwM_)4fFavqYdlHa~T9+7PmR|H!% z>pw5lovQ=a6R{zrGi;fN_TpF36pz8Q9-I8Z1X|K+>?OhOJC#8fTpAP!^U8Zf>fqr>MH)u6H0BR=c(dtQCY8IcEx_=Fj*VjzIaJUUS51z)pZA9 z_N_pjHxnkx8~pMJa!zfG-1G-b-h^eXGTDER*cyOBq8q`hw+R2+E^CRnTmTipmEc%@ z8^SIM3yw0r6OI+)=#+#r)GGy8DmX~#^mWotnz5wj>WdZr_i#aG~E3n zq)|LQ%LfisydmCRhN$w-ZkH3je3nJZx|D4C4j0x&4 zBH^fo_gIcp7@-eHfw0XE{)4<@ABD*S|Bh}wc}cXCY4AhE>G zj@g9>E>_r*qrFLqsom`}Ld{ZvD-5_ktjDv$+&T+5w3F%nds#wN>`*S)g}==)X2BBn zn@xn#N_GqH3xUPaJQe<_!cGn|)8xYCv|WKH4y#MvRue%HTJdY0I@s9V02&iYW-39a zo+X%%(j~0%yF<8sJE)2+MY`2sO+v>MO>1MRR_l%_dqBC6J*_B!b&+GnZ!qLWI~>G#R0g8C`hw z4lq}0eUSNXwCKjf!Ojbj)#6HlPLJ&nHeE6+8;oZJyMUb)JH7l&TDaPvGKS-|OPHBbhh-UiNH+)^^m6a)EQS3AHY*UH~(Z+gm7*55X-Bx@NH9!-qChfxr*cTxFVdOf4!j>d(jc$&8~})T#^XWduUQxy z8w?=xw5AoS)9_~r?b_Cbw+ipWopCUbYa3M#1{N{u5GOX7{;(-yli>wOD zW-593WHp;s^%n_u^Wzw#v6g&AsCks_6-jP>Y#uN7Qdx=VLMdt$we4{VH|lgC=^kzr zL~RtSRgU)mPgGVLa>|sh`L`bjNZHYcaF^!zJO)0@87Oq{xQ9U3G{;3+Hl|I$;wJ!` zMV%tCh%O4riil0AtgB?}6h{h&$?j@7UdqBP<0eM&MB^-5kVa+V1un5nUl2y@u!>G4bI|+F3!m+e z(Nq><7ZDa-y-MD3xd8LV&Yat9e}#7Hyb{Be{&-S|Kk3!^UmST30Ia2H^eGYk7h_vY zdp`Uvpym2cO`yaG^(I5`IQ|kaS18J>a`avb z?M!&&QBC|zA^xh)D=TSS|F(&-LPApPp0~X$kB1vPY353ChA__?%$=9cfO1|M>|&!U zppgtNOJl0S@I6_c=57<=h*R)@63>Y?3+drzc!)2Wm{eBje81~T;<` zq(foLQT_#%ydKhQ75f={7PB;Kp3j2R{2!3+s5n&$v+nCMpBCS4i z+)bda@_LmwT1n__K``2Z_CoSm`DSPj*gn=b4=uL1nU3 z<~H;;{xDa%bEBz+qaJ~XrdIBXi?VRb*zxhY!sZMe?)VWg`>8Cxsf3Cb8btr{H)x@b&vJbgMCbwTjQyIFCw z!Y%+Fe)S+4ONoW<0?e8QY@nwZEyUT%&r_Tt+MH`Yl1^Ov?gld}B!%L=E(5;@g}Tu4 zir*ctH39U$w24#hAx73FTW~Td_KygsU4IA7?3^R!| zr$#|E<-}cW9H1~oVr=T?z9%E=Uxb*k9`t&Zc&iDdWm(LBzrSxqf77n8)24xU$6)p! zZ!6>Zlm9dVB~|`?4?tOX104OZbRGI2h)csoYdv0sTLNL0JEKjusT%la{wc<#y4rfK z5X*+kmUwdGakPhl%(oOx7=#OOQe35COQEYFQw72k25eAwipr9~)rlOfz9lHDQ9bp! z&?C?uW3We#KZ+z5ZUbt|-yQ7&oJ3L90Hk_c6Vg$LTJMX3TzKh!sJ0=Gf=~%9VdAPtYh-{DW>Ag4Xp+pC3En_!WpqV(paI7J}& zB&nvmIdpBF)d@`Xd#lt_(^f)Q-m!~Ic`zET<>WhcOdCWd%~0gNg*zu)5pg3gc0zYq_KCT-nbjU`@$ppMXOaszky zm!K$gE0g0j3R@)II3i*vyT{9UTuzF+MVYIXG2>$CS0POn zbWT#s=g^Jx2g&JT4ztCRB4LtdQjfV`hj58;bxREPc00TQ<~pfyNxs_MWyrbFzSJ15 zRU{X^9dm=YuK7_i##eWHlPDBf9v#+ti?F3AGmLutLx5AnR78)lyqF{8$w z3B|9B7Zd1Guq@TBlfn2QOS%j5(i7izHht`dE>+lZd$fB89}NqEN2#-Mc8GL^+%~wcihXdjbK}^ z$UIT%YN|y`fHU=vnbd9Z0X^5g>W5%vsiH?g{w`Xzq8wwce?vJ7&U&&rn`PYpIZ{sn z)7RKk6s4G|?)ATqAS_9CiDa#gu+GPhAqSSxCW0K;6q3V%qFhF9Wy%9=9F;|2Y^69i zi89kD_#CsTy01ysbTQ_$EHdi2 zO3eNrB3u4kt&;qQ2;p-Mn0O7bjz`fv2J=eyAkRI24r1<;Apmv!wjlG%G|?5_>LJg-vF)#v-B86$0mR}tXKC6{#mhbA+IeG8oRdK6mh{?=|H=&q)- zZah>-<5PJEp@G5l_kvwcy#@kskQN2w4g-Nq zB4ZVymYE)!uD0_ks33A{c;ebav^m7$LHdT-e*w|pLbm%UY*{iTQ7`ffTZ<$9=P0cC z;$nr($aKiBMP?#E6~|q?Ujdu}WzkNrI@`wXs4PWqSC}@f+m$SqL=l%qePk<4GhA&B zBgqOA4Gg!Xguq@I(n!7+Mx|>BA7d7QFeig@je>mk5M*J{2l132$2E~6vlIPtRuf^VJFaDX zY_e#cljcjk;1PQZBPTB9wc}P4!d;<_<&4G@&aOcXjF)r`7q6Ju=gQtWeK*@s=S z#G0{0{$Vo9(VgWhmdqpJH-MGP`vRQ3?p(xwL{r;ER02IqIb6oo+A_ll(`bt6J=MoV zHCnCpC}_Z!26W*DGB1J$3L>>uEW=+_*ww?FBsY2=3CTFd)}RmzE|W(o6tVCr#y3p_ z?*pov1(zj`vu5CA$)l!G5@;D=!;HBV3#w_q!Pqy}tIR-03o{StV7@2*C!|p$ZB!&? zdCN5;$x3Q4O3UZT_vnEhb*oE-`9s~k!Ov36_B$Z6rVDN~TUI9tbRl64PbYILR(34H z-7g+^@z!^2^J_bTQfv4@AT5!VQz4dK0m2;o`G{7y}%N5sGx8Ftdu~4Gyh_tOU@QXE}3|2Z&M>ggP1v2adRxSsB25 zQR?_vq&tl6kRvZ{W3|TGs{mU%_I;xD;xz*Osa)ROCz4hsm!5_AUX(NH9@M&E?NxJt zXD+DE0|mGgG;y}44EQIk2IeF&dy0ESrcncJ&>vTaaDnuY9|t0u_-JM|-g9jIu$7|)uaUfWYLq$6|*~u1o1gaEQ3UrlN zAxJ`kEH_Od`0Yu{g6{;Y32^2WE3FM-R?(=GV=d86oBbEI)f6DE6zGQ0Q$pHh@ zhw4;aU0p3g%SF;ruKrUfM)bIeQ=+D@YmNewC3^lf3IHW1{Qj+g%t<6w*_~mmB9OwQ zSBNiP6T)ScdngiFer%D*ROE1MBuaoyA1B{`5Xj6k@ud zD6%+5;qtg37oiL0q?Ka(wZZb_z&1>0y9f_&uT#WCoUcvSBsTAQV6G-dLyVB^1+XGk zJL4P$Dfo0e6JT6hL_}LpPmc8goNovB@#L;F_7g@A?8O)C7v*;}=BT{ruh(u+BqHZ5 zqp{Y8MI!3MD6qIzE{tqDSwG@!5qbQ#ca6jcqG?#2)U!ibdn3r)6ZBYb+$6vaUqkcq z7m?z9g}HF{jUilOZN6bYmsN#10an8e!jbz|RPq|Gbi!+;80^ z$R(^`l@e{66bW?J2i>P^Bct^hi_tyBIk%0RHuK-?!}{WgOt6AXh~qNRkg4tuHYb{E&Fw37 zjNODdCk*=JFFWoLL`itrtR9b+e=xgsp!Aq^3qI!#pW&}lYcZ#aCb3SG>09kU*j1Mw zU_Ugttw6UnkG#c6BHgt(tYG&w>y7}F4L@u&>vU0$J%k5=w?(=D^6Z9^KmMKLr)%2r z!<~rWYV#tRr2qAWn7drYW!NxX{i?)dGLcRwe=RK64Zr*nS&k^7OC$L%hBVL>~SqY?|?o0LMp!l?msIdnXRd@Y2A?m+1@=9h#u<#xxm3i{6xR<_YtY7fVgCxQQbO4lu5veLR_gTLy0%gN`R?| zd;KTuOANO!1H*Q?6DnZjgp?XvDol}(j(I4dt%%%-*QA>K;XT<7=87O`N}@n4Odu)f zRoJH$!6RXSdHkxXNxiz-&O^8&UFIPy2&l!oH4y&oK~cS62Vs}Lljh^Rv;;;*CG{LC zpb*A&+9|R0JfUW|&Ud6&x?PZq!G(xet`m}6q$a#2hsRACAJ645uR+ISUBsd8>AAXf z>c#&Z%$6I7G~eXeKDnA)wA=B~#tlYAL~e7;vUIflmLP9LcFo1sT}KOcQfZK%P}1lcxvo~yXshre(N|=} zgu=4DivTw#`i0!Ft`_J<8j-GXD8@HHnC$Qy#ay~$i;`pBI7?KkYje_{UQ^j%05JDN zBr0w~3UHbT$vStxT8L}O`$@^ib%MyI*`uA$@`FS$&(n?{$!6@%exA6{gNp>ie4ePQzG>DV3_oRAU9WMKN84XQ=!vnqnrzhaOt_~ zEn^F9>bDb0f%HTY{onwRR2Q@LcqsoZb$L`q91lSoWc7xj{^z2SZpSB%VxR|7fbI|vQ3L81nF-C@OVxH6=nOJRBK!R8roU+ zRpjNjR{+VQe2bTVL%5g@+Up3&^2YL`gMiJ!+BD8BQbOYe=AtA|>#>s%7e(po!R*6Ps|fdWG?$f_d^B{ojrijK8K$~~Q*@E0jIZ24$iFEZCs)#Rl3vgqj_G&4}n(gGGKN9cuW9)aWkh&+P-;@ho-$a&52HhU7AJ( zJIa_*0=$38y#KlYGXhmKF6K}0-{U4th+}_C7>=?3Lq{*d>_|o~dXn$H5|c$hdb#Em zVQx+)6$vaICxYZ2*3Y^?nYTR&$hp!-Fkli*PRM3l{}Wg}8D%y>%Z3rEMm1uK;nW=O|D$*^)X|wm!p|1`kPY~+T;zCEleq8_z)TNA=^(=p7ZlFIhe19l_%T`lBrq$i)-m&mv}e=!CV9b6H(DS@~?fxHvjn;_@eV%7iI*UAXE0 z9fa%0n?R`Eur(57*63ibk9#CS@(^TfH{x6YIa$`mqad)iFP^qP8|G33Y`U^&Z{3xx9?0XWFC^!j}E;3y9~Q%GpL=JR=$wqN4AN zw?$BtG-t=67eY~0j)LR23g@26)ZE^c6sBhhbz*%ya2cQHKR6wavo7LWOYxmwb7v)J z#(kIY!OURVU;=ue1mq{P60ZnwQ=_?Mmrc=rd?^^^O;)SaqT8tW;7VnGZBU-(B%zib5J53U*(=NOj z4Z)cUFoC|*jK_tUcQ{dH;C?57gwp+k*{^}fC6nt|*!EjN=9HXQppvGqoGg$!_YU{O zSqkS|;BDGeob!hQ!+npnWp@k91E$iHHN_Iwf;j0mU1v{609#!L=mIwNh*6v*pw(Mp zU^)nm^Mz7^5$@W|bvPhn{(#tC-H>E@8lHr5qt zPB$fYY$@9HvqVOM`{y`mI-vP(6-}Y#mW?H-J(jxxz(pEvbVweaD8$K5??PSGCOVCj zVa{4RG9_7SB#sv4g6W11x)M}_vDF{_2XR)I5<7|VWTm#%Rjy=iv5Ro$tgDEWWnUq* zFj|ggoFpQ5G&JgIih8%i(l$|+X>B(W&&6fJVSW|u|L}QT(?za0yTmZtlWx8mj|UD9=iq5 z1(cCz{O`}uq?w)!Nu6-ZTaCakuHdGYA0nK_xJgN@S^KU6Nf&}f<3J%)WjgcDL*>`$SWRGM z)c8vgzcwx1AAd@S>!1@G#0p)8*zIn|E3A*=PeRmn5*y29It}HuG?Va#=Cd}1I%gbnt3Q=u&uQv`7Vdm2%(|U1e2{A>> zr(zr}h&*+2$z*VbNT;dc%3k_wA-nU*-{pQVcPYd<-p^ql8`lb?xXdx}^9KmG z+Ci@u|3d)%4aI2EcXvGq?Nl{E(=(cJt}yq>e$Kh#bJ3YgS%)Y|YKOl9J9EYi(}gq~ zlO6(eh69yRR-^p|kQnyrX(H}?7}^zUSn|!ON&HJ;PP{Fd z;;i-v0DQ&?c{6r=)L)BBP%jAJD;80l0zOv!%eIVl`BMRI-F~<`iBw4E3R4UW?W(0g+9S4Ki!qexf4W{gSZc!7?D5MGb} ziFU!e`qeAec&3QJk#RLX`8zbcv3*wj(&JvQi*}!3 zoU~j4#211+7UYz#*@6GA=Yi<1IK_(JDC}fWDlzmf7vL(h*6QXyPMBT*b7|nRw2Gey z$*I;j2SdF3Mi4dNCarqTUN4sEFf$}qEf)&&Up^60A3xMesnR#gePDT$i_h1RMvLLUb%qN;6wcHNHAIpDPELb=9e2s{ici0Qi z)MpD}4>?ke84Bic-tw~w@0NTW*d@Xah-b?iB|xKLyLjUp#PCpB0sFLl-h`yPaV;a6 zsNNvj=~8F7&k+H8@H++PR^x85n7hqe1td=zvSd5Bgz$-+Yy%$=fs z%bOxxSe^Xw%Jx41Tw}xw-D2HZNY-I!Gtjz-H)AFoqp(80TKMfEg(@d*v|5i43ee$q z1+N#GmmX=@>sZCtV)z}<+)PQkG!)YWx!|~ai-X>UbXjpuiuURS0WhwWM9+KBx$GR9 z(tZi?FX)>X@AoT8P9xn8-|wGJ1973fAN!8mM7tQsZ|U%U&i4z5i-;&Su_+PcX#=*S zW0xJw5B>$1I}7g>!pymZz-qJ)6>P;JTpPVoGC`y>vPJ`U(H|5EjH0$gi}#`svr12Q z;F6ESn%L*VBBi!Ic`+zv72pZocBrb8;7;}yvnBqQe}ofAlg!hOUnit zYt7G~nGZN=K|{emboDcY5l2ckjmw)vn^y=NsFk=KDaf^uDVDr3RAYgE10r3^pKgEL zC`t=EI;7VWZjFHnvHs_fP7q-}sn)83=ozF&e?rgyuQE=ulc$CME68&fx;#G_{;U6h zr96=`;to;dInv)B%YH%FnP4EAyeo|eGGDn5uJLw&kesB%a2-8-F3b~vN`sp;eTnaX zS->cZ(6(A{GP~fM4R3VFJ9w`k_wuO~u9!q~rZ{Lt*c``kf+*=!E&;CozanJ`bZnI5 z%sX}y?55&ELtFewbgM#k3v-7c7r&2_y>yW9xG-0ejk-K1%>6ZpxsL&2>?hL2V zP7#oMusqpaDB3A#g=fZI;2RK4S`ECMz9|BhOPm}u{}$J@h8 zeh=Cc15c_^n6zwPFVw7%)v{ib{iC2(k3+@Rj7NpIo)UTJ?W3{o_X`XyvP>eH@pEBj z8CD_e>9!L<={n?N;x!R@$(GeBM|_ld^6bSw*r1TeHYL#H5D7;jKOlz7!wY^gLYpqc zDd`MWyC&kDQpS^l3t{ITAuhKKR%x?M<^W3!!|-Y=5l*N%+}@57K%&e+Lj4;Zp*LBG z^v~(vaCSH;hD6YtIDBA1d`(p54jm(j1Ww zL=df(t~U|oh#waJjnvcY<4lpa2+XN-zksI}<^iBrVT&I#6sB;Tgd@1Um#NWy_A~Ke zrdYZ<+oC=%F<}LDnj9yIaChN=Z7|LjZLTxlNpt$S5SKPx8=@e6KLW~fhYUfO3N-m1 zBA6o7>(YuIQAX0{O|qfp`SS!j1CD968eX4&BPHgpRp;Y7rAz0ATZmvfpe>|y_C+OB?6i&&>MHB)dYm{>u4D6msjVMvB_dm#OM~c?2(2G7 z&0sty+J)BJzcN2~cM%{Ot*tKaT8l3RMRCSWSUaXEOmTSLwGpRgLWWrJx`@mwuA4Pt zfyDt_EG))&8cltAIf3d9I;4!JM7i?$$qkm~CBV!u96E| zZeT#i!qFLr33Rd8<>3@%D2@~4v^vn5JS@_k8l!TIaAVzNiht-W+}az6i9acz?%_5j zJ$!AOyH4>h0& zr^q>fe_SY9DXu;--pJn&3b`QG8|$uA#KnozKx`zMxcE_uLlriQ=`A?Ks>YuLX+mS$ zJ3Vd}We&3}>$vzOA$efyQ5R`Ez7(cCS7#hNh9Ifq?JaIqIQQ4&&-l?2;3^BJ59hB; z4CjxHU7E}95#*lN$!08H=$N<)DCMwYY4wgRg_s50+QR-#G#O808h%P)8UxL^USIi7 z85P5cwPNd4{h4{W%6qWqi*zxO3z*BU6hP8!&!nA?r$obg&gm=ho(OYO^wwX}{Knvr{Pb@r9(= z^rw(&?THiOTZNs^0OrmZVl2HTNN!W+DyD&$B#0lhKJ1~e`G!`W2V+W_2tq5~(XJjRQn z>PXp9SGYB-5M)%hsrh@e(jK2F?8LO$(LVC@N&a02iI3%QKNl*0zE+VG>%Kjn?I6s* z+fp3wT7n8aM%o0WPX37S++}Loo$4$#f#wGn^TxLqo6}O^T zW4PNUNb`eM+V!VEsxZ(nc_D$FHhMP#1ml{rC_kZVx&ctC_J)S%JEtm|(G zM-yTj5iTr_b2aIlC&cxUW4dNsFMt9do}goTB~uLO$?HVVdd2S&C|Q5s6GCj}6Evqc ztPe%j$X!~*hBkmSBjh}YOEXEi^)JD#iJ2pr^u${NU8|}Tjj&?IhQw2?^uFOoB3gZ% zqQ`GH0&rD&?FVY{jX`KttOH|nh0O%~Z^xM;9l1w-4x4eA5a)*^Q_%)?#?OH0CCDMk z+HI~){1aY7x{w%X*{g))aU^TPct?Q75teOO^A}&a7%(3F?WP5QqaKbPZxY~QV7;~$ z((3m&1EI{kg&8j@>>{<}*afv;Y`l2^F^jipX4_m49H&K^IENEuULs&%Xru|evIU?A zH2Pp{G-UA^Ckllnv<tE}^G1L{$Mr$43+=GlXVxl#-h zO#(zrVE(-y8I4m%Mqfgm51QHGUe3I3(ciFiYDaJUHHYz|7ISV3o+km>qbw%cb>PJx zj4W0Z;G$3t?ID{nW;-w!h4m`GWxdY!1*naHl_(ntG?UP#skdw`B&RprY){*-gn39< zW6t3%8o)k9ZB;`O>1f;|NIip<@p*+^3LGYN4Plqn7EA8{==z{<9*8@3gl=_C`VSWS z0JJduxf-AT0>U}y=9UhLSKk@P<&yzg^00ZJFh|2+k#W$7tIKGdU2uB}+4sg0V~gT* z*uMxPyEJc{w~GmOB3X53g}sCO*(eJPCOWX>E%>;_@x@}_4E zZ#K6IapAR0;zVgEKHMG5g@+^9%vWN$J%G$P4j0(dG5BMQKywbMWlHQSnvp?MsHfc` z(mib|D^k{4d@R(7!znsQXZ&JMAUCG;9+)=tYJYj4UB%{8Uyco z+%4KwLve^xop^PxB3a6u-qp~C4 z7o*b4^Q#Azky!BCtiJkh8HvYur^L^HRb+`_mmaa;&1_*gOH3WoRz6-4NMo_cjEh6| zfhZbFew=<+BFuZ(?Zylt<|ZwbHrwY3$_eXnDYnu)i&XyEUKwUFjXQ+6b@Z&KlsL=- z2kr|>0T?aSxLQOmKxIU}YwpRP@nXQ`-U^?+Ht03_!$tBdp2-JeY#W3JkuFSNaxK7- z^=j?!%kKym+JFi$Uokwa#Gk9s&YLsezRI*%yjG?_cFUGzFSe;Gh%_T`B+Pq|JW3^q z0wI&KsB}P>D_FM4DHQVE>Yae@c-gyOa`9XhY}POVO+|Q-ZQP?m^IQ#EaVOCQK>xH7 zcl|n)n{KV>7U6^ul68JZ&%-U2V0S$(QS&@99*U0X26JXK0(qsi{dl1+Zl#?IjcJZQ zXC_b*=YXz}{6U}@J8s;>n7;>-jZS-KbSP++Ab6*d{hA;OiB!Z>8odx^Ii5G$Vjj`V zl)YGJj8)hsRJx^GXAyP5w&>%76UAQvd&gSrEy(F`dt)>`gh+{f?Z zuQAddW}k4azB^wgmGT4SwsiH_ zLx4NC=3ka+=C&?@B%T}<$A~CruG@-CASVfNm6HbWEYU7L4;auDk?CgNzrY5t2IxWz zGe$A-%ikZXC_)}q)wC!{ge^hLa4=()B(drN#N;>K2aIb)P$hc?VCX-8paF!(-hMq( z^p*gR7sghjT5Wl4h40&>?upy&Z7jnwK3&_H8TW=-%{1zQT`$u0jKkxK=MLDVYXQ5 zFen#O>SAdGw=N+@JDxc3!6is7;7jH_doIA!2F{1$5|L&P?;%Ucu;LK~f)ZC7>1~9# z{KJjmyyu_oNI*9Rd2u@~(~LM>d5dL_D!!v-!@;R&=SvgEdLpT9j}#TdBHSfW3~~HV z$9S~F`q=5{0kC*pn0bay1^vu=M>`d^0E6*CCi?W=)WOG;QE7_)_~EeyAm?QD*jRvT z&Y3W)ee5NKBI24z4Kn$-A_7u|c3am7$@%xzdFtya0l5vZudP>cDRcr*9$tuF>>b+U zY+;UuKa}LZV};)WnWr|zkji7sNku%Vt8@~&lc3CIESKUN(eRBIni_G)$;HQJjXMy> ziDnjJXBRgr>o6bV0y@r1&zOdU_3axpyL*+A|!Jrxb`I7f&Jh{*+|Npi?TWxTG+ zuuhg|JBN5VGx}Rn7Of%71(G3P)Xs&5J4}x~ZE=z)%8p~d-grucGnR^x&Ns&l5I4n? zu`9*`B3)Se28yRj?0udSkn_AaS_ILVJtS9NBvSRn$H4US9oE&?+Z3hgk3RJG*w4QRf$hTm~+WvGYeGM`amnOEn4BR7(gP)-x6eO5f2&CRM z`UVb8E{AflFwsiZ!W)-RbAT~GNsqsxh=rj>x_q&~l|Zl(NiNn^7+xUlS7M+1p;76M zHicb){P-`j-RZ4Axi$9MRYY(P=|%GY{?$&Dw=Cj9h25Chr>sWL3qms+c}QN+9=`{2 z%M7s^#*w0(X7XTh4WznDx^4eIQEq2BG{FMwTOm%7xe!O~opH$@3P|?nXnf*BK~%R3 z_2KWYB}{cWU8}~wM0oz;Y>hSkqU#*92QBJL3KO#jktIGC;jFPgl6lACHx&OOKH=JW zj}l;+(WPDi>SY`U#3drkO)38^KOgW%K(i@%-scV_x{OPNng_aQ@rFqEPpM;Y`_qU; zZv^vfmdq${h=5sgOcw0=G#eN+#q$DkvHMwMSU~;+;&Nakz`Hedy2yaQ%tmsM4e5v= z|Jgmv1u5Q0EfG`_Tmg((ZX!-=Sh419B-&{Yqf4sGA5|P8FgH3)j3@RuQxFx@9L&hS zxlBgJtnr>`_{Iv=6OCIST%|Vp40rYZ3}ANf7=Z20-Vl}xiyv&Jqg8GNF@usRlsrIF zhaSQ7gkfGFJWOGie%$1>C&clh&31(QxF|WpG7**+;0^hc#CXeJJ(6SzyunZESp-SgDs- zawb7mcM4O#Mlg)KGr_&{Mtmf~9PDDz?TiU`7Qocx53eGi;KbPY-Awcp-V^>xv^mqm zQ`Fns1({2aB3o7+NSp@?WvH^wq1ZS@l#31P2h-z7SLPT@s+?t>em60kDKqX+JTDqv zwK0`^t*|*EqXw^ybKC=Hmb1L~HQ1z27Q{a&DRD1OnEcaLF|I5lx7@6}DhLj7vOYcj zEy69zS)?Y@!F&BbE}rOA|Y*K7U|7WrqA%6j>r>#s3t}e48?E?U;N&v^lMH zXq~u8fEhQ6{lhIHDFJGl{&+})tAon1jzi}7$pb(x6h>JxvY9M|KM>k`V)sn&z;Gq@ z%S4hscYUx(tF;L~N01u{A9|dvqz(HeLS5qN>Rp$WKUUg!kpn(FTK>oxW)kcflk@(S zAE^mu)UwQ)Br>-JV_Mz+4}#p{$+@n)UGDOb|Kb9qgn}1Ex_-!vb@WZMJq$wqa6B{^ z^NYx1iux*n(*&8LddQ$R?i0{rk!09d<&h!^X5}19tRcWrm|!F#jtFTLExWt8SD2dy z54`b3`4esd^ziOMj}k!*joM|i$BHCz;HyKhy@j}7a^OE2_Y0u=VW`GXzVGqk2P_ce zwtB-S3WPyfr6(OwA}BnyC%#088Gt!40%0}2|F;6d2Mvd9JW?;nC7;M^Ty>FdXl@>G z_>o=;I9aG0y3WJCaYO#8y^9?XZ^%AbBr9Ex^y_B|aMZ8ZQggfI|`S zfx^xL`!DoMPeFUoO7h3V3fXV2rvYhTj+h4HYY}9TCT;FWJyRsWG1)*2izaS*f9CE? z@ZNPLz7gRDd!N zhh*_fAdDuYagan_5k+Ybn7DxZLJ?h;cUd{BvEYkf?gHGS(EKfc|CwV+?Fdo)ujiLy z_Lm^cO1A!N{(d?F|TbyFs>#bBpv4 z;O$ft57k&kP@Xkpi$2YWw`aJzmBuwYyIxaKT|UkQY4$S&kQD+V{RMcS*4 z1iAXGxYJ_G{}%<5TkISKnXl}?v07ng5)TNZ-aXvxKKm_)Yu)`=;1hQ78~6;VA^&_L zhzg>E6;Hk_V=z828mY#2C6v|yCgJ8koMt!IbIw)Rm10&vgncc4tYXyut-@3gP2o`N z_;wMqo1=Q3BYp=!Jz7t##08>Ull1sf>LK?Dbf@T{$URzh{w0h=la2Y3??SjrQX9(y z^ooKq*SKvQx0O-)aTcoaw&;6AfkC4P(wpb7u3a3Wuv25)CAn#Ze-@CR?Q2G#APRsF zww}0NgxkL=uNqh{zYpU4xr^5s3;e5~QM;}cJC!s!)Z$ptPC*xNXq2age3=2)X?lipCB_4vp*C$@`KVZupC+Nuo+`N1al#~hOw2qMRe}Q zS`)ajAjE&A?Tord!kj!7OWDwM*N=*%*j%>96G(Urp zI$t45Oyzhv#(YvF(d-&#ldL`M8UkHJOuCR#VnZPwopNY*oNu6?9WJ-6i;!z}#9quc?!rk4vbEn+BaJuKgcknd?;A>XiG1x%DL|F;Zn<`hZZU zhg8+4_e$FS3j_m(IQTkJVRK70fqyrD0ip$9P@2wLMfrD`yQy{W5|r~ss>M97H|`ad zdmg39PGTP|f5ufOqQGE0DaiRHHD5DU`4WT{WxDT(HNJ)*^Yq4493{$`bL^7bU%gR6 zotzMHz8BvK%EJJY12%%+0=R%=iOQX$kc2rY-Fed;`iB+GkZppSvFt3HB+hj8^+mVB znm_8uxnGKKv9(8~TOK;AqvAC?{-AJ9iA7I)+m}j6!mOmNR|Gi?1W+Nb2_Xx;l@wEE zGrF%$*do8QnhsGV?g4#17zg0qPt&Why^%c#oRrp8}i!dtN4f9`qGNNwC3ZAv|#o zC~73dX`Ca%D<=v`8DUV`X51y%b(4dk)U1={1oIF@eHD9(bg6XnvOkV50Ty*G5nWaS zbV@qb*tz({++||Y^DMUsX)WBzwlqzLPYO0?5Gpb8)+F;*85aw(>{P88U(8KhDmT;&kae7p-b-=5tpbe&t>z$jQ+Gxcqp$vGL!gJv{){?^05m*xZ}u8 zI8z~ljW9EvyZ${fU9@Y$DkJgXN+D*k&nhKS?z>=-l+J-U^&O2qVJ;^p3@;4jOsh5BG}Z81F96{dr>L>eB95*$=4C)p zd>QT;jwKX!F|;k#JuYf-qEOn9`y9P2LdgD$0=R*6(;J7ev6P_P@^S}Mjg5pbtfuy3 zqE(HD%YXEsS)CKIMHefQ!E&vuie<)8<(x@n`58Swl8$_5dwO($i^A^=IAWlZ!`1TcPmb1lY22ZD= zb)l}6jwj-W%R;MHqnxQkMU)d|<1~o3j8lZTg81L6sm16236RUr{Kw{aaRIqsF!5=r ztVO#(mu7%F7{`cIHzChs6?QK2DMNoeS%`DNmI>zxqcMK@0zv@dN?uo-D#-cNxN1cI zW?nf%APJ9PSF!F2gkg{#o{MutxTffdQGDl*D7`S%Tak}uj?5#Ffiy6?S1M3MC6?Kw zl253MD_?gM_k6`8ALO&4SZ@r32e5A5q2lDFY+)`beMc;zqaG!Yzp#UVA0k|1^pV)7 z;*dv>3(Pwf?J<63X!BXJWi7Uv3E*k7uILuvlA&H0;av1yA+8rznQXw)yRYx80!q$! z>SkVDwfKomi*C}-vl@tN!2FF41Z-Jh{8DGD6k|oWuvLUSsV)yF|3RGN?Qo83t`J6( zv)F61e^VJ{c!09V*Ts`%N-SP_uOprkL{9jR=FyAQA!yACHxAcRnEGQk&cw+)y7W(- zzTNuA#v+L;Rm%dj8MKI24FGoOcOulO;pW#l}KAZxk1DQbK3AOJIw8z6iGPI3O2cxRDRe zt1&DzHz&86I+}5F8P5(T($IQWXg1u@fpzOinR&(+|5xit7rulL=QB|6?Ueg47RD8Y z!g0NU6|0GG6_85WV!iy4Ii@Q%$pl*Sdh9WQn63wlgUs@xSCD%SJN;U6eXznrFf$UZ z-{jR}iU8Va7oBz_-~-X#y!pz;K>r-5b?A~ z`)kwd8gdkq*63!utuHPQa{`wLW7D-koMp13VWt}rGs#s z?@{_sfvyOhQWE~yjX+!xiqWnu;O>Il_?&F9&@HtwK$41i2{?8ZMMq4#fqg~zcl1oM zSdQa!Y$Tm(Uu?7q5pu6)wu-Gvx>GaR<)U3o-7WVH?@57V!Et9j-V@OpG!w?I9^VR} zo3*1?q zcor2-iP(=LD~oW6WI4M|%)2=NCF(=Xx1z$i8G46f?@ZdGVeBW8bhtT%x@ijtPeIx( zaTY8=@4FJ^&RPRU8k%2YOXB91Lxjh4z9Ga#^#y=Bul^x--7K8K;1NGw%3+39oUv7r z+tfNYO*P!u;R$uRRjf!^-ZtGD#I@rkJ=U|X3`jvF8;UqofHj#&2+ZZ&I!S}~4Sg_w zIhc|E%&wSqn<4||B`ui?3ULOS%&PHh83l&p#3()%qM3v<=yBT?3CQ&uBW*~C6X0e7 zv(pCxB&m(k(c_lwpwvOJ+>J*>@QL*t-mJcT@h2}9Qk97UTw)EPB(_(C@jp9jJWuQZ zVg4kSHqBU3h`T(yHJpD|VlP3AN*vU_R(`ccyb}BG$XDmVhQxWCEUdNA;#n5{As8;Q z(@aTo(TP4%7v#DQrAw)&{{n#0>FPrKSA;wKAX9M6w{sDj69g;(Y62*}9fe3hnOX<2;3(1~MW$gLegZ zn~1lx$WMZ5VC zj?v4;J3{h=$yP^doo)62a@qR&(V9h<0P|I5h+0}=KVhEeFr~m0L1y633Z$s`OsL0m zBB+sv@vVEB;#>(m%RGCT>c<`(mANRVPo=Eg>JaAilLz1AmF#ALG=wheFiu_&N$oH( z!J|SgcGw%*wZrw8u0tLpq*Y2?>yvbTia<))Sz+=!Qv{9Dfo}cvl8LB7=?%gsP zk3VSB#9?3;(OfAWOw)~az!e0#22-Wkyg{_nqR>qg!0|#ID0K)#s`a`d%uduj$pZta z>>)IFEoz3Q=4v5Mx7mxe>pnfuPM3!<(5Z9bUXTYR=|~aEf;MW{X<@^x5qDT`krors zxOhdh8H>YIEcO=b1E7O(*MUiVb5Uf?twTJ6U`Z^xm0%jedo@7lLZkSqJzZgclYO2XyEu|!Kt8> z4|PX->>$GIZL6TPJ6tpkkezkI$=igubkcRmGUkq)Lf24VZ~S?L@AR-XvcFwnHy`tY z2Hp3jfw%~8lR=y=CT<~gra2v5Aoj2VT@-xU48^^ob4xH}G(7Gb1@buJNDQ9};&GLG z5CuHY9Hq&b=P1qog7d7DOv*1V0qn->J@Nhhi!AhZrLLN6ASgE&*K&|X*ntT1>@S^0 zqm#v4J?X6ScmC}|qaF1Fi{B;o!{VVhO_(c^-aBN1y+DxKfL&>PBqCS5A2rxlWg6M_ zc{Aq!HF0QImIAgaD~ocEtW+w|SCRw$wK!EIiPMvKn(8-2;v8SIj)*29x)7u5KcZYT zY;!c^;s*x-xeXcVHB@Bt3ZaE%WVorqc~Tsu3vy!-M*ODy2U%067&C;JjnWWcZ^A2( z!pICS*=ZZek536=8X3E0{OMqVd02V zFBU!wB6laQitBi;W$jYUXo2b3*KRI5hl8?p|Z| zBcaG zRjnQI{gc3)f3pi2g@e`-VE}PTA1j^ggrwbg#l<_#39OhK-O(C9V>TH(|I}=i4gM%78RfuvTQ@Op8 zukx&PR`JUKGRJ-*&F2o5YutvOozq|j?v3q4QRXfVFRoOWsL8CFTT(IRcK~jIbl|Ej z^^?NP9j@RrJv8HMLDW^xuf#Fu6#oo2BuVnmKTFIz2(UNLEz-eQpH{&E_>2N#-cCn7 z&k7=G)~$N1ejbFYg4&89w1EH$&&zBvsxUE;#p`j22(zsR;r8nM4aZlNxUT%hL!j}3 zNUI#Mbi}FEfb^NH5ViC9kSi~RuMAsm7iNy@QLrJd?ot02h35Vx6P={WIP*e47nTDj zwnR4waIBc3(Y4gPqe;GNBmO-x_2@t z+TxlrQuZH*^zyPmc-5%k5aklWZbS7xrl0sgkkdfR+Yw10o1%^ zLeyOX>XkxH}x8&z;gm4vk%qE_^ z36f!@>m#*T>So83uhUpdgxRfUTWw@8B+zW_t8}oZ8WCVFGC6UBn8zl|A7w*}luGA6 zQJ`yv;)Ko>X9{u6IO-hiXX=kjgt>IcJ@I8p%HH?JTlh+05#(rw*>8n%QJOU@NMlX` z{uw`gafwLhs3D0A@PrW8hd1T=?Wx z9+5S^yA6!|HG?6oo^l7I^XKSR9p^zI?oWDd2T?uU+L>}EFxBGPHsZp$qWl~3fSmR$ zcNd83HNbt#jYZP7XwN#MQ-sUWkJqIEos+cv#SyqC-V^(aaGiBN;>P%mz}y(gT~wSY z#Oa_=^Va%BVQyOa|CTO)vAcm<0%bcF4y@x|MX=e0*VJ0pddjotp%_$}G@j;h3I+z9azFOEHEW-UCoA(NUIF_QSR1gTOg|PE56kRRuYJ zgsn&;IB@F-f1Cm&}GZaGtT@ciM+EH^C0*GPPkRk2Jvk)#h$2+LT z9~O|ShZz_%Y&GV3&VO(`R*79in70kRZ`Gz}lj1O;E^pUxJ#H51Zi972CGN^8px>>< z^CB{H*!k%sY~|;HoGaVEv=@)9g=u<_3FjV};07f2qas{rylrD@wZ#hsz_G`K)niuy zt+Q)&0pu7C;mB#;7x_X#En~-Ykz~SwStBOD1mRNf6c^1+-*~pfSk!z%__;6|svVP} z#a|}u!AbYk0=JY9O6S*jndgoa;GTrmXh`N5UAo+K-YbsC=#wA2W;`gsX>r;)84pB@ zz6z3upQg9{h+G_uTPem#NqlZ!0WM6tcZZ z&)aS%P+h2w>C?_4oHA+_8vi5#&YD$kDCU3LvC)U3hZEu0xVNL&Zwa8-EE^R2r|&@J zfijGuljPPEln0hxwBAItIn8$|&@L-u;1F&g{vetplV|gIx%`U54K}~;@|6;#ZK#xO z8wkifjN3Hyp;~M&%xxp3gYKP@(XK*Wl>Q1AZ;uk~(&`4ArkWE3xqb+0h}zc+aAzDq zt2X^TNCpypJ(m7w@k#e6Hx&t2`*5QZ11&<2k?t=dH>Qq2cYYt*nY5+Jw<>^Cr*n(+ zG=*Iq^=|Bo^@Iahs}TM1evYoE8K(S;PfnYgBIDvD(G~=xrDAKC)|$rzo9mc*YMS^) zh3>{UV-tg*Wp zia!gYVtPeGO1{5|hA$k(YNQQ+4#^(w(Lqoqc>Qn#7pw(Wi8NQG7+<>yL9plemm4&s7)(sBgs|GokCHanP51am^8& zSS%L!3cy{i4o{gwR~16G7~-m2v88A=0Rm9B!fpbDc={g?yT@Sufns+twBu0GxfkR5 zfIY%vLMV^o$EN=)K652X?+INh#D&r&$!1LX8UQYGrl3LaOOgKG#l;G4ObT#cVQT82 zlrlWKzC_z_k+IjTbBGLf+0oh^QDkuy0Y&NB_Q>o_p4mkDT@$oZ-$vGwQ7ZI)%YZYq2t!DXo zD`O7Jumh(DRT@Sqi19G$w*MpkN9hK^_#av}PO2~w=K8SBhbMCIwlHZ}{}2yycLI6h5^sojLZ6b^G3 zO(NX=u#!nH9-l49jfO=p@5qX#OHIVyck6i_9%RwIT4BfIqG?}zEZURw`0-<7;*TKB zTExKd>%?>c{*JGWSYSR#*Ne6j&#s#vgp80<;sJ%7I49rOU@TD3J-TXqh3GsrNb7)$ zkB+!_LBQO2T-@a*ZfCqIEO#-kG$CBBwGfC4Hh|fFC4MWwQP@xMT2L&%a1o`epJd{9 z0&-nzG|^k4%{FFud0`KnUbmnQgl7an!Md8P;_ zi2o;Yct?PnV+6Ci_eE;$!1x`D#WHr=C3Y*;BH$VFG%vs5_)D~hggk0%K+wIf6KZ~7$fw8Ye!istlW3vEe>c&bWw!Oi2@1Lt zeZ$u0V%Q}RW*}F`7Ye&wFv`&hX?$D$!}#szIs>cD8%q(-m2York3E-$bVKR%KAkG| zl$ajXO-sYEKPFyU6M5())?NlmO@gIRJR>5{HYVlfNCtaJcK#M>?j#_h7gLyWgA{ee?%0K z+34|D?FtZ1xef334~V2qP+TW}`dh6C?VNPOmdms=0qMTO*#caz^tv?6+jk|W$>fOQ zAod+oq`}QXn)E>d{-qn2%qZUDD?whZco|k+{dDIf=3Ke_m4Vk2V+7Dgk|6JMK25Je zsSzH#D)EO*pp55;UxYWMx*pFgQs-huXZ%OFi-1;?WxpCHtl~tb>x^yoRUtf{u?LzG z3yUTPSWu0L{o&j$D!mLOwK~rD^tiGxHa21XNrjuLdvvwNSMcg%!`;mnd|3Y9Z>T$@0V|` za2}b%gB+cY`6)nV2(NyK`R599BKRCaW3P?VVru~AiH>8w7$@2ZVL*lze*(-LOi^T) zGf7ceZOinNPwx+yDJ8ajaf)b{Af3lhf;-E^dCL^-(lavwh!|MEuUQm_wXQ#&7oCfP zLZuO#k2Szhw_W_);{fRJ01ckAK0%}_DI;d;O$R++V9}iT1YK=>0q{gH)7?V?;AM5X z?rIPw#X2tvvvYq)Bwd9Qm3llT!j+OGryNJGGZBcv$bBKY?kl3qE}l@(sp;~QK-}_N z>+MYjG{*>YG8h6eF(QizazoTHs)!dvyUfhc)O>--0Ir$rVYD$Fjm=9CJ8;><(Lh@Y zbdJa->=j5pVQw@OFiB~yW1IxLxU%-)=QH&)wU>bohoZ|&fu#0&|2Q@g(X#9A8^|*< zwVtLAu1_-4U__oS2#)p-48($KJCPxEpG8Gz;i;>it|ThgiWZe)WVR6kogCdXox`3c zC>PX{)O%$lb{0+9Vl2N7kzDakc8STfx# zh+=c5SVxGbRUT@IIoF4DskKw2>#Csz%9Ib!Itsc1Sh}$XL>nx~yeqBoC3E-cLzW!t zJn*jjQtdG!6!z)<-?$A3=PKacy&3xopiy+CE|%O70)DbTVsCc4D0O7~`+cpjYwBJW zV>SYDxoz-*$QcI+BsEURx?;k{#Xq=d#vUQ&`I$eXPHM)gnZSIpKh_iB^as)|CC)4n zG|JiwZ?*|>a_`rqqtow`g}D@{lr^8C`9D=4)$l_&XOvNpx9d#|l1JlQfo35VsGzr|zxKALtq?-n9JDK3pHTHcXTxIrX-AKU;|H7Y{PzU0Wogthn z$4+=V;yS({FX!@%u8l|Ptqbl7?&*|XhCJw(a1-o8((!W7PGFvnTe|o$`oA^kIkA-J zT8(Xmny>io8z0Y$cK6{f6Y8@=b_1Yy`R2@}qTnDJG08x4?hfhV*Ssx=g#_hn{F0d> zj`?K~F3p+<3BcYeWu=^Eudmyyc1`ydE7X&BM$!5G)Mv&+$Rlscf62Z)s zlUIiJCPJJFW~l5uxqwwEAY5)}$%-yP{tqcY4~YJ!jMRa{P}$fFwGqiX$K>*aU0U8b zp06*?guSC)!i=i~(S`_kwfHI%bvZt&wEK%r>*5j-&X`7%W&N_%A}!|oq^JC04G6Au z;eT}ng>zQ*X=&%Ro*)g_E*7oNGQonv%Gb#k_4lN@-$)ekD(ufLG}AmS0%7RTzcppoib7Fe$T3>WS;>CV1`>SK!?cZu-JR zFrE zboV31HUVIIFIy=ET}CY9vHe4NFDNrZ%WN|?8Y&R2JxoQj4HpPIIIO^8DIu*)@V68j z37{T09*%7lrjz39knP(6nZhW5hB!@Bu}+{7SCX5hirdORxH z&ClvUGtdMZO#>q%wA3gdwiDHw2=PT42MX{n8j8u&=F2697>el$)5kue#4}gg`bXR4 z5bKE&q6a1a(N79;fpif#)|?JajioKxS>fD7)6x>6-hPfySBlF*O{A(N_Xlx_Mb~1U-NEq2D`R zWbVS+;4>rAwVKiVHMp}z`OA6x#R5oT7(X+=A?PY)`wdlTrGr3Qqd%QjurvF23E~&7 zHmDP(IO$+wnyKtNlC$2^OK7SdXkeO75KKg`6Cdld>%%PA5nqXRB?iztFLFrnSw10R zo09IUjP}Q|qCJ_XEr{MJu{F~>`r>LL_cf-)!G{(p<4ig(7n!>n7fa)t!~8iJh~mQM za7cPtC%aqrf1)Vyxbc%>_Z%KV1pMt0;EciaD&|cha%YvR&KjEeCyoR&Lu4SMo$_f% z0eLXs2UfR{Il5}@BIDKV~f8%F`>U=!oNeX1_j=d`eWDQ zpz=zMkja~AaJ?#!vT~+`1Iy!!7z0ub)?`HYjX+q^%ZV`8=wqQ1pmSH|wmnMm#f6ZK z%d)d5SC||6hna7!K#AoO@e?0$g(|#yh zFf9J*>83h+M+ds%GEq5m?zpPuJ{H7al;ty582>BMS#u*)``XXW0C8p0^Ca?PHttL? z`k7w3k4a~l&@oqBE+Y4*;pxLY^|<|PkYZ-hlb0m=```H=REg8$I}v$4sCC9>=a}q5 zp~4z9Akr!Fz^F9#8=qUmAH=oJwj#}9e3fw!vA+OHM{gdC7e%-^(evOaIDbr{_>wb< zU)$=;zp;q`7dA<*$z1+;fiA&xj6vD$E_+__AC^KmUAkL<89M}{qr>(7 zRG^tDU2&hRVHdan%++u3gvVr&&JF2FGj6vKCr(RqIfXY-F9f2IQN=MJe|Zs>6?S#l;`Ije|m|a!CR3P8jw+*9kD+no<>fDVpCg=&r_Y zmzuyFczWz3!UdL(HN=*yg?Kg?ZgBR2H7Oc_wJs~-NvSe08b1@_ipdYGZoV}xFCyt& z71N(Hg-}%=GF>CeRZaaf{wu&$)iGmjly&R)E5MvC(+8J+c%|XWBATBhqZVrmQ`grf zyB3>?^az$IG1Evo8QEK~6XOCw>R>ktvU(@`k&NUR>o2 z`AcgWN-km8V{+p~KeXhS#AzL=A9qcG%GzW|0x<4`gt`)3F4YixMu-clr$rO}YmZHc#}v zGuu*m_j*>Sr&VNiHdVacAzmfi#YPFz$t4X2UIHoh2QYn{zm*Vp*6bfO>V+I8hjhJ48AK zPM&nt@?#-nhn@k81QC+J)YJduFvdV}>P>`Q%;AA5t6($E66Bn!H65-$CcqqQvJakc zvq?M&sp$_E>3)nY?ofQ5KeJv>V8B>K) z8>xcgz)WC{+Z$u=;7jhaIF{j##nwWohjg56cltm4DOO@Ygp(#qs(ab;29@_k*<^q2KbV;mqiKT=%wa$JXT;nm*?FE?~ z3^_Xq)R?%k{8`56bd8x11S9Su#*2#MTqV8tVkyAZ=x#uFI2IRxsRA5}8MTQ*p3}+` z1iB=g(dZgT%(w^0P25#s?Yu!WESBTxSmfR!5lr)SD}X=h0$p};W=7Al_^@y%E=Qu8 zX>S(fUf;o`=*P<#5-G*@uSoRe{%Hj`VOiHn7ryQNK#Y8OOT?p( zs5}hdA{vGj9sqG0YtCWH)l9UZP`4pYx<`@|h2u+%O@Oh>g=x@8nYG%3#ZUNO$F>`z z|#eb7Mds^)Mit&^0H-I|{m0^l2E^LFq8)bK$vTaAB_&-wJ3g z%IuDF>&^BEFh#(8Ywh@n2-?j`l-O9L(~v-o;hg}+7T#y#r;ieL!FYSB$IW_t3DRWf zFJ;<1^qBwZ=-{H1!f+5TD|{P`D<6j@d%AO5ypsvN9~d8rFmD;FY?y{(g(rYq9(KbR z$nGe>%pPtajc^)8@2d%Qx6o}_M6jbu1o=SorK$}gtXE| z+uVsY80xtvLEV*5;|-*9(!+%LU-~f@ui{%Fq|Vb7>9FJBr-~RDk}93mo(6I4da#{j zG{po#t{tyrA@84A#=%1@?ue@~_8H>9t`VKP?Ipr#;2o7V#!>g*fyfvSa}=)@&xt0! ztXg8mvk)%3TZ}<{)^lLF-t1$@;sYW4(xE}ncpk!?M*3(pT`Y6VCxUaoXNgpW?h#~m zHSJ|Z=;!7C$uTFRLDSvWg3bLdxgK2lMQDaKWkB*)?4#A`dDwyG-EBfGfWY=o;uiF>eA_ z5z2p5vL4%sV0`2YG7sc$JYL(3C0^m1d6LfBffjoe$SsPYFVes+0!WN=6@0CU$h^fc zvomQ;aa<(Wb!D1qpeNvvT}<2kH9oYM#(~!-qL~DGkd0q2J`HMAT`1ZaORL(9Zv>Dr z%8N>jdBd?W%H~3Rd-RDmzbkltWh%N=h*`nls7=Q^I~tGO-vo7mrNWj)itI1;7wq3h zv_Rs;@huRhiSd)xihXlfK6LvOcCt8p)HJLsMYsI})P=w0p_G+a<+xB;M+iM zFq~IQ*+?z#5J;tDnG(;4aOX}-oI27f?-UqPxgW5u3d@70GJrQJ&Nu|+nGEqpXG_(% zRG_)dOw}9nz667nfuq5A zOktM-p?#|6QJgY-0B8mz6&}nTBgl&uq6}WYn384P`I2z)fk$Oywhtl5m>!Ii%b^$% z?cSrq5ScRb%M~AiI!g%&DA$=!migGfQpPr7#do49BUkEp$bqnBlg|E1TrZMOpri48qi&U4C4?*y z`4A)GYLV_CNblTC`8PC0=;ZKYhQh6HteqQt4sGUf^wu2Klr6}aCWDOhM&)?|Nuy_U zIG+6vVK-`5a#{140BXUpRd0;@0)n}g$()g16ID#`!#3KiMqM!3a(Ab~$&@srpMD9H zy9!-{%a~sQkfm(*UQ*Z}HHY`aTLR1kM!syCzAO=0e=$;qzb20B)`LnEcQUcvH^pxq zTz{ndT~H!y(Xsed+{Wz*Im(mPX3 zf4p8fYk?tR>dx9|d{$yfQKnYiYc}Gwx~#6p3?e5mrQaspxx*Ez@TdUS9QA-?^i{tH zl6p0by^e_7JCsZ{ZW7}9BtwSVMZ0}{Rv=#8C(zmSrHg06!8eAcZ@|^& z1#~Vn2NNLJX2M(+c^5^9I8jJz)#YkjazDn*^dn%mhK{?G`>lc;Go2=6J6z zmtk?E2&d1UUXO{8{%i{Y=8if%eY)i4$$~uT^QvL&DAI#j#bTq((K>}+eqnG*hDBX$ zps-nj6uQH%DL66~KX(#I zZc}g?bcMn$GZ(ker&Qu*K^~rM+&=5_^8JcX*BFIU9s|E$43LD=MO=>K7KfxD5_)0- z5vmg#sIL5h<(6j`ML2z&Z_}E|+B61BX8EHmVRfl$yE5{CRF_BP$XHo%^*$3MT#2_uz%1knZM!yE2GR`0 zCkYq5Wm&YJK;rnGZ%h;El3-*tF}}BK@edbsb^d^H_x%Fh;tX$mq9C&*%pJ|{H;|%a zu>IFE0gMu}#o>zrsUJ26z439G8b^1`4s@6w{e%d4w9$l|T^=jMEamAb_O&wsJW_#? zzzO9)(y$|q{8@;&&N98pa)e!ZHX2e#(@pmjsD?%K$FHR*btZOd@v4YC1)vQ>EQ+~T z0D?CI?DpYZEFju!z`2JGhnlgVFc%!(IdTN_i~JY;s-Y_{b^Baj(0`4lOW_{M)0|SJl6Vgsm%yk|EEP_^zbQhzUVwEh7onrS>uB_ z5;7r9yN2Q^(YdK5!E5RKOqkPVI>r!(ZSWdJH15CZl1nX?6Gma>>||77YQ?L}U2%^H z_{si(J?{TRd3j*%veJkh>vw`_16|8y9$9xyNax8;f>j7XN05uAck3CVow37MFxM$5 z7~C`^9Z_A+|c7wPRu6lo%6r zatjm>3M17nrpzZ5cDs-&z>M(#?pk=sjekuj(&R!eeUy&9<3uobnJVi(0_Cnka$#^z zE!%(x%SaV8Jsh8`Gl@vBxM!F@W{7Yan8nd>alQ~r)yAQ5buGf~Ryd3qh`(leBhD)!4z$?|55;{Yq{n4-fIW6fkso)H24Z*7WR#pN3hIHlu%xBLj1|`*x+~KLL$GL=D8$W-(PeKxhncl_`v0gp>o{Ah>i2;%1D z0S6R@Se`xsNAPI*p%Xf(juHCH!70h+?%9Kv6L`R6FvvC ztL1Sap=M`0o=~(yUa<_A7g-5cHxx=K24$|RZNq zu^5&++$ZwC1GTaE?pFLu70~dl#9<;F6g79rSiTnGYizE~v@5iT5{s{``6riywgaU^TpUb}M?{!0SqhU( z>?Usyoa-ccnXC>#%;Vt-VzlVr0l?*B`!y8*E9tgr)27CWJI*A5|j7h6Mk^%q*bx8HzWZ9Mv>?x+ofyl`66xYm9c)=HIRGGc3%#!MuSwiijsrmz)1=_ml6d!Vrf z1*o$i-s_1CszsVo;$b5OM5X-i`Xhs6YqwTi`@qaXOd_jh76mozEx{ zj-hJ9-$FsweBO8=x_w-KiaQh8PY+-1h>h<8PJe01X;eV!&HsSaU^!!a3N z^I(!Yk@lr65iS$X-MG7IVTa%tIvG-HdgAhZAl{V7*;`Mm3-Lc}JXttBn2f3oSMGnRTq8*#@U^lvt?VJXz?RqA{zB?h!}88nPY}MVQ?Txg^#7 zg&=3yZJX4sXE+9L=nlrtBHWj(?;%y6-Z&zM;fU84JB$*BCfDPX6nTG91pNaGhwF%+_Yz7&rvN8T&mO z*2r1H9D#wt!x*B+cfM%h;MzkAVk;&dS_GV~dj46otIqWSVz(JF|6xGmb36lz$Q1If z5|uYY>CQ1H&3iausfaz3o+OH5R%9k{nF!a4DNSx;7CfRr@aCgC(nW;0*l3FI#JXtD zV)PiEKb5F-zh3~lJTixt0YAIFgqjPSTxd0xgL4(q4a-(vn*sq&zg=#Z);zMHIX%|m zfRY}qU=z|I+T7qBs-)$4rXbQxud1l+&J&<2C+AkX99_gf)|qVTjun)f6P<5Xw&R4j z&!QE=t^wcYbh{e`yL7DX)wo|YDa)xvBaS`>$`$l;^RVKUnP9FU4%C^X7d#dKj`KEO zGZqu!-bUfk4#`@d>j^hknHN}|b;|wLaeywRcA5;6-AkldOFOSMj(6$|l1dydBJ-xZ z#uH5gvG556l-x6s?3f@5G*U-jWcw2#@}fiwStI8Ffz%rJfLcW2IMFT$hr2P-IJu0L z9>;`Ncw!Z3cF1)J@Bg6AT1Lf}m6rXdgpfEdTS`wLKFKsQGHX#^TzV4!Q@ms$|NU7I zu2HA-QJC-E6J!R%KBkgYPA&j$Vps&vD*?8Un9={>mxOR7Q7DwMDV?MxkkYaP1LKE@ zZ>v+l$QwVhOgWk0xKxR6{)&HcLFn`HSh0d2`hui67$}wjIO*d`uNij;A~n{y(fCkA zG1KCEkX|<$^PCFml5uIp<0V?46X+VEx{a)AS%q@ux)@dIH!qLY#%|j^x4L6=-Hi^N!u?Iyu<`P zF!=$IMRuG`w!Wx{!K;@N^xrLn)w!*0TAcn{$7Vl(!bMyl(mhFcYs{8|al0@#1)Yt4 z-xm*-5W&#atj04Xq}#kY&m_%#aS@Sjsi)E7dxBg#nwhzLdjaO2yl=!$N*ar_O57#d z1yVPr(FbGn5-=JQA3^A8i!e7k8NB%#a_P%J%_eq$J=E-HLa21DITlao8* zkuFpR>;FKka(NM3qHQ|EjzU}vPBT)c<6tJt(NGdbuD{k5MIc?sq-Vo>g^?8#t31#T zWs-9ocZG3g8Ka$v8JScwZYpC8VnV&#l|=%)Vi#|gBo5N!yI1iq?30SN^k)tf?Q-&@ zWmh`HwuE`yNP3Q14O@UAfv}@KHWugV8)j){@2InZiyMWwRTv~#4VFnTne*a?>fd>F z8Ay}GyP`?59Z#9P*YNE;S(K@oCaxz1(r(FN>(e5<*5j{)jSt5i*&Ya%44@frmuckt z0~+Ezfw`@c2fc~E10YwqCjVI9WH5&NsMz;f2zLRQO|b6&Nr>aJIif)SEdjI_=n3)r zA_NN#hCR;+$lZ_myQfAUp5r>O+~YWKBCZlQ))MNF@K|NvQz5x=}pt4=zkp&YxdfXce{{e!u>%801t8Wi==`3lDTk!uJmQ7w?EGfbq9AWlt z#Vi4iAg>5=d+@X%vq#cywnW;~_Wcpm6&~ZR;2M#Rmv409=05>t26B+^ljZf|Hx{v` zb0fa1$kc&w&~|$M4`pp#9A1#gYE4{;4@Ks|IU;8^^ZmtfF($-8vj}J3ne7*F8#B&U zT8dq}b_Uy*;SgDJMjDNu3i8n4y1yB>mO=0kgTCcxeE(*Gz)^OG@w~p>Fgj$>$M(7f zgi5e`9gHP!g>a?wyXCcbP?)!;uvku&?UVEw;ZBPC5)Mgm&21oLglI1gxSelTiHo$l zoE8oXa!b@uK*vl~TelVN0L^1tE9e`dJrEI4w&Ujs8AdA>xD(hVYoRrOF3o5xD=fEm zUt?I^V?#lyt~_e0Z}S{E67C&ZWq2;jyL8s=zsupd_ges_7g$E5<@c2pCFQi$Mq>=;zI^l zXNGzAW+2)H&@f|ci~p=|YR=2+#Jy9L`xhO!&Mw%8^0tS;DT$0G;twLmk79(9Iv73R zA;GQ?vMC-enf8byG3dHt2NC4SYl1Q7qkNm0NrbL;TuK-@bVx+Ig9tZ3y~$pOg}qCV zQ^zktuZ#=;+#LpL%xXF}Rh^vKAo*o2$jmQ0sSrirm zd{Yh?IL4e$K)9eB>$$NbsS#nGtvdRL;&hRD5bK?V(YRfRY9d9o4@JP6jF4&pOD&fb*!d#lGLRsh*C%djNnof z4OYWY`xbpu0_{qqse{x*i1{Ut{4H&=;%6@ak|yVMJW8Z&t`WHNgulOU&zK5RTq06l3Rmogi$h5PhDaPiN7KiPwg2K)R4^)7D)t-V^O| zNneNiNa=TfA=CxovX5g8d!vN8AXxMJ|jM&8cnYX3i z0aNnYwf9DkNQy(HXpf(ZGT+c)W`+3bUH^@@IrPovd(Uyv|B}A&X(Dqk8fs5oeJJq# zLUW(Azh*kz>jHB<8N&>y_*9Tt123e0-+Uh=v$Q)ef6ohZMCJp8H;q{R10XjSN3@tG z(q+bxJ6rQz1UO;buILTRgN4A8ejW?BvJ8$tF1p6i|KLwg{tPS}^-?~WLp&+mwUb1V z`BNk3ZK0lN*`sU3rs;9ghecr4Jz4l^P5P5iO3Jvb)7bBb9Pe1`O^L<+X*%Z_TZpEZ zC%hkyn?WG5uo`M&!6$_k07$VZrqkhrMuu`aOZ&UhgLi#nn<{+AB;IZfiNqP zveP^9VkF2MC*9VdtVGu-F(&Htj$m9T%;|CqGZv4OVWe5d=BgEc6GmP&Y1SIJdqA%l^EdL%T=u5D1zI+CFb3&_&M| zPrb2|Fei?(M>pos#|d##9AiV&fLlA)?itYq{wcq8LNnJH)4cwwLYl5~0jg9SB zf^x~^`9x>2Z~Yfcb!OtI#6F@NDc!xnu<0elom8^sJwi|(5;S`%XvU@E3G?WV!Tz-9Buky?r-wH zYE37I14Wqm-5lt(eL75#ONmL>K-w)lB+NCJx_m9E-mE!q5m!2j+W2fBh?bS*OINgu za;$W@m^9y7WvoFxS?GPuq}xicc8m}giMLU7 zsW=*E3v&~c?~o&nPPlo9(k!l`DzW$i1f?^zP`gT(TWbm+dwJZ7r$sm+u8B}OWtXRo z={nyAr>``)yS-lDt}>UV=&&W-gk=_Th*55X*V1?98u$Kbid#n**)X7|#JM6|F5Ism z5~{{;O9<^_EHy@B!orR+UA9`AWr9LgVn-3qK*F8$l;rLu#@AY<8upwO&K#Yb{Pc7phG#NI)%R)F8 z&XU|M$6-Ru?deF5yW?a5ZuPEef4nY|9LRv(!E#0PiBporzD)9`!LyIA|Q~mwQHM(fz4`= z?uSfujksa;A`VJmy07G9aHl{AYV^_T_WL1p?wL5GN*Y%e3UinqdSTom+MKeX-YBmj z0BH=aHzDR+lW+3`6=P04Drr&C; zR3ehyqA#_(5L!=*Ok62~X-%*Ca2qAc>>XEFrPDrBCV^`QrkHp^h&4M9lH_}Sb@pY~ z;g5W#;R$BWoh+8Try|%j!H!~Td@34_BYV(cf6WPyZk1lt)8VHfYeGb5Z`Ze zEWDK}ujwLTM?YiwMSW8zt;I1k5yHvo1tFdvgbzmxBm~mR{^*?q;bP)4gZ9L3niSWX z3``54xMqJ_hYKK!3QNn0`p$(!h=V>la*pQ(k}9XP{@8sAglmblPAw)*g?67{t1L5R zEJ20253q$#8Wv6)Kz*j%)`hXlG<>j-c>n5c6YZBdKk1&`-| zmIbH!Qv|_oPW?Q`9={byp*ghn#C0N^EJs|r#}@+3ch*{|lwZ28!=ozP8^h~CkQV!p zUc}6gi_D?%-A(>q3o)P2cIZm#MzO{EfG(8gJ$bh{xrDS6<59afTae3whj9G$Us;Ah zM9GCL4i7gVOdjj_qexmRs|#}>m}NQH$Av=N6k|1p(nT9Wn^!HiR%|>pDa6Zy$9W|c z-fFxl$T2y#Ap-ajw0apfw8!b2!NLZpif-aYP%f<`P&mmIkQbIN2AhxhhY2-5kcCTU z3F*k;0y95Y{k287NDvwE{8HSYZXvUPwy7v@T$;we+Z?`;g?rl2FmWRWfp;`Q!U z{3`#S6$9TY|Ho$+<7wqhiWGH$LFIoeL}eI5rpA;_`A>r!EkQ&U{}AaW(A3L?NitOaw_tNZTX&88xim=>#r5e* zceCEpmn%Y?V^gy94$id+i_nha$~ccK19=A$okm>tLy6LmsUX)LX>%X?KJ`H|@9t zTpOq(1-n`;wkBy7E+I4$BaSV~TS~H=JS7knI z#ZC(5mZ<-zk#8svf};raKpD3`-vql>5eyg}Sv+nv%%s^D(>E|E)Lyexq1`qLw#*@pW-xLh!gyF=?8Y%bWzvxfG?_4`7*Mu@l(LyyKj zKQ_ep(M+J@^PnKj4eYgPox??XYC+~MW!k}5?k8XrMQ8VBtRc$P@2m~U>S!||Ztfm> z>pyaEtxLl(aXv*94_3r4icSJ3iKvcX)pAK{xN5{ zC6dxNz2{Sb&IC!7#0Od}7e4^h{6(#fRBtH(ULZl)?Rf#z42b}n@>fMssOW1{P{1117alO8Y#nOSMPIufd+Wg_|5H9oLzMq27ct}+HV!jH58LVfM zIF<5RoG>?NjRk{dNg|3P1e56seRgbmWA*JlV(EEU2>Ixw!l9~6%8q+kk=N=XgvXx@o@kKRPLOL2FcQy-hSPFT zA8(7u4M-PGiUMnNgOLlvhADqglta+ln*DY5o`(o?$uJohCf_S^9C=tBjQd5o$yntX zE6ddZ=v9*^PKa6h_UVCQ=R<-9)cyLyu^41Xt{)cQk|WF+igTw!Q!plL)|X2}QIDi_ zyG)P&s-@RrH)#|RxopJKh-f#o#;NB2u2`%W&=te;Es_$dv8*u4$pfabeEzO7Ra~U+ zJOQvvL5YRH4+!)WRE4jbH6dNvbT#^{XfvsXsT*t=>H~3(x*%c~R*fTsxxwH!qM5On zIa@GvC9t*SSyW-U04N35lcmauv&H2)LyDYN3eqq_$tE5YVTN)w&rsQ+9{>gp;%K-d z{ws>GoG0jm0}#$Yx4kuOUt+lypobPWQMy+~4HP-%3BsLl4-QWH;z9u=)gc}5?+iki zFE#X?*AdBo%@($VTZnK>8ip?YW&RiW-^93LsQ9<5-i`~F7%l)_{ABVxT!4$oNkXD_ zczA|DTCEq~95$7=xKV&PrCY}a?iTR>{4+r3 zt0!EgKHjbla>>sNx($agvD(4VPQR<( zm0o^YM^LTbk#CRXwJOSnYMzspAwj70*=zDMVlqo*DgsjNsi7ISv#b3 z0r#vx`VEhd48;2)T-gpx3%FuF0>BJGWlb6qF;qfaH_1s-943fv*xep~(kIQqyoCfi z_WebXU}Fe#v$*%j0_aSV%b}wH+%x5Ejn!z2qn!l%njS{Pp&}_D(r7o6xjA)PHe&)7)MAFx=wqnsZK$O=j{GVWB%1VMn`Kg%>G*Fq&y784L zbDFy=32@=yqsIc89aJ#QG4Ba7^AR8F{VwdYj|0;f#ffAbC&F9}h;;^li2xXRX9$qA5~Uw<;2uzm@}}OLOQAW)Z;L zNUDY^(u=~1K9mI7yPph1hUp#AqeReq)|nE={*q7USDC@Ib(3hyiBTwWhIm#a(Rc&6 zJAQBqgt^f|RgKKQ62jkHeX;rc6@jg_FSCci!Ecf{%}INw4v>PCPY({ z){8h>RAz$S;9K%EXs0Yc9M#xHK<>hRG-tmuNPm3>=j_V`P&C>R#dQ&8NH?b|9!QES zP6u*>tTbst+$z#pB5_F~&DdKs@l#^cMR=-dO5Vs-D?RcAp*fX-O1gi%QIIRz+rg7*jhOo^5DF$uGwr}* z*$gmv(N*Rk`@R5IWu-Qz*z11{?H)3I42ypYgWr0~u@)Pg1LfhV-Hvu-QmZ&fFhy=L z@5Pu1`b5fab3efDg9&6AA#Q0NSU?oaY>UjM8fWPbk7?B3s~W%fW}Pj*90~Q# zjv#>@n!#OG83y61&Pn$OaVOwWiOK87O9CifUD`qmo?HCOxtQ(ATIT^UsD^l&c4K`L zwKd9aTN)e}3m_`5KGfo&{I3|uW5Sh~c0T{+*&WGUy6)IX7!1>uRB!xQl*`hdOk)2b zz${@gm*vZb7Zi!0tiuKp+3BvrC=+s)Xy{urcvp;-LC4?PjvItILCyhHo}5|vLJ&G^ z)~nlJqysQ9%ILl+#Jon($+=il!C;QX4U{fN@5yAUYb7@REm5cyjm38Q7*Vb_x)D7C zcqGFlrO1X?L?l&zt_;PMxaMiR&s^P>YDk!I{FfSUGU0NkT*Co6Fb{Heyl!rVtY z^iJ*ZqFtLo6o`=vTv#G{Lz8{SMM9hjwWHVVc?kdJxF@FSH|2(53R*Bf<2FP zc67utR}{J6K}9NH)mTj!m6c7D2E`_27`O zv7OkwUZ8I?je#X)+*ivea60?y-R4Sy(b+Lk>55ZCI8k&{Sx``bjlT)>bVTOK^$9^g z7Mi;tk9m;%r$Wraq$La!V)LuYP+0NOEZYciJFvr>vVI&=0tjVsB>o!#Zv93DUnJkV zx=1%&lc=B}%(=^vIbwpvgt+K>no0|QH7+iLNduJzxmw5)^M8*nu4ZPqs;!a~X|8Md z%lYDvk_R9}!%S&<{ZZd;#}N$2ZWoz*Gx|w`l)C@Gw>uU7DYzx=ik}I}Y^CopQGHn=yhx&K7WpG# zoUi0Oow02R@H_&&wJN}=P))^oW_Bb=#@{R>(GlU`5`Q8R!x7)5Ou-XGIg=jtkGwX2 zBLD>_Y`m`TeB#IN7)oXNUTBw_90)ywI9}gQf&C(){ssQxKPOF_636S?RnK>6aoEj3 zZZavn;{K4m*MkDhQaKQzzl_EU!Wb;Lb7 ziLZ1U6wQwqgq@rS^Q_g)y+u!KDa3h`0)Dv=Je(=aLlMsbXmPQ7<9V^$b3%Ijc?}V6 zacmm7;SlYF8x?uoh+ZMCfK=l2#=@*J63?nN;w#Z`TOJw)?wBosWMMZ`2w5MNj#`q@!`FWC?)4O>plplt&8DWAJ1Ra;x3_P2seNz z2h`$KK_2g2DERa};6$o2P+#;xh`a=JBdtIli~%T1uyAvF1RuHDeU}Jsxn$5WQwY^a zeR}SPAaYOY)$<&?tIt%GkrS^#YGn4~@x;6kEDkW{%gc&rFh zYYwB*vttQpN<|?|02!iLI}ocr4&ef3;y!kkNgHDG=Lqcrwve}SCAjHd3j{wR z^6FX<;%08qe_HXm0JERX5#sE0;(p|LP@0WBDyG&iI1XB8%+U1aI|a}dO*C%WUgSGx z%38y^{-}^VtJF9iGB4fy5|9~DVaJ6;pUGmwmjTJ6V~G31_eA88R~gky9LEikYLydPz=F-Wc&HG^_E{%9V zfcS`PcAhu*&J18K$2KE26Xf{qNIs%f2B9f9z2bONkQs|ziDpU4w%VHoNKHBX>C*HN zfp8nGy{goE~UtzE+@_%hnEQB{ST;!rTGrP<>p@rJie9p=GlfwvG(!jD`7!`km#CX^H}f}PPDV0jM*bHvv9E|6RP*aV z+>rm~u5~nC6hV=b%dUZVIseyzvT!W*4*!)hjHJ?>_L9r$k35eLVf4yeD$S+U1iLRF zszV^XPMHAL&fbhBt%V(C3pvK2Cw3R$QtDkEZfu_~gUGicj)Th}vJ_*TcvA>vmoFAB z2Y>voNi{Ni;Zc!htegQS@$Cn~$|+PjCcFWaLG5Jf(zMmc+W0*}x{8JW7ZM#2?0zAR z>4BTm1-aJKlg8iK0-OoH8JJttfBzwnCS@|h&yol=79Mood7p2F7uSrfp;+SsC@02^ z6RGbgz+I}v3o|E(bd#_ap}vDWJ3U6V`#<=DBq!4EUeUJ;KoKQoV+Q!ahk%|yq_b%w z={QO#(Z&#p-=c3yqP3zDYy1<60<+f`jBP%G$fH)y5?Z3o9dS*k05#FDV7DU9x}>dk z;m07Z4-O1if&VE$<($wK`+veWS@g=Y&_^QjNachp4T_lO(;{|vWrSO%?+I`qTo%gZ z{b+d(8u{qbi}PPW#Z z-p8|*p9wJ&kZSbB(Vs)RFkZ1p<5Xd0eOiNYg{>-9$THZ?+6u;NL(_8}S`Y+?fG&8(d5c#IXV#360h? zdw(LxMdrpwr}Yj03qtMsaC5zzzVnuo<0RSy+G#N2g`2@-gn*e=TljxqZ~~3u?pR#} zgTvm>V!m%|J)VnwuEe53Xwr5bpy-LIqMROEiE6S#*jN}z;Lby3zf6@UZR2CFy4+S>ch!pUzpt<#ar~FCG&BH!36b zxNa`KT?AD*Sw-`>o=`Uz{Usk8ZV+g;PRD^RJD*$2U|LQQp3yz_nWsoG?E~#kswUK( zM&735LeVaA*AVY(2)8R_6nS<6IJ>&2o&W zJQLN?^VFOf@0K7MTpVR|n0Qa1JB?nRV9ORC3(B2FN}Pl7A0aMsXCJbgwdRL*nbZaP z;`aim15<;#=6(x8=1mhTQmd7Anx6=zh+VuMfyc~+OyPfo>2@Je&NDf-uEsBfVCDI(xyYo_-8jSx5bUBl{ zJX0!zaq4$L-Cen4#?1jW`ca9o%ppMLOuDTw7eeldC73%`kgJgdgne;I8L=jhW*UQ2 zzDFpk(vB`*thz{%o1_D2(K<#L0m!EjSBWsQc^7~a{wMigy$T*%Eb5?`TJcPSh+HDP zCkXmLP#(+pE=*(Z+X3ckrzJ^hUaikw`gN3D*pfF#T z0i-9AE*sbSJ^|bmFa{T1q8VlVxG&m&F}}z9n?_1kd@jftbAZ(}3HZas0iCfn?A*3C z&qb3c{;jwj{mxPjsbzYqzCEOSF~HbQWUdP)xUhl! z_|jl*ReAZW#jgcWDDJ@VRk92O+4i!-++W|W4fk2n2s%=T3&LG3t_ejutt4KJ`IjxC zbg~m-d@U%%wd9P;%fF+sPzm8^tW&$>50)d83!2QE)exTvb7ovpVa~Wbbl!qU-8pN| zKPfnOlyOz{l~!<6dQS2qb(LtZH>@I9BxFOUKMMEeicM&m`+ahJSbw9$N}t)mG)%XY+s20dCs*$KQqjY0zK3?bn_fG;wUU^RxW~~@Sw9i z%>T(MfG#ZOD0J7@B5${9foZ?Tq+N^ch0!-ql#G4ycN=!5UHYbg-F0rCju&Chb;zuf z>n<4lQVe2z81oDV|hVI?t5 zkZZ(|Uk$fW83^H8QfWO=5b0u?7C&2)Zxswjd~ux!$3{XWfmPpHAnpfrea75XC7|R6 zW5czJ5QsnsF-w3MM5FNg&}eKY&;t+VquMT7?T*lD`UJjdOk@lkHQyHHs_0sv5(~E#QRN#u zHW8f*KFp0yGWcJ7BB1%sdCYcTs|X`q&hUuX4wwW*j`9cjq`uuEoB(iM){1up5jeGT z%$y9B$5jKp>6m{?0dTlx4NZVck?xk5Yq{c8s9dxetVT(NNeN<{Nt=TM*CwCk?x00`WRb= z4TP9)t#rEHN&sBfJ0jPWfA+97tHdV)NRAV)T%>$a{*Oiq-D>U)iuCpL71P2oLd+B? z!_&8@(pLg=6|p;r$2Wx5Sm{F0x95)_T;E|1Ns^6oFdr65YcoO9BKK|N2<+YKan{BV zt^&&jE&Uq-uBFBrJ#fM%AWoA*UU$8{F7wqjHU)Lru;N7Gq`hkbDO);vF!A;&(0Bvl z*GF5B6NJGA)*sm>+_4#?^JALqWpSIdIS3WvspeXYh;aD^&+K-cezGT33)0pnvuxd%JkG42M1)nqMtL<}(X_dwi}SF6eN5 zKw`T&wgh28>l}$m`gGvB97FwBv{zcLY`bwJo8*E^Yz0i+QK-{Ne{YerOJBz*^ZL76 zLpg)w1gkwh6_UrL#CNgVHUO|jn$+<-5oRtEHQkmJ-xoG6Ku))rj3h=)YzywRaSx)o zZ*3vs5|hxM^zG8?;k~$DG!+{`_OP9UO>A2?D%G_G-*tC?gs5Tp!E)? z-Vxw_OOYB{Ll)c}hz9FpJG+Fw^SIJtC7I4`!ra6|%umQEAKn85wy`flHEk~lijGYY z>F>5Tl$(d+t&I6$(McuPo}}A4QC=$0Mbp!c`0NxwLP(3*I=?5%9X&1WwPtdvvFtv; zxuu8NyI^R4{6!eW;QEd@qV}?c4jXj%L)pCdl2SZ5m2S zpZplwwPjDhRwX9?1jJRU%1TeXjwu3N4ix*i#X!Y%YKh6`zmDoLO_+N!CIuXPG@8^^ zV3q!I&Rq8O#Lq>$a9Qmz4lh$o8dGBCRl>|SW>Kc*dG;&f;ieXCXY?ZlIcbJRZ>)Df z5d?8LC&*@eR6_C>!84w*!GVMtZ+w-L32^35!N?7Pp#%-BI8gw-Wqq6;oThJ=7)Bvd zZpFER%s%WEbO-#X5E=xX77fcqDvsaJ14sYY&UfyeFq_B91voZ#EnTQ+eImrnr+FKr zBl5Msc?Td3&Z!%-gsKU~a9dmL5 zA!uRqd%+;^Wu#WV^9w2X*(j{SO!?eEsp^Ea96F(P0@(6~R z=xN~v8UQXXUfXqx&9bzVKo>%H4b9k70Nob1tZ|9H%_X#1V~*Y;EM6iwN^dS87Z``8 zN%U}~Fc+B3Ij5y+yeEiGgI7kz(;Cep06S-1+G#{pka^ZUqFSEFM7xQT=1)2c9pV(^A+-@p917*0k+$;53EV0I-3n4Ray2TM|zZUGwRQSdadyeZ51EaX?5V>@laRijp)j~VKzP<7bAXi_uHF2|O z+6S{Vshd72(rI=en&vdqz}5iFMMi+v>eeYPZaoT+jPSXS6lU(Dq1*wHx3Hwo5a3qf zs4p|M<1&Iq4Qsp@bFmOMupJ}uh(76aY>682L?*gq`?Ah4{G$p<;VaG%<)SbSS$gFR z_;G<$K^=uH*sCH*i^X~%Ce4H}2RO>7z3e7};6R=~<5bbEae(dIoCj9lRfGyR&P z%rm5F^;r5iXqO`CtFVvZx?7-G(4QRa{X&3Q!1$9=-b^8+iq;VdQzwXWzSIq=4EgpR z59WEB{h<5?Sxt#Iu}x^Hh+Z)_%VyhGuZMq8Bs2y;eBt-Kmnom52X>BEVrNC#k3pnmy$iO8~r zjoaHoT#&AGmoV?F0vO|-w<{JF;H;%{lH9aU6*j(gDAgGb6Fh!-&tX;aOpJg=7loQ@9^%qWG?ZK!rnEPOHqqfbg|zty*k#;(&(fL|kw zzzv;#pAg~NHL#iE^^;!$xPRD)j$LYOEYQ3jM1yO4k!}jy$PdI%%Q)0X8w`BX+)@T& zbsmZjOPa~772iIEM9lkPHjRv(g?18BP;szKkTL;?YP@ zZUuxe2m<=zbOm$mS~|$bon<_^Jd_{LmjqE6JtL@Y{F76m&45;q-agh@_E>?=PnUH% z4Xkn+5Cej<5u1;LPKR>t)V3}&>8PFoW;U@as>GmZCxR{+YZy0@We|LIU>YUbOc{_4 zM>ReZLTgS$E%!TT@~xRhR=Asr;Ezi0P#l;4!0Qx>a3Uxe1*QAmB+9!paajvPx;b3+ ztQ;!IJes0hRKy6a_`PVCgL8s>q95>U5Opz>9C_!%1eXU~5{htGyvvFi)pJ0c8riXQ zi*_^gB)>ol{|3N?;!uwl7e=e@WqMVGbzw1oFF%FDZe}XUYUSvwKVsot{99ym-2d#!ABS zEm7I00^#*^-s5e?M&}iY$VZEgP4CSHu_=}tuC>o6l)0mq2V$ydm$B8?>2wb-F$R_#nF7c5s|9)M!7_w(ae7Df<}zUSP&?CO zHEtC|6SuT*u62tnwq1iWCjLv(SND9u91$hN(> zh&$9oB^4!kA!IdzpQ%{wlHzZ<5Mb^&K?r~IPBFI;B0Ohy<95AOo57x1@`yDqoh=@R zr)FFw#Pig&DJ#dbB6I5_AwwSw%l6B_%%Hv&Cw5l9Z(af9?kP8It=LF_;}MBTmlFS2 znCs8(kSl9m=P07FJ)^JQSORoEqzreLfS$eNp$q}k3)xOzOuiDr?ZWvOiEV0^p9!UR z=+QM2iMK?%yy&x3YrV~w=PDrAvW|hrS|Z_eXJtnGsQjy!xowfF`HTE`47w82MYx*m zs+rVI5+ng@u8LuipY*o;u1_5*+?b{>x#dFHg86BH0X^@ zg_whA$28KrGP_>uSS;8{KDe7`hv5#8AqJNZ5~fL&tKNY)T$HmSu z5j8&W7@!ojJ7$z1?%vqeXzlo`K=|FoO=~Q9J%qDQ7Z4YSrr9JmXG3*^NVq=<$7xsJ zz_*)*-4>GiJ^lcYd84aA_6c#1Fc(8RH*1mX`^O??+Vw|8fQrs(6|Hqq6sTAIbEQ8) zC`a1+R(+Gf2+x1;UN!n~U2(>ZV9o%q2E2ZyLr((TwzU};AGP9Q1#_z;Q30D-iP^6f zOda&dq~0@)KMQdExf^ba1^*09_HAvGVnpAraA)5ru}>0E^uKfw!Fuq`n?TKm5gdZE zqvcvan6pnCSSei7*n0_firnwA$-k)t@Z-s-{_bB0k*mk#EaQe|oFx!;;kghFy(h{= z<`6O#ABlG5F;|hY%bYiZ@bxBuCaDd}+rovS##@bN zL(*9PKY`9fvUCJqua~J{_Q42xuLLS1mKW=a^1>+gbc zh2+Ujin;%o4Pvh?q1AWpCX_oX3bp8Lq?DEr>UwgA#fcjR&k&Z=t9KHQEeCmHH#I4=2s0oq^8#V_cC4xaq*zbHcYMW~QG z#HUNcbW=^2hqnkb+q%%!;R645A#@i%uNMnF3`yQ7TJ*$$B0Ly4PV+jsXvgM8SbNil zg}CY1Kp>Ml`w;*oN0T50S^QB*YA>T5F5@)oJt)Y{so_kApocH?n8Q&iuK9G*jay1c znX4bYFNnhNKvgA{db~&nBNy(;by_-ApiA5?8R;@lKvQDw<1wrazD;?)Dort zRps1*vd-U}2Ii_f)ECuPix6G7R@KeQs30ek zwt9VWq7d?B&mh&>dqh%KmJDtpMVL{T7YySmJGBrxkl*to07x{uh&Q9ho*0;u^`23jY;l5M-dbetz}cB75{glHx8Kh!fuf z^@zbIpA?B0-4_XTYSSw{^!>{Om%BfX)-#KxHJ&ohu2`{MQu? zeZn@aw6Xe!MOZzrBiqQR3o~mNqZs+8Jy1e3|NGiWG@kuu5qE$|lXmKecZB7R(TC>= zdeWqifHbX7m=s&#CDMI2LJ6=+5b>tWla{|n7Gf(4CEii5la6qdVRgY6c<(PXe2?g)EaCO#U5~{U71n68NXV z#~ypHrZD)?i}3I!ebXV+i+S<5DD$$H-nh>Q%65e&ew>f4jqj?mWj_qQM+y$Z_&B=9xv~}AiEHz_4t)gmlvsWrkw*0RMTv_ z`8-9C_CDJ4e$h;2xcmAr|0S7%KbPA8wyg(EhVWiwN zo-C3O<1Yy^LOv0cCyi{sz$UX5Z+{EieRfc5D;D_kIWj#5Z4fEB#d3nEb_b0*S>NMb zCOzn>&FU#RM77=%r_Nu5z{eRDKy)_Dw1kc~oSaN(d|fWkRY6Ho@07-qg4~wUJx(S@ ze-)OQDns6n%e0ch0h2eT0}B*^xR&Q-Ytf9fE(yOs7U3?9jsW6T3H+-O-v;(lgcO3a z#L5DQgqO3vm?DB|53}M9>KhKDealTi{H~1HsC03~_HYU4J-^Xdb-^NO^cv9h*j|7+ zU2CS3%!5K)Ei6EKVzGswU3E@2eQ3fp+4Pmm*)8SzDf3Tb9g~(=o%nMD5<8tCV zk->hn5^+Tsl=x98b4q6)GQx+pK=)D^Q_zt$nOrV3*STN2@IMNm#FM5@iTm|!?n@CR zIlNk65is}9Dw{0Lfgd_Zb~?Y_@HxlnXRo@WH8%qMX1nLKv z{=|WToGhn0iW;+oxKH*VCp=FiDY9BsRvE}%W{xcaTVJqv~5%u~z4-p7(p_4ma9+#teC+8?*ECVO#+YFOLiOzez5Upl? zQjL2~6itGtxi7xGJOp{QwM~ij^-a^|7oUz1$pY0g5=XDVrxK9-DCS-f%0=K6pE@hA zCe?X`x_6-Jj72?<*9&q<+HsM^ytastaYI@^ZDJL<<@E={Tl&*5J!WK@<%o_o5Lbz& zoDKX~t@8uEDUFUG)i_2JrRG{oB8xRwf^MBk+SYtlRLDH-$@!tlk6hU+mNV9w_#Hr|^6;!cTErM{bC85%aC6eTt zyjmc{jMRYgRaY#!S`m|zCGX8epAeV7%2VTUqG*q?%1~!qCX(vtKoLudTcMk zeUWENeP7xiN|OVHt=w0I2qFgt*!$oZ}(w z&jMUj?%x}6muT7wEm$b&Rvqb$iYVv6SyDPj@vSw1oE{eqtl$Zt-I*<7G5yK+ zM9vA@>Dx84GQ9Qz=LmEqBJt@S!K@LH1HpCmYYk`^TI+r78P#;OCb7qswvb^@% zMO1E%(duHlT1S}o6U@ytncPIT;%9sX z;9RC}GmZ(GM{e_f99m+R2}NSaF?86O&<5frd$RTRrPz}{a1dOf8Q+fF8g>zTT$T;EXMMWz7L(R7m@2Z(T`dAg=0-)2_` za-$64+DtCR@VZ=v!%AAFCWc&qu2CNSifa`n=U1&s(LG(t-%>_pV=UF8xV40ETY)FD zTHG!OE_S1}_2g8(%|#rxjl|zYtIM>t#a`3+CRgj%atyjrfF?p%8c&Gu%!C>ZyAcfo zDYHymmp@=$XN^S!HQ!9qghH5?`aJ==C0RMn3 zji3RIuH7)ls(vAksJS|MZjOTlI`O{hSez!3ZpCG~*W!!I|1s{2w?%puOc#qXJX&Nc zV=_WdTF-Fq1Yxuh?i|MA+O3O7ohW}M=LmNR%T2{bT6>Fk1-ah59nup=Yy+(U!GQ_U z*tSsSYu!G{wHr#Pli^kbL%Di%DWGQnRN-b|A(S)#`UIOp>;mdc0J9-Hq@`=f%M^xI zLdh_uZpSw@Kmt#*i{Ot*D6lWReUT8R4d}$hib9;DE-7k*a^#Qa55ca_NO!#}-WE-Y zy}WxJ?}{+rI~WZw?co17q159e5v~-*;Oty^A8AJ*^BvtQ+6K|s(!!jr{J?XxNtZ^e z3C`K-renJ@YF6Q9-z#jK`*b2k=s_ja&RkyMdhu34l(Ef9E{p60=@v-4c;(iLlZ56L z=pL$Ssk})L73I1WYw%qlJW(YFU2%K~Fex&FEWT@*uBB~i*}aA49?i8P$o@h!15cb7 z6@9xe^ZW^BIXW%P6qp!HPyM?Hb4>2L25QKD-pc`)=x~C#o0H>J@wivtc{b(xq%Xd? zI{>-Ml>x^#`o`u$ayEK*WC3-;p5 z8GT4r&B^fh*TUT=nhcxUM7jp8p?2O9m^LeHzP7iz3w4_{3k-4Fl!SYt*h{B<9!QoB)Kop)+m84R;2^c zhzw#jRY2E>odLEXdUAwImB)qCA`(u<%OW(oDkE6X_JUgQ99crXPoKUICZ0%`xJUVoY}58g37CUU@m&^dMKp&-#=%$+F|wql5a*y^Vc z6cL9iTF5#@@*heGmH3~CoJBWc5eXQh;s8ioCd8H^oc=J+!sWSgJE7(Sesi>6+ewHS z+mFHxdfPdbVRpxHLMFQOM%9%f-09QKw$6*bbg&l%kF$Hzh=_J0rbtQju~rS#3_(H6 zkGHQa%!#qY!NSW+KodE776RN^=t9hmYWNL00iC4|$GDuntgA>!jn3P@bpZDQ%r3Dz z>*_`!408hE)DXEf{=!8#9ds0VsVgoJ;!c3vfVD!jv-jiM;?jxJ0U6ZngS&g9s|U*5 zr7zJ9Tk(H_97_*eVCO>Bo)Jj@>qdrjWP@+_ZHxfo6p?v3;h~Zad#H@t1-k)cQ!fKQ zT64Z$(5%4C@r7G+23E4YSVjLhyo@kAbd^<&RfW2e-F>)gsKr`B%=JNT6)RB_;3}l! zHnFyE0=Y=(BA0{c7@6-Z*jY%f<(KDU524Nil}m{ycI*T3;Kx**=BD%vGW3c2`2*gi z{d=q-%6#ZW>wSHZPQB7E{VUEDwOHvOP&Z|J-8=eput>Ob?H{VOGtDK0#+6&T=vOqg zG`EIvnh1A3mL%IDPNzHgt&h&5KsW1+r%LPT^wvoSas7mcbO4TdQIDU6XPs> z=a~RGLoJ>Y;NFUNgTa_<1~lxzIXLatLSE_ z7E?x{Twv}+FpQ4Q65;VTIU{*qh#4x8pF3b@e@D{|`+I`jfl&ELy7pc@RyvqJ@`R9Ncxs#k=0t|t-SZiT>y%+rzf2R@ zT8EH;i^Rg9mHqc6!ebv?{>39g%sF&=xM7_CPylt?v^dXo7!-WQag^@d#zex_Vd)9a zeYgphuz^@XM4lUl&{$#4Sw)bW8Q};6BR%GoP_wgD(ZjT~?&=EZ!NFx>Y*VHsgPG>( z0zE^B4XN!91(|mf4-M#=w#xIiOZGYp_@vC%O=x!|n!(!%6b?Gj`Uko8xd6G)ez zIAOiGVkX}%Ae!wOajNfH$AY>e$$1jqUXm*91%e%zX)kRx2z<9tmj%THge%q9=ePpG zI0!c(197Gx7mw{7My?2sVx!{$H4<^{8Rwi(MC#{~Smn4v5dZUX4lc$;Wd0Iep08q; z6TvikTZ~S9n~{2cq+-AY!+;NYHm&*gF3pX()*-eD2&McA+s5qMu=wy-ENGaogLKs|j zCi~r!p%xx`;Fb@>!wqsLBZ>YqDf?xo9mS(&zf&ya% z*TJ=}?W;dIV1H|m?1$(r@%{6`zteNW~;ctl||hR!6EYt$nN z@hs7)J*1U$iYOOd_u5I4wdh#|mZYze$Zjocys>%uJ+0B(lmU?rbD*bf_7-NA>xD^> zkrI*Te{5(D72-~SN*7zCEq@JQwlH_Gp+ZnB$i+tMWLoTSc0nUl7>dV4=k7_tQxE<~ znA1hOokvTLJO{w(O1}jgj+peDA|3R}hT>PEVIo>{eQ~LX+>i(}al*wLJ?DaXY_Vra z{slF*7CsLcHcE%J65EM#X)!EqkCy0^Dw>Bs7vW+t72@jm4FS%E(VkvbiEo_`M#FL* zjOFy51)VtX#q>3;j;**&f4Eceq$`*AM8^%u1qI5A!w^aP#o5qtYc~2%LfwwcP8vJ# z7i;K4Ax9e_>`FCmyD)O59pPND*c86AuV-YwLJ`lg1q{1aW222t^8URSC!l zxE0%9Lce>RAn{ zQ-640nRa@~PF%;h5@$n?u8>wM%pVi(tXj=cNn55Xq!F|!q?B`5nVFvAODssDp(Dzm zQU$>l`A8vjk6zUEk)Mk4V&BfdeO9Ea$-2~xqb`A_w^U{z5<5qP|HK3s|AeC5ICyo( zl{Q0a>ZM?$hmNrPf^BwL5rmzf?r70c6y}B=-@?FuZRPifUiRG^ra^y_vzbdvIUc)Ws37=4xTPrV%qO=N{~(yIGg1CM)+B}6+!Z`#qtR3Yx-GzRy093iT4zff0WpizV7+pza_NwlzB&@hg3+4LUmTGAF`pL+PE# z`egy;OHZY{8SC8#?UJL+E1~|@C8FIhOaFZL6UHTIH8{4VsdL>D#NI4jdgCQQpc%?5 zOA<^~2l6V+%g@uJU5dNmx zC1PGdkopWa?OW;F1&}M>Budyb|KHX&IXcSdgXlABKvc^pvVLO$Z^ei(vrUhiq6JXK z8$iKY@t!FmSc36%E2chJ6i#OZ^@BAY0;2CA{i5DmipqmejEtKFxH_`$*E3`Y6xum* zE07!zJp33CWvo^7w)EqoNS!Ob-nis(hn5o$`lsAmZuErz$Buq5Iz%}2Ug?z`E;^4& z#1$~$;}StxS`TwB`Xphf%A^UC;s^S6Wi^T=&!o$=3C-;1a6B3l1vpvsoV0g1NQkS! z18;2ndG}5b1xKZ_8ZU{UP7D}sSl$sumOQu`-+G#FGfDnLxK+Wwj4-0I6Im}-dIrK} z;>v>enV7a)v4Kzz0?topm+bBn$NL`%axo*NM1Zk4w4)wo^=S&YFd<#ZBB&gU_k}pF=5{2;sn0L_4zO#0)&ok9 z2u_w4=BE^@=18um$94!|HCd%yR!MLSd)PDu25GXRUV~^px9u9|4(_q%<0v zd<^aKr_+qef4wj_8yW~K5reP^X8uRGlbcR+vLeP@p8&ZWoVFKtM zMK}XIPx~7255nA8@mlbF);rDi9s4Xz`7|2JwWW1H9i#HEM3K z^~2Dq5?d>vGe~<>b%hziDA#~(aYQ*g^-;RqLqc3q66gIV$@{?$Goeq-v1GX>=al-Do{){1`#%-ty&WPM!%%vk8sFEhusvvW@Row^|FRkfQLjmVQww8FpS2L!kjQR zf@xyBRgl>|9d>U!Hzc)S1WCD~Bc{w#BqP7AtQ({8nlSpd{G7%j--Ix0laIA#EGvX^ zNUDv)f_b6L7f$S4c=XH$aKOPJL4euG!f4CYxJ;nir-uGq7t&_B)t`jA&!DL}*iC;| z&EFTyWZE@^EcIJ_k2ke+5M$2yLGpx`rZGebnhTB)PBjou)Z-`-Br&ONYTT&r+9V`%{H7+qxgb_lOS`qmnAug!k-uBXoKVs?caum52z1vxp}@QmkY74&cqj$2p4)< zIsQ*bZg{q1I^RE-6OmxOKk5q-z|7G3z@M$NceSRn(KvJxwp+T_zR zF#3*2#pr(tbEE276eos7$UMuiu-S>hJl`Q*vw{?p1Zk()Au^(K{Y}t#GvK~NP4kv8 z*e*FiA20hr&;an%ifp}7gHu%c{BXZBA_m2Z3cn?R0wOa z)S`gqWjE{8_@OSrE|*@O(7G5aD5&$n_@arUlg)%UA7p*1<;k7*z3k~BAgK`5pE^pw(o;@1Qgm^5;i<9Ja?x)J;?U50P&8E zc{3he42o2-CByqhCUoZ=>n&a+NU5_gP*$TYgqug|3cBOWpqWAc98FJrq=4hyrkBS) zlL{Z3`}BtcBVwx$j?ps{Hr{RIKPGjsKPoRq>?msX-AnN8D&rzh`pZ2+T(u4w3VBQk z^dq|OiGK;u4h%8)BL9!8^MI19sQy2Kh>}&VNS3gYac6dC6G#>j5CK7gfb>lFUt7E|gP>#pOB5UfhvB!VuX1uT6`wla_8 z-&xxX$MYimx`KEjC$9)G6Ie2`c3W{>0Qcx#`RA>_p0i}K<#0RQZ?U}~=fV-C%pMy; z+*Y;udB2qw`YU{*_`&lMq3zRB@;my$hGYmf(*R7xXM+L!GX0Xv*v5RW9=})uA<8<3 zEbFXaq+$D{x4ybTf#?f#rf&#=!+jNEl$)>DAJXzY4eDaBSW& zFIL>lZ)q-$%|&?4z-?`@r^q~tq?zP=0mUrc$1y_MFJ3Cxg9Gt(xZz1#<9h_U78(O| z{IuET1=Kx|qSC|}g4{j~A)a7rTNKH(?qkayhYNE3vFFtEIVl7t&zdtmp4PLACC6nn z94WfndRqeL>4$!f%88EhErG5R{fvxW72tAOD4Vh4RzUt5PV)GB$Dj~+OV|&N3qA#b zXeh`aR@b6Pj2Re_-_<$q6EZdWGfy-2(}@>OcRJcV-E@x;w-6VbQ^*EJ*uqD$-w17e3(+B_#6|lU5eRT>!2feHTxG zo^gr)(SqIJcH?DKeNdR+W%!XD_v`}Dg1Q;iIRLcwjE))cA;j6!Em6sj?T#_2rpXsA;@o9a#vvZpH^+fHgQ}wA(nfqol-W{6M;I50maxy55!-%-XLZ66 zmWw-OLZ`+ke1B4b`$0bP7)N5!3a~Z1ZGYsmRpsr+QCX_K1v6o^?vKK zKzVA%fJUPzoRERa75Zh0ZM~c;X)*q+Kv$KJTndVO$gV}6yozljL3#z5LBnlLjjxw! zdeu4DX0G%((wMpI2a^9zah{gqQ^>9$r#8{Z}Au!yblP zf_I0QDj>Q|IC{GvejjdQjq|98+@o-{%~RcbLUX=~?ZaWfa2&Ms3mU zB|-71v`u0l;R`?2FIf@>nzA4xXiWmm&_OJ3{-ZS1nk%;!#AaWBaFJx>tLWATmXHR> z7PtF6EXcg6Yo}C8s-9;`G}&4;Sz+U(u~(6!I-+EwV{d8>R)1aCl3NQyB(_uYZ2wS?sL3+b&_6PH*Fg8wrna_x( z3aAIQ&SWavSBOi+(gs#4M9F~yb1#^zAp!}YatzO{`7xezfg*kr!%)8N8)UuZU&uAv)Yb#1Ub9z@e~nc+k-(|TREcFVow3; zlSDF!?;HX_!8%zrT%qSIy0+b>4ek->*O}j#Umh30>*H83#Zret@Hqre#=lIIANdLh zoWLoXn#Zt6Dx2&UqbbV0vVz$nhVDsgagksOF-*_CQqL9{Mb4CE8cv3Exu59=*R0mV zj*&Bf65;EL+tR3z#x+30l851+2{e~DQqgT0@vb0BWz(as9wIm)li_*G9(MHltwDKlZFtq}9i?Nvq^M%-~ zEmq>mL}-p+^Io^GV4NnvJV5i-kKy)M4MhB9E*Xzqd!bx^9kjt*hUzE#09_^6P1u7< ze5@ZReH`gtON2SD^R|XhpP4?l)(?EXp3GpGJ3lKx!qPb_mLA|)QaqmlB=!>Jo`_a} z7-1#Nbrg+wR5Tw<3fzwmI-7A8T6^f(RbLB_(Lpxne(@*15lZnctPH)XE%`6^}X__>1-4) z;9k9;65|4#NEZdC4Zx+sTs}sMM(jQcZC?6dO?q^#FwfQxep%5D@zZN9iKUB<6_Yll zbHSh}pub2fyvrn$C3Q?CJ3fJ)7IfoiW|(a($}+HQBOkMHlmoKnjVid?i*L zcNU$~XUEBUcK(=X67y^238%zVWOnSFiH6*G-x6V7c8{@W-g*++UzeYRbgQ+vT_ANP zs5O39Je#MZY_Z0et7DBeSZ;U)Ng0bHgitgLAX{4;RYUBeeI*bTm{rJS~vk7 zEYJz1+?R_-9Dg(zg+yUVG&>P|rE~hsxaU}&J+Tb+FNpg^k`AZ*N_^`$2~Xu?Nr#PVemA+A+(ymugW679lr zFe=yR{&?oAU>*>M=!9}oV;7iEOCWkq%)y)Syb_w7gsH6|T`yz=PUx0kM%R~@NKE-FJyrcvW!p{|U=xbwj+zFuUh zbFXyG#;7nCf3X`7q|=|XGRO~>X;z`n!~w;hvFkJ7H#-_WW^>XkH)X{PDYb&itk1bpuXJ6nm~RR|4@@ zR#wNJ36UiVy)!d;+$P8wFu!tadzS#WtM*E$bKVrpB8Hy>FQ)txOml-W24| zVsc2k{O8=_t$JmY(K1#!uRw+ds(`V!5KEHI%%x*y5c!8tMroGp8_tS4q<6;5uf#HgU{trdDUK7wMHv4nJ$PbG=;*ftA!j;67Q@ms! zc$z?e1RX*vz9pKENN3$*0}+=AppJ53z?gwLE`Je-^%JsWW^S?G=sUulzkH(^H^~2H zfi6|@V6QQdyeTa8Hg4i8f5*~^P{_1z<9qyGIOi9BS>*PFelbT`U*PW7AMXfq1*9H` zp6^3jWVDLTCz>1l0F*HSI|`OHv8hN(Q0LO~pXk|*m_m6Iy(1?^zAC-lvBJe9FyFbW zx`h#_0DpqRUMV0nsQyE!Ys#(>v15BQbV-pnH+)HNGQUK+8{v0NAug$C z+KhWlxY7R7A_E3Zo%Nh^8Hkw2)co@w@@$SLqm^_3^Cy9>4@yIYjaltSATBTCxfVJ) zq@63&=~$Lr-bG4?h`iF5-n#AptPg(bw~fs0@@PR}pFz!7vF zZ;3=si8V=;j=3C)`f+FVQ2amyKcT5$)3+#73OroF$BExuY&H@-98E|#re6W-Iyc+g z;G2}hy9o4*r7bkU9h3HNM6gSX!*8-r`ja3UGhHC6$f0jv36Pn?+2pt^H>)x4suGnE z9ZGnWBniV z3@`feritT3@B^V1W9Mslwp6z&oS%PP^b{{@n6jrSb@5L?oj{jeOu* zlDJLjkPPNjW1g_0f9b*^88XnlW7|di;tC=uZ0Y0cLbC8D>*!Yn0vptc2V;>aHOfRhmVY2t3L!3+zRAfj zl;`xdAvgunFMc@Zn#OVv6V34X~U1 zB?u*wr$l^01T5ct^Eh9RW(p&Kj8&4NWV1Vf-Lkk(pd1rThUpYLsa(5j5&;?1}a=gkZ|b%Ao6T*5WNMq`JHiy4;9cahq{qopl+b#@!O3Uoz?8=*1y zuVpg!BdkCbwe;A#i)1>vpfs-uLB>YWV7B6_UuQ~Y|8ch{XDU}dI_6>bfVdM7Xe=5c z=>)yC@i^>PE?k#~{9LAdQKnduU z%7IwvH{{`(SE|W21NnPYpqba?ZiDOqZP;aRjrV95yI2Wx+1VjHBa(^_v&-XJby1dB zsVil~_t)P7xx}2Rcg~Bg?*nj_3W5kbtG@$r>(>W{8d3Xw@e125R9Q%~MB~Zig6%WA1IIJXpN5n)Es@c6OEi_EY> zV+p*S0ChOdG}-ExKhr8GOy3d!BXvp<)1H9vhewFejk^#2o;wNjH`t14i+z9)vr3oy zrg`;HVdT?5M<3%N_-2ZO7FUTfLkI}Z&)1iLJa`7;s3-k0W=I3^?o%c(53R&ie>TB= zJ@{Y#rN~HDm9K8s!IS$=TYsbN!hVZC1vMR2gMm?hFxnKE2#$83RSnI~jURhx05P>+Y=xy+iR z&b?SLCD9RZEEb_Y$Y!}6n>^>A*!B*`4kBC@dK3oQm~1~^K#Uz|J@BLvL+@J$^7PUlT&bR_0V~=2AHiyR_S-sy zBLJ*`+-C9)M=Q=CakkJxc#|>UuLQXc3QCj~ahLrA%yp2JnUB677f5-u!WoLqUxR{2 za>8h!$J$Y}1W>E<`!m7zu`gZ`K`{qdk8b);=YcM)zZR3C_+=c^l~eW1`|PEOhB-yZ zxqGpQTo~euIJ(fZe*wCB^ex>?t7ET(nhWWOFYZz@a_yC=$yTpJNR}u+7YM%LpD^Sd zh@XhC95wrxO8#w9UhxcsCyS(<9n+`9srh*(mt|h8XZJJq6KS%uO~%P@@`H=4DaJaz zb4ySb@mjAF152PA1dX2dU2&@*H%R|DdPt1`bN>TIJr>Bq<5CfRN0#@Bd%yaBf&9Tf zbh{icGDtot5N=qbtZ_%4APmDPHy+b-F-%}{LxEWkzarR`=+Exb-~V3$u}otet;Hfi z=0zQA#-yKmU6{YvBs}GCio<@yJAfW-F-hkHC+;bc)Ca5a{&$PaxcQK^HABuG!eFet zI^u2-2ne@i5QTf4_n=%;R)vk&MYPL;Cz8y_`(kflye@aRXo_&ba21lWgW+)B|0_VO zWXHL_V+u4+bT&M7S4T=~?&I!+E!YCRJT-@;W0p@XwOitBjV?1&&wLzf?!MSfg!#!e z%k)VW4(|i9crqR0qQG$IbAf`Q%pPdXav06rHSA)FVp+`NOJ5Up?AFTsB$z z4#%;}0KlGpRL)wFEEMfmk2RujBMhb$YZV+Fhu*(ATIiKV2>WNw0A=+R`85*>%DHxz6pBtX-EW zL3V-zb%rV3n&h_>PNGB4R2IJ*-FNr6NE%f({_&yZAuB(?jl1VQ#hKGR~iM`Y&ZIEzkhx)qW~6O{DYAg#1=0VzD3I^s-0QzfbB z0@uD66h_@UXLNF>Q1QEZ4~ynz{6m<(HOO?$u5bBOKys&77+)4eLnR~=d*yqgAip<> za*MY7#Ht`}3_PA?L8D8G4iE~flB(q;5ze|=(P3F7KK)@Jw+FGy#&BKZrH+pPI&*GS zlk(%}jIfqt0Mo*L*^iROJ-^EJAhC;R=iQxxQQ|frNFARLW3l3D5Ue8@i?dgNJn`Gn zB|IgfEiV;e4kE)uoJX9l5Jq9xjHg*_I9?axPvLr&G*CN)6VYW@3e-87{;m*ka!n>26p_|G2A0Pp?D8ld!_Ojt<^k5-TA1&)I*30@s0N}ZVn{5A!H{TC z^xLW^+Ij{~4h!^5wRD$Nd{uiVK&%d`R5378J$h_$S`d zvlDA%q=jSMwf*yKtfxMsXaCH?y{!%WnS#g*F-CE*NR)*SUTA8Nv)gZkdW;&PsoyRW z6&sLdEL?{~Fh^0`v0&s%`E>!z97dG3LJ;@GP6Ay5H1JjJuy-z@bo&Km9u{Oq_qRvT zKaLBajxEmnzoBP0y}a1O^f*UYmSU!uxV229n7e5(`L!^(I;e6yE`n-vm;n)zAXSH$V98T@#wP&$367jb;uO&oX>Ql_m|Wk9X%J4M`rC1tfGlpf7dHg<=d}!qwrID>1e()jH}cOMus8XS z4^4xnvfREm9G@3qcJghkYxdf>0EhuLHf$g_iz23BYx`BDF`E$s6lfIUVPO;kH-%(6 z{9LA~H%onV=AvC~He4L~#@9C~5ZesLAB0#ew2)Oy2=0X2)ESczJ#r+r*bExx&c^)Y zGCk+Em1g$Al4iTth-Eh~GL#p9baE)H1-kS}@YLq}2+KpsD4|DnuEJpTZNXkTB)4Pi z%F!VY_YvK#^pFVuPLHWJQJPIm2XgySY!+{)37{0+ED(^@_jly?B^XzU z@cWE`Xg~U6#ZDkNm|PQ4imxr2*AvY~MWkDV{*0PXA!fG~C;?KtS46l{Bg9QlUK)=J zbD`j)w6rq{08vKDrq2YR5j#6)#9Tc)HAb5(V)_NZb+lRBuDC?t>0|VRI|{aRj7mwT zeY{YLgJA<#M2n#O_~N(P!|{nOlh&!n{vt^_z>X$v&%Ys9lasx%-YoxyMIVD*Cb(L; z5({VZi`j-%M@1g_7YH(6WLbh56juB}AeHK1d%Wcw=hi!p2i6`UC=_2B!z1X+A{k&b zY1ZOQQI-?ghY*-$afz^kWXy~=N`$#j*46!Uo&PAe2gSuA%)y}ww=l-z0w_rzD!av7 zJ0&}vO1ys?2)7oSFE%oq<&S*2z%UY8fW1PWF^VWXN&pjpK-dl=)4*l=4QH`*k|DCts#X3P-ko{Na|#KEG?1&r(ErEs#4+{M%(b!2nW zc3{+tePeuA&+f7e%2QGjF9`PMuxTg!e+nb?q3uDP{h*xx#$rVw)JYa7c-1hhG1hD@ z(8br@R4cwMN=Va}ri6XV%toyF+F}Q1Mgy}FA(fUFj|+4KSPLpT&Tu>{Y-*?{siQG1 zfi^M9oNUqt?RZsbt(KY6j-(i{tL_Nyy5M52DJ6vXOT>(7V#mgPX=N%|g3ztDERj(h zEp)msgzg}FnD}z}Gb=)rsqvVQ+?eC_L9}P_lbs8Qos@1cjx#<3WZ}T53%f`SD=!JO z#4G6IKQrkSUo5{1zq;`;scOZlqWvLa{iPVyhm{b4gBW0|@v@*?OSXEc8yxvruq-xo z9a4Qqi1XH=TihVpVv@X3*?Y)F`Q%-J5pXL6za`2A;EDvTtYh})3W(hx=K$3>QxI9_ zgYNi?Xbn95oW6d3Hwdj76cZ+fMA0LekJ%v8@Z5*q63NWBfxygXMsjKu zNACfYnTk1la!`0!n3FLDBMAh95=8AfwwT4?#vY%C@^~|vnEq`6&IP9z^e9ZJj|p>` zaxlKT_XHu|nnpD;Mz_5E7l2$$bW_;B4HGM(BG9=dpCyQs!E-0>n9N#=$0_dL6%r4xU6#kaXbyF0qZTBfK=1{B**bDAh zVj3V>HgeC_7fI(1nwBdJHOvk*BKICxuvY zIlF4c#-b^_Vuhx_lKW(UQHGAkwPjZeKmeNyxCQgcOki+{&7_E&7yH7Py&rUL3}zID zx~sqB6xv&9P>cPY7qZfh7e!d`P_|>+gi#3V%mYAOi*B7Jv5#H?>T6W725K8}lQO!Y z5R&KRe&wr}(`dMjg9J?tg*3(xlR0;+2z9}G=t;3iv>O&r6=r>TMYZEm!PLB0^X?i4 z7VqGBQ;jc|bhFLxBciiBX&)_x*TrQTt`+W$H$@{%v$>?^Ej^oARk@i|W9NfFvcSXn zYFsFQ?+?`Qg4z7bCb$`>5|4;5ldyAZ)Zykcg2>PIBRclo>R=G($2eAP#Et^UPe+My zYbFRyQ;&N^I6wAxbZ+EMkU1>Z=85DHoj|hemGo-~^LY8Noc(ViCM&teKinw<_Q zGG|Z78nqc`3!)@g9oOSY5e(x}HBjsa4uyn~nzquhIX(D~!WbFYG}0y3{|c0wkCUxR zoLth}crqNf9menEj<&fH8&x38=MnC0=I7oLA$~Fj{&Bew7a1uf$Njtgg=$+G>z;Tb z)4jSbf~H!ohuW417Np=1+hm&F@`;sDYMT@v;ari0l8@^K8&(fb$(^! z5MZ8g{GjlKYxftKaA67h$n!FQT_`F;W|+qWctUS796nc)M0Shg2l$l|v8o{GiikY+ zDE8DR2BBR827dGo94rhu3CC#3hJG#4E)j#UqB348gdEd>*!?1$14>O)ADFic7jH12 zXhHXY5PEQ95^diI&t?j-j&bY%Rvo~zGeUKxD7Pg|l+FFF7nnr>%lLd+@vKl+rmw=Q zA8bHpc}z-@I|VpFOa2$@jzYUC1MIdDxXpz4YseVhWO$jyF#_QyU0R0YYaI?r;XCHc zj%j+%eMn>Z^f72yL65D(=S5gVdWjd5E%P;&Vukc-K!yZ}ECU>3^J zU7G4yEg)Ao*~$^Gk^aBMIH=3dNsiWCcTRx#liDvQ1HPU~Fb~T~HAS0gGx(Zde?`k` z-C(oId>~4%>o8(SL}nIch&S5MQ&}?ws7tK6z%MZCU^*+prD0{vX=t3Z1cEw-Uh_*K zuB%qh)%d3Xc&mdNl=v$g;S8~3s>H@3TtX^6u22Def{+c{>t8L(MH-WJhZiXdT0mly90N+;qq4``PlVs2FU2a_##xTfHqhw+j1`TCDk1XE0go zAB(j!!F4zTv9X9!=qBR=0l8SLmKgFIadCcw)lDPjokRkE9~DFDMNL62Hsk#`X8vil z@h8D~UCD4cM(Y!^vlUMWFFFG*I`NVaH%_h2=1NB=)mZstP*)2p)K+XF8a7~e#e^t= zCQA3%$BczVQjGl;#4km=kb}DJoM`3ioC4&Ejn^l!ed7!33Uloljal_k zIkarrL?|tX8<})jr;Bv?b(W79ZTAfjL~&l%-1xqp-A`m9&Ver?bfrLlJh@eCZ2Pe= zvxiVc=moUfCi_=~Q!_<%YR7WlgmO(R$msF4`=qayo%EUHJ;VnUneWqY&Bwzt%>~KEnj6 zqgE^yk-Hs(7A4vI%mR^e6k)zl2)ydUu;6w*XSO6iTx9irVX8h$)`9rNSx!AZI1t-^ zi)V9|4WmpT7-shtD521Z`ArcnJUU;1a|O6S9Li`|{+^J`PgW7c!-^|%7X7W(Xf)2| zcd@R&%|h-PQO;0XNba8bHh@d4$%X(EBXPnxU@jL14j6jL7~(#G{!X)j2_`j5kPDNJ zu+fJpk&$kzbM879#2>`2fq7@8^8hT7avjo*rqp6(p)Lll{6o4EIF2ttHO6PGLv++1Wq>DpPWCDA9U4U6YbLgD;Jt3CJ9*zg&;0vMs z^%TlY{pp*+s01R5ZtF%-&VyC1Opg-cJPwxve3kDOc{mh5>fgD-{1&!uM3Iljg}887 zqvE*pv;aQCp*d~;;zdxdvKI?dH@zaz^&3RpQu!XFn~M{a#&|C}7lI!Ponjz?v+?FJ z=9C1ZN_)vEG>M|ig+KQl$mi7#Eu&lEo0KZ+(8c7!{cSzF3RR3?lG6PNVHA%A z$ozO+1jR$Ei%C&ljP7wMAm7hUHyGc1O^9n@^Ac^VPcA{cY*`G+=Rbk40%r*{)vqWC zWz$_Jl7Q7OgQl$<)0l&qE&&t@@<3oBjGkS63i_XiTE!zwwI(LZk1o256J;r0P2(y|~c9~Z$cLj)Bm{m_b zHSt)iBa~_({)~oiiL%IH`$s(wyAr@hHOxpX9_6Z}P3z-V@xxRDZ~?f!u+G(BW+rn@ za-!*r?jHkMBDt+To)pRVbR}O;yele8A_}_{5qphmz&w2yM%b*-HV|wE%-1G*P_#r- zo(FO2PoP|IR#M37de;`YFwr}{Cl&mXV1E!5wPujvXbUqdaS}{}*X4r5m1IzNn<#&p zz2iW9aS^mR$su}+tDLmj`uufeHsdYYuNhw!l)t8L$>He`VP+C5KPjs@cbG5GIZ9L+ zQzcZF3gx@(P~{&Nn_ds?N>V2V&yxkXV4R{3#ZPX4c1?&+pUmtx{wa{<0F9*vqvwVA zCAOfw(RX9<5(WSm*fH`5$_+_$B+5uvd0wC^BWn>hox|~ViB(#xSu~}sbW@QZQzl^+ z$D+H0I6qDXiMI&yCs0Y~E?8P(zncN6p!9voCvMlD0Z`U_Q%5WiojS{mSos#7T{8t3 zVHbIz5LcfL!CkA(7%UTE!buGAIN??jxf*l>8je&6b74>|$U6@3^pK98&EEMK; z>Q+pgCRQ)~af47wsUYQ=#r`N7={dYoV-dH`ZBQWKPd!`X4^ub`N>yC>rAJ9%_v z*ukV-SFCpzn7>PwsA1zQAzp1tn3`?e=;hRThj4!jl__Jl93MOH2BhL$Gp5HvJ?Fm1 z`hC8wAHOYBf|Iu?ajgJG9o>@-NB)?9r?iTGQj1-G&F`=!UBY?FJrLA|@fbGWE^2DX z(>}q$xVS3%UVfk!D4%F1xvMM?l1AJfoa97k%otNI+vqo@SmjWy{Y04oX!6;A#o~y$zPpHezvY3NMVyoX@KvFnJ zG}jPBzMKq=ARTeEXmgbs6ILK@6heaxXdU(+5tMM8a4j4CfoFd}_7C!~J4+CS#wkhL zz<-If+%`FhMaM^Uya&L{V@1EJ#Q}dTfM$w%u-t4Ic9(0FLiMni2H+&c(i!*NN zi2HUz+~nFa$5%_5ecMpnk!hCD>1b`QM@a8UzCyI!?#ci+>hK z5~bO$#zz+yFG+pQOI<>;^l{`9?Z$#6g}>#v zYr`i&;UGJ~YFr~CXNBG;=>j%<3QYZY=B(IF&t^oM7>Lh_r1Z%mOEb`+e|FkF?42Ic zvs)0pGVppNzWlGid~b4`rN#bFLzr(w5kebZiIyN20j7;4gVpPVxs`B#W=9ln{LQI2 z{-{@bbqx$>%g=yOILxod>57+$G;5RUHLexloVmJ?cuS}Qo)+e@T)nMQ+-q^uv;2@{ zB}Im+#@_^)@2HQvqwBdMKXl0~6A<&+!pvhrx1jlxy`E8L#{4^hzIaI}?URwkt@W;J z*-ZdMq`}raX0nL*mG2vZa0CY*a<+{Dpi_kRTAS2*? zdd_*$n{hLx*l*?pyv3qWwa0o=q`*|6GC`nJY3D!kj?2cydTk<=KiY z0drwwnk{9(kl;MftCcnJH{!3#*o{QM(jlUNRO4x3)Hq!y6)%YLe5X?$2k9o&w3mxF zbt0qYjO&G21}bBNxa@u4?**V(Db4tjfGiZqTUwRB?-elEHNrKDbM=h44iTm_wiB_$ zqC`$Y68q2O7dmE4i`Vq*YV{IIHah^X_$nx}i3Uc-IV=1F(hWq+z@}-xl;X9p1V)#3 zic(o1SoF&>Vcpk2C|M6m$o2K?c9~!e!S0%oYCnONG?<@mYW&qdf#4p(fmh{fuS2;9 zV-p&~B3=Ckx2{waV&>n%oUu+L`xX$_CFZ0mQVr*Yw<{hGscb7Bgk>h- zWZsU;mB=E-N&HyLhh*=TuM%j=s)`T1M@kE4$Ly{-aiM6nl&mer;$#0;{ESrM&MMli zjbk0V<2XYIjWtFL{NL)C3Mjf?CH^HUiyNz|WEXn$QoB#R&ncrWxL;;z5Em8JumRE) z3bDOVvo;$UGq&tdCQa*3d#fKMGjhiXAunNQk+FROuv0M^pb& zI*W)6kkr`-gIVUT^9tE=B*-O7k^VK1t*{(#=Tg$klY8l>h50)u*a?x>ka5R;Wl99c z=PJX(Tm_;jas<+j6+Q^$V)yBW&9PYJLm=?4M)cFMctjLctatasoy+qKJ2-_SB$^1n zNDZ`8|DO=VGF6LF=6x%eX6f9aTU9?QI`drCg_YPqh--slmJ1ljWlLf17ucgA8NC8% zWX&bW05dGLo4F#OI6t#1_SbXnlN_|SqF;bNG>MLwTGUHK*FK@xIZ}w3#`Z;C#A5F) zWxDEEavZx$h*_3YdVG8Nm5NtcEF|}T2IWr+r9^`$@bA^LON1H&MevIm;L0CGJ{pem zS0;tKFyn12{wmrSCC{3kICEq+;3}Ecn1m+%-%r=q7{|HluWieQdFRY%aNyW$=_&8MlxGWZX;?#`b zC?U-T=l1^-;ym$#vyavEHNdF7mJ(>PW4kp?)0Y((EIuPzQ;zN#q>V=fQCGrUAucrE;93TFrLLohXbM1D<`HDypZqf_Gk8y)JBu#mG}kTMxhuK`B@ZsJ)I62s=|a*|<Ro8n&sLR06P8ef?T9%Mz?>1vh?W^y`706%y4>)3z(#!%*=RC#HOe1tHwjMLs6dhj0tU2HW8TEBj7 zo!Vp*P^RAbJ@L98U3Z0h;Y+J*3gWz_Fs0uT#Y7kdB|KH!t7p|w*JCcVS@AlGV(w0h z4+_aeQ(QoeM5}KB=Gw^CxD^KpV6p>9MW4%v-z$liB&A3v8Sun&EyUlo4fD6>D z%x`E-Dfu1jD6+vSzmFN}NFljBu**(ckzWXNZd%^9($>j-plx*KScHxTX25m@?mbO|vpbD+n00PZscN!Au!$FDC6_2kQe(Inrb zDXsAK<{c=C(*vT)USz@n)!U_GNAjE`|UTj^S6GgGKT!Q7@ z_KT?R3~ILba@|#Gx=~^Nz7(YLa6VFy#iDPdyFY$d(j#*J82=2vo4Z_Z&xG`Q0d9W9 z$|`hnAKRtKTcLK;sV@2~P!=&Ph-FS7B!6vucr?DaD>S*Yvi64JasjjjbGokdS(JZg z(xor61^S%;4R|x=#AAB45OH)zcohxMZwmA`y{CxnK35`Wf@tBd3!!}mSk}ciMDRro zJgfnKB+@M6OfoGWci*jmIEqVAguW%nT;ZGo9pJSBs2GjJwu>&fdyxR6bLNK=1-P&Z z`RX&hlLXR^#8c+D=(0@N8K!Fwexs&}y0nv?EqLj3O$tkdC!x9it$wt+lAeDE)Wph) zmX*SS&qJCWj0{o_yeq^NGaWY05aa?-!70CkMwt*l zA0p6UJ|T!w&tuQO^cQ$GlL+v|DsDo6CQR*j_S?%TJ7;#pH}y;@YbdB%I-8DH^RM$d zJ7a^r`PGsvZ!re`c5E%o1=1bO&@iC8)r#U%`h^w6=wKYEN0+-P z|1&ku>B4e%(ySKemjJmij4r(|Df}_+UsAY)6@<8;SVysMuf*DdGHbanp%N>9sd$Uc z8A_)JA^tj{*-;oF4c!M6uPIJ_J022X5yI0;+0Pa!4aHG!@o7JzJhs7B8_iV-?yfAdg!dpT*p-K*JVfuM&rdaN)b*phmv)1v!21KreSb9|nz7 zd}>atp+|nIFt)c*7M>xR3Uy7N7VB1cc21n+5fZ2#8bHdC z@j)9i4(sScBi*131)S$-uX>h9aSqqwOZ5y_FlojKg&J>O1)x;2zfthRtwd)5t8g_} z>@6S*p^k=0Gb)G-$E)Kpp5JE(K}Ft(--xD+jN`=np?Ac6LM)Fc_PKSCebVVQFn=XQ zVvKVHI1v}B%b2YAza%GeqSUZwz<0Z zg*dO=(pTij29(|5So}f|4a)AYBl`P`-?gpP^7w}XK;lnx3|E4I7$1a&}@L~50D%b_HdmDr-#=FrJ5CXPjOfI5;HbihWObq zKf_n-Br#@+4~{_cg;7SFb@eIywr-tQa^>V(N|`qjHeCiZex1Ar2L! zJ^72BtKOyv=o_@`X_e?+`BaOb{@pwrD zA~3IOcD#Q+&n{GjC}y(#Vif3TgSt?%+0$lmNsQJ*7fZSsN@r$Bomk_$-AlYGrM>3Q z9}45^1g>qwZ6c@~F#_o`{qaKnk)22_R$5SG$W|y>C2uGQ{&Q}pA?G-euDjwnQTGdl zP@Rrh)8ZpXI59S>qpSlzn@Pr$CNt8FBGpsmM1PM6uX$DJu_=3n2ZdXnF#lv>zVVR& zW(I;{NjXlK6UlHB^H~AvR(O|QbQI6Ih{Nn@N8$rVgHQ*RW4tHU5a}F;6o5!VG$M=) zy0{o1jwzD&va!8DWX_MVmrdlALb8Bhy&a!9)-R8Yj6{Ea?&PAqwx0dn9#%}}iF7|; zZB*-(V`BVOU~X%=DQ5+EY#tBhb|ug(8#kOC1X)n%&#X(Cx!X&ktOJN6pIpCET3(lL zEmNlsC7vvEB!(KXuv+n~AXkg)MuF(pLR-<1 zlZy01DC?pwnvT^<>-*Eb28BrV%d+%B5oViiv#d1w<2pgP0@NEne?n!Q3})d;YM3}; zAplvj8bZR)6vfBqP4A3r^*kkK6Sx?^B!JRmZJD-4?~3O8tZTV@=@bZ87K6+N5lTKO z#FfS9U?9ds=Y}QbhU$96l1bRSE-I7MdRQ-`az6D`-l7updo;C3Aid%=Va}O-;ZR&6 z+9jn!V13ec8i0kZk~BNgGn^yPC6ql7?EJY9RYN_l&?5b8FED^EUp zW|1v13nZ)6=o02JibY9_?g`WAO>=}JFl?MqS|5-pT{YZ~Uy6TI7C0T81x3kO8w^BE zM8OhWSHVRN!pu_kJQMiENGLWv+pl4rU5{-G+Zems1hwG(H_tLbB}A+_v61q_Uu*LSs+4r2v05T^mxwAHQ5b&^kjD_v!pRZ^rD{ z_*`&HHpbFpcv@m1RToI&4o)IY$j=oHFIPAp+;vyb>|~DpNnw*z9J(IuUr}uSS)kuh zKoVy2-+vdxT&N7OQjFOb6-g>1%rZl<%=bXdPOd^7(Am}Ug7^{^29>y01O=bqnD7}r zJ3AbhFymY2`%Z~{_DFnE1ivD~tQ+Wu8w;SG+5-E)-Dht|PI}yJ1+>&2sDrv{_LR>~p0>&g_G4oO|ReDZW z?4{?-AhtD{0Q&^NAnXD#U>8A+*<8{tr{td|weP-Igxi!}jHI4*836hA(8XWYbN&(Q z!@gMhhXCZNa6a*45w2>hHouixm77igT@)5>$vqua5+R?#SNn)8OYXzt6fp#tjn|+T(-Uv#LeI6Zq(xUqO&lOfl!)p4w1U^z2=uPTgw650;j) zCD_?=2+4`a*95@-WYUYv3lwFfBd0RoDmv$aLVwDF`whWf)@?*cyVb6Noa#S>9ZXA@ zwM(!vIiz6+>HV!h^MHY&5)YR&&hoW*RkSN9haGnFYhDXt=}s4dvO=M;HxTNkWb7ay zd@BwSB%xz~JVMW|B_^0?$gW=GALn&-#va!d?-D5^d0)>LWFh8MmzV`uaW53+Jerjj z3xg*FxNKYtz<3l-l?Y3Pev|+&3ZW1ar2p9Uex8SU>ad>SazCn|R=n>9C z&5Bu`Fv@_<2SeE|qFg;@NX%P*D8QL_<0e3osl z;zjgx@;cu3=ODEC42*n+^z6@%>Lw-@fR%VppueR%P8m4=@(U0OHLvIpB!AeDzRb7Grc74Hos^#ke^<{+Ws&oEQ+oV!dk zbZ@~qnZP^|`z=#ruVuhte|soFH^ zCPap+1M#Agxd9k&P|Xj;o%a-wO8uTM791-d#qmX{Us5)iR@Qi!_!mCAxWq~qjGeg~Z;pH=yAY$1TE z=(wA^Vnmt$=#J!h^Qqs1P&wjn4aIRHNQ~JXs<{7>*s0kLF9trsn;iQxd{nCpqSw z@CUz`B8$a0MZs2r&BuB97nVy%#2S`DAv@VF1Mfh8s zoAmVeph=3=1m=#$P_0>VEkWuX>{+(dbMES>DB}Rp60mWm;y6PTLo0SEI@G>Sr1_zX zKj}3$3vmf`uGbeg{1HHTcg&7E^qj?4tCL3jpAaXn;`>pJr5^;~18fr&c5yF}REKVj z8d?NJlhRW|#_T^qPf2XL)G2ll#Me6J&W)2E^7DA#KrGaAt~5bTn2BTchk=TN3wX!+ zjqSxJ1oOoq8I0~E!UY~=eq!TveTkr>CQxJCBg9!VVPFM?(b!ZTidMDPBhG`BGCF&) z4SU z!~xOt^OBG}-Jq^a8?LkgdHJ#8Z6Y2KY!l0HLGEZ6pQKAb<2_-PXqFPJ3Yo)Narxur z%j^>*c=rf$1*ESfe#;X8F0M)!A=<^on}QLzC)O84)6K(dchx70pEa~j?2T382)9Ipr&Cmk{QI%2zPug zg58?zI^};ubWdTfESoIN3@me&dm7MuWh=_5+dcy5|MX^t|8qsTxLB4a!#=+0zZ0ZbLH4)Ax z#Vq7TtGHhnLNk*Y`KIT1cF_qF2QQu$;1{$_C15?CBhQ1m?=_n!f<^irosNveR|UX) zMq&<(Qoto4lr#k*V1%3bBD5EXBtj;1yvnlrm%=k2h#JNag&5pjf?Aqbx%E&9X6dG2 zYre$m=B$i?BpW?~U?Tb`ELqZcuH1kqLvHg^+o(%~_~-~h*5X|e&UuvC z0HtwU_7;%)u{>_lgjkKW-ky4kqCWLM2o3a{W;~;3S1qlgQ#9dr?D`IH9s-HuM_+zY zh(E>JBP~T=5>yU#s2b8;4ePuMO!l2~I$}c4a0Ocs%^^pMr0@i|8;`Gvph0x)IyY8G z15V_4f&Pq6Z`DRWEg?n`LWyB?{vN65XJ|7>aG5B-gVKpbA?F~1%mtZDF+XYEU-$n& z6YtpiZITJ(Wp?bD2|4M-kO)^EHJPT3lbr&xU>alQwBfU38QoNd09Lq1`9N2K`>cH4Xw8aIgds zDtE@ZKGxp*|10y;*%YfXaP?0o=tO3)0WI%vh zbu=D7i)@Vtq5fXwU{Wb7n$1@%^GtjEp&@O-X3nuk6)At?2)6% z=75z*;6{`6e+3Jh5kVB6UY`X1f=sheA$-z!Tq`*+m&bQ+S4+b7vdivm}315G?4I9puuhK$v6LUSm8Es|%s(Ow`EnQKHOYxs%2{ zq9yclO?abxnV3s*E&TMV{0yfQkQjM*Qe@6uQyxodA+$4^TTMRISoOmI@U4SsV4G9&->FrJPg{-Gg_sS!x?qE$ z>jNJJ%FIQ}oVvxJFlx)UQ}B$tL{lAPQei}wSieFE++DgzUHbj2^$dhVsWn!H!l8OQ?m1jQ1z6V z(_-Isd8Xo=&T2p2*dB3+h99Ig_q)dw5xG!kDS5bkO9%Wb=&%nYI_upnic{mOb^ zE-yZlGFZG^h`5i7`0w;=zA$C6#bJ)oSpEs%%z5lDS$qocY}7X{2Ntas&$<>^#L;*@tfuovxMZv&6DJ31vztkF$p@z z`lcC|2vz17#Kj&PI-hiYnzr)a6+-no2_d%cMm!^lDYkhtVj86R!%-W z+okxo2y@}+``9J?o2_ns=`BI;UbFq>X!6)Mg+AR8($D>Z|Y>Sh8>HuMfpp; zI%TTGa+`rzj1%?8cTppAjq~dU4^8y;HF_^JXUao|6 zjfD5c`QXpBQ!(VrG#La~4*&~z^rfEIersSuEp^p{B2fN7{`eAw{ebRe(epq&SSQCz zA0H$9|I-iDyf#7k=WY#=hkg##5W}<_-DwFJOO=Yk@Y7Om zMZ!9JX2t00Gw6gI_ee>HON0`-0^~NpbxPX{aVxVmS6r3&T$x*=JNd~|(d|A%I;w?X zV1ImU7YHgqOe_v84-}PqhR!X1BHABj-BiVkZzMMVESNu|I3+UUyHrrFoh_#TpDWWb ziYMpHopvQ1jft&JoRy!)7&dOwbMd~8C@JPGIROFc;)9S&&^L4C#?Fx5n)_MGABlj+An$ zFjBxGs^7C0lpC6!iM5PgJ5eBf?cw>X{5%hf))(|_jJ>EQTk0dS;S zTH^)#K&UimH7jwkD3>?w+u&eaB5bPe1MEi9dj9iY1a+zEnB?kku^9<8d+|JDe;+3) z8J#03WLfgOC_1+|Mk;Kt;uS$IUz@5m<6i%UlWDc010Fb&PNe4Z-fE zltkK%<}NBj1{s3WMN?vPy}~Jey*(1g>V2RjH$?4VS9X%1sd1LfE*I^F(PT6hD;)~J zOhT(Fdgl%z{X54;aNs`zU@j*km3ZG*AY8z7Cz7Rl4WVWMdM%vMV_1lD>FFP9H{)3W zE-XtGro5qO99E=Z35Zen>fJ>)EHpHR9VLXf`Z(Ib+N&QaIbV>Ofei{Fnxz__G@LsY zyEPPij8eBNt=)w<*MOhWXeAfx-{p)Mau~{4LSjuR$W$r_|9ff_5FGfI?p5lkvd z)yCUtlU_)=*o=;jSgdE44iAkcM|hTZG=!JB&qd33RK#JpAudNaYPjKoJmK3KAnCTyZw0^W)U~Be4-G@lN^UAhT9{ zpiW|QcY)pMP7>k~2ktt+-7UhXdagU(f6^BU_ zdmQf9J7;pNp=Xzl4Mro*6K%oN@_@NDO;nS9Mj&@5_ooekCmxRNXjWPP8mP(4Yovrld>G_MdOpf;>k;>v9( z*CquZ;~1nKn+c??IV9?gt3(t_~J1z=OG(_N9(xIhruVi-xGM~;A^HD__@ zT3yfnL|Ppsd(`;?ox^1IRr{%+sohtvwg>it+~!Dd7of?iC=GQ9%LQ=2+SpymT+{AG zbpSy=aYf9dWjwevg%R11+%dV*R8T^XObY((kt&M(s?#|II|$4i4a(W0WD6* zBHRe<(6FH%6F{}+A;iy=?`m@3*L{xWSFxx)iiJ~Ml=B|q5_p#0>m37<8P!i`O*^Cq z1ZI(8XQ(pocq|ZK>73OOV|sQjIt#!U?>HeIDaLynags=j54Y|zpyD)vyNFP_$kg%H z@5@vuyi)(5mvtZKR7B7omnB=j=vl+H|Un}jtGBx0lUc6j)!!8#t3{^ zPkXTqPbff!Km}Fc1Y}&Gdn}!&5+{i^W3}HLj$aALLRcfxgVw$KpIBf%31V*jt}s|U zf-z++t`=qHNR_|>?bY%fRFkGJCB&z$QA|r)g;GC*Y zh}lX2DKbx2ubf<>U@S$_bequ3Hr?rhxmSYVRPQ+EGh=Z|nSW&*w+8}q3gPQ)%Hljd z7k!=h0*k%|KrKgE<27Qbg~iW|kld^|ARtNMtawJxv=5en6S3SW5NxQ&4v&xN(M{D| z8I0>hsu>laa{aGExNazCZ4FS3YlY@+h*v&#c}-((w{E?;NNI9O(ZUVI%K}_=jGzgP zQ;AmuxlwR4N&%El1+kp)J*G!|c;edvoeZ6XG)OC)R^){OFS)mVM3BGF_N*NXMNgHH zs5%-cuMtMo*!0bf+ePH5pfQTM&sf^5-I4Q2vD}zV9uQ5j^Q9)T6Wi?@KzSHuQDLQf zY<)T?Eus6K$Kn=I{`?@3tdNNwoW}}`5t##JmIX^-+7e8tmIUzTGB-NUE|L*xB83NmF>}8Ss`7Qr zjCp#7W%kK^;2bD_37eq0?gMyRki~(WM?X@77tHPFI)~1gbEEe>o?Rxb z;Q@kMoGKy@A8ZQ;Vz~`VTqR1q^M(ixeS#btUxPb98 zD;6U<>C2kU}?l-+7Zqc)g%A%fCGCI7Umzd5z*tS>WDPdO75H8!KzSy}lO5Es=))BDp(D5Y55JfqHVM z??O@b>C>mh{ELbV6+BDV*#Ak8g@9cY8<@0^s(ugDm87u-I4EsL!pvVS+X!jE_I^+a z-3&6_V#XLQ5nk-4ub^VYeW+O3y zwDBZ-&agnL+u79-l^^l!+V~8n8H-AYF^+fey%l6W5NgR$PS(2|jM6!{)cT^FkL>1T z>~p3dOA{05D5JinNB)#Dvuxd8^oW$*Fs z5-+mbmzJ^fC(d5wA^eZ({A)qZOOX)M=DF)yFwdC7-Mw+CNVBCE<$%WTdVGHoVD4B9 zFkEq&6zRVd3?opAvht>hm$?qW`D64zgiprggk_oP!Ad$-zrOf_cYbQxrvGGXvH$i1-VmM^$9S8gj$TJU9NxI{n zDTZD!s2|Kaf@Ibe_n(NhhFvqXFuKgqC$K4bZXvXq=-tL*NLg4_rDo*T7>1W5{3q%c zIyr|qJ@K#zN~OCfP)KTCcq0Ekh~GhU-OBIg5Th2ubiZ_)dk7^9BIk9*10u|rzOe?{ zsy%K4po?~Obwz)Et`B0Rt7j)fA3V?(j|wnLuyJK^UyZNa?sw_-QPlaj7 zn=v=u*0Xwb|2U@4^UR|hX(;v@d}lZ|7ix(?4Udfy>)f;?IYmF@PJ{tY zU9EJEFy~5^EkTO~IDGQq1@<^lb&g)qON>)7VU^j`xwS4MaA z#G}zE$dyVLn_$kyvhjC9VIc9&8JxGc2TDTGF)b$bY*w`2g2%Zq4(-xQbzAVtuLxx(^jjlu^F550S#K#GO0DF(5B73JDU zv5t7h5x)hRYB?+q6pj(^*RusXGaXM8E|ae=66lg(hlO&TLFL2u6$xc~Nej`VrwR0T zIJQqmPKW;v$ebk!PM&jrU!=iaGM0!6`GQR z1iDygwdf~wiNl1^0P{L$#^?V~B|Q(2 zBscuH4{7;&pU^zJqI8U(il(9j?_pAb8Qp&bP*G;ii47j~kFsBZgSdEQ0IdNUV)%KX z0HvNWE1uUg{aOQPno!~+e*%F+(h$bxBKWdm0qO+kP|;IuHi8hTAukYU=HSJ^^)k%7 z*9mi5$lIzNca(|Pi`3Hr=&cVqcj@@$Lvhx_&=jnSS=3W{Mx;?XXbSo8BajFg>w4zd zK2cNSJbF|GO-W2-4KHi3{cXd?5L-l5sg5%#J&&zy+0RFWrV)Z;J&^f*O&9xiCWrjeZEX5+0ojj zuY~d)0`dQ-Iu9sIi{kA|kf0#3Kr+HENRr)|*+dW}=LIAR0{70`$uoDDJ7Mnv5=1}| zR0Jdk0VN2EC@MKi6p##mat;zCDe?O~{q(%=e&@`Y^VV}aR;TLf>gt;X`&&KHY{K7pVZrKnj;GC0Mi>gT_5| zP_UC6(GwHWARZ#j?2@RCp~SI5oC(u#y2Jg9Ae3gk{jt(Zd{P}t_VG=T?r>FICYvI< zC=SOa+Na+u(43YeND-wedP1mk=4HhO8|EiVge^33MNEE~FfK7Z`+O_x6k#qOHpR*A z_W4)mNoq_7jO)Ax;x=Ip$2NI00cMGvdNb4aH{vqEUIMWniJW*N^W>gpo@uk#CDzO?NwnG64_JgsEM5&%y>_@t6i-$F=&nT-T+Y# zK~2Lx^21CvYU#$yM{gG4@h8gb$??HkAkIzB!_r3JBViMK$IV@mw7>Q?Ahp2;vl6pJ zkV`M3A?wwvBArO3Q!i(L?fi~|Fs3JAE4BH%1=&}x#uXx6a84!kaMpb96=~#qV7SE; z=7MNn)UNZ3_;wjkM_s&SH4=LXb2D~ul&PbqPC?EAPtP5kN{+q{;%3x#xg*y90Kmn@ z=et|~G-344Nv$#ZVG$m8nRK$-1u&f3M=P=6|MT{4k<(&`p(S?FtLOdzZ$tcAhpMbfpxUfuy z*#m;8Ytp!&C?APmWkfToF0Au%O&QJ2jP|Jv)IQ3sis4x5Qxc;1EXC{-wh=`ub6pBQ z88I%>oiI<`h#&|I{}Qfs1XloG{fuwdgVm@<8es`ETM4G~ATw8Ddl9gBtSe5^r<(*P z1IQ;Y3drLT_a*6$L>UH64ztW+pBG^mG2J~F1?>0*kQPtJNnxuEEV;xcC z!%sY{*)bf`1yG>mKxUQ*b6NG~Y7>_Ygt_ZsAm8CzzUR#c=xi`6;Cwe;6hhsZa$>#t zi(e7VwPWuV0y|mZ+4$cg3U;cd97{eXlBm6v@%TjF6bE(<#-a;AmK1iE2GhxMXvg zO!hZWWQWtsNV>|ijUcK*_o{L=@oJG2Uzg0{ZV_e@uOzY0iHFMs29l8zFN~DXTzZjI z28(^U$R>qCO58_~M@eIF6zfLOPP&(BAy|$Hfy0$Ka#w!cLQooSQ)WiX!v1dMd&Nch zcJoDF?1UXNeUut^z@>j|{DTb~pE-%P+?9&>&nP~Nyw3X`@vaPAN(}VEuC1gU^;>~uF zP1j!>Tw?}v)ObP!#YVDBx9d0invTFt^eW=a)RZF$ix6a7>*wpgn5FnI+a3tX0xs-oimRvO~I@8Y_w*6;6l| zkQslQ3vg+xwn^HmL|CP&tSc7@QGcxu!iDf?VC2;;(-l)ZJFo8QsM0 z{|;RN+^p!5Z%56MKNRLx;>0Umc{@Rni=fFqz7XvqbE>JMjr&(DA~m}4G={7RVS59PVOEPJTcqKghE2Xy8`pz#G+XYS$H)d zsy2#vT+z3ggZpflT@&DP$$A{ZB6An&j>hUxnVZ^J(tWQNWENp< zoVKXQ(*F?Z;xX&UvPAXFA!1^u;igyX4Wpqf3)nYs%npFF=i{4@~MCKq@x2#~{cw=pc8sf~m_D#NBdQ7glE(j0TUB@x!%5Pbl2r~%NNi66SiM1!tNZi5E+V=P26cNa`IyRH6&bbbOqNezK0G*5#KxIJxtf zp0QFNSXy}Q7O-aYP9aYfx;avd)mt1LrTxsfS%eFLVc48lrLCaZwbf%Y(QX8thz<8tb>pQg zb`)+66NeIG>id@L(+?gM9G_uy<)g<0yC&9q4R&BaolsYKkS5n*V1jZ#)`dG##gJXO zIUKWNl0@4}XbAT%tXT0wL2e}}mn5FX(Zb9UroiseI7fifXRDC)Z~s>&R_T|e7%vo; z5FQhxVCQ)#qPinhYxp=Bj-980&=T!3-Tz)Dc!|3wP7*=0w9T3v@8=(|XKTh1)A_*+ zAF7P?$9bZiDEkuWtge^=;>x1pk@7A+669J?FZMiF%q+qnr=ig9h))EO<1mIP^;yNw zjoL^u-n~SSnL|S+!>hQw42CfeFQX5~A4&*6Hq0`$xJ8gT#w5zDI>LtRE@7UA&h69W}ro~wK zyO3_S-sFO4Z2>NojN!TwYNnKs+>vk%Ikpf)O|e43QP)6xCYn?`Fb}5Ut85OL`KS3= zv;PLdC{j({aN+<_L>TVo@OU8ZDJk+zIiVJ6Qd6$4zK+R(bB{dA(G>2HDsQ&&3(>g%NCE6mZYV?aV(b_*w<$uj%a`a+oww)(BTh)4OxLpxUOdn2;YMw4ZIrGARj}6{S0w>0c zjsoKiAzH!o_*?vMp5Hl6p=hgaU&N@eahI~DMA#&1|F`H4gmELFaO0NSe+8)PC)2}I zcPxHRi$EN_6M(tfjgD11wFPztqLJo~;-X`=2zL!ij#h<(#cgMUxnrrr=Tp?}gyxi( z--hV`^FX+o8`PA$r$Xh9id(m2nR}=(ml<^?$7LUs0OJyE;EKBt!n|TaQ?GbJh?_&= zsM@J7o)+lotbtr{@UA8+df}-%ev?U@=ILV9BH!cJ%qh-^=EhS3TmfGM8IE_#FgT$@ z!dYi`!oVB0RrNSSgzJJ%PCl}maiuUP!chaW!<=~`{4OTL#J?+)=DlgtW0yVnb~*Go zPd#=OKpt}X9mk7MNG|iQv!_GmTSDxPGr%N(9*$F_Hv|y6bxK<-x0gfnBXbm^<1Yf- zY;ut?XzzcY2qib9+QC?AZ-|Md4gu#|qWQ7fL<%`rgbPZ4^X8Um&fMdv> zYP?ti)P?d5?Ng+W>#|xrD%w*wFQMY^R$g^0vD){6-Q38B@&vPi5DFr#Lmad(gxlU8 zj5WuO37lvQT{>lUI!PEJPdm0XvKYi{H3>a&vVLGtp!3AM`K&Qnu=If)E!<2c~t>N{}0{+QU^Rc3sR07b~Dq9pzAbDYUN73DWvJ zi6Xh`jWR(FRM^-K#|;M(m0C)w!Y&ch{EC6}$g&bYBm>0}%$ij~h;!Ox$4#Q#Us$I` z;ttW~NPj&&+xV^!HC#LIpDxx8k&CLsFkG*a=}tmXQ}vHWL!X+gFwAMj?Hy3&IcMEG z_R7xZO=0DMEb=B!AH=UO^n>|@g$*YGxF@ZZ5FBT`0ad7Nr3xkV<6NepTJ#G+@ntVp|_44iFvO!L! zZEUQ_?H!tuam6Q-HcU=W&^Ni)^uqlY zBAkX!=hQ{WZppqPJ6mc=6j)6l@#e}G(~cq>4=;K+_DUjKzfky98N`gB8C&%`1`g#1 zVh<6H!M3u!4?7^X<9$M1F-ft=TkMVR6-c|1D3)sH4??+@P(C>aj$;ZPxf^1TS$?Lqg|CS!&7xw_p zpKCgliB*NstNVCWwWob<98iYg*%$5<)3?qLHZk^je-+PGCDM`H(Z%8i5r#JELr3#Z zeS2x*$TYScb{6z2rirn*py8iq`FW#%iS)Q?uT@9m!Vzd%iu*mh!Y~Svi(K#P!``|c z`wBBB@G8K0N4ku$pHOoGC#GD!D%csYS?VO*#vNJX$;^)FKIj;oC}x-uf#G& zd%_^M-A10=&Bq^61>HzO~tV4rh1vE$|d>?*{Obj?-T;P1~9hy$#lM*KjCE8Wh) z_)wfQPY|7>4aV9>7AZ?Z$u{jDLUNO!w{OOa0?Y=aA|@u9eW4!}fzs{hSXhADZElaQ zEy~zs$r42J&QF5wE|BIQW&N(}8_sbW-i%F;f`BWXcz@(Brzq!IS956R^@ksWxza3^ z_^ja7aY4>EnQJo*^clpCinaCauo&Iw!q=b>GSLM{olj#lu+ zeo43qX$Ug`Sv+weq%T&`4^)<;BP@YM+W)55f5j1 z_(c%y>frzvHzycBjR_+o)Qt6bSA_eG^r<5;`&a(8Pp+g+I0+&*Uw68~cC`>1cO#5; zTTgaSTtsk5Q3NH{{H&`i*NM&v)AvW>DFH4@r=FkI^Dq0J0_OA)5e5+;J4%G1S3~qT zu|$xtBvAfJh?5>1mHzZP0dxY5C=_#_{2G!@pqDXtH~ds6vx+@Xy2z9C)B6ZFi-*w5 zMP0O0ttX4UHBJX`fi>YLkF0l;SQ3>m_K(%iAe<*1lqgMk*ScGfy9n3Ty5;_W9(+%U zA|WNgAF(i@6rO8?oY}^M3S^dyCHEHbj1XAfisSaz^zEsOb7(4KS#iNLfnD|yZW(vP zx&mA#?5&a4hU0EQj#|}y15Tf1$?~aS*Aiz2Y|2p&FLM@{S%Z^~{#Z`5Q%jwd+eYUK za*jOUG1QDp1;F%lbvpiB{#+#+eBR}sr>@_|%D2YZ&HxDqok*>qkx8-D=b?K2PU`8t zsm>lYI0wL`M4QQILY&yP#4v~BXo!Vkm-C8n(lFD@`eKg~OK*)xVREuCxICc@X^;1X zXjI5^$;rQg@L+BPahw8}ljuuTDb_m#emdc)`pNugj$+s_7?%s7fwB74!SS1!#M!O3P#a%Xghv=< zd5P_Xdkt&>we- zbXV-J^mWHeqMZ{Hgs(V1r)I;jS$UQq;T;0`1<674E;uU1!j4;SJV zuBIo~&lBLBdMhwq4z=GXqv7FHcPUo;Q<>0cKbwu%RtOVDFYVeM$BJ@Ubo+!Yb1ZeG z18~%Xfb)VVm!xJ7iL?F;0^?dR;`^??`4uL!Xh_bvPYC?!!B;JbFBPV0CyJNc-Nb9jQHyXI!`<&v)POrg^;S=d1BZ+C6XeH^LXdi|Hij#;9Hpp zwt}2!-(Y=?wRgJ+bfO$1ps$X-g_wimn9la8?;KG^VGeC zK%B`3ZL3^efXU?_Z)Nw#K?2=DkXY(*a~Vjc@641;K%bW&f!e!M51f4sF*P&ln(*Ty zU_cG)0|xOX*Fu_)tVEct?k9j&<@yTK!|S5V0D5$PGfCtNT?c4JbvL^(5voOk9FET@ zXT7T{ekj^i(W3s)vM3!f5u-Ui_;kzb@7IYS6ZwajRZSM}{? zN~#AY9k{u`?Vx5Cw{UfxcO*6}G4@U98VR?VF!Q7jBegicq{q4T9nXq(BQhs3>c8?2 z04g?I(?f9Sux&d*ba0&$v##`uEZB^uP_&EUn_^U8-8;a{GYZW?g_hm*1UfJ5beOjLuNV^Z#taZX$>(A`2-`r!7snsDcbt3!^qn8j~USYs7LXWe&-n}p@A zQ0cC4S{hFaq8iNfc!ZCZe?r1B3TQSU1y(JQM>0T^OxjTEPBVLJirkv-JE|5M!}|PN@>h+z;gj z#rZu?zLhjym^$O&2l(A$GFAaey3kUv$AiEW809Dm`xq7JoOu~ej)CG!4;N5&IvN`Y za+7mK3TY#@7eX5&^h}Et9)WOC2RlE&{e1v3An6NzU^dTJ}XjJyA@NJQHtmX8CU2AP;%sJf16@KGbw z4AjXHp8Gjf9W?AR$c}*N@XUcK5AEiVFD{lH;8x2q;DD(|5m9G1LMZ*t%v$kj#H!tkOQzIYjI zVhTmU8k1fDU|=A&%kjdHNdJzylK01t%)hg!OMtpqBvsm|b!yx*@r^696JG_V;+zO@ z=Kp{w=PZeiX^KmNuYtMJ_?kcykS3CZy6u=PhOnGWy*$C@1-a^;^!fV;(O(E!rk6BfG8@v#DO?20|pAZr+V!;NK<4jM70Z??-GM)KKet1QwE7?IzkjWo{ zxSMjEfr9)A0TX;cpWhMZe^dmK;=Mm^7GO5WG9LelB((W|i%_zsL}w|0gfJ33Oc8py85fUcqN$_C7eu5{ zUY8~3H$QPeO!J#@oCv!AIDLZyK2fe2GrtbJW5rJ$nXWQ8jF0@!9Jy^H=IEBsA>0tW z_*|*R;Q~mF&WX~n@kQ}7Dh6hT(*@8`W?)*%oL_D zlmJLZyL@Tq38v`knyd^MPYHE$bW)yV`5DZeaXjc{lah9CN=uM_r z|I0=4sz}qO(zQj@~E2J2&*c=n!iT z=|XZWz&6u}dCG}Dw&cq#L@u;za`io1L|#17qowIS%PvBRGr;}WGOHJs>amv)l209+j&Pu8 zbA`2h90yDS+#m>b%;pk#o)%~Zb0U%s)ITpHO4r^W8+^qnr-_##|DI@fF(xPc%#zzT zz6$2@v`m>IA_Vys4$NmCfIvW!lz8#Z)mN9gX6b*kDplPQ*)EU2Dyhsqw)0N~(@)2RK ziChZM<^LzdB~Ozv3vqu;`x>CD$ILSpeWG2CdKWwE__+Ww!k}{??q34JtH-fmyY0Ojap?rz2x8DNU_ zHl%BrB8f(24(f8z&Xt~qIuS|wxMjgSM)2S@;dbUxp^`-qkWLSO_cDpTr*Fz=_x$m> zNVv&HVrrbSoWsq;3F&A0&fTg$$Z9i8ffMNLb$FW8&tH@Qb;2o8xE6;k?_}9n^u#$L z+=Lz2Yc}H&0l5}vY0|dm*sp_8-WIgD(^lZyT@2kvZ3g%wKG_0QDt1Zt6*XT(Pg?%B)5!;*Ta3Z!^1<1K`q{*f57+VcQ z9GTV<_vzbhj3al{0QesmiNV#&IFjGF1pEyUcUJiaOUel8y4L`9elpHd*?R@KK9rKX zX<&1NxeT~tl*Z{KA@0KRm=q6|389EfuM<8Y$VJOeo|M$vWkC7~Be_2oT9be-8&}*L zynmT2z5glLWkcHNV*ZSG1i8b|49q=klK@-{{7Uu3Hzz~8Y0G0vOYG~c#ZRt-OdW9r zdA5+;*z%c{jHs?!8_-$spd~xSe+bCy6kTL^NW#=`Ec?v@W)q)!o`li_=R%{Wkz~EV zI)uy_qg7#HT0@8f4IwXxExQYHF4zcT_~ka&a(D73FrSRAoiL zH1R)SPIv&X71EG?XFVWKgyWda{841C9t#Q95bFbwDB3EHtq$4%D&;qQM%*pJ4Jcm# zIP{YglTdT5zn6P{GIKQO!mtU%1dg3r3g{|fMS>Gx+Lkijr&JAVy6Z>u5CfL}7O=Ub zXCW~JJwk{pLyeP}{VxT%^i>{t^u|1B}UMb(+n1=&1V66HsYCfP1m|>IS}K*-CKq@#W+T!<8peO zMX#Rx-frvM^cNZd1W?K?inKO^(jW95yCpCzd>aZD3Je@jObahE7fq_d{QEBba_ zBp|XS6+mHZRvDj(ba#}q(!8{uzA>oVOYU7z-Ng4dDH5t;bIjAr0^B>%R3V2kDqr6e zjGU*nOpU9*UHr~PQCo(6Tw-%;s3xS%O;~PxX|*U=Ef(C2$Od~^#DLR{6hQ1(yT)Q= z{q8PU>tLw-Jk#tlHR;5kMZ4NqKyZ2Q9RVI7n02Myum;F7-vM^@Sr`)gK&J?G>P>vF z##GU+s*b05W)QXCcfnve4ry`l_-9dhSaRsto_B03Zvjj(^tg`H=Fu&{;h10OZ`R|k zz9n$xCG$(V_nENV25d3th_OQ%jEeT4cIc143(M@Ip?nYK8iDRWJPX6R6nBK#4o zYlOIupdB2ImqoiL(XnKxq$%O`GSploub8qup(gBz3O83|Fjqgg8Iz3GBOiJR^n_Bp z$E@`*;m(VF8pjgp+TT1$pbDXL$z)<45CfmVF6>;o;$US)*)^@|%x>8oip=SeH4bZ# z0e>&hvsQbpJ#NV)+az5mUVcY@)%4Ac+1dJbXV7C~>ijVx%elRpi!&3%-l5W7C^FK zFs9R^O_hSnD1#aqRmGMi#x@DtCbo0i33F^+h~+^=nZoWa)GT5Hg9;6$bP2KACGGxU zf~W^h&MNWK@^|GXne@*kB>Qd5y5j~xx%2iUhxS9e7Fpq4P?kn`(!EJNe6}`P1zqq+4$w+p$??Icv!|7pqvEn*`6rB^rsj=Jc5X_%G zhPhP~b)UF<&jp|P_H+Op&T()nDr>;gO|%Bb#!{H3A120~-U~?k#jhy1M~+^`!nq5> z5f#{)!d*)?)~e-tLh|H-G6(M~0^AH}aXFzJj&=7c!k|@QB7R1IGu6#VoT+O+`GdVd zQ~hSlh;|XV2V>Mq%RIUd2sQ5In1X)#eFsJw9*fB$T!=CDU_CKK0EIw-8aiAa_^P{!GO)Dv^lc#%?SVokZY*QTyP&KfN7@PFLh&?-A0EE529~=$<3iS} z-1X@!l82T2#dShR9<8tk_4^q>HKEC|9{Y3^iC5{l9Ef7rCCo#B=Wv(R_a*%#- zuGsppnU*7*c|h*VF^F)IX3)cQ)`s}DnWH2p_Rq-%$97q#2{%VNx$28R_LdNOUq4Q2 zKhd|j!>*Md&+9INGZ(T0iuHSpVC%-zh;}i~>~#VyjE#%*?F7I0Cv9~ zuE`5al7td!4sy*Jt(@kH^%OJ@oe9q{ZNl8^^fV|=eq!S?MMkSU!)eQ~qfiFBERE4U z)}b_ZdAaWzeN)%|9yIhf4?#F%NrSfddQhO(!b!L~{LVp;ZVV1Obq=vzi44i-Mn`;K z$V6w9-j@Y@Oqh8jbFO+EDj;Xp#9kR&sDZdlpoX+=R9#y}>10pSANLINtJ{L}jz)YS z+8suwIJoz=RoBPDoiv*0I(I`TR07Q`HqNY9{jqF=aIht`FXO#e z-)^K%Zu_y~YJDCSYCh<$Jwvb|#JRF?Nbo1u1UgqKbtSB9J>qkH+gFa(-zmhT`jB zAeu2XYrGXfjH ze`zYcShx#k0}&JzWl%YsFOJ?nDwE}a4;dAacBR9J?#_j;bu>eh1UNlT!scRV9yLKZ zYi^`6DN!Rt%1edAqcM5g)Hj`sRW-eQz1`tOGOXb!%sQf1ko)0)c4Uhl0qyyYIaq>F zQVlO9m|!^SOTJ+*$h402D;R*kA=*8MiIx0f*B^nn4qYfd2jfWrn!ILBjjtWWw_6vM z@rsh>)R7XjK0=HBKLzGw@YKLfydML&z_Lq-ABc9N_oD7OMx;Az=?)++Jlc_1XV~yI z;tA0%uHRdXE01xAv=3*7={OeJCG<{R8tB&qI+~_g8fL?vfVg-p1NcQ=^ruCT>Tr6E zWV(>tQIj$fx1%M*_~FiDJ$4r4a-$od+Z_9$#X$|bSS=eTmdvk8>5|3F9Eh1 z>@?>886jYEFUP4nT51$`OMWfXjtwY__$=)<5Ul%wy{0=u(F|YyF}CWy8Y43Be@QG?OpZt5 zIMH;U!~~2aL^20W)A95zC;B(!BkCE?iF6s#9L!p>%Sk{k0}o-T{ZA3%K)M>CLM(W) zlR+x$8|{moM7mA!`b&?VEr23*k2Z7^^jKjkzC4+*&x=8mpppqGVe8sVL*SMzu4)LHSqzRgz7a;xci(Aj}M~$zzS4vFlkyR%tEP!?uf@ z4d(I;SL)oOxk>}F91>Zk{V$+E)i)ipwDAne?kB)%=^Ce zcuj<(V+$8c*L2aNL&*g)mrIykmd%K!Q;BNf<3N4*97+* zv?TG)7v_==(G-$aZW82zjbR?$A3I)D#KRSQ9~bC4Vq6%x%XS2R8W%&kv<-}~(2CuW z5jhG-?~cW@LR=&{SYXe?1hDWWfSCzc)nm>mz~$+a&l$QozJE&$)Pa2Z^WU$cN7Gxfw)72IXrbb2Uj0vn#M^- zj4NHn?=CFXaSV=cWPtR$>m68_%oIQ?FrSTfcSgTR4^xcD*+iwq{8*u`B1}NQuf$IT zW!|tPSb6+AfmEkUs(^b$n8S=i`f@x{CPPOa6F1)%3M&JC_5v-=eU z(RMmB-~l92PI;)&WKoLEg)si`9};`&+jUNFipJ3bsA89Pk~n-837eA>dHlCy`r}JM zm*@xQtMe$PnfS9H_)BrqqbXmAcCFc5utaF9-S~q8vG>-q74fiW^AI&>dax16bl*P~ zQMF6bwVlDJ3xr{8t8g_T!Uad2LGQRyfD;+ zfBU2`wS{aozx5{wSb$nctM|V$iJ7C`1A0j0#6-${1szc_`q#M<*p<}*3}zZA^y>mS zZ&|M;PSvLi!i=uHVf?F%!fT_L@~d>umEl-+SlowWn?DoP1(woK&ydCUgt_{703zOx z1W;%xk9i8=((-pk6Ye?h65#yxz_=E#@B9Ubeqy`CQBkf}x@^GSR#Ngqf}K%KRvxkL zRgNW3r(>~+sN8S8*6k&PjJi0mzzGCK7jcRpctgcid_Ny@xj-k3I5#{L2_T|8w##ap z%xmn#g-&w-dzSsKgK%O=CrmFtSrEU=Z+YA-0&Zac#vPtX*F(81gNS^U zI9PytAlnxiT`-GoaYF%u$m9*SCeTeifbfI)9H&<(+RLzD>46cayTuxrJ}nM{k&7@!Szt3Uj~K)Q&{B(5)cmw?wjG9!~;rTlS2$)&36M+e>?ZwjEeOkF$-9sd<+e#n`Qrn>uM zP3b-{lXa|qH<%|~{EXvBf%OG*4WYC=!UJ;8H|{BNlM6gL`jP(x$$deGi44kf1(|u= z45P75xevf)?qlN>qxVBQcaA7g1c5F6K#>kRoOEAi)e>SFW^DJz3_(u1(qBcfd5!>g ze;J@n+ywYn8Loen#|h)%66nB0w5)CWJr*D2 z9|w8Lf%z=ndeA>s^|0gt4?(y-a_5I*-exTFFqrv*8?E#}_3?s8kduH~eEAUw4Tjdq zF`{o*B5gi+s7rJD5|0*1pk82!?TB3k<&H~EmFO1WtmXJG*?b%-%vIweh+aKCqC_g( z(?V|lX_*kly-aQw2yhS8B?PqTbn&Gg19T;N>$nJ`|E>FYkzs>}JF%qdh`WVpFk;77 zdxCHJOGlmSCh>(R*NiDr+OKpr^pz(ap>@ivSXtjhK-bRxdp}VV<4m(gHTp}4$wgf( zZp`spFd^Fc|D4t|p8Gsi-=sCH7kA>Hq8NjnY?_$r-WTZ_R{H14evFhp73cyMiWZLB z66|7dnKL~LnjpGIIwpoUpO?w$_<>~(@C$*Chm8l@;^A2EsWMx=Z(Eg#?!p2cuDdqG zj6E1jln~N>8UQy6%JTu$W@vpR#LbP1B*b|}*CS7Zd313@4u=%a6lv3I=cf2+54|7h&c#BNki2C0{R6V=Q6Y$<0nd6uvT-edKi_==|8h^3(U<@K5M0`r^kT za(BzF2A6yjh>CGqr`r>;n`pA*Pze&o{xAn%f7D&+#`ak>{R6s-_sjkx(iLH)8gAkO zoI?NmEl{^7F8b%uyrv&qo8J1|T4%hakREvGX?PqD*D?&Cw*{LM1C?Ga1nu!3VJ`gu z*QiDt?eX6-m@Y%5r$iQiyNHTWla`Q53<=94i1AJdf0jda;Iv&AnWd^aTbMH#uZ$!m z{BO&M@`lYB!j10~Nug@c;{2EpxZkCF1pj&01oJ>WrvC?m39%h_pkw+b6dv(wvBG;f ziZ&ygh%gHqxIkn6(c#BuLd~f@67Gwo-v^+j^u`_&VEkCL18`)+)rflqI2}3ZNirKg z!i2g%ewR7fh{y33tdAa?7-9Im5aEl0`>|OzsdivBE@qxZ` zTQmo`jGmT^$^Qd&CJk9s$8sM7xDwNN}D9+A$zQ31H03 zA7K)}Ii#Vyd{4Z+N5~IzF{tifrN&IW*nH%|+{om0Po@Aw=&v{B zt$WdhiEJjK$K()J`RmY;9TSh|6IcBe9UN_$oK&eMen-vR-nBX?cIFH!J8NzZkaehz6 zHwvMfXjvT{?vF`J79p63wN1WFi1SIdeH7--rGQ*Qj_I|*C)~nI1Clux9qTbgggcOo zBeR7EySlF|!w()I+FLLkF}`>0Aqx@D@I6hJV&WqNCzrEgb>;n1!NEGVc1I!m4(r#|b;tDO9l96Grt|gf*5LRcX{utquY);HY=*EHRzokp zLJ^R8Mg|;IM3~Et)f6cqzBDyEv5>|>=@xjD^LCaxX@g}PAklN zE6)S9r+w-7R{^4xxn)l3BXN{yxj~*2E3C?=Q>007>bsTzidB<4zaNO89{HXIv+P={ zfjGlntkBfL>j-k$*`FX-=n!phf#!hr7VI_l6=E3yeGF0zBAn#efik)zEEY*Pf1yBU zgY6c_aD#EPAUaYT4>&CS4ZfWvvviXCy5h7F#Hg3O0;jTZuRyBKz9jhpS!fMts)xOH zPmGFiA=$u-<-c9CNVvU!v});OgGqoAvXgPk2cq1`&~)PCh*f>&WU$N?-Gk*cKS7x* zT=-$*z;H{T<6_du#*p1X!aP_xzd{T{3X$2Zl5|kGFSn4DI7XPui<4D3?7N}Nn0K+@ zYe(EB$Qfhrh(1j9>Rua=YIh9t>fKMjX@boS8cGpr;t8Xh_>B;%+m@WYZoUqbtJaz3 zQH;+85nyP9*7Zgfz7Df(k4L9TVz=v+2nv8xd0f%3~Y%Xbq-_vpq0^7-ZOHt?qVT_VgKofU&E z^W`Pbm!1N6rUbai#kTf;0u=C#Fvt{a(>7Jq@O1B^nz5 zQTpWPT)L__>RUx1Zr-IW)OR-of}^NoF}2)5l#9ws&an6%0px>(qZijd4O42aSV$Eq+lij+U{K*6a@8IXH7%qOfS2Mcqh5CQ3( z!*Qq}7YNtOmEL;XB?L~$91=M-UJy-(V@1RZXbXfZgn28&dtU)rgp=VweK4K8{YkKM zl9w2*4quc}c>}YPIlh%JwDYu<$?>7S;eyp7aY`E`d2+jhCm5zdxM{f4H5hM-mT*&J z*%^%arkj*$G)jiuMY=-F15#)nk`XDZQCEWeFh^ROiP$sUwPNw@~d_v-qYeC|dQ{ z!hc1YnTS@@Y{>cty7Dw4>gscrF+NQdz@i>Wl8*aVQQX3m%r zb2jChmaFvhetDBKuahz`h&^ah53TWShagM$5Zmo}|PID@*P3`dW^ zxK_1FpqIH(uDQ0eO-*KK3HM}TCkkm^zOqb}8$xMH|GOY}T&^z+#?_)7v0C$i9OL2| zq2^2#UsP=7uPc+{=vUn!t{0S>m#rq(R*+3@6bMJCZIyQhUKh!rfr%7;%OceVF4gJ3 zD{T#8p6baj&cqsVvoPn4bc3-#th5b?%Z&255}S(7A#j^TdABP=3{<$zx4&qo+eHXm zvG>PW!f0Due#QRV@@+O^_9;E#;DF@OA>p}4jOYSgTqVSL(+Yhtc{^y=ZwSv*dy8~N z43{RY&O?bM=JOM7G95#$o$5Qg``${=!YkGL0$&L)U+;($p~!(&2nzraIB4e_@l-V^A4*4JcY z%thZYXw-#5Uh9@9yTC3*dOXg6BSh{3ftbgfHQ99RRAEeC+VjkfS424(?i|R7JMP{U z$cq9u6&SuB3xHLlb4TOK-S~!8oSPx@e-8pKaD*f0mD6`GB6i}UzZTmFFb}vYfF(gm zeq@~71<{qW1&dhCVejmuZU=Jtq{H+icXtc?0BVBCXm)jgaQGDD5um0-HXh%E@tvIV+a4SWfua_!s>mPd^=qsw#@ zG*{TC#5FbO%o4doOeQDGcLFj-Td4gC`ZlX|`I|PrUWoaDI}@g~*UKQ1IvHRe+8`{O^dd~=!7aj3SVJ;r8*3j^b*B9;V=%+!2y%+JmFwmyUvDxrS#0?cKoiPDWFbB3}*^=EqT&`*U#hH5|Phd zmfi(=in1`5vsc&CQA-OnGrAD3`(t$hW;oZkDzU$43d`xd_Czwi|LSZP*%d(4*Uq9dWQ=Cxn|Bgu%E#h}LC(U=!D`Qh^Segen3G_#kv>go4rZK2+$P*v zle6xX&kI#+&2+!;PKC;YjcXP0Kp6}3u3oYA89{EMs;};?Q3o+ohI-gY$I?Ru!0`=N zZ+c2#pw`pd6Hf|YRzrD-BEIz?hsR}-U%TB>fa@!x*F&ASeE6A-gjy!_cpY%3I31;?~f%n7n^zGgFr)^frpnyQf6 zV28%UHUgXr`%R`ShTt!9AO#IV%L@<^cI(8xyy^DV6AP_j2> zid|k=+*r8lfe6YRMfC3qa|0tkup`k0>zxI<@Y*JDsq7XZ6caZfsq?IO2sD*Jmo;4H z_BwUJPP9!Zp*R9UQC>6cbR>Q<+is%}8PRdva6BNy9fu+@d2D$ofJ>S5hw7`p5av>H z+KGHCaK#@2lAEmKw65$b+9{!gM~pj1fHOn%lMwcBjzX*9o_{Fb6m8~l$e7mIBt&XSZbR%JIWvqF0qg6YPJ&!0*WCpy8 zBpaB7k`<>>EitYj6YW@)<~fclV=+&$dBujKBhD*Py;{qOrA}kkIsM9nmV%T()_FCgY6-rb6=Y$G8afPTu)FP2XmB z6;Cw7ah3qH8xdIQl52%HOU#Viszj>EbUBv$F=5;oGCE2-=5>X6aB2G#w~40s?d|RHiN2kt{GZbDUp?BPCrs#f z6Ak~c@{oq;L6NR6j?i(|`I-P%1)DKW#l)`Tj{$W1%VSt&DA`0L)QsSIPI@2s1O+ri zYwIPixK)sgLT>JMCpiSMK}ZwSn9)7jf}koPGpDLfl<{Z zC|4J6Y^W2CEMsEc#;GX^l(@Bw$&nI^Vtd?^W9GX!G}l5uaRG3k*dL3FATMNIYLS#k z9X|!ioWhc&Cx%Oag8~c!-YNlj$)@fT0Td525^ZCY$#Eb|^l0P8aTO}ct3V$+^Sgcq z2@CquG5?ttSXH&I$3KLcArdGwjP4TTr6)bh3Ey-n{oXQuYCko7 ze=K|gfn6gcaDdGPOvsnaW0?1*jP@5!50kgOrGCkGDkSd(|5Zfh36te;+$6vS&09CQ zT)0)J1{mf8|EF*FUWCx0IOxP837jTVtA_-T0YkYfe)%g1rzgiKGI^l`&3{sX%D7N^ zc{XPY2zA|c?IuY-B=Kdz=2Anw4XAG(DDO1>Dk%3jnvPYHx9T1c=;~GaRJM0d2B2*C zsThuDe+?lyrVAsZSpHNfmz2|c^vj8J-9iZ?FPl8mBnm#X%xaC*PUD-T&=_&WO9UN- zTMaCLa%Z-ikcm~T!PB6O!tb75VA{az%xPXs{#Vl_p)D0I*SH7kb0ok7xq8e+TxFzy zv27U+AvgKi_(_=s$|G^B62B2fsi#kw8t?1d9HGacd06m_A}`i8ytfU;qJkWz%CR*^ zy(NH=7i|2hfV>#u7A{$kE-B0<)UkwR!Cwe;XPGNIy8o1Phlc5@XYxBmlgIbJ=^Iuf z9*xY6+eA4g4?E(}LNtZafM#{UDj`R0;nnlc^zHKG(?Q(up5^3NRM(sp7mD&kqsKmJ z{YB3PF_YPyr)upgh~Yd?o1=U0Tb=`HJ`5lg@IF8ZaLI$=v&^}UKpxfZq1Z_z5p?e$ z+36iAfIh;-@Ui&Hc@Pu<-v#Irq{f{g#2KJu;<%{)0stzVPUn~nR=&_tNS~!p^TQ@W zGMCwT`Q5>51(Hple2rcw!u=R033Q&c>AUT>psp?Vu<89c!xLntq2wReEE$i?gW;D) z$IsFH9pPvro?3}Z^zFpCF)d|}d`Vp=)QRib2*PN*SO(N)DW6GfaS;LC3XFO#)x`IO z(C7>XP8n9YxcHsLQrESAF2osD)8-TlGESz1sz=Y59JgHJ6r?92Ur{a!jhKYOl`eJQ zHau}G{d>OQRI+>AUj*D9$K*+~%Hg8T5abSSpm1`z@?{0aMBHDO1$MVEnl0^r5O?EB z0Tic=UVMYTT>uu)EE%GV)=1&Vt?feGxtqL685fJ5n73(XPB4-f{uklyAaiT@ zs*Gm@z%HrdhvP?ofFj?%N^d;;N4|3d>w-CQ?k}$ZQf1K+#iJt3NCY+v%#wcQdsh~* zYWPypgfI`pp#s~ViXm4(7Ngv8+e7hO0q&>Ijl)D!F8UDWSS$S*igBbH*JvHr6zN)U zI#6ev2*^E;>7!G6woYM`Uzc`ST(!hE1UcJ243wBaA1;w@`6}mn$X^KKg76F{9^yos z4RXVyW?knhAh^`pIx|kzw}aE?2V%p&7Qtl)ErIGMg5VlkNY2MZc(~CdO=;+wG5R+^ zuTz{F6o*tV2sVdNL!lH;=8wnyy+GLs(j$?wF%A~$B=C!X?=w57`+snr}qG_dMB+!g= zu7#W^emW`F?&YTIK(XRDs573@CvBV*vhji_Qe!?&^}OkNXx9j<4qg>NRYv?bZYW@w zlDrqGO%j|ZY;GwcUt!#+pcbYE2YTX1H$u8bgEedn;xYlQQKQ0q*%M3M1ma<%>7uyZ z`6uCSWqD(Y({6!Q517>!m+CvWC=vli$|wwPxfRe!OIJ-V_~vZ|(!kd=UEz-5HZy@|?*70mqa-v&LXd-yb)Y5Er(RhJLv_iQ&d( zG14xWp%UK`N;=c0w!{f{@ogSXosR3|3q?~Be1m9Xt46#pL#$46rl*x);kyY%AL&RF z><*$_dYnC^1BG1$IawTq*5e_1~rahh$?P82_JJ2fduRj22R^!%J!jfd&4TVzgPF$7Tpl`-lZ&y67Pxy!O zhEvCx|AO+EQUf7_rtA363wAcRiICv{-QvX(%y%YW!Ak;N-HysAra*)7h9GzK_PXAS ziVuY_?sOPSs~++oq+1BvTFz8T8XJe<`07La?%dfb=YzOu0?8=PEfP*I6XbMIkb`FjEJX5 zW3)$)5KkF;LAMe|32+%OdB@mBwEK?rPv~$z73TI4lat?vM$CE~)U{-^%aH)nL;@Y1 z`KH3-MstnjJh@EL9UCd81JO4JlF|Pr!eH?@)^C_yb&7PeG!V};yIdp4r9coH!XFds zQLOv~s4I;@U!C>s8X=CFRzT#lTgpI>Yn1lyb>}Y=q!lg@RfHqk>Tc}!8-i)smp1(JInuF&D^Oo83>Fz#OeU zh!1gGj|+0657p46#Q6f;P-xy|y>!HLAaJ;kn-J}BwW!1@jvc=9JcKKUf{t@0?uO9V zHNj3)cJQ?r6_C3La;I8$(HEUgJ9h=+ED`SAIF#;=`Cfun6R?rvL4fT=QYI$&POh3E zKD{j@vrqH2=CF5iBqs5}&h}XK!%cQ@0ujz;WL2J1q{ z&sun(5Necn^TTn!05>+Gl%5ArrT!;$q8_}?_s%QOE+#dx5LbT{j4spKIwOvr_-?_t zNZ*djZn_>nd<`15S7@ewt~wRJ4x!$Rk3?q{qk`w|&FcVe3i+)=sglkc?iQT;fu1)? z=5Y6wpk7fONjs5s-Y8NWulHjsaj5`Wy1R$dw?Acq1I2pWl8IR}Sf-yBk#nHjx*E#6 z;co(FMx)Eai&;V(46ltkzoQ@TtYGFMSM`{PlJ;cp5@njkpK=m@zxHp!<{1#H$ksafKQ&THh*yrPAO7MTnaUQMijUP2IEtqY1dd zijB>3Z=2!-lyic~qMWSW8NtahJC4l+I(HfEvLab{7}w!F(BlgEV9G`v1ki+dEvgG=^U5?=l(NYm1+miW9(1C!-J zJWDVwQ;^1cML~F02`A+gC7J?VTy7L{v+523j6|LM(Crp^ACipGsJF#oBFr)bDH+sr zY*S)Q86q(_V(tfo%Wc9A4)#AQgtla5(^*?A@FBFTz#5o@!_@@2BvPzl*D8Rlxw}>8 zY7>MTpZ1fTwvrhU>WpwQq>1H6LNqI~-JoL zuWum49A%@z-hKa10bDWmXz7w8FI|0B#6uR5PT(yeo>_FDfIHPR9-ChPn^m0uyI4mG z%bgq0ijSWN%&o#v3Kd-HOS>eN>rKV@g9!TS4E!%&sqYDHRk~$u_=O!7Z}dFJM|PwoGr|`Ve5c08~slSC69QBqjw8( z0fwYQ?1&W?DC5z8ISG$TONiruWVE~Yf`powpJbAbexM^pz6_c>7}AMOZsQVROfwv^ zvjzI6D92+C(HXmpl%Fr-F|5*Uig-m>9yPKxhg+|f!FZZ?6p;=02MZO!*y6HG55)!x z1Gz~jZhlDCXcMd@hr=BnXB1_&Vn5UwM`apq076|Y9v5xKj5L$qui-^N=-Jr6;0P$@ zUldZa6fVb1xLWBr0DiM8x+4eS7@-pHh%j%kDw3$m(ehWo+@ri%(K!EsK+0JkZ*c4M zZc*+J9I-IxwtN+U9#uz9p0XI<&X$F#o?p+{NvLzuEtmA>bHcox)n!ns(D1{^M<}r8 zyw+HLaR@U7!?M0OOtdp+a3C(;EWk;RaB!PEHNGIs4TZDo^<^&fm9GI6dNO9$WFk?E z>B1eI>k_&P!d7&NBCLFtaueMbfnOJ%c{A*1@P^~kB>|mRlKYqhZxS>yK493BqKT*d zGTRL=x}Ri_S!tA852NyFAJdj1B%Ew(X^C_74bz!TP;sojG}J^}4KmqbI&iJ9iMGN{ zBOOg7(7mLARt~HGgt&xs*$(;Dct|mGPaf@0CwluYQ)EC#&|!La^a@iE>O3nF?}_p} z+FPr}0?Ycxsp%fZCZe2e^4G^`7vkX6@y@t7Ae|-4YTDbpxm*!v>eSRq?+M9Wiz%`% zzO}p);o2>Vk~mVNYs{+=G6$hgufIY8rkhboy4p~nM;v`iI!iioBfc$oqL`@jar7mG zI&y@9%yC8jUG6NkIqrx*2{Ge)B*JSv+$YS5vwYT(Pk0ieBc`qhoM#fYr_8*vZQ4et zD=yc3GRiqwkkgbblYBFtEsS2TTP$&783!xvbbR=%Aa^RRl2_ySm7vWkR4Dk`zd?X` z!;X*VSTxnmS{abqG5X==?V{*jv$$RSy1sKiv0u?0Rsl(~2@~U394#{UIGyKe8*rj9 z_0OrTvG%Hbdql}VHC?usNOOzuG<>Jcj6GI^aH%W0oOg_9v#3WZCONAdiF1WIE5s#) zD$07Eu-t3uf6}jBA;>u^gBQHvcngrHS)BB-Y}ju!3y%B@`TH|CrwvT9cOWgWvlD7lC zM}+4doR69pZz~|_0o8OH333_Pav;;QKS?dOm41L5J$)=8JBrB5UUQhUy4?i026!&< zv~-g&&$yFVK>kt2VTMPi^?(2m#;G$<%)Tkw1!V7*o{jlXkhv^pBt4z+<7q`89Cjr; zrPl;G9r%triJ8zY97hry($AU&KtV8Blt{U=$lP=o$S`Vl5#m9h-KM%L;?OZdJ+1ce z#2y2=gk4qkB67Xg;h=69+i7qG%Aiwafp0X>KjFyiSf%RHaRC;$7{4qt$7z-h8+3!| zDxqeE-0SetP~1}nOnMgVCs>1?5bE0C%4m$8-E(DBt{`xPHXLsYa{2VGFcT`KE&Fd& z#Dvx{?!iJ_Vx&yj!pbCW;f+CEV)=!t#xw!BY&yOp%nO1v5_!mJ!A<#giL`ZNR3#+M z!H7Ov>t}ZhMpm36lHYiyyC*jOHiT1_t2O*p#iE-5F=%actTo^6h+A=*(*@kb|5GO-udw#Gj0FBy> z@;WXM;gWMnzB^tP?G|ETkpR2yzSb)y8AP?ID$k zY}C)p1Uot2O%_28T0fiU!JF~l9YDllbj|hHbVn$cSK&M2-vV3!j(WT5@<_YnPGD{a ztSq$L$&b8Y_aNQ_%WQ>E+x>lMyA4jijh1&u(i!@371u5 z*ISoGxtJHL3(BQq8BfKSD~ueG8<^6L6lKm#LYUfqXGl0B|4H%X*+pzA%F-5ghOpcO zddaIjb}U25hy=@r!Prfh*@TB(c4!xu(RgNFM^jG-AtyvYY+^)E3ZzwCFSu~mB9nd$ zAQ5NR-OT}55V^t{+lX}f7z9`GxKl<{z9wzqY?*b48hgkAaiK^MFv*rhSz~uddVEXU|J+yzFBG7RT)c z0dF`GVl*&GEWEb?cvt0djL|q3`HZr0w22ZT5q46vE_8HrB| zqnmak()7f;WgLdR*5dws`JFG2i}< z!#I|p5~ql!xN;rK{Ku-zn#E|oOSmHFO>6b0n_J2+h{dgB;BMe=8AQk{iG|;=@AB zcof;(Zc1AE11nC8n6#N@sf&cTkTUb(CRj5b5~fZ$b#m-b<=X{jHLpZXwCAC8NQhih zBVzZi0?`d! zim{InmsLK<2Bf*_6$VdqJn?gVn z3+kbpl*m96b!kV`gg74Bdo;>~Y6x>%=uIjOou8Eu`)i=V*t||CR|9n*ClblrtuB=I zo{q1}mV=74k;>R+P^Q_!VAqID5nd88(Z^=Smxdj;tz~k2Pv886@=^W)cWXd;0g*tJ zJUJ(W%|GdfyuQ1cOJi_95MLLOJ4^Bgjp#ERs|t1J!?~HfUw6eUVNMA>$(W$M1)0x?ygCX> zBIw70-5>~xdj4jgLqN2SuoJ|klPIU2?B=ACxk^}0ol{TkvR@M9nFNuXzV?m)v!Y+G zhhxCkh}xk=C{{6+mzM=lBW54@)6UZQ+J}KUeNa~D!Pr3%Y|9=l;*X*!Bq!mRUL1co zlyhg(&!Rbe1b|D;ks|3bW1KC_sY)LsC%)&F!4M;CclmmWr5C_t>N@#IqI!tQc}TlR zr!J#f?v&!2r^M1j(_;BrKPqz6qa<<$IsGUgH$P1}5~qtc`(dQCWvd=tL`wHUNoPQi zXEk>GGC#31gx7@AcV@Lti9L@g5|WQGTIpgT?kx=e9*p)ifHyuC)a@dtVYn~ilGP>x z9aMa&4Rfr_wf-_FuEXgL;%oxVMXp}bZfrgj&ONK}+loMzV2709g{J*S6w-X`|3u#tlCu;N)``^OH2vVBPnh1S;hqv)Fo|~|q)T{4V6Kn$qSWVw65>83 z4!GLmRY5MtU=J_e#>zhj$Spi7*L`tziJ(~0t;P?8IBA^?D7U?T0p!Zd%~t$IbZ#OH zmGUi$M}Ya&(}Dj42o#T z8k96%33Z`)PDOn+hjiU^RZ7>oPF7?O1SuPF@@DMdQ+KisHt%KV`)bA~tR8A0p*+6f~D_V$cMkI39_`zz!0 zio=Asx3O{K{36|W;fHf_Oaw}8>ibTeCuKGRaioBWGRkHmZW2P5ml_S3%H<9o65%Rs0Y^^Vm@Y$}lKMsT87 ziLFF2usABMM^l9J)_rw+-Nef!gn$pDd*Yr890lv_@%TuDhkjRmY$Vpc5SpHx+>eYz zRitany#rQ_`2BA|^3vYKr!G5exeR?raOR~vOh@PM09+Q`qUdKmdiElq|HsvNfLT@) zZy!N23IYWZCF~-ZjkCK%m7E1!B;%c#J2Q9E9p+BhJ0uAr8AL=71VIszAW8;NlpvWu zIjZCwM9D$E-`j7`IpfE(56|>_yZdxkS9e!eS5@aZs^DIjp7irvPyx!uL#DR`-4 zL)uH(Bs70>m2@}R36p}H_TTFI%jfBy@tQtq&|$J(BQ>WB}B`)%^Qqm zuO*iWG{7AILX8}6HWBJIPeHHHwzMk1BaeORhs>K*uG!e!B<0*H*bRXlco+WJ>j0QS zy)~JD{Z}auT8-Da;&Y`a46)!1AZBJi8A3Z^xYXZf7cSwJ>)F4nc;AMg9b0B5)=fiS9p>HqD6ehP~6J z0$ejvK2hWFNV&Nv!!-$SyDIHg!c%f(<@4tWq74ih5}_v0LT5n8eKqzp#;Nb;33@EzH}N6{XOpY2RrR=oYYBCF8Rn38F{! z5v*G-xs8O0tT+WU@V`P_0{vhzoA~DK1tb-#7KuIo2IN+AY{kk$QdQhlRK{dc@SX1q zp)!O+-atn8#MASFAON=YLkXDgZh*Xw_G8n;W6f+>3H1k10_lk*mYIc=723`qCihbM z+wH_NW<&v`Ly*hp@>J@T?L4a2YPoqw$I9ZpT zzLy`wb~SWj8{JnFYbWe+h4*Fv^7pV8Rmax5A1F_L&WFg*o0kZY^>s)1st|uZy;c^x zJx~=p;>oo*<_Gx$r70d@IWsjUQpWd|U z93lwnReHD`IjyWoiV_U><3d4RNc1{Z+^BS3ll2Y*kELjHcto&i$^{_<7OOr~Agp|H z8oyEqpPD)w$Bz$`Fo7LD_fr94*eTOvgNKVBvFIe+(_8_xLff>Izr#6=94)yc9#)#M z;C_J(bC0lQ-og&EJ?W^kpV_ree7M{kEM|K}B%PF>l`mo58MeVFC2=;gm z2{I>fpHYvSl+GN$YR-c@0-$Z8R3+AViX>yIplxzhgL!%(nj|>9+9n6!I9e{5#Kp(WMT=Wg^BXGSZ_e$N)Q$=Mc#SRC@4%l8xA88yJMO8R?D+^XUx zJ|xHl?86^2J}a{*PKnGB8_$zPn>0r5ztrEfp9#Ww>j|Y?xV6&7dkad_TqfmkZ(j_& zNRkDcm5(=mYv~A-7VH!B1GV()(`YJgfC}usiSS%;n zhY>|zR3fi$(%ZMigRgj|dtbUoMC`mV6FVUN;Ta!+taFQ|ZjSM5xE2GoBaZ zu^DCiZ+VksUZ!w0<%@?1VVI}QnH5LtZwQr6vi+>?7YlF`p}jT}%vjzkF`|j48;Q4t zK?HVo*<8djZ#xY~^lNoYX|3_-)mAEh>*Wo@Sm9qq-nQfgue6(pdxBn#IZX)7@@*#O zF4qb$l@t|&DbLbTji3Gp*i_- z65uK^V@b-b8w8CrI8xe>;@8ah0MHW;qgS5p`LIZ1jM*9QEA5IqP>$52>mz{NRur+i z+uPw|AdAiIIyNzNSfs^!`|6j>J#Ac#LHVj6w?YpB4yA)g0?ibdQede}*$!nimC<|l za@vyPNYn(6XC+jOczHya>8#k6ImZ6a%AB-(BrQ_Qeo}lL^)yGoc35(nK+~Y7A6fi^ zPm4@CswJDuIN-m4?uy&~tYFf0RN{RBv<;VX#$O)(ow4eCyNy@QPQw+W z(u^V}C7sIF`U1(^bT(po2tlGns5?0#e~*5i*_ePe(A6LkS7R&Xg9oN>jOzW$vQUF- zGLE>talf$KYK+>n(Ofw{(D;01Lv6(4LbNQ;m=UKg;2PO_2jem&JXTto{5nn77XeKz z4EKiPG^L$s{57p=d}%>IddcG%l5fY9z&v?Fd@h-`GVK||tRCEN$OnIW1zoe?SVIN$Tg&EpG`$6ePcQe*L%AQL;C!EGhB z_adO~5CQjl;s~Wpd|7a$_g~%@<_}^C-p4$MMM1nXh~cVz3OYqYD#F>3lBI2&t&|(V zomMM*R-7xyGm4!Lf56MiJiY8w;)=z+wI)0b&N+?brU&_}?w@sQxwu&^K~~ z!=(bm0|y(;lU<5THJ%Y{e(0-77?g2Q0{vxP5Fz+_hMbQ%&%UM;c*^JIw074qY=1+w zxga;=aAjL8yJP`L6)HQojZ287H^n5|OOR_K{s=|}R|gq3nN9Q2uhYA?fmQA$e4i26xVKMHWQ+G2&Qv31NC- zDN76*CE%esX!CYlp1=J87SeRc>@6V_naRWHbwQMvHFH)R{#E`q=W3Udt}B*Wp{NCe zP^=HQ&{`3QiH4Lyn3mgCBIW5geuKu*hWB4r1~-#-5N=^y9hhK$gUiR{G!oaBSz+4- z@zNA^BpwuOVlu#4c^a__s3+toHd*mzna0|uCl*|l-{GD5yrj#Stz`Zl?c>0Q+Dw?~ zthadBj2Hb{Q7O8&j@V%}(xx3M_M|qc3UX`YFjQ+K``EKq2Nl7mOpYbi;BQyU(Lm9? zHWcFFgIKk`m|Ftv_^@UDQN)It> zeH|87tceXYZ4!kEha=p?f*psWSynbwna9F)mjHLPufqI=3pbur)ZfP$L=P0kkA%5v zIDklFdSQuRyeG5moz@}`gs<@A6^G76)+U)*7rzg#kA;ww{K6_3$3 zVg)5kA-4TilpNLAti)Kn4jPulT*5qtsBkgzlWH@8UI|e3Gjo#jOth;!ADh`SIePWC zX~DGWiFx_AX+#AY)8B+(8R?EMP2*1!ggcXDy0eKOccO`BDVl*D%S`OhDF{zpkekmM zZ^Oo4mDn(W@Cn0&`;suI+u)KS`JpX6y(lO{pmx~}P7>xmaxE>N6=;2gK#zK7|8RV) zq+7*eh&C@K%>Z%J(`!R8z?w6G+$t<2y$$au%-Q5Tr-Q(yf*4b7t?RLD3kg?@YLp1G zv6c{X1d5NgS`3tc0;SjEQUR`$MKm1`mYL-`LNnCHa42Pw$4ogi^e3Od0JHvp7eI(WMSq7oOswLY^0cASBcub z4b$Q2%IH>1n}Q3*+_Eywy`*UA5N4te^6FD_4oMG815J{n>ps7+^Kh-hop-#bq&R%W zoM>!PbO!%O^FAayFZ1wA`mN&1i%t+caUAdET&2rGElru^-O^X~f8DbwOFo4Ewb z8ah8VJ}A8E=3ul;hKdU7kmS`}1o9=l#fqN!5G6B@vi)%{GB1|e0xXlIQbi_?WrcX5 z*HJ^%lLkFjFLNeE;Al({B5_!Uy4XdjalRTBF`}!4bkQh5<;w9gdL23*P)dtQ7gs^m zZ;){FvLg*I_X*1zG{-Ww=n9>t1Pfammk=33M=8iCDw6^W@Es)Grs6m_2+|pU( zc}fLe}$TFFjSXf0zxOyEk-)4)348!%@n8(;IE<>V9Rd zrfeik@<&RH$%kHv-TE0}uDf57>R|j=h#ST#kI{(cP%OROgnXRX2x=+BePl}-QJBun zw+Et+=$+H?ZM7YWEIet;$#EdA6+|nMqS&C`SBe4+If+A*b#^4}DXG5Wj*;s5n_zQV zS93t#94roS+S@yUn_7%x@-)ZTPoUc+m1Co|8T0Q91oyPpurdfG@?iB#M>$IX%s<3s z2ZMjHlBO+(p}wSBSZxIWJpO5aJOB=Ul3xdaj3=|SbC)dx-C4C%6W~eu7uIp9wuZg@EuB-1O$;y zmJRC)$`vK=C#`BT1?FotRD0}7c?x|)Ke+KcFv}UZUe+krG_#Xn?GSog)L|pp4fEWgLI~I@al=AxBr_dDFDNVn4_k%~U_bEzu zVfNFD8uuwd9$MVJ)7}oVCDar`x=L@G#Y<&jW*H`K?XkqZ6gE+~3dRUlCIm|gbd8)e zw3=(~tygA+{S`|X5*#4V^aH^q1ib<(o8CA?KZtek9EqEhfGcM3SnbRD+YM8Q%rsp$ z*$>PgMARFwH*lOJH1m&wy2U91%p6>kqMwh`%Pa^2OwpSr0&Li^!2U%gh;~F0Us!;9 z%#o>Ip8D1JxXh&|zU%R;1Bzl8MR9byQ-FsJd9g=*Klwl)dNpm%?6^gL`)3(^5*Rsl zr~oml@E==xMJcZp)p=4Y;Q^`AGg(OSVzYC`%P{h?54pk5KAvpp>k} zmP)Zi;Cv!&>b^?454>K3qBzbJ;?}X&C%N^CGE-YU88f_4B6t+HGo-!k6f5XQBon@T zoG@3;ny zFb(SjFpl}UNzn2hR_dWRA*a~Puoyl`DQ{Y+iF7lQB)hn;7o63|R+DY9VBKl7&gmWM zgOv7k^1CRa*?9uZ>{2x9PE^mIJtWwRMcOUwM8K6*`eA%&=F?~vniD|@b#_CXkh8ss z2#`WYKB9U}LB51`r&5o{g~2o_7D`t0~4z&9VbPZY1twX#*#cN4zfBG=%w? zkFnT6ARdf%9w@5E?gHFg!bi)G60OY&gGF^*(<^2{l2vaL?CLnY4H3+3@u8wL(GWQ4 zN!WR81kmln(g~|do|+Tn_9Y_*E-5tco)GMhGvQ^?16REw&=f!bM5v?uj-z01HnRvS zCjiErLv*F%^N*uQ0!hw1Q-B+Q_8!(D|2!brWe9E2Q2Z;Wc>b43@atw#d4o&ufp|)Q zRv9kDmpYigVY;caXHJh!CHP^+?3UQz5dKc{T6@`UN_p<{7$WM_hGdSWPzcsqZ~Do` zSnf~|%|K2XO`a@{djv4HDRwokM@pI^a9i7Os~Vrc6&71shl%8oRR+>cKhX+Zdp6=7 zmG%Jfl4~8U>&HS&if&G`G6Pxaup$#{66->IO^CY1vpKW$w+mnmf(uQ1eBp2)nwTED zug7*uI){S65hgs^N=Q!qiX64__sQj*e~@K1&R5!{q=b~k#Os0}En#^&ZLM0-s_^Az(t zT|6wIoW{6}Ma+fi-Y!dXSu#`|K_02cia#j6oz{cFm@dR!?HNWXHoMG$p`Xkl4iGZl zIR+lVjL-sQwxK4w_fX6@hHMa;ah^1FPV_37g(r@9ai7xewPKVbwD0yq5Kjwi*I5Vl zEdd1~YmL7Ma2bRFj6ULT$AZ8y#1X~u>`A5kdxN(~v|I}j^W%y1mE-u^R1r-vW>Cns>lVkIf_}dl8nYt3Y z3-H%rW~q}9hRzj8i7rfVetv3Ef+>tZ@reM@hZiP(^dtUu7l~}jnnt9(5|Wp`RFzMi zMlSOv3I;CI($>1bk3qeGh>UV}Kwv=H{9^e7tFgjZWka1M^aEoB+jVo&WP4s(h+9uU zLez>n9xp2}ub*6HB$gi###F<2gjdH-C*f9iqKuR~`uaa9Al7=BSjSXBZnc!D_@8U^ z_ZKSe!91fYPCSE@Kh<6*c8%g*taK)rIf{E@&GQq_axMy`o|m za)-z{T43I4rFmgIbr?#p+pAMWFGge&a$;1WCw`Mo=BK$ym-zAb!W1xZzGmD2h0SvJ+t&9lLcn_!Nc-sTkz*V;;|_+V~+mzz{*oI zS)8TT{Y*db0W>EK`j(6Wo)P9L&wI`BoRV%C=d!fx!Vx3qfkJd5Y{5<+|H9SKNzA$k z`~f4Ze?HhaiQ1BH{)U3w^rYlZcXv|-X5PTU3KtIl&8CU(5zrAQ9 z6Zga;N;`9d5M$N&)g=IQT(2&1Ak}vEn@bJRQzi(j#!&2W8IZfdvc?H59YkLc>dLW+ z!vUd8^O{;SCSA_&X-6eg!s5Rxs%S;arN=_y@;0HFEtqueUAzNnaD3vSo?^WwcQlnZ zbIWk2ue#1JYwbgc$*Lgv>@Ot>Q*{#FMWLQ%T|s$sWzu@_`P&4!N)+ZO#}Gf}{Jy}X zb7J@Cj5~#8vT3D`rv-Rc@fZU~9yCTtKlp!t;0IHRdp(++w0YfEf|^o1^V=B>rKwM@ zAqw#w^IrwPm`!h)8VBod+R4HymuG$dRzaSZqiv%+VnGtZ67OR$u2I5$K>dcT4U)!@ z*MPYdXjHJqO-uO%w1MFs+$HHVq2@cjXmbe>@if(8X71+hie>I%A^wt1aBwL>4TPC8 zU7Q9R@nTs_rvdKJJ{DrSH;CV>{;Yc~kcVB5^YW4};0%EfiBq`D1Y*~mh7aYC7pExg z&kt5x5iuFSk?YF3YxB~PWryp5Amyy7ljCRl+eMmOw{v^Z6MNnOmbq4Uv&Sn<{+ZLK z#~u3H7h~gcTMke8Z~a0)u>)%&-1fzpHv*VE?KqMmFP-qm0)fA|GKxiRDv+dz=IT(0 zS(_DtNZ@c22hIxxn?%G^L9}TYGKu6Ctana1;+Dme*Nsj>C>s;(w%{EsH^RRuqdSS1 z#mVSTq_rks)U%WRc5bc*xFCqn^RLs1-M8AGi>6@Vr}&96D9BB*x3$1W1)3$%jmEBj zB`F4;Ju9xz-+6Q^1Z~5bqY|$R%(G7c#?k*Db&IP&@EXFx{um{-nIjpt#idGR#^MgG zJ)X+|$_&B|!XNwI>Kw>|ob}-Ps{~~Jl*e!lGTtpLFTgU4^fgC9ol~K<5zGj1s+^hN z7_Z<(j6gO4Oi_JU{n`z>G@7|ul6_uKX?IUCQrK2v?rlYd?F49Y?CP@xn)s4OVBtRr zaYqq&*=ZKNy#RE@I~1!4$aQPha-Vp~-+*!lxU=Wh5kF>Ot{RQG^vY-4St6WIM_%Cq>p>=^iq=amY-1)ZjQF&V*hw&F1q2xmVKpC#T87?gfJ@su<4?#uE3DqD8Yf z4pj6vgp=nUHu3~xz8|0%YdfCuSf)@aX!OZR?X(9-xgFf6j#27M4;7_Qoe#5#u!zQL zLfsUcWO^|2s!YVNzsFXBvsB9GUT~&B@7^A(t0=28A-aZR-LiHz&LN3Ch)~}aYF^VD z8O&n%e=mWqO0gjrR70L*{X9WE<6&~R@i=MBW8mfqaWj!D`t`s|9A4(a{#YmW<4Qzk z^pv}yMB0b-Xj?oWMARfSSc>}jv;dl;!NP1$`nfG00fPEnweHwae`kK+D~S3ELf$LX z{DrZToucUPpkVVj7f=lThL0Bc6tYU2uLRe71m}FH7JA~=#{e>u@K~i5o;gndnF#6H zpE&G7Oihe>hKTE+*&xu{8i5rCiF)CX9p8Qu+!TXvhy||U5C)4(Tc1b9V=txrfkt{y zGJYb&t-#$iMND4mDWGCHU}u`F-PRZCmf&>C{-_53P@p?Cb;`zk;35H;&AF>dBFo(q zFdm&vw_PheU3_EQgMgvitVGj;m%c9Q6v~3HfX?EupXW67C(EvnmG(EWsZNqf%=o*@ z$dz7)#d%6=su7B`8HYYg$~{CZL|#a)c*hI%0JAm`IY0&vjW|iLX;zn|4N)wFn01Gk zPk&X?l##`xEfgQld0I{8{huR`$;{PL3YK+>AZp<;Bi8ts`#i}!G@~`e;6J)V*dz$w z5w{3&EwZQ968oBc>z;m#E4^F0Wg)(HXx9p;;+Q@ zLR}Ikm1IqvAQPT#xx!mWxDH~*r<}QKIvg~((YRTdv!dRWPAP??dQ`B#jrBP<`LC8= zX=O{6vb6DP@nO~_f>T%G2PMS4ZDOv2Un@Q;3lt2k+T&zlta@lBr^V??m~u=35t!BE zJb_Sd#`LLix&DS!SdntSRn6YN)|;+i zl$|zn*YSc(niT$4j+HkG)9AGjljyDDclcyTYfvm%Vttt3q}!%--gedLJO^X6Z(*C5*!Mf?V_TNPr zJ^_7?{||tt?Ese}FDWT{O`8)7zsuj5y=8r|xY9JwPdL)g+3x|E;M_C9jC8ZD#BfsQ zdLO}Uz4u*Ef<0DSgE2*b3DgPIkv%v%KQ7Q*%sSWB(+U?c$u{}`I4`^$L#2@7u#!-B ztphtgtqch=rwsEx9DG8wQTS>CZWS^T4?=xxqKe%J6fU~j=Pdj~fvz{5X7Das>BF)C zOgFt8jtIW0P!A1Z>SQCig%H>0N0M~&a=k#)kkj^9eDo1%$X#b5Fk;JpLedn}Z7mk{ z1fLKFnOSZ*!f=lLPylsENYGvRQlF95yqYpQuF~Ibude(=ngjn^K&^Ex5pB^W$TTFx zA^w|5EnF9Bg6km2y1~q9#vx_-UInpaP>&VlUMNak{6uMYeyD;yM=gF|A{AWD(7>G&<(neY|2BAVsgzo>J-EpdmeKiIOfJ(hn}pj>pMcC)tiK0J`%- z^>)^f!8l%!_;=RqSZRL$J%=F3=jd-!Kv%;Ox9HcT1&Rt}GKRDkI|=f#))IT?1P7LS z?D0i@F}V<;`G+=@;TjNZ+Vo4MeX7#q$7^IznapT4{KJCa?g5%enM`pay0QdeE0hW- zJ`B2BY*bBM8egq^uGGP&kryPjeq|wW^A8gZ#}KqK1H#zVd*tRHH!Msl@1S-kd{qcN z93uimEU_pF=rwcJAJA~vO4Py_d3)lFt z1QA)=txow!AS}&cn!^k_;AOvLKuc_j%(9UH*NzH`H^pKzA>$*43}y-9G@-e}(g=vV zFBC>QrJZeyyObKA5h&H5$aY@_qLZ_DGVU$?O;Z{eyC-v=U6urJFXU&RUeSnq1(J*Q zA$Mcfbzhka?`dKHXr?|Z(7ZA=-YbjfJxweWm-4Tbc5D`QR3i5emqYH}*ZK;`IP<2E z4$&ou#Q_rOWtnG`q+cALSg225nw04QKgnrS-1iHiG!(1fT6(yxdl`UoQtL@bEehXS zwkXYMPLiBl94-{f7qoTN;(4VqtMEJ{*ZQ9eF>Q3aX+e9T0Q3;x7Y`S*Y<{=I(iNeU z6e}%9zB~|3MOEvK)xHX(*@ph(0 zpke~ubzN_zHRNs;7Zc1v)pCy#nfhFAvVoys<5^n4?jO<06(?ZY${?O=c!i>HRT|37 zKqK>W{q2@Z>!mPb7p&s!=`jqpfIlkj3cIV=wPRDYDu~<5C39Bf+#t}|rp`zK%1-|p z2rM?nd(OB@wyZ|d9pW}^v|ZsN#)Q$776jg(=f7vSOo;{705`YKio=xf=aShl7M7iH zra(6wT?c2;dORY?AK>a^4AoF0o+-;}AxB?;jPRB~Hxx<)=8~JwcxIupn*PXfl91 zi8m6)5IPgj5Xi_i>X`Sk&-Jb4G)qOJg4*g7rQHz;&&XVl3Gt_pU%4i$#4cY4GAGJ+ zko`fks3|n_9P?A!ZP;F*<_wWE@6g|TTOx?m1<$QbnqErqoA<0)(Kn$rQGcU3<2n9$B3>E2;K&E2%pn#4RLefUiN_E=!$n_T~17vv8}WQ2y> zwSZ)zR@zzBP8UFDQW(mbeC?4Tx1I&aS33!-%_91gk|qPjV7+?KlGeXC8`NWlb&GxS z6K1J_>m_2>5!~$m%iG6&H`o8zq^rC&;hdmp9ihhwBEh0Jp=LhUgU@=-?KZH(YnfBM zFR6|^rv?UaHmbxcf;>7}rX0F0$BBUM!OR8e}e=AJcszeU)SI6EDyjkhnulu3CXHg9v26fP>mVZtzVIcUT$1k$-#EtBIO{mpb~)Q1Vo`ERA%;^eWf zUGu-+Dypauw1UNvL-{#dx{B$urpJq0@wb^znqnSm@eSTTw=OEn7sJiCa9c3CyK*TB!DrxCvsXfj}z$5vta=8uBSApL{5MBG}IZ4-+nWye1!fW`j3-gcDC z6IEWFtot_#a&x4|(EI23+IfDcGHqy=1{ZE4Y6`N70W=ktcH zjVFMLQGi)F^LcUQ^he;WdM(cSHUPBacARamFYZ@bTS3e8XxWXwX)*7S^u>@8<~0S8 zVk&Uo!?@roX#LzN{O9y|)S!C(Q${uehZCbPHAQ~mL%rbL9 z%{&Cp*8PE3uE9OQ-Ai=M$&#f#5@`0stE;znfWX?r%9yLwV<~7YIoh5jG`EL4Jr?o! ziy%{@6P58$+$F%Dmi|KXCB-rP>UWE>G82+Z?qorx#|RI?ur6LH#7%*1;3f9@7lpY( z0z{|XCRvevYcFtrnZ1x(l$wA{Ue-#gyM1pEMxuqi{}cVqNbsi5%(#Ca63|_j^$h7k z`xYhJDoyUJVgn&$fTQ)i)x!Ic%uJ3EsUkR?DacKQyl7fjI<6Du$(5op)wEu)#_V5| zM#4&x{Feloz6vy)W#PY1K(S`fRS>l%)E{rf=u^RfmN<~&bY^G_mF8MX_;=o!kkx5C zCdk#xZZ16&)D??-ugHjhR? zm{l~!D6lZ<;oC;3b@Hb#s&t`T6W(1PTiGt54+Y*&$w z$VAMh6$L;h2X;?;RMOPEESw?MBETt|kHq8}5N%0sy9{vw8T$z_A2iU-RtO6Ba5s>p z5-Fassq58U0@PfjhhI!5X=K^piE`Hq=2prYn6oK&Aq~SGqps>$t2Ck5F_d|ksD-eT z;Jm=ps+}^MZI4@&cYLbw*fS=YF{cmAq-@C2u0OsZ#GJ*ZJ{(&s%?ROmjtgIzozmQY z6Rp3fl(Eo0h6?a;!P%O1oO|lr<1HVbBG_zxj67pBini<66!iwAvsUUWg~%}5i$}$ z|`JzO^Zae8N3Ac>dzU-Bu;5-thKd*JM#~@iXfjnN_mEr!lPHC;+2vx0P{(JhyQ)A78 z`P(d&EYed%0Aa39FPPLhQCu!)oE^~^%9qw4!Wqs~+-qH-EN(bUXBtR4c(qXXTldz3 ztZm}tR|Jo<2Mvyu4gqjGTJ;#7EN6!f1@lL7@6+l*$^OHOk_4qf&vvH(m!zqFl6uM! zU{Gg(_hDk%ktE!mR%WRDcy<)zw!(KDpE-_HW4)t5Ez_j9n~rzO@-j<5xFN%MGI_;K zpufvq7t@?zFIy_3yVX@`w)e-j0-OnBcbjS3V{8JEB?0xxG#FlLu=oP#{eT!h;};8aF-4V=Y^_g~qPCfpS6Ym+Oc9-m5JZVXSfb;MOF?QRVBSG8goazWj*=s_~1 z)$+^CDvr1f4uEA@>*;Xt7sTY&nM`8-2_#(=3slEYLrUybP6RZWnDPS(0}N+Q6Y7RE zFvypM`Rjt*TjJ&tSde9O{*%EVRx5HzC6-Z&&oPpSIWg-LlKxz-1MYrXU}9V}hsT^s z0@|lL0>1h?rKtdWZmFBU_#=|0WkrU=$l*yOnl9WeX;siy@!XWt3QT8eS=ktK*U~vV zy@FxX&BA$=lZ~YPRNP<^eQJ^i~D9xpB1kw0dZ{V5+5k(&-7HA zc&An43#S8#brtO{HdV@u-BTN_#c!3SGQGnRS1XZQ)P>=N-E{sb)SYW*4x!Hb8P~TnPC13cH{)$O$I>Mo&{=JEA*|; z8xz4MHs~x4jYy!^E2vBS{{ejKB+{fG#^5*Qi46)2_g8%_w~K`h_o&g> z@MmD2cQ~kEbUIf+9#y?9(;gQIfm*$?AG+*p=VyQQW%d&SEG?z4>*V5nz5N`1VU!3- zpvPdkb8;X(02Dv@IluZlQ|HWSA#UH4b6qv(I+zywvqJ(Vn)bygqptSzfgP(b`V7@I+Qv0o$pdD1Z`Uyf6tdcjKcU z33rvu3C>(>=^vL^AJ*;=95=q}it;Q8Y@ChiJV_FZ3U{NY#STii(VDzmo^jN>M4&s$ zGafqS%y&b9bdwKF$(MwX3&09fDF^<&)(8abd?hxotOr4%+_J)wmF+6HR z$W2ThZYzprQwHYwl)n`qx1|`9X|+k9OS68UhT|K1DkH5UB(Su+9c4N7I@$Th(E?3* zu_QAf+U@`{t$J$BdR(it$^621!ur(R)f)r)+Z}I*-DJcP zpOzTPM{H#1{iF9470cR36@Pv|5cFvbX=RAn|L0`Vq4&qE2b^S2T65}@*g{Dyac%4= z@ja#TvH^pk3yMnwnM^FCcoe=Mz+IDTLp<~#X+EcE!_<0LN#`Fz^EwojhX7nBl0cfu zH9>hO>fJnr`*2Z)V0_4D-xL6eM=Dsg9ifB?g&nGVJS&fYjIXkK9x9p5b_;brofJ5= ztp6y8Kb^EbtTs~xnQK{Jb#upIcc=uBsBz;YNLvgG^hfm64}nGHotRL%mz=zGg*sAx zBk9}t#t#M2dPI!jI7x}j!6{fc8Gch@dizjDIuo%5f#y-sRpZGrA1YRzRIBltFf$y6 zC2*)V4j$8f3^;Rhy%(>;0ReeILy_v>tuH-MGzO;$DMqVt%#&b@A2h=%KK}9)Nf@F{ zy@`jEG6j(fG$CTn--|j>{zy~O9xn^?*X6I?6K@Id*KP17#$5RyfF7VeY>GK|uT>(f z3({C`BE+mw)wSZ>GRLTcM;s&s>LM=;#}AayT7XWPHRSWMbdStpSNJDCd(VM*rJ8Cx z;cm$Q+9=k_n@fb-CaI8?e}+6BI3f#}#ddtIz}SpAUXZUMEFb5336RZO1?f1~Ej(?= z)7g-lO66I=h;?#T`x8NKgyN-eEMN0^5U(sPv8xg;p;s7nFnLyx4-US|9T(3((+_-0 z_jUC+<^@s^g(==cSo7syB$=0Q?hl}gM5H@}<`F_KR9~XG>LBiZ-#WiAak301pvj%Ex){Dbm0&ur6mtu{HH-+RZ+`ywx5#XwI z;2~lnj(;x~nWTDd#%U!$m<9xlpOyfj3At`s;B|^*nqwfP2Y!w#p%hDoihnG~ALHM3HJFB`_Wi5CYy`~-;6h>JlK`2pHSQ5YSV!&S`2#(;X!{K;b2~V)jN_V`Xq(8z=ftj1c)wSOT%>2-k{eN49xn3l0xy8nA z9{~B&Qbot5N>gtuYi~6S3WHYwQ(!P>qgHAF)a~2h;NZt<5{6@y)>fC?|4p-JK37# z3r7Cc2^gwPV$XNQJHoWE%_0cmil32i1K77&wdV>j{UpK3;I$Eb0_iz-uS8rt_`gM# z6eV0%UvZs4Xl1p0{8>rY+mNqE+&uptsR}}IA=~^zDcXR}6w~(wNSN*LzLN#X)k65* z2tkyparzfY<=LhKBqylEWoHY|T!vdx-LHwBBh-{pR8sQCxq?iY6v0P(^!dWPx~7X< z$STggu!K9S*zhuPx&-{4;5@BhXAJ&f-QNrJ_s6Z{5duG75EQ|22KK4l3-LEZfzvhT z9#GP?B%g+gR>9td$MesKm-M%LDyI)rY`(63UAQU4vN(&lT5l`@Ld~d_WMTQXlI|h5 zT*yWoQTi7JgT`3<6Zc@Tq6Xd@hDl>LAuhrLOcr`?7sdo&l~8Q7=v>IS!N7lGtbm=q3qyf-eu&BbS+);}-y72=QK(agmk4LC_yW?_ZqLH2vIEXbjQ z*Z<-(A>L(KQ5AkEdpBDJtThig?Ga)byFE>+guO&(Oi(K)^O1>E@dB?hSk_p zs6WKUi0Lb;kmJhY@-T!`I8>b?(2YdR!zsEqmYNI%rDhX(YgPU2pRsvPO1-uc5_fU0 z9zPNUsavZkUE1RbCH?Vk-i1g3c{g7RjCD_OCZk7*Ohw&vvZ@m9yTDLlXfh7QaqEJ) zZ&)36N@)vSS6L6#qXh-(DBG(-a&LK*oaL?=^MtwO$;b#%Cqd4J8XF}I<_`%o8)0w6 zN&CDFC}*Hw#u~BDh5#_8A{I&>IYVh?C{j1u;6wRWy)mZ7J*u>e*Rg3Ij18v%xE&aq zCR(gJ6-ax13(u#$tAq=*bxG-X*0cg3>{P1YI?e`qxiRnnj4@=Zp+6`Cl1JIo$Q;nk@z^LlcyBKTX-w-XR5Q@VU;3) z>eBfY3G1mO;wgaOTEJ4lmV#oFZOvV%s#Pi@Wp{^StNGg|SOJqo52q8PRCy&U% zF`MV|b|5vr^|K%mCeISgL;9guF)%FExh8>bTD4!NAqez{GP)(5b+oz63cm7aSzMlZ z$rU%A5NP6X{!Vf0*WIxw&3q;tOHHvHTZCqIV9?kgB_74$g6SRsabWW+zLVyVzDzCp9wPE(uFe5RL>B# z3NuMK@vwI2g83|gE{eKMK4SmM2-K0wD=c%tw~NY{ja692l$(!&`TK3VfSAdo>KSsbl|8;!1cfb%@JJ9EK2T0E1^IzALv3i5|wBQCCD z>YgC}5c>u)>U04v#e&{cl%!?%D)Mxun8m*qKs9pcMHS3J>G_PHGU8H8b_p-n+~1?5v0noZ$Wh8RCGly2&)q67oyVpS8}d_df^SR zud62)*Kr&i5s!8d=0RqiXCg?hk)y#s^@FD#`gI)@H03wiuRys~PbSq2)(?bwq3Wtv z=0)>B(rz=7rHqZ^3*RdsnfzB#M14(=nL$yh(8Kb9H7bCnHg0WPVg8?h%rZkwoc8qw z-S=AoJ%=F*CaV_P6YLF-!+yHh?vV4>5z6jC9n<@tZE=(kbHltEk`^LfoG#39Pt$=U zxx>JsaQtR%{Nz><%ZkS8fGm zqB&q8;5>ouGwLNmLvlazVTo}D9!&?LxjjW;MqU?}nq2~EOA0QMPU0W+f-plxX_~fp zKS_E!gLC7>`rBXPgvuoNS>c+40Ngvgtq8gm`wxP+)huP)&&gaMfq75Y z&Wt*nm9e6%?sJ7_m-QT9yP)yzDIzOfKDo@+&(o8N&G!dEc}uD4eN>sj#p^=N!Ca(Z zan~s7MelA8jmXfxk!4A{Nqq=FUi|3F>!_D&uBQ!e*V z+rco(zyC!!sBjER8|?0?(Rt+%iV?6*;d3W^XAr+phWE%4V*avU_r^8{7p-B9VQcP> zy9JpHY)^^-_J>12@~B{y!kX3=R}1qvBb#&3kgzcIP(WHTaq2bW)WblbqGBN+i^Tmo z%@Wq5P!mfX&hI9aw5-x2%j&XU@Hj8jdy-4wCBi&@C^{H{+rAIL_COSN?pco@;mv-m z*%`+u>17ccH0?q8G_d`V{NN8VC{=CV5IGX;k?CSFS16JZ<#ZclO2FMue;g^y*_c*I zU_POQxWh?yNT-w#(}xADH!c)p!Zx^9gSGD!V*cu?jNxH?R8ciW`lSolLJ)nbV13O2 zY&RuM_Q84+L@V1q0>^a=@LHR8d8$7{ILtkJ>g0%{`P(0_H+YJUaTemfb)=&bB~JSx z7+>Rw7+w0Fr=-cPAkFQu!Lb048>RB>Sm-zsCWO{QXc0|8>G$a~;t?fWdQ3Ek_XRK@ zl5x;yNsWTg!kpOZ_@btPD%*a2D7F@4rq)_JIHWx-wh`(o`*?L38#e)TB6UDg5F6=N zPA~?4rHg7x#<9Z2d!l>llLeR_xQ|yD*B_q<;_f8N5k7Z%33XsCq)W^51kuB`v1U)~ zdQwqqD|4Dt7wIaTA`oo%4kTWH-(Q3Re1U^7mN!@(<)FKC4F|kr( z&S@YfM~#gj7 zXKrx2;v+$DUoS@|y0Yu(MJ0r>RaoGko>3s^R+t~L*iS(c!%dkHt0-Y2sriH4>7mcM z<;()L`yI>kKwNiLfif;oJ?Z+l{~4%ztJ@pvxf5t&Rp%krjVJ{CP$ZZ^L-b?GLhw^r zXTyC0`QJ1>K(I;CO2kQAKx#s~F3J9zt!p%e>5pOk;Ne6lMF45Um>@TZ_gs1NS)0RE zxk?!WvaWHd|GE(Od<-kp{I=7gXBUOJi0GHWVtWh;G&`_urSL~_Uy12rCq-s><6QE& z-AHH?6K(d&L;Stk;HBvF_H~a-ZFm9tLfNArQ=a(h91z@sWA%ww49bDll>uM}_ z0f4)uU}&b)h63F(-7%(TD|Qp+6>@a6R*ONU%|AFfwH{mim=N$1Y1e{;Lr5o2+d@v4yQM?<+VvDc{y2Oh)6Fx=ObWD(A~LQL1mEEK zuH(hy6Uy-J3YwX?%pXz=J-JD@Tu$2k?_@GmbOPI7Snej3qLyCm_aNpG4##MuzVQcu zye^<%=3O%hQ+-0m3CH&lrnMdQ`iD$-!ig)EPs-~L27h@Q3%LPk!@N@iMM z{3sb^hwFj7YVwe`4LcZvc{c!?@36%qmaI1RBLq4xW~&Y_g82MDu+&hn20L|vT?L1R z^vq<=>lUC3mFWkug{jqK>%d4zG9uqPscZlWndBAFh_lPAjUF|sO;(wYmRXsTxW9=l zSGlq105KdI1WbY#P7ugg@cJR4N#TSOZvyZ*>q-sEUr-_)+#q6Ov*4eKJlqP;oYNA= z3o(Ne?F$C~_MZXVRZRJ0BgOi)r$Bd=NI_hu6Ndg~Ack>(S7T%7FU9Y~H-V}9H2!4$Rb4c&je+D$80Gn6wfZRDLfc8$FEC>!IZ~STr9{f zW<|~qo2+pQp!!x*XiQux&Y8fvG@t38QtH;8(6@>;W^F*6Nh45t}XxHP%xBF*=1P%a_OwScU4bqFi zKWsXGbCz}EeDNUN)18t0Gfzod_4Xn;-n~N`s499%+chgn4dN+Pf8EQl{X4x(8HyDTnTd^*1a> zxcRm*OmIp0bFGL*uDJRrK zb~~)hahL`;o>%(E#E3Jte2P< zgn;^3n8{RSVS(?z{1Av)hpmVx`ML;h73eQe8^q$SQIJbwDvXvRt`cId?BrgvD^`CP z0Q#U)>5VOwaEnG2fNHKy5^mzo5R6JK7q^lGNEnmkfhNieU(mI7TX_dP?|;(BYL+O|;| z!vs&iKvI(gp^z)UxcEiVCL=LWhmcTW@=HZMbA3i>w|6`mp9}6Dq{oq!N1w$sItp(-VSd4|aRKK%tWySL8`E0cDx4 zp@Wc!`#&f_Oj#b`=!A~Xok1)cdH6?_x;L`ELLIV~5cfv*PTZGNV_#t=Gg49AdW!=y zD02>!U>>_G%KB1x4<6}$gR)+!M(f?NypsMP-c%fv;+sO;D&2re`q-+32Dp`wLBYyz z7P$!ANYmS5?-C;FE30Q`{Prz!u?mmyrH}M?<`8PHRIb#d0Rp2i&`6T zDBX@8`JbXb83Ckw5H&yHCIyeoHWd2s7-cmhbr9DwF#`hB34-&wfKDU1Z^y|3={;79 zaj*U!=ONDR*weC^{-02Hmo<&+UaYU)73Pm}^5M>*KjwQENZUyZ5Bb!UfE+0Gb^pg$ z94f>maBxd+4lMLu39*eaD0IcV<;Uch)tf4f7Bx44ex zF8VQ`+A)h9mngxE)l-LEu`(K*rJ|#AK~5+ zJeC&3@1wQup4eUqx}%k~+Fgl#l!h1s0|RlP{>~1xHX9wpQC_zMi+si}=1p!A_1f;o zLQG~%XYdpm_`-L_JCKYukR4tsA(3eimxlWmAeZ?=@)uG5bi4VEP@eG&QAyN!s9rzF1(oU0~DejIRsxr}2lxP9(+6-%;o|MbT8t zqb2@Yf^uHq6vPqxiiKQ0DZuHEWxu|KL20Em(|t zQI~v;{R&8jXM+8b(o*d~-;<1>b zY`GmgNN7*w1Ues1Z;8;GDxXM6AwU_R9T1yMVXkKg!4(dj2ua>WIE_Y`%f4$}@hd@QIb19oNRzsU|4gX6!!lg2 z4v#Ry-UvVs0zqp>V%6nHGih79Q9P`*d{GY~&A5&8ZbE%Q%aIM+3I!at*8BXg@{?yL zfm#x6>`P`W>4w9XRbLd-0! z4;Kru#8Abo?VPWXgj0H|IDo`^N|~S|sHYln+iC!=vadoYDQJAf>OhQZI`C-a)E01q zKo>*@j*G<20&)KX z`s7>$p)Ot@)C1M2Ye#Hw(*4RM!p%bUF^N-m2ypT8_#V#-bwhf(nkXmY+Z%wm?Rr~# zNO81x6Xvpg$cBi4a>Lp~Xy#@-b7iHxpCEr#@fx90nTK-)lOL0g3@PX+i?Z0_PC;&k zR8cq_KUkJ)t#M4oV&|PQ6UPQ!bj;q6Vs5IQM&%q%&~ag|3Q11k+8-*B6- z!;|I>&1kP6CN76C6hSAJ8758hJ>s!bif=)Cy=>GLhff7#%n1C=!qtekm4+q8^eWc6 z)BGbF3wq{xF>N~OJo`|>rKiSY#TkI^0hu5O+Od^{nTD9^L{80%i>4o)&g_&%+fnxD`RtU`)K;e;= z-c?%wEa>STPsehd)mRiZnZ++|40rEXfTb$87YcRQt`LzcaqMi;d1Md?Fc8^i1IHtosN^0WWSU^FGWmI4n*v`@M?nn861{7I(TAn^P<9Z zc?j!nD99Be5pr3m;rm7jrVEnfO?O*aShj8QvHXW1(+?R@RsyKWgwa{7t@YeK~RO2aJ};$kcD4H9`wuu0`po$M_rHyrIVeLqsvJ`ykd4X2jhZm ziws07l9m4a+Z70g!GtD=C4^|jojrX{RF&{7K@i6D_-O&mU{pp37;h+L!eB*?C1qmN zIXi&5W!>_2$ux?M^Tzc{uyzMH_z z8!U5RfC8ed*ooBc6Y0E9zL#bsEJQmzO$M3il*aWN{` z{o-m|uJ!deQ<$5<70aj=jcA7l48Fa9YUOGpaL^+COSQ5g0GR_Ww!jL5HrIh z9?{usch{mfeRYfao|rSp;?Ef|`&W~}mEK(kSLTuW~WVErtVx@YAWDVr#r34xg` zn*Z2G5be`ripUvFC0#jtR}GhW7P@Q8VjSdJWtwtpE~XbW$?>d`rh2+?lN#}ay}%eQ z>56OdoKo&4?uCSv*t;l!;h)yTfw)ANJ3-`XRNrYXY_Jcg`GD{o%;lDS0T?@U#VL+H zF92jjRF#bx4^);2Rdf7_rT23wsWfdv*pd-S$-#(q{stDv1VY{`B^X^6vi|O$f8e8%q@^|(!a#{o5BkCUED~~t zNY{%AHf0sGQbEPzL}j%orI$!$yMW5H9_I>oUUdDa(+ER*k+96xiao)Qzga@OY^BX2 zJ}FBof=ue<*S<$duVS;~7fN^#*!ytjS*i_y(M9xvxEr)PFTr@G#NJ9|F4G+bLjSoP z&Q0Kb8gOe)wc}dWjD0%!%@pP`Nq6qts{Tiy>%j6)i(RalAGx$jwG> zKwG0r*+&GL%iAk>&_9;bNY;r?|54fvL$!c&>BT(-(9IUzjQRTjXlZGn5pN5E-?Ivx zCE=ca5ZcbAN;6(o!rV{@CtA&`1K@5TD@0E>ZRjy*LbTx}sSUTI%%_tg7O@P<1P~d3 zg~yfCq_OU9xDhYNMvuz_Knf$8G+ zWmfJSdfQvmkl%khBE!>3DYiN3XG(l!QmQI!#IYMOEIf+21 z=)3WE6?RTN)|ag4VDeYXIy-CjI$F9(PM;GitsIfmn`FAVx_%g62T)#Ug!dL^K^I%U zsysflxpUy?)GzR%m{pNmRv05~dN+m%yvOa;VEj#>hm%EQgeMLTE&yDEdOPB~0#Ki> zzWVC%>qGe4tj+Wrju(_R$ysydoO0Kp&OtB@Ss_K+VWhPIu;kX__3x9)WI;D6tI=;B z0Yn2DO#%x@vG!d7Ccegp(e<$_;r@2B4|=x#Z@x5+`r={2O(a=1;HWbkX9#mU8%=J4 zaC6KEM`lh{x~e|qNb;CGJnz&?XiQpnrodboO-T~c@kbR{a*)AxFjhGlj9ze4M#Nf{ z=Pfhv96r7nu`@#jjFW0a4Sh|BJA}RWKy3YkB2BEYTHL2Jq~jV5L2u5nq|CO+K5h6( zN|N72s2k1o+YlBi$m)+CS7b$X0Q05DcN0)fDcUhOM>wx5NG3qZnEDA-;9l!yg4l9x z@nng$VZWV(>}P~|I63K|;cUj+C4>=8IxjDCe346r7jo6SQji9nz?KN2T`_h7Kpr5h zxrirurVzGQH02#gzSR?50(uT$^E(uW3vdZ^lX9=9o>XM%#@e|n?mW53(owBSyT08i zMHWo2Ik_KmY60+?8kgmd{-`L^nv7&)$$AIL_>&AKZIbMHUcIFCmVc zm>l+C@9JEb^XU+(yZo6y2J)P19qvI{bgcjng6{kXC(m|uhd>X4?B6ha>4`VXj5;fk z5k5NhbTUE-g%Os`d}rJt#P#VeL)JrteHEBb#JG$kxr+4=ChGhNzgRpS8*Yu`lytuk ziFkyGhsp$*`BGSKA5a!O3)G*Xb-E*lD$oC{C=K(q*RUy0kXJsr0XG!T2|a9rU7UD4 zRH-A$3o7njbN`|1?5Z(qfr&SZlTeo=qhv~uvNK0G3W_}Cx2s%T$%twKG+0AF!S&X^ zl`GFgtio}1S@LWU&&1BkXiwa)v|HAP*;hI>$MXU`Y8Y~HW53}!0H%{{=yl7pry#c; zyL825ti+n<7L`#IGeR*D*ZW10vB5ftYN-+RUltf9Rhnc3;uB`VQy4*0R)pP%8s%_LAE8^H{uJI z7C5gu6E;3wBUX)@Z_qxAm`NI*U)c?Fe3pZBT5%KXHo&zg&!qiWPV8@7%JO{mGA|8CXUAmOx~Fh<%GS}5*h_!=6X}`8 zj!JZu5KaX6iZv$P2l#uj{dcbI(%P7M1MQM*s zU0kB1sjPr9LtQAiv?yFF+$~~^kocQ%T?ujL!@UB29+wxnn7*wlxY6%`+(?YC(PqWl zLg?sB;@n?!Me*xE+S238zXvhR$t>NA2)VmZ6LQkbd=&k;FfTll2q^N7l9}~%bRCMg zvZ#uKJPRYfDD_xdsHbap9pSg*D$?#*b&RVY)Tn0)avOL$Q2I_CC=%*6pn#W&Q^S}G zb8$j^foA-ytgi!KEX}xc1-WTFFGq~_IA6#(yFtC=HF#lJl7n@MAN6ZN=2qVqh`XC{ zS(%ejVspUuuB?&A0eAzILw0;x=0ow0y)=e@*A#8(uGHj{-Xp|I6LyRYY*T z2>aq5L0Q_UR9a*0Ye};$B;h}J8*t`9OfdaK*FysH^2mCH z(*{;)yssGdRrkJZp_n%Sd#1f7w0QM>-0%U|ELx22hq@RL}Y9*J9Q4WJ&bA*i{pV3L3WXY z)_Wz=ULzn!HP(25Qh7c!kj@dE+hVf7+?Xz|ve-jsmynE75C>wl2gxN~LEx;8#yd*7 z{~TM9@wr)nTwi+(czhaiOl5`Pm@*NSF3^)Rp&kPK-*MY_K9j1O=m~h7G$&$xZRz5% ze4|Aq=<}Q{sI=Wx~cv+5! z%L?LfmmqhGhvJ8-DQ;rScmgy}T12i^?Gi1*GGFl^EBu}ia}dH6Lur2?U$PSTQD9PiWv>}eS%yyF7h-9=DlB-TZ*ckb11l+q8};qiWwyd#q+{o2hRAi1l{Nvl5WRn zKaXW>qcp8V6s|Ype5L#`PFcJJK&2}_3uZ!bH&2YWc=S0Cw-Unu4jqJ?ejbRgRQRFNuBfNhj($N$`tQF1NXti)VOkvf7D+df z#eywo`+pUcXupj^mCn3G_>?3_w7gSbc$-R0hQEaQV|p9Kp|EF_pxg<#d0{jYmw9@TUR>pM&*Xi+~5LU2* z^rqB(|0V$gP%YG$?>$mb!>W=v@O_eQ2<9-%^H}Z!5NL||H!7ZHtfMqJ}rO^drD@W$d_ENkU) zA_nO%LLf}Lj6lD;kP}l|=1h$%l`sv{t#N!l5l|$K&P9qG$RylKKPN!TWFOHW;&Y{# zC8%;m;e8h+nWs9k1ZQxnn74Qd@_4haG!y8?x8om>Oi0G_df2K1+~*H)nKGgLP^H>4 ziXlfxD8!Sj&*JxA0&{IS9_{H% z7R7q%?YO$0E5OB&+A7Ffl{jvxqL^YnFfYfJaWMjUYK^SL^2-8vMANAh1HvSje@pl{ zrD{YB=3gYxT`2UEXkjMg<(N%xxeGU#8CF+0+1TVe$L z??=ev3{bX+aK3c0iB!6mz)WUj79O)Zutapt)Y})Amz5z=V57*AwQ3aQcpkbPd1PlH z9*5+i62BIZR|x`zNZ+#Paz!bQh&sTXAjGBcxo5tfEx;r~1}2cGBq@A!mIr2iX{~hi zckyo5NlLrZysRoimPWkx)uJee8VpRCnhlPEkOsf+gB_KbFSxV3MwwRa#@($ zYq{r04fT~(fZd5I_msM{N{~Ozs} zOf6y^Lh1fkV0AENwj9ejGak7{QAdT4zVXPKqR63-o}i?M3Svn+b*2#4&|MuQ z_Q$(93-*07&tXmaFxN4_g*7vD+Se(O*^ZlncCm%|4X1hN=Q_6`&VyJ*fP)Z4NF?Z{uTMOWVr7gIpkFVM(84JCWn)5zmB5|wWT#7 zNb}nmMmQ};Z=ppE|GPL!PAlf*_|q>9j51aH(?F&fMs`-*}{$afmRWO11x2t&3 zK*v77e4lkSZ^qVPZHpaN;gH)eg&RvUkZ1{Ktq`L>t1oO?Vxs=n7?Zx1{<+*=+b>BkcIi}3AhrELDin*%>bGBv5QJ7l8gcw%*Wibo7ir?+ zm+H;vRjM<&zlpwTAR6n72BZ?;v=S}qBLUC=Yx$*q*g#&abV%PiI<-)Um5vFQuA0g7 zzqk&}Xv4c*SeVUFQ6t=V8`%m`-G;vDf-MUAZXzL*Glf~vWg>?Onx7YY<0>)M>X4}a zB+U9zZ2{1Q4vdfgjRSKbEqah_|AWD)G-$VIyiszFxE{^3;?hdOWUVk6bv<(FqE>8 z;a`ozvYAquMuH#t6FjwaTT>Ac+(-Z`uS`p5FU$FYZ2Suoz@QCR#rD<*%MJQl1P}F% zBL$Kyxj-(=^?OFyyEG9h!Y}UN-AXUp+|=_yAr=jTD93&k&3^={wpk~XTKLL4Q^Dw! zHEZ2G8U%KxR=7gp{JVK0-(g1(96}?w@~1#np_&_TrAF3h51ajHBgtpD5^ zgPJkrvIDrn=L%Hur&gC@ip}r8Clyk$A<{88|4SeZB&>av`HV5VTE6H7#!9&)td!O4kelSc5MU`VaG`4OY55>g z8R&i4Mp5Yp2#cyvT6kuPSf-9W!okRl=$)P$i^r%t(P>FL$vL1Pl?bB&joJ?rViD>d zpQ5mMpH~RT$iz-0w%qB(VnP{%C={kEe-cXmTP%zEM~VO}|FZLmz}2$^#7bR+ail8N zar+9gB5^(s(S@oCnB^d}o=MrXx2s~0O0={L_U#{IjK)EG?5`1KnM2fE4r*n}W$O(wpHY!Q=)g6p z=_16^LKs7SSzHNV%3w*z_vF*0*s^P}Lco5C|X4Kefai zA~G3S?T5?1(NCR_Rz3WP7(?>}XS2y^q%g}kLKW&-KS~IVmCj1)syp>+xn?sz#C;|P z*w&1`;Wq-T_AvZesq2QGnhX>%pH8mol%n4vkcbiNDzm5hkyBEBka5Z?tLd8kHv;h^ zgNiWr&DFd{td4lhF5DhJ1EE|g0|xNLML!3#EEa3Ug`Hjia3zzEQlB}^UO2>E=s(ko zaRJL-OwmIhe$4}*My!%tl2Nk@Sk!8n3S(t6j0yoJE$z$-TI~S}Yo#Y3J02_iWIm7$a!<@EBh5ERQNX^=FMV56yWfH z|42y0sT^v|_R}8$fK$gpec$O(ULxky7E=USx{W*Lf?6HfO0BwbcJByosUvM+fo_p! zBRMw#a*Z==7JM34;fD?22s4`f->DdkBy8;smVh3LA+|7-GTiuQ1X-4`!3KB#N`RHB z3QJtj`=!_m8%iP44gpccGlvW##hw`B=}oX zK(IgyO?Orwho%9BlL?x7J}B6-R#1jwpu*1UPKDB$E{ zk$+5xHGsm2EZ+HF3NU`4g`skgDId80L>zP~({?hL@jO1Q9PD5XL(Tny;$~Z38uVdn zgj$xdLZc%iRZCMyF2~GJDs5g4V)-jcs)b%i%DhL>I%XnpB%Ku8`~C)yl#iXL_t4_yjcK zSTqjY>)bj{_LQ*20p(@zX4J<_%Otk(uu$77tQNd5;Da@~^~xI9LFQQGLBF%%XyVXlk&z*a&1bfyHU81o$E$ zWB|Q^nXS5bO)8Xn*iw$1Kf@zO3k-r54#*w8B*RQIdZ z0XoQ)AI30iKFI&3pgkg(4nW(COZ?|?bX;~4ltZgGh`wQ&4mBgIG&}ibg_eS`6uCvp;=c>FZV>j)fjy>LHyA#ce|8G#csY8; zO7kCe-#TL@vt<8N9G1~auAM6KX}bW7BK@?bsGZ)8B0228VP`^5Ay%o>3L{V+Q+HVP zhp|u0eQ68xhzLnpk??DU7^wgQsV2MvWVvEK9*(H{3A@3_RblB^NB}**`)Vqj7QwYz z*h^5vhs;&z(sks#f9#QE!yv1@Cx{-sq6mfjy?ZQXDtuhN8qX^NEcv1`bfcR6f9v&B z)KxiH1VV0v+yOP8RoMDQmyy>RW8sy~1MEVDCO!5SbA&)I#@AT1Vg^X<`N47gNVIff zp~o2#dqpG9T_@UWbCW;`YQ;qi?0fZQ46!F7*?w99od#PSSR9hdpX1Q}Y_B244iPMjIx- zy0$^9A_28p;6}l0?o=sk?NdwhVP6wQN|jVg8`0{OM*XJ+T0t@YPfzHV2(bvmL`6Es zWx^~=Y%Pk-JiZ{@axc52itsNnREeQX9Z~wPAdPownGmAQpHrc-brO{E=71o)Ol7@D z*V3H-KJS*-aHlUlMvs$7nWc*=)hMl)SulRw2jEX3$g z!mYk+=k`klS=x;AEz&^IVNfd<(a|%AYa0YcJivI#X&is~M?l6rC@WF=-w*?nP^NRc z*2nm;OvnT_i%*MUgiAZHZQ$P*LM&k?za;4Ie3D9u#;FY>>`?;>l@kPfKlq5flMzN6 zmRF*8Sdng?J*c1ZodI+L7fa00@0N_CDyJhI|5qR*E(^Hoe)pZ@U>Zwm=>S=gB=w;TJy)KLT=^Ow!c3~WK&uiuS9T6jC1YE~hOvK{4c`(&IuTuo zK6}RJmIsL;RV+3C_Y2-F!C(oi+TU?3g%n8Ssqps;u>wtE=P)%Ejs9i&0C8#kTJORT zUjz`l?tQBAo4+(48eGHfj;sC-KtHI7sF}yonynx64`3sOMn;M6WrCuD!-l44sTOD~ zrF*o)dPs#|5qm{JN@u~8(Z3?l8Z5JCyK7Iq#U9}%c3ds7Bm1AcThEM+lW{@Tx$^u2 zUjrLqFmk~WR(~=^&~9nke*6S}j74<}u*^4plM19`o%H5!35gmMd&`g>O8o=>0;7qd z3Xs*+ReH6uvt5XNB@_HDCxI+a#bs4_j5k5~y86GsMv{tr?%B{53?D!X&Y4Rj5sn|o zpHYeaD_F9oL~Dea$D;D;3Cc-;tN^eKD>gf0KUy?b>-bF!Fgpgvi z((jM`p?0g(D)O)09WC@>4H=E*zajwJF&L01Pgf-H0Vz1oRa(Z5I=xzc(Egy3cqk2k zzO8TAJpN!hZ$?apDD=NHqSG_LQk=sMOsq)?iiUa}58?PlST;(uOL;|oSSZUL0kV>? zek~yminaoo{jx=jZE^;}5A11T8=;szP0>aDqWVf1O-PTEkcdW{{+!rbxPeSPLBJ?B z?WB~h?lyU88SXg!iOH_8Q{uP6jR(ak6;u5iQT!D_SfKhV{a!&<*^KUGL05(O&{IH- zEF5g0Bg^$8W5}9gzW1l%i+rGp!SbNLO|KeBw4{d(Jo~7V+i>#84!l}AG+t!JaOK*= zok5Y*`droTO8>=aDK9x?*!4$WPIdhBbkK-frXYecIQ)Mgxkg`%5hC*$b!)-o0ZP;m z+6q!Y|EkX7{y4(GH)z5!|02+ubv9?de3{-YE_SIR#v{S57G`nj=#Tb3{W%IIAy=&J z&ah~h@MB1%(zn-plzdPdU_2-C!qIQKg+jkc?=Y>M31q-L=S%=AuvAHC=Hc|gX8}TL zNWx^&->+ArCL)0}LK2VLpKVd8cV-Qk!%yd=yfNM*2?o{Rw(~(-Mi`_Amgd6!8~$Z| zh-#e@Pt70ix5tnUf@m2qKoM!!po!!bVU}llUq(~9690?d5n3k=NN1km{DZ}SGprGcZLZGR!J)~T|aLLy~2v(mjM zuoaSxLMSoWW#0-5=bY8f0v7cu6hR8LAToVB4xhtTzHsL9dohNw4K3BcpslcKO~VlX z=L)kD(( zz7R63HXuD)Sf4p55Mr}8CrlgYuKQdGMA_NC!8HOtTd$Vjg?+-!PW63Lh)lmB1YUd< z2%N}O=A3&jxtcdP9b1-kfO&qo-i?=}2G1^uZvFX2xHW9uw?>X6F>qgI_+Y$?U|-2) zHri)zun|}5dvwdituc6vbEp*Hq~ayV=+>A3>Ks#gKai+jH?z-eEAN0J_2Vf*+B#WQLb0KU0(zp0R}+e>p}KuxMD) zfvdoQKJg=bT5y)}B5PXb2((OcuUC<_wswml-WA;6D##+F_d;Sr^PlIR78*5KwxhDF zKIE2EY|IM7WgX86vOcMZ**{wA+W;VT{uEh0%lDPHn+J|cgniKdR{~m!Sz0zF7~v}# z2}oL6=`~v!#X|6=6@Bg-vtA^CMh(sRb?2uK7#us1X-}p9nSxoPWhaZyrdY@)q69Q( zmxN8SPYW^9a62Rlj9h=pC?JcT^AMq7`X0i}+t}>tpys(ukP)U7Ll_J@bA%WHQC72y zma!f!<(;5Ln{gQVsrLN@SU^?*SuFA!g;+q{mxw%}u5o7+Q2V`@DwX?x+=Vye7|I?gl2mR2maZc9>9W+sA-G{|eeO1~L4Xdbgkq>fr>DnofWt#$Y*B>q!B!ib0Dn z4Jw0dE09i6*2ziZE5&Jnv0lXO&>W`})It*k1uPuKNZEvJS#3M>Ui=t&nO8D%A*!Fo zSUA`qecN02rQ*T_3@y~3dOrwFPithXFQ;XvJTREBBJ5wwPa$-HFtzVE7R2%xtS+Nn z{KYsRD`2TCL4{TqK+CvnADtxP-s{-r(}x%wqEg|!yQ4K z^p!#^=HlvH77>;RFy_yf9V5oL3f=d%Eea~;w|fct72?yVquolfO?15=OK$39tU!(D z)riHttGWaZgKM290$SG5aj*j>n_Y^AnpfBm8B~+D;5DLa^*CnLt-WDJw4AkJ+DNMy zbw&mOUtMo2lyL}yK8TeS{xqd-nWozySNZ+|K~^(nMu@@Vq1aoFELtIvJ|QToQY6wU zmK9@9=ubGR$T{&iE(!1&Vz@6i6+cW>BBLJul5#L3g4ReY%*J1?P;#QpqG2uz4PK2f z=&r-LC{2oe_X_+`X;zK!$07k%Dwvu1=_LPH6%bWXiGgug<9m~MrH3oWVqcEmHkmhM zt-?IYzrLE6mhz)9m(;mpY6{CM(^m1a9K$Tn?9yS`JnXD*N!^K%f&pNIAht^c&tcW!r;hUe1p&-4yOIiZW-d!R0r7CA@OE%Jv1 zSz3shl$^;$hnXpFGFiub!k5efB3_LwGzGt^-rm*Gun*T?(ZGAu_vzLIzj_XU5dewO zZf5YCVh}+SaYn-85rLKi77%m;OQm5Zc{AiiH#AFC6Ff&8FoC@z^x3VTaj5*YBP&2r z;<6H2sC_4`(y5|4wJX6e<6K?ZEJ=WN|2O5xQr93Hl$Aj*ddkCmh=y1en6zn0Gp+B& zu(T)AT59Lh6@o3VVK_$4e_D{0wW>6_dhdcqVs8l08eud4E~?3I1&3G+lKO+B=uc%C4m0Ed)yIg<=n z1l005sgP~9SY`50$fsen^1?hBFj^?g#vv9SGy#{9dB&&MFEb&@I(h!|CsT=6aK=f5 z9?}YuNlm1fje;x{1SeSl9p`t&-k8M(+NLc`MTYrAscZbRF~m8PFtOV$$oPP+pSCLA z`bwaYB`n->H}X>;MuRYgvE!uYJ`GCW%&}ya9{jn_@M=uK08!4>9@_CqHUCK;@E2CA zu*v-^UabHKC~!GLLH)B}#tGTl*^O@X#Rw|NMu?G#2v&y|p%N3>)O8xcnW*EbOZI8KMm_=4D@vYcTj3c8{ z;p(DN|MM8)6bPqeCi`iEj7!mrRB;Kg06Lo@cx$YGMsE?F^D*y|>(|C{$O|eYze$jl zPU62QScX3b2t{=>488t(y;{*Y(X7k4{7ymf#H!`U<}*uxEk~rsHsZIQ2Ve+g<+{?} zxs(^n5QjvN?fiBj=D!FDr^uhS41f|$Wppm^mn=_x9*@>F-*1ZmA~&8ZUzv&$73E}1 zPt*vp7C{lQI6zMWyZGa)z^xEeE*dZFtHux}@wL=okgXq&&-{%Oiyi`mUi{|+%K~@h`LUe}zF@Z*& z3UrX;{fN~77QMC~ha_)b17^`{3nX-Yd}GQN`UrXj`l5Bh@I`~+bcjZ(9YQQ}b{*rz zZvwEgvuy#HvzW=bzaU0Y9Ld_57Fn}5rvh`Rj4}T)0hSAH4MuI?-;0rOS|{88XFGl@ z_hX?et*gS9?@VD@n$UH1zB0z>w^6-v7G;L8mYzhKFfBsY3A98RIPpCy6-N6O46zd8(RI_dN*q1R7tJ#Cjl0>cCymuuY3i>vagG~;m|xkURcBi zk@7`a;j?}XY)lw7;nQJ3_Huvq>)=)jtc@~GNq-+eqkGuqY&)p>$tyg9SY6GGK*L;r zL1Z8--ZH|7H3MeZ%;9ht-C;mlqSKLvz$F6}*2*`Y@>TmmQDh87>?UKc8mGQ*jIsP& zgfVG0$HxJ=@P<}XEx=M_8Cw@!d=-0{fEbMdu{SL5wj(S^bDiHbh~#whRwd`T8=F%Q zJ3I0?kKjkWm5Mv~l0702BYJiY#^t6m(6spjn3a%42CZ?ix@f3X1$tek->jQ6+62#3 z^mwcjYiQ3<;Hd5Cgf>!dfUHDZT`RRfJ9)CWf>Jm-D{*NI(>rjs5-x@b$^{#3%bCE@ ziwLj?nPkYO##MhzA?jn}}`O8fEFeR33&>c_c~QA1*zg-zOmQ zq~i{fsq(l&=zQv0~LsJAaD(E&m5b z&)+XBZGNRUO9SDReJO>0?x7SUO*EEg{m8>Wk(JNXjY%QpwfbUYz>Ec3z0_6$XcB}h zaUg0$y>|Fu31KZY@R~C`#2Sd#+C^kLyAon?=cl$i$kL`RD z#^?Kog&2uV=0z~_j|jBfu?sMqfL++yA1cqVNb#aT;|v0`O-Y>%J^EY1jRwqG!ge8_ z{Y5Gvbcc~ig%<=yO-%D*RMbL@2N7JeTkiK8^Chqq8fR~>Dw}jDap`fC(W)usskz$;> z1v<)#*e4sIf|6F-xB}e5e()IjTWThtMqjF4Yf5M#suY8Hovih~JSO|&`~yNGuVK?M zarixPVoZK9*Fo=%klX(o{2JldeatxOe=Ed7kJA)95a@RTE%#bxW3QXir-hHvb!6)@!l73OdxC1c21s`J+3AD*nr>rC(A-=TYgGxI0^>%(=3d@`2v* z!J%bFP2H$9Az=uVFJVg@3dZ+^kiBrqB2<$9M39k2Q%R1gXiLYKbWmd`Z4wA}{#s!< zvWvwHnLa!Amm{+k>eusy84VE2*-cjN%LEy%H141?WwJI=U<*l^AF$^?jt%v*36YzG z8JnPz)wSs;sh5NPe488mW5Fr=7oxK)o7n)LL! z{>O0yvIQ-b0A~*c8uiA7ZCIuYygl|?iG>pxzRB~W1lrJ=Q#^^yrh2zTSQbYngr)Lg zOqOxz^Nan@VvNazW?iNJzfoNHVKXDU?m7~e5oJ7^|LAL95)yG3b;qHneE*%(EeD}B z(U#pAywkswbIFYFsTYev^Ivoa?+7uvhPjD0ru%Eo0<=n@Wy#{U^8Kbz#xVBB!5I=R zHR~tyH=dn}LzA0Q&R$fs28olaX=UIl__XvnlYspQf2+b;5$LkjBDi!wnAKRc8eDUMODE`X!eCsyjCD=ke45{jsY|RA!Q>$)0#D-X%(rAjLA6bP^Dv$(zwRS zPG!EoQJ|HbD|E{cEpCakqn$LYvbKh_4F#*G{#N<2bW_Xp>V<9>ZdBp|W)?4h6#*6b z=oF-nTJ`r-Fe5i;CrKFY3WVHP1wOTQ8JN)HoiMA77yJ#tjs%>pR|M?eshA>EH+Upjbb zgVQYntsoPMtF@ZpM+!1(qF2;Z@a{OIv^mwpm+S9~L(*4p?@6AYBFK6R6t)xm8+vEF z8qb(Vjy~3F)HibFlBQD>GxK6l%K>w{a9-s)LCU%jgPUG20f-ngzqC9k*o!W+aL_?E z!F6EqhRdUHMf4mcC^@nPP!w#jF!fbxIah#?B~4b@FH(D@c^C&rU=9i`^N7A6mPw8z zqwZi`1eLW=%Rp`w8%UVa8`dHNOY{mt4rBI z7|i2rU4I}boX4)2u#B)H0;Hb~=My_$YY`)3ilGWhe72CN>9GpH5*J&aas(P-5N=p- zM++V>%cj!Pq%A)VtCM21aKZ-A{7tTAc*CGif&5WDoTik@|H(LZgej>iSp*XnHGwMG zb`0zO>*543a+6QbMJsJ{9bSz%=q{N(`rbn9h%__WaB^K2`D)g5l|EUc#~3yO;)cPg z(6EoTE0j{q?;Y7whKzV-{Fcv45O29xJ6 zzui3Lmj-D(^sM`YMS>yz7}mqqgatoI!8CLUvkW`cz7hT92gA^|kw%R(NTYPrZcPM`d+ zKOSq#F%&j@BE2@=o605K1INWm{I>g2r6F8&;TsW;yyABd{eLMEme{IAAZAoZSXhe0>_!8i~r4%f*saKjJ*vvSKq z3Y(-TPymfY>`!EOSD3rD@@l5}MUIaYr!j!0NitR5r2r_B;Ht{iKxwl~(|xc4){w-sN(P-C@?`|k$;=>CT^eH?;-_ze+IPmWA@ef7FYzx4vNp)lEHwM3 zRXE0f-N)xouSn%JoLQt_FB23sIKpX5QicDyKP1J*nXr4qkvqq%C4m1)|fVv&`0L^TjejRY*}oR`8hvYpv8x> zn#}`wzCsZ7-{-PES6%8W^=4VX?2@)+O^Xq9|H{+@LM#VNFwv4ij1|HxHH<=OT!aJv z8H3sjZ*2XqI5gWeY(wgIrV-jm%^Dn1?-v51`p|&`?eY9dSVRjg-y*~PLl8Y@tDVu( z9aQ?tWXdlpTjZ)-Kc^-I$%HIxXTJAzAnUQ%GJqDuOrFh}32Zb#fnAJ(Iv`fMl3W&i zuu)WLpyg3zWAV7mKdhjJq1{DukNow7Fv~aNFelh@{X#)-5_!{k;f;E=_OGKp43Wqs z{-s&wNfQtT<~8-a(%+bstZF~|LEfYK#fK>b*9f%qkqn>&iR}_bVkl*>tL^{x5U*A` z`gjc0`5(?n1=2>)Ad~*?Q83Fi3|n4Cs|=9kQunAASB33x0ksq{^~{N`oP6^c1*XJ0 z=-j0E%$o`aAvog_W8v-|HJA6IbeSU2&xU^R{n%RtAZsNYs}yF1=fD~Ls4PBZO-05jDP87dkmVN5gf6(jAdnWhY1)GD-zs=G#Kcjd zR#0W(c&w~PiL^8s4%#x7+P2NE{5GEEEW`>@Wa~(*_E^EXKmY zJ-R~wLTe1cNZrD3g;_1-6tXg-4hh=-S#ZQUFcke>+Okw;U=}!Amy>@k(7b8a4gzh- zau6c}Cknz;N(UtUrd8ndqrqTaNSgXOsM(t-Px(vyYixc$Z$S23dRL3N@8Vg2*;-qc{tD=#v;qOAR&O+D3%h zom44aE8p53hhKI00X3?YvvsIKH>tG3(Ans2@-oAWD>=xovzwt2xAH1sk{w!D5>U2m ziPC1iG^b*$lveml^u-cGI$`rHJ=tY(A;!w=x+Z=V{(7OtBsrRLXzQ3C8iOiqb-6_M z`vn>?8G1@8eA^uWRs~YMF?Q4mF)wHYiYxt|T>w_2x#64<@?}sL&UlRvmTUoM45U*o z_5rk9m*g@N5c{<9NNLa+J6yxlQ)`D{fpU%?#e@V&Odr;YGni~8!kSK$+IBtic zMyACfC$qf(MXqlaWTYoW&Xvd(&;)-%uw|OHYi-Lc_E*0L2ES=Kn?Jt9H|X86#;S+R zR{69)0~zg@?qKxtQUUl8Ltrsao#WGjEU#3bt`ivee;`C0beD|%#nHR$aO>d4&Vzin z%uFhaw$PM+02Y;xqg?FcgADHrjJhBly5TreB*DhMbvLPwCl#4*%RhIFaPBX=bp$NI ztFtMu3M)4uW~DH4F}(_?WejUsg>1yi_Xm`eVeH!HU~ztq|GzkSZ5)tJY@9zB zd(6=#&Qj}rAk1hpwz`ZNoBuFII5Jz#g!;MQe7@}{HC49~vT5sO(f2Zm>A=ZBwySib01!@Z{v zXw2W@pwNdKtPHY|5r5j|O)Fy@#rlOj!;RQT1%UPLjYFd?WH<0+gCdHT73m~PD^DCT z=6YTZH!7TYD#_O^lYVv_Qw7s))#uU};@F5Lz5WA1Rxw<*P=IO+6X&0U!R!b!sN72Y zYQ0i^pM8INJ~S%HD}% zDnhlt@;L9-%ta#d%g|iyKl~clh|HVoipw^6Zxf3^Xpd2oQpy7itl{RUx9fck= zfY#?f)*n(eT9edM%gFrk?<|Oww^hjV(i<6*TZiesvC0stbi$tf<2zIdMQjm}QC~ zC!B5iP>@v->K17p{v*W7JdU;90^j$WR4ArOTE+F(3bK6Y_}OH}pc0>#epgFAQ1^vP zD=1xsP$M|H2BvK-yJy0Os1axz6FWW0Vk;CaA{z}kGRw|iMPh}4O;|8uNcn{@%Y)|p zToa65>H&d9x3DFLnUpLw-`57%3XbJl858j11X=Pj(H->-g+i^4V%;@$m&gD&GD(Tc z$)tV}0+UiGb^cFe;>R*1?PnN-{E&8lE&V?O&52Warz90{1yhnRk7(P`FbzHk4xE$2 z(r1iSB8Y^A*?>j0Pk$zLW3_p-qDd#Hg@Sf**akREy2_pPmk4BQtGsod4!*-lG~SM`+fTcCOjD+rCgblgOB@&Rn&Bo3Ow z@H2bjBPu1LC?evX?-)W~!a%G(G&zot#ZBX(HL*7gcE97(8Ot8a zDqNZG6UPR3Ndr>qhYPdV^4O%Jj%>6b8!{%9jl&8<9882Rl;W}#sO>%Y z#ZpE9t!B7w8a_qM7_g|JqXyF+UrO8xtzydp#|71owF=MBRYm<5`;U~mQH%5R?6UG7 z$NAAHFfPn*|0>Xu)>#7VUu65wVhjmfc3UuKGCCC|l@zgkOo?iMJ6LX zm;^5OZSPJ6ga+tb{2(C~P?KC$!eK$sGZH@hE%(`b;aKzz%sXe@&pY&`Mwlhoj&}cX z1R|E9V$#Msvali7d;&7-Vf^Q`jo&EHXesHCH6*cNKrOfQ7@T`&&~Jq?^ONp2!Ynkh zEd#lBk(p1ca-<4o8Vq%QlM=F`m6fv%ni_jaP{g%WS~xSrJh6QM2`=C7jy*AB)&=r! z3bC0bi6TY86k#gt&&lJ9WgDy06IjXTq8nkx_~X^u{V)NRDyRCTrN3K9lq&OM?P|{z zWCeq;lDgGRY!qtole=KW$oI+zW2!x&YHC5YpQbnSp{=CM?oi% z3N!qo-azwEfVC@S!(eWSo`O_^#D`%l!NwC~HDa*crr6IB7}XbgkDv(+n0d7I8_Bqj z%418Nm2)`AuMlF@%0^1;YyUcq>%zD7YB=rFbb{9A&oL^LM5qLR#?KM|OUpUgg&JpV$uyofj)lkM$_i?87A zylUQ%IgpK5YvxQ~r2ZNwoZ_d<8#46|m=zy$iWLm7uxyJ*@)!($s8Rw30kW$Q=dq0I z3!>Q6yo-yp2PWSa#uz5jDyukF=BEj>6p;2<*;n8Dpg=2jh0K~`W#pyUpY+`lCn|mB z)Re!n91><^$r1z|=?<$8pJPD#|ZKL7ZKD zDfj8IN9IzDf8<{Z!_z#GQc5o!g0fTRJu5Dq%;gy059WhV7a?+32EE7|y$HWOZ{9XQRo>#j{EI@c%C9!(s);K@Yd z*+l0RiNv}@VoM_NO2U1a$oT0ExBO&`oKtZ`>u{ zB+~zqocB#4?bRjvIem3~TH?_(_exsg^|b%C{3YIQ^?P5M`%7BJ1%IiTb-|};83UNR z4Ei!HeL%&aZ_?TfxU^!>^z@7Y$P9zd`{%BXr?f3Csl2arY*Fs%AMEPrHl{gO>-3jQ z;F|uO=C))wH|tyc{*d1To%@-7e`feY`aQt8=Izcs-OeR{iCc`D(UrjGI#+`m*wrQb z;)dgf;*x#9anIwgf#<-x(%pcY(%p5Zxa6RMbeE_j3yFkFpW|FwgL4@RoNF`JxvWLb zWiE8C-Ad=$E_UwJM(0jh>RgAd&b8m+Tqj&dexJ6-xz4+tJEPgT)8BB;?{)6Xcbq%> zfOBWMU2qvjq3Rw1k`4-X#Yo z)7<}_>XJ8{-A%;__oIGU?&dGD-0%rm?v^20 z?#ExWaknINZOLMbI(%sBa>8_?f^^%|F&L)o!Cfc}$ zz3Hz0Xu5l(opUP)+Y5X)zc1z4&?nu^<#*FQ=SC6dG~AB!T=EuZlguZs4#YXoxfxy4 zT~p^Y*G##l_riZ=x?56{>Gt3^xt=`Wn)zMBx24qSUVb-ylJ1)CPjj~u*9z+GE}r+| z@^A;_w~%<=Z{wz)mT-r89}j+%=Sf_~`4pGu258juY#Y~%zoxbcx0&~)lyyv}71N69ns zHGSR2b>+P${${DG~txrE!wvnTij{Pg8n$M@N)>l2yoRG!JbnXYDcW}ruNn+!L7 z1ZAwsf>_{NGu_O-S#DOZELS_&xrd2kIqhyB@zfv5at+N{Za&x}yR+PE(t3*DpTbMa z$B;fe2@5Be;g$@}bVCU<3O9{3hw~hRYn+(r@_Ftek4<007Z<0ySNXk!Hok}F?BUM6 zNciRO$rhgL2WGli#5;2VJlmB#H8{5ueELf2X0LONi7fXf?{neJ=?fF?b>e7lp8=0# zxEioobqQC$BjKt@a}RV_LtbaY8-vNy4{^<4$>Z<`{-)O?+>AvD(nz@1h;!!3gqt$Hh;!5U_62b-=>^~PB)(AzR|mGdFZ}X6{6e_@ z!T%gE@#6dZUehk&KH=H)3EwYDa|`&kgmTwrIJb!3f8kpr&lQ_!OA1H2n|L<;8~+SS zJNUgvcwM?Xjk44nPIrGJ%&a5n?suZ)Qs~R~Z@^aZzE^%1(v}aTyV*PVb|HDY0H^kR z8Eu!obQZjj90hGhJNFggW>CJ_@WEli9>BdtJT=qsGm-Xm0dcIO{ZC7G?|?5kE!`c3 zo;AG_Zv9E;meZ#+4o-K6!Isb`o#c5Oca(UR^PYqbHC>%s&+q!)&OJ#PmM;J!?j-5Y z;JM^D@8qem#<}B!Ti-6-H9&{jfuv76tfjs*W+mIHuXFAsewyCSa!vHJ8C~Fu2K?QU z>6+WX?-O`d^1Lp~J>9#LYg&=znpbDJnbhU1QJvuTPOcqwI6cwc&EP#r-PO={JWswJ zp^j%Cb?z~KAD|2mk+1raPOgElod~m0;d(kZT=f9Ge!|mtqo2X`#C65>#%17=y(kmz z--PKv9&4)^^LW+_hj$hy+&SP&PLjWV)C=QmSAByX%|B0rmpZr$`97NXSG>{5&Fb&m zpP+ri;!Z9deC}z^{gQ9*fi2|yK7J>+cA{N(a(l`5j5(d$Kfrq`UHGgw&u+Z;<@r6H zHH(O|2lUt^`jGx7q`9#@{cd}=teHC9LmBb=NKGdl1PiFXw5 zLvgdHr!hPyl8>wSz9fUZoS;rtq`Q3Zo4{rdqn?k^zIdOEzw5!o2h(`3!Zodi&t7-# z0A-q0=-fe`H9Kg7(Cq_ZTNCb9!pvQ2{IrNLBYCeUA4~cD^jyYG-ao>x+WsH-{TtjX zxF+0;p~OWTHMr!`gd0d5&7A1m{d}t>Zx4Cr9;6%%(7GPKkC6YdeA|YbO&ZJTvzHA^ zxP0=yjyx?H&DgLKp2XG2QI;gGabm(1;paKUI|n+F&QRPE=skw#C|o|SrUd`E^%?LU zY4!!Hqa4MATS0mY_&o>L*bX|bBj2>;ByL7C?G1brZU?SuJN*RXbOZfCQy1|v^1&YJ zly=iJ09U~8A!%;LaQa^S&)QGj^(Jk~SOXtTC#`bQ+{?FS+yTW2Pu4?^`a_mS$rw$w z#B*E1Eg72bYWp*W+@t2Kjpo~oyC0sSXC*lr~e}(@u z&*T{V=EFA$@{rAMcrQ83xjy(i4_du|AIT;c^ZRn#XmI+?4I{}A8O{495f za7|m%-HK6J?g+n2_;!qEg1)*P?u34WEoo%lz;kxbOqZqSaOYN%ujwVw1UX=O0{H|w zEe4y#bE}@GAs;j{-tfEWHu8gvS3|ue-+-1p)&D0?Qg?e3ZXteVGhQ_Gb*_T=1CK%b znZ2PGSnV|CBIIX!9bx&M)Yw9QaV}Ws{|`A=O}Gber{L;4Ku_vqy>QE^n`8&lg9m2yfu6&tvvX~1?$7s* zgqw^1#u3o{UHJIxgj+G#xxsvEY0ouB)7=yJS%jNS-j2dIOZZ*0hxSifU&-(3{2oS_ z+BebzkIW>k(Y%YsNzxd>?^)T*sdyIRJo#2%-Mrf51C7%ih^I5|4BTw!wu$G-?Wu_#x1X7zKH+n z`Ml##Y5ZMreb&V_|C{k2Y)zwc`w2Uj-%YPDuD^}^xdVDVn&tivyoUO3I;X2^z97wM z-tLUeK7|D{)JX;{Q7QBMWWieK)SA9sJKT;BTk774!jTk}sv9 z{Ggk5)zq8-z<}TuW)~4=^O?+R7gHAJc z@LtF7hVJed@k!2lnld-={RHnCQ!}XxvXV@8pngs=zvuUo{oUP?>TYfcb=RKnjeWbj z<=Nfba?)E&_*(of=eY#@`=r}Q{IwIodUSW|8F1H=<^sMSqCBS){w3A-M(TTA7k3-@ zddhPL&u75TrTnMidf|HDl3OW1Zh8;sh|E?CUHX8}Y@jW{6ZN#=h9e2LpST}73Ed9U z&y$~a_<7_2VW9b3`j8s@Cgm3M8+U@V{)-b0PNR$s3li?>8oo6X5GP$r^B1&>!{{jZ zUUQUoyHx!m?eiYy;a$;L5Pro8=X&t{yZpX~GUVWT@hmEn;v}YuQ)~!{wu=2 zop8OuBtMM+zk=U`d0s1waHIJ>3^(f-^89|B%RV6Rs%_ zJpt{0Hhv2g_8oKqbNPNC)6G4Of7iw}e@4HMPkEr#j|ejne^ZHXsKTEEE&EgFVAZ&$ zdx)#2bC*z`8h<78FX^A|`tW`wZZUqAk0xGp1ogC~B_q<^O0Y4+HKU}1TfWG-WsTrG z*LT1lmX5^s}#M?j{sL9B5!}tyRCP(86 zaWklgWDmYk{-kKY@BZKoq67J=VSFtk&6<8^^fvzS}&2Y(0G75X>ViMYUuV46F`_j+hjGn~BOMiBN0 z*quD*_Rn%xj7EMa$#N%%yD3ROb77iWhrBb8IBN*g zgZx+XtR`smxX)sV)VAu$1>(;&9mYC6`8KC z5Zx_U9~?iEO<$zDES`OF?~vB|1;|4M;`;KtAMQHbHMmP~Rrp;-etYtKlKgk= zfzD`Dy1RjI=knX*vM+!Z#m>#o@8BMDY3>>7dC}5@d#Ztc8u#Qv+9A)T3mA9Xkhkl2 z-oq23HKU7d+Mea=lu&{>X$SPg#J7zwbs5f0*y2fJYxc7?2l{uL&9^IE7f##GwV9K1+(FahK}xuA&e=|VdWM_<&{f0ND7Ddzx{?k&lFfTFV{akPiMVQ9Ju?1M;t2Dz?a05(3w}&| zGm!%p@jXc!t~m*v6)*X$8Ae`d^Ud!=1D;FqvlxfymTYGHoln0qhxnSwXH$D zF@yeN-co)y631TRSj2NBV+4M0Cq30w@(tW3@ET|WKBKS=dN}HNBY9Aq1JIq|cV40m z{Rg_Huc$xDs(j67Onrwu?8PBoGG0TcE~F2?Nr$$Q@S=4R`A+k+<^p(VK5=wzhd%Wz z*K}7$=K1i&nH}ioPk}$sV=*ymI(RmY_kO3k=C9fY{u)Idk|P*XafdD-Uys5+)YTDw zH|-;y&ydN5J8;r$W?iWnokH_S;x8cWV&qG{XVcc^FQjjI3dh_hJh{B zZ|FNh-$(Ji#L}NPlzPXn+E#zQ&Bb46f5f{m3O^KlaTI>I!XJTt$KYM!TPa-m$Bp9K zKz%RaJ2Vxq%vhRm9h85{tMpIfcLuHp{+eEg9`C2Q)sz|WJ{jb^{;Xl~n<-ZE9o&B5 zltJY=#P6Ppe-H0_q5mt4^~ga<3c~y zgS7Tu>lRS9#3B__c1vN$QQY)0!h` zZUk|U#w9Zby1Hr13&?M8=%+QmUJPM1jOj_n2+?nPGf!wVU1JP^tPk~193lVE zZ#w0YPB47$#qWvGm$t0_K;h@$SADv8tAXEhaT7^5tkHZpkaE!9d_tJ^#LpNd{l;{7 zWyaxaT|4}qhC3J6hcMqJk5xPe>YaQubxvLkmZY3DgRgbdcrWC84bOa@$)4c7u66U~ zLWgP2eFwkuY5z_8s7v%dCHR>)ioA(W$=@dGbQ+laG!jSX_ZM5<#mBYO-zIR?;|`wn zlzsX;gx!yyW*mH20}a$(_wao^ZYyp#Zr*zMpE%y&cW7rm^4}Z(1JS=Jzv2_()A%=| zhTm@wbbT+N{i5s97*>Z|KNo+OQjUc@8_EWR|8p z^3s&%hD7l-wI@GqX{)CZ*E4)yN4SmjKdj1fz4{H@ z6kHq1HQG6L(vTnM_FBT-%`9!c3mahh(@Mo(~4Ll#JCjDuwtyi{jGvT$J&okes0_*DBdxY6`3-!)i zVavbakrl)R9k+vPZEBWez6SF;LHrT@9#cF~emCg1aN^s{?^(y$m+&rnEyh!(A<6xe`43DN_u~GH zo8K3D_CZ%&kmlHql-y6;^C|cL@|*VT=F=W->x|CsEavfNyW}5uDvqo9y=h;%+sNEm zaqPb<&D{;Au=__62kH0W{a__}jn^r=hc-M9Ceb^B*E~yIf0pK+e;vK`J$%RiLiw*v zlm5dk;`j4kr@4b)p|@#DcMINT4H9g_!F0EbFw4oqWBZ)T1KYXVxgwrV@GR$9jZ5Ox zewwyl>vkfrKg9d?Dec`3esBA#y?c3Nd$)z>W8j-{FKub>w(;D=MwAzyMMv>$d$*YP z_1C4lHSqmf+W3|X)-P{jod|p_Zp9Gj3Ju=l_i~=kL&K%@@Jiow_tL<0_Za!y#B<>o z=K8~#^V7zjDntjs^BLT)>Jsjk%{a=aRZT8i!X-hxGw|?$d z3)oKtUoFD#Gsn@ntWUT#Q_!=K?oQmof%M-zpN4myYDai}{}FfarZmU?Ik)>NJG@aNBUZaj)Z+;*uMU zZw|GEzU1o|7<;zd9P0WwzYjTh9Uk~#erKoo#}f_65NFblOrei;ZQPANVEqbrEADpO z9k@l%>hswJ?wQ32cQ^0%;+|VbIe3o6jmMSZmN(F5cuvBt9F}lXd9GgR+%I@e$IZlT z=t&#q`7rJ=+)K>&Hupz=)FO}p)ixUr>^NYlT`_4$rIk+@2`-{61kNo?uiHGlcB(ZMq*=~KJ zz`Z!92pw#Z+c>PqZCX&~IuiH62?=*P&$Dpn;kx0Hv?J-0Li^gaya~5?OqP3T6i?{6VK;kSiR(MK&0RCy z%{*_#Z35p`nCV_7U$^sq2X5y|;>B&p?Z7P|?z_S7#pU3};+Bnu2H@lQ{X&AW_0Dvq z{4U3>J(}g#;2LqOaVtn;W$%PrMLT+7ApHQ(M&8%(TuZy2M3||#U*M+WX6m_vI>04y zTNa^DZ-l>=Cfv*Pt=p^MuW7Uup1XKoM?bOtBy;86j19Prn`oOmXrnw|BHV+-_b~1; z+y?rC$9Znzxf%Bqzh}Z*vydydk++xoqR*!d@4)SxmT?9xIfeVf#?6=-ot%9 zGSmGp&%fYyZamL@#Pd_!-*7Vvy0}^N>0k2uAGmLD|G~BBLBy|V186h2j=0ltXW>?K zWt<+I?pEPmz^%qL4x_zKq`l*6FX-yd!(TVtw{YLVeGhjD?sD9gBlK;@o!fTOxtEVY z|GCf~x0Ake7jE4l^t8AaaT{BD^x0sdH0_{};IFxS6;Iacl9nhBnklxYf89YG@A&;rY3lZUxUw{7k|O3Dp55FAem{l3U*ev_EyHa_IkgG5 zir+8q@8-6l{942B7je4^ySts)-Q5nJ+jnb}3Y3Kc z6*C3}s-XfEsrU1U;C65K)cmo3eCzi+=XvgV&Uv2m_B(I4YTGN}s&KC125usjc_mci zHofksx>Hz{-_xf5g*rjHlM}=-dKbGG(F@fDC|@am9W4%b{3f+myq69M_vjDs2%XcE z-$}l?a-1Qv$c;9iw^;hcEiR6AWIcD{xH76A(XdNCIMHq#4d8uQ= z(>&ItPUz;&a7TG8Cx16qtA7&8KiQH||IkyyPal@|R;xcO>>MMUaVW+_#K!CM`2LgW zb#LW`_#1g)Dt$T{R_ZJ8OQ3#JUYN;mHs+!f^RNJmumqnh|I4^nVGZ`^yH|cAKUDlh zept)B4i)(Yq4zUG!g_j7jWR>_{dip1Om4+?l%X7z*oT&rL&E{`5RTv&(mV7&aDv{o zQvYM=&~S<#Lry)BMKmYct*)tAYHgD=#ib`oYkf-EGSWykB-r9L&xN?(CDDv%?Rc8p zNk;P(?aFfpI*0qd__%(i=g@e?9PjnK&`h?x<^8LVQ%KX>-mw3m9lw4h^nMX9{F!=Q zUdI`n$3u4u z5tGqZF+NNsd-MyZlf8e;H`wUCjepvInaQu_zPbqULUmJtItq#5>MZqPgL-hbd*))W z{C#R@D5cNC0xUxNNOj>@aa4D9q5GkJfia9Mnfp-xW3jq)xjJ>Vx|M9@PR&r~q77Bn zGAt3!GOWNV#P(YMu>ZNRhF)j=Vw`&|eH|Kvo8(UH(tjY=^K0qRzaTdweQQ|QN^VE$ zzIbKC%eyS&F2`WIt!#E5_72tmHRGj!($hXl9a%5k3F%0RZ-cm2`prHZz#$w#d51oE zlW}*l{jU7CTmIWG|B>Ctm47nJog*8C*HkF|-fPP(`OkMxk!iGDQU0q7!ZBf!%6(p!OdPxac>RaTV84um667 zyouXrKRQ(ZOBt{BoDIU=B3xxZOXj#6?+*=4kF9MuZQKB@P3ne>aex&2vvz2>BaC}^ zfJb3?#+o33IrEf>W?xK)9TI3rQg?e(QK5jHG6|EyKbG`4=!$Ub) ziGApOwJ;nYd%kWwC-OH|w5Qv61pOFlgi|Y=_o&0N7D}QguqxSmM$*1)j#-QU7MN{l8bXgwy*{QP@sC zvn$K!<@)u}7}B1P?6c#p#6BEA-#3fGA@T^0VfQz7gcIZ`^nS~_2(qV@?ML?gRDLF7 z>a~hLsI%#5bfQI@vyRN-49+3VFQx50PwzUZ4b#3}q+dpk&5%uKyU?Aou3rA@v%c+F z{>y%2Xt?UW%0I|&-!cA5zk!>$jXUW5a(=i+_I#iHUOg;4pg+PB3?Rm@TG)B7`)=C8 z$X*#nAAtsONlw#7qFx+}__Y{k7)6djdf{_n99fK%^%$M#!bI-L$j;I)m}C54zJ5Xp z`(GHf+Q>Lrr$1AFT-f_Pqe=UVseUsZGcg;3^?#H44s*HNy`K*6Vz8YT=WhDP^{e`} z@sjoz%~!O)uC=-+)uI1UtN$ULRheO-R5eJjBcTpR9#=*Vvtj*aBQ|3zwxbN?s6@MaI^5fNQaMHUCgmSl2hx?*yNTT9P zZ(FdUJ^EAsvYB7@qqjpRS^1S6#^l6{eg@}o9yQ0MU%cX{g^zlA;)3w+3m+HVa~W50 z4etg05Ar5%qy4nAT`iWJglL(dn7g*(FOwa(xk z`2dgb1QkEt5wi7fhXH!tJasU#?eByUWZ$QTgd%bj#$X(Z(euM0VItZ4W#jQ=GUZyWnX0OVQu$_My%2A2f;vJzH z`{;GM%R(Fn=!eiiPa<)+EYu^ae_CdgeO&*f@4pi&%u5_`Z)$>PUw9{UU3%wfJ^Jft zT<#t9@;mwo@8~DI6KZa~6KWs66XN~vggUbR?mHnd%QH&KLIZhBI45ulF~pHXGty{( zzbth0cn-SIeM{Otl*XfFA&17rW%gy4g=Vy%^KUx|JJscO@X!8wSi{g3U=3nPSI zgzAIJft$t4x7)z!{W1^kLJde>&AgA5R zUNZh6%x?a}_-(~0#Bg#*e)#D~?_z8Sr_Sbw8tqlBHY)z1_OV}^b64AQMH_To`>6eF z)Q&bSf6n-tvCs|1_qQ0|A8lNJyzzaqeVX}!S=!+l+TlX&?pWIgkmYW;&;CBh{yxh7=70G5mhj`#e;NMv!gs@wY5#XP zxcb}Shs(bme)RrdhC_?r3de8#Rd{#&{}cYBxSi-SBrO-wwwfza7fo z_)hq1i_Xso`y47qZV7u(VN!GV{%_m6`93H+c9NSb7{w`AxuDX5=H_&4}#Jk3TdY#L0 za<}rzugYS{Q`Uc14|(3cUHe;Vhlf~Zc&M!&9cs+g)FIwKIwU$qhWe(Fp~1XP^5myN zlZ~y7x5kH-566b)A)gMZA%7lPcZ>}cFZs?G+&^(x{!vff@tn%9+N1rg5bn_*p!16F za@}`2?K>emBR}NO?LBAEobX*!zBAcW?YkcLT_5_+^weSB=B?+9o9RcP7D+Uq9?|}a zN1pKn1IYWbHVh+Bgi)v&SrBT+8)KML5b97rtso@4zvRM#(C~Ue7~`ICD8@ug##Btl zOti07|GcICVcU11o2{S0pq-G?{}^tMDVlrKKWN>e{@J1aA=@_aYswE5K|N$s!ffHq zMfy^HNLA;DQhL{gd~Ha6m`7iLT!*lmJY$w;VG+NohxuU%xeT$x`C%2g2Gu?J>aTqD zm%6K_FjW5Pg^+w`T%+GShrUq)k^SHEh37)=m&`?c{WPiTp+Vl-M?2GKxS8}|L+!t z+Wx{2e^?mmHn0n~unTvv7sv+g6@GgJ$8Z9t5JMbEv_EA3_OnsRuGiV$$Sh=kZ(@I= zaWwmPJo}eyxxoIt!nVE6{w3SEt9BHIX5pmKi7aBmtHv36-TQ3VOU40e^1?aphOy$t z?oE*Or`f%Wy|3lo7h0CS7|y#V<+*8Gq*s2RACu2MU2S~8xeeX3#BYxH(R21?)GTNJ zul9_??Bs+nQ^L-82HC)USr}Jw4L5KTw{Zve@bUPs^4x{)x4dIy^#yZR^#86%f3@@r ztL3Eh(^K^Haq0K|tHu|F2f}%T+fi8|VW*;{$f}`uEH9u#X7707ZK(HMLey5;|j{Ga_$``a@# zl(|-pO6&xVmBP=rxP_iO(#jvm=0ov8RAKNNH4PWtW{c@*8K zDbT);e`;gaO?zrnCrY&Mv$XG1hJ~2tl&kM|-BLGUj4&pm@@3_!(fggm{ynR$zF?f2 z?A9;HkXh~=*|?JZi)LZ9pmh%WcM|&-ZJt|od{~$)ys4OunTTby|Cmj$b3Kl^^inkR zh+Drt2DpUs%Dt3fV3C9Xs?xc4^)Byp zAODv7)*5~L>G(i;wf-Q#Lr5+6?H8(-aD@99vL))J3BLUtd0>{c1N=^*LLHgi`ErQS zdtUZTvNuS>^V36;-i)ZdNt2z(;tbB=JgT&*7s=}PtzjguB6cY+TqAFw?yNG5M2E7G zQbzQrqcO(X4F#cQrMAD&b=M->KC(d?3S8%x{r329)9-KN4hGkCN8`;$&98EI^vHu# z*dAo(hsrh?^#P)~C8}eZ7PCRn!ZvB1rtP1k4=_jDKT;onUZcF$if0^kw>-OF97Zea zU?fTgr!@XzsclllS4DS_#_Wwimzc%4x``@=|ov&;z zX8)6IzD4Cv$6McF4pvxw|JfOJWHBa2?q3WG72kO|^!$S|!rj|wJc^9$gXxj`%ktD% zb_#tq=3@6ppVPK_hWmL&4(H9{1p17SBN3z>}RW`OilD0*zEx|IxMi+-_ zhb^t3*A`gb$pm+jY#9AYIN+W`ID%t1fm4Vfj`l+H|6|SnPcZ+FZgx#% z+hh&Y#unY-cx`O2Dyh6~`&zp-{-2|Uqj`ml=HtF5^m6MqJ2j+{=~*Z7rK#= z_UwJ>N8@q%Z@%#-d9HBFCM5-xz`N)=f_4 zHx<)S^`X2>RzGHc(`VD?q7?Bf%BT9Ee)Q8iVsQMAd*>V8JEHtI&wYzf5%TqI^vUU! zKi8l6Dtny10;{kFYq1VB3FSYd{HLPuz5mhP|9J18jLLsB|FPbE8?hN%u^nY7N4tAF zrYU2Sl>ZA)%T(sN@1}g^l(WVi-v4s%f3^2dwl4PmOT7PC-oM}Ve7ZQAo7vg>#p1A! zJb*(uf@3&=Q^-sX1)UBk6`6SQCb1>qj|13bbL z#8zv+FhH+csx8@OEPtUqgTeM|q4w)_?H5_&dhJU02)_>XNFa#@jPRQxjKUZ^9e=lf zsY(BayL~acb-8wawRWED=FVv2v)cCDCU)ytcIyRpEZK6M-Abmo(`4H=ejh#;iiI-~ z6+idg{;~xH#`3S>ShzumsDn0;{kF?FZ#QZDFT= zT^G7HsoRl74vqKaKQup-|K!Wov+`e)G@=bHx9lkq&N{5eMx=WRq`x3+rgtgFo!Cm> zj@%aIcZl*kT=|`l7s~imSuapdRw5?f>?04LI>D~rq+H<;clNXT?en$mGnC^umE*yw?R*!e=plIaW^ zV3&2t^e%QmC(hB&BS+67gKpHkuKbHfT)d*SGW83^YlpsvbT)KE{g1+M(eEzfDk{G7 zLbyiWz)iF(&mGEjC!)1}-O77rwD&*K`$yw@#y`=lu4_RnJ%zOU+O{bFf5rCy2|KLa zIKVfQFJa!nJv_i8Ji!3+7KNQ3Nq^rr@H=ILJ8FBQI}UTT{FD7#%cf+XCfKJ*vVrYAOgLjO4#k*=$(V}iXy0P~ zeTVsXvdeh_-Dla?7ueTiuAluc%qF&UGg@}Df7!h$c6u6ZXkq`(6wYkSMJdwL+=F@a zu1&@kHWY;g^hL-W7WPW>-%HJZvxArLtKwcpu0V`^yoy|dYI=MMyMC6leYw{m>3I#8 zUJUh4v|B<9O;FI?AdcWU@&B*?xGC_X4{$`i&kM7;R|9;I<6y-t~r;{^Q_8s3n$ZPK_&TFDr{zTdnU z;$#xdNTU;3oWVJq$3%^SqGvKWiH>0!0{wF&Kxa{VgUZVlsL^vKEo-`Jz5B*|L0Sm`TpYT$Ca` zUirs7de?B}f6mabfW8PHum5|juQXEm-=+L3Gx6iff0MFtMH#uSY>*8X)K3@e4;e0f z#>1ER{W7dV_PYgP4cYG7cA)bu-v-^@X$Dz(PJPg*Z_%`0`QNSlZ}9zH`*{7Idn!NU z{XDM@7S=kf$3|>MRL-OH_t?z0mAlvb-cFXG9F?eAZVr_^fI~Qf!S$Qt&7acihD+NV zdyVL)@bUV;$G-na<^L`1527}@4)yc|lE<}Ehlhm~QFw?WiDsnHi7eXLu^o@~1@^Ol zcWV>6*HY;u6K`sN zXG#AY_wAB?)FXi;8iae(Z*Job?%@F*;Ry!NF1>^E|DN?PzQ6DL@%(?3Rt(PnXQW@) zZQ|N8T;J#~t4&ex?AyV%Il9-oTu*)z*#u55fY?D?K{?`uQDT=$n^9u{B` zmS7oHU=@0QZ;XWO`8-=Syc*Wh*I_+2Vl#Gsp(Jc2x1+Dom^E3BO6gGZxv2 zF5`pU{G+k^!F7mJ>`U^z6F7x9dcJAj-9HQsyA98u|VE(DO(2Hg_koID^V> zy%zR-+g|@KOtAi2KZD=1^@Zo@7jYS#`Wap5Mh02raMiVIxPhCvjXSu9zCW-(zWr+G zdDR*j?r8ntBk~Cbkhj>kA3Zb-BS)YJqY#_p43`<^Kk0SqusE{cDh>`$oi7fkRX%X4P?x7${*U}@2r5G7$b~{7+jb1uJ`M{jv1w)6J6-O zRLZt14O!$al!nIDrJ-p;X=t8PYOg?PXq{3TQb><24Q-?ORhNdz!kdcen29vMRH`)0 zrgz;E_R-QXmtKn8U11}GZp`CX)l(W4kc$wbFCmwq`o45smo8^Vtl(aSWUX|e9tr%Q zU{Yw2&NZ&BMS4nUSVyi$6wl5b(lx&{Y~8x<{{^!F_3TK4BeRD=Qa{BY(@XBf7$BUo7F?ZcK1~2DD!`qNFX zhM%3aR`>P%5HoN1pL&Le*}m7whx*PR8r!*UKFyx5#MzM{`Mx>BIiCtOZ$2Mt%`?Uw zhE_McFzlN#J^ande;3MxU5*1C|1SJsWFXVhsu-x zL)bHVdZ-vXHS9h(H5_}RH2j_KQ29&k*l&i0eZuJZMrn9=uQC)$!=blkhaYYG_u&Bl zzE78iBa8n-_}h-x%-Q~jaCr6HP#u4XUkzvI=g`pM{-#%rW4@{`dNrKqcM&Z+ zhK9>zwD0jMc@5D%$Q$HMbe&ZPA=9A_N*SN@O{00l+pgWgJ@kD;T^zNA#*(7_mVMtZ zecJy2u{1nzz4ztP@Pv%U{{|xWXY~6Y4h?xr!p=S3Q{{K^!!UYmrSiXYXc$4SW8=h8 zL?4BQNo+9nLqh#fU!uMj&LfO*Z5)a*5tA_$HQJims2$m_9oenj(B37;XZr&i`?c?{ zv#-&DR-_iPui4&hXrI77N9QE=`5gB76!!UO_W5}BdB5LG(l&X{Ow7hyJX?QQO7CJ% zN9zyg(H9`crq1%qq=bb<{Hort4vt)g7<~n~3f1BsUoGA}*79?&MUvjYwy(c$ei}7R z(wA}H1@~Q-J~EnHNIum5v*UK^C+*S)EI+GH_bv9+5A`#GJu1T5i1thRfA8!6_2~bh z`=I`xb}M^W|8KAMU!SjOi~j!({eQBRJEd=)MjKkR*Xx9{8C$U(=^fgC{$=#8CSlil zKD`pr+Py4y=A>tl`}kE285RzZhY-`3IYJ&oHUGhJ#fSR;+@~-&uDD6x@9xua#-7iz z0r>ZRRXY(~M>EpsL>6ao4(AcAeUJ8__PxvA+!n$`ewR`4OZ{8<`x-q(rt!4@&;I|Ob2vAl3ep138i7~|qL0@mOWQPQM7?pC!S(NK{WzPyj;v=7 zC&(ms1G)2-a|Z9e7|O{7!dr$FScNrczry}!_ji(AAF}@+v;UE$=g@ea{clY`^L)1c z>K8*RnOe;LC)2-sKr&_rVuK8NVvy z0Oe#QV)T9F0aP11h_9Be(=UcY+((c+`y#uJ{V%==vWDGX`@Z|;7=K6o6y*X*WjNaZ zd(3Z6;1pumS@_geDbE;(;%;|OhkO5N{LT2gGLl6OjmlZm!#|C`sY6k+t%FbZQZ_`bAh(fGhP?qc-)?8PvVoQj&Uf7<^$ z-~7J5dA+tOp)E~r(Z4_L{G*?Z4%xT0Q_t&Pylfx3-^|2p%tiad=!_%tA7s~lHvKN| zA6ewkc+39ZyY~N*Eo}Z)dg_urd{^xMz2KY)Va&q8C$U( zW$62@cSTlWA9_Dk6b_I*U$@?$jMnlFj<IM`=rW-YI(5 zpWaQ39!Kt^-^sg~>)sV=v^BLU^=?MJOV%gU!`kPh_PK#P;x|b&BaKdEaR%qmu1)Vi z=X>g1bic12M)rbw`Kgn^sxrocSir8WM@6^}V z=ye%m=&9$z4f;(qXup&C4TVM@d`d_AIw4n8&^53tFlWl(2vf3PiaHeA>W+NJ#Pi?X0fgbHC=|m}g9&&T!y&0ad zTRnj4Y36VEFG5uAmypX)RiGb4Cd98EgX4bcfmQq_dmnWdxTMXcrNVYK7d0wf@3&=Q-~pso}cSmk-eXjC&)B9 zk;NID!+Bi9Wz-nQuSFbns7C@xG@wzv(WK63CR@}Wt@LN>kJ{8N?QHyxS^C~3(O8oH z#}NGwbw#uXIHxXX(LP@FoNKs&n@CSk5A(11>iE#5d`Ej5?(n~doU)zemqB-vbHoGm;XMA|z{zrI%0pu-{esgof$X@Sq1X+Yp7=v*r#zag;pMHMD zN9O;(E01vZe$|*KITN!n7tx$)DLD@dun5uKiE92!=+E|VFQaE`UJn1?{o6G&>_0~w zb*Nu$UV6Sc@x|t;$=l*xe!-dk(cyLd&e0dnDh#gw`Gfa+wm5W{&+a6vK+Bp=2OXis6HrN8R^2?95(+xMfwq6 z?!FEDxA5N~{bYmr`y+mH3@303F~pHXGul6t{)gh&Fa2cqU2*f=EOKZZFa5WqpMMM4 z>b?}2=58ZfuG59ni7d|G+4%_-UstD05Vmw?KWpyRwH$YLj%Up9Eb>|Yt2%5gg8WyV zDh}t|cM&oAR^RV3y-r%<;*;1WjhmjPElCcJ;~1ZB*`*w~FGXG>Zy-(op82Mm^e%a- z^R9e?CO$oK)>zU9aIP-`+a=?ZQ(uc-e3*EA72R%=sm9%hrZufL-5U4!Xxe{ z7(m|t>Rh7&eNg47j*KHws9#Dp%+gOq#diwAF!zl>5k_GQ#-SJ;AIgJ0%JySroXl`{ zlR0%kmTa10{m&$Q?-G6R3CgwpZ>zp<+xu*kk@g)5V=|_qYPbFcSxv?;lRg)vhzqyw zminh({Uh8Y8m_R{7iw#kYqL?MPRRZw-*}9E0p|H#IW2PUkcU9 ziTCWK|=3apCU-}8S2>dBsulo9UUmy5$%GP3{IMefh5zoc#VH*bga+#9hO zY4v&vTj^b?r+w4y^fE*?X?B|OfK1{3YDc93v z+csyUEMy0wbEWZlbkj36QAw$bQcJ+t>8tF#<&xg>fjxV1IL#{9WQaIPS_HvLkI! z@h$#q>Fcl_8?hN%@yY(ncJ8vs4;9+n%D)%?&l{)YK7g!o{zK#u97B)#?gZIeGc24U zD?akyb!6Y)izk^xGt%fpG^dv(&)^)+Bdv@_{qKwPt`g;Mmj8{TUq!Cp{fO2GbmJPo zolKGp}$`7h;86#4rqH~{$TpNYh zQMO~v3!%~&LY;abo>BK4R|lbCi#iB3Z0lOY+1$}QdA)h}#8UP@8c^w(k1$4f<4}x= zn2f1tzia*f!#}P6-)~O-u(|o;)-97c?#3DH|2gLWhnW9I>tnV((#8eau9$z{=J|;4 ze^EQlE7FqYvoRN?n1=;egmz;99Y>83oHYJ`ZfgoM#u>5;jX$7~ zjo-x9Z#G8JLbh_Jnv6f74blGlCBj*T6)p2zo3Rz! zQHC+zc{y3*8MTOy6%Oj@i8p*7MB@`5k1xnmEf3ijzJJPheYU>jUmc&iuiPVtO3&Db z12}{ui01c?k&!(go#_{?4>-Yn3NgfyL^E3M7lt(1i7d__y{j;!dJ4lide>6@hJ|_I zJpCdD`wiUD99TD5<2(M73-;<~(C?r@o1NrN=$k}) z0H2-1Q@+@qCf9quH7fM}g}%n~|6Pdo-#y^h_o}|gr^kdx^vbXL&$q7(4NvF;7@YqX z);}Bn<4*3@2N~}_RaPi(7=a>;!WfK0MSDSL_pUp3DC1<;aAjIuK6pMGJvYSnQ4ch! zBbvz;_qD#|`>ghTmb3pB4++J>nTW}lis_h%zAvyTeqI!!x&NNOc+vTi)(E{@6lS|t z9<`f0lzYtOE=Bei+TZ#1>(WzXda;*b{_fz2~C7%j^du3!e(lk08E_f;Y_}1v~qtw`NXvU|* z!8xA}KP-GX{NRn3!&UFGh5fuFdbYN40l5rm?eYq86}k>i~u=gvBtHv_!sjF zyPnR!SJe2wOxM?=YEnViNLG`vY1XIFw_-cWP>xFM!vP$^5gfw_oI+J?K{$0OKb(9& zKm7Df>((ZW4}U$&d1tQ0QF-{&VbArK%x{eiyRoluboiU5mqOCDW*jh=_5=Tc^8E{+ z^54uO!=X0{!;iKUI)_pl?D~~k+?z@Kvc!VbyK;HkR{@qq!|3`uS9|fU{>^A3^ zA+y}MyUr#*njf0bywF$`TCMd@Ax&>X)%g67{na1CFky{A5n?OzL-nluFp6HcTHG*( zJ`N4X?Xf`u^(f}oVmy5!ITdO3&2(}mQXNn0p04H5_;-KU^YcH3ESn<77U)(+GGxtl z>0hXAH(yq_L7&68W8$zrh(1O`hyMM3^FPWrm zGWs}V&T|{}VVbTOpFoT2t^A*@4`}0FB#b4fx}={&RzDmXR*ny6sZLi2?ax1o@@9WOzAS`_?%_aaJlL;)-XEILg4X2&^5}s2Z$SMwU{82|I3m2tdhH_{@)$k6sXwH) z^@kJmuI2rq6Q}4g&(ivM!1@&F7l*Vsw7IWkHfdxhlWwyV=xZIsQ7d9|9_qzCer)9G7u({QxTorGo8$SSvmev zL6}KTD~~DTWV7jA+UU-VIVyT7ax3KXn-Y?N?G+ z&VI|>uiq`eA}ql&tiURCJeCLVD|?HTK{E5YaD^S6J(8t24Oa%0^A_c>d5CzuuMA$Y zHi$c#pO41l)(EHf_x7)l>+nhYVLkUoY{qt!p&Wgm(|01PK4eRf&-VWvpby$7N1ZWF zkM=Ca)dxrD$1phlCS8N+Jm`!3hXGG)Q z?CUAo-$~B0^PBSb?EgFcoIjy3-p+jogX4dH^zQGnuODjLwfkLUH+N>~)3!aDmu+0l zKA*tGp2I#DZtGaKHPYAF=U40>IO^OJ;XS}3JVC6<{(%nr2k6n5e02U#-b(#2H27U~ z_CSJvbQZw~el6lvM25rg{zxVv|lr`Tftf132q@{AJc z7r()E`SU#k(f+^5elr!*F%z>f7p0ho_7DG+^dB@vaM=3C{eRm3C$7!n+CsMWOFx`qx0ou_YCgup|7P^ zeo4LhEq#+I`hSyr^Ag{Ff;@oe{LyvpS&zZ}f8mADtNrNvz`1mv(vI-&`=NPh{pZc} zo?jbNBDbRq<*39yRGrQX2gqvj5P1YK`Z4kZ>P{-(3HiQS`PMEsDErYF8vo7lKlbaX zC@jR0L^IOp#Q)#%zrp=KSHuk;@Bh(vADsW0<~@1F8Jx#OT*g&g!ws~1j~)0I{cHX0 z+%5fo{rslY`u}8$@LFdnn{)L4>21EpPTyl!wegjN{=RhpH-&i{chIM8&wkGNgZBU3 z>T|Kuj4@xMor`vrMQ{rQBx=gZC)_zP~l1}&%VCPzJAP>e#pK) z%)Vy3r_q*rF|@PmJKm80(1mVfkVOtvs|){W|Lb^r)IBq{*Zy~72-E3xN7=py?Gd2Q zMngZ__dXl=F9wE^seGc9wC0NyZ5l z8Yh_lBKwp5&wm+KU=?ChJbwcFpI#>}@eKQ)z77pNe|o-W*Bjqh&u=3(V=K0!4CScA zJ{-Uy9Kqmx_!Zy#y8SNPHLn~0TWV|ub#EG**X|y5QlhQ1l?02=7+VC_zJyIX_ zp>~_zRia&;O^l)xk6AUCMd1c3?JrE^_0Q zKRnydQOd99tMnKQWhh4__C>N?dHSL6Q)v8utnvR1#{adO z_1et@nM4Eoy>XiH|Fg#b^$-5V{yNWScdbMJq4Ry~1MuwJ{_JsM0Ehj?^#h)F2uE-X z(cZk&73cNPyCytcTX2dVLvD&Xkza=Fo+V!VsRD|Gq!y z>yT41J#y;<%p{|>W;WSt{mdR>G}T~g|!)5(W1WEPNuFKKhqy5qnD!+ zozfERW$xB~XXbcs-fIrA{r2CuegM_G^?k@_PW}ja49QLM5$ZR{S8qh+Q$GVITswsr zdMfns$lgEKw~O4~d2{4uV`P6fKBVcL=re{~@keV5e*bdFM((dX7tWC9a2^-&EFWE_ zM|+|xzhphaFJ2DUxNqPlZsQK_p~f6>ZGrvw_R-go^+W8xA8!Bs9Q*Ha)jbdJ2v0D8 zyw&PVj6nN)_TOKz|NfHw_s-t$e(e1HyUyP~>im5)PO|@gn*H~}YO&wGm7emfv}d(h zPtdaal~5#{Q5b`9NbhwIis@09ojtFFiS)_Hy(esb8GhZKGnHS}=~u#ZawcLIUJ0|w zxu~YctEDUPN+{)?ha|mWzjW40r)xFl?`si%Z2lkh^aPS6zMF6T$@RY#-^>dOgs}*F zjIUI_>-@V*`hV{$V?FxU_!sMc7c2kEeb3d(KRLMn`@a4k2G{?ZgI^-NWmth#NWW!` zz#Ha#>0Jkfy;onJz7B)yf4MWeJd0c(`THhS)&gv#S5L84g4~LjwF2A8GSrD<{Iopy zp1epl>`=#%<*rp?9}eIUj^G$h;1ptrBZ+2oA{(L4(DPe!)aLwqfA>m=_T5Kgo4XLr zi=1)Kv;BYP=;v_}m(lkbd5gS;8@L(y3FkI>2lwy*(fa>K$$v|2WAx!}N*B>9b_~it@Q0^ z7|rfNVgfsCim?~AZ!Oz5zMTF0Ci`~>+mamIC-;Un!Eee?j!F#nU-cWK^KbWY58A(M z;LgW?vj5q=nd6_Ze|y;fXhusv`fx|(g5EVr z*r?PG+hdF{XIvsX!86EiaX;mrXbd4n#t}Oy?qoBnjUzleS0K&ZiR7E?`VG>#Njk|v z`@h6}d!--s!W#VlBYFd}esc!ra2^+N8CP))?fcpP(j3igbXAK}M%*^}{utbU@4Yl# zkp3vGXnjxGkak~Nir)}(zrwkR+qi@DSoe%%^U(*-9}vF>^hd}QiW4&E#uI*3^Mx0c z4|;U=Lf-!&ZyN8dUM^kRq-(L?sIP|cPcD=$L}xD~u+u#IuJ^26yKb)ig0nZ>6P@7` zqZiRDeegX$);^z&>|^b-vXdCEeI^^Yd*1!Gq4(3q2wtLp!Pvp4oyqBUV=xZAfA8!M zvd8{{iR5JTea?NqofM|hqqDdZOP`MQHM}W54pAP5%d;yzZ@E6jM}=X!`(|P`vVSNH zbIDT7!{Gl2=r3g7Fy@E$yT;?$70=Eai~b8Wb%k9heQjhTdwFm?p1XxRI^S!7aH9X= zSVUHQ&6)b-GOWPK5A(uLM;oWH-r$t<_8CK6#eWUfVjb3F_ZKFI=q!Sb^wd$$qi?2H z{@i(sKlZ{OzX?BnYm_r8M};F7{!RGn<-ZN(um3h|71lBA**`v19{hCJZGNxf z@YwJ-BVYC(eJ_U-uARaUc8?ARj+*U%N1OXHpO`2NN!OZ@Mklg(_rCve+)xkGzr?Ww!;*>Fyn z=W!92aTV9FGwN$c{mJ)@iE`JBG`?Y6BW}$=-E!j_#tIUfjBji)zOmuOaML|^@bv#j zoH<2*fJbKcaQ5u^sWM97{*ve(Z?WX>?J$I*u`jL7#PQ|>fno^n4E}M>cudb zoQmpQ(sf+AUbl{ddnS_erAr#?mr5sUb~*nManzw62_&2RSH($ZV*1TolwuwhpuEF7 z)VJP=_F2x~EHPG~zUVqEfA5#SQ}Va=E=M+QP~PP8=K0z`?NF?5XQ^+*>!1FA#C2_SG)B2q7~4^X za{P)NUPNt~NcOFvqhq~G(?-c4IAdqEhz z6-D6)+4B$9U63bm3NciC#@aVBiDsnH_mTWYX3_G{8H42D{KNP2*#-F_ngdNq?|J@R zJH%~^v)SmEk(=Y&NN;BO)4Hf?RzX<7{~WI38e#|SDV7qkE8v)Na(-Ct+JBZnuh4d8ZE z2HsExFakvwg~9%bHZuN}b`15}v%&sJ)Q%fNXuS2O^@n8iKLD*C8aqIGrS*r#C)(Nh z9q2?CqO}JZafsF)MDr6>r;UMl&NvifB4WlLsxLYJhh8__vps(*eL5Pnxk)5YuZ{lX z`DZg-&;EqXj@k6NsI(`3&o8Xsr_aLzEW#2jLyh*jc7ta~&%ZYQu);m7um)?f4(qWI zo6){p|8uqeC)xEL`}ckJFS7L9Y4&du`=f*Xv6uaU)=kC+klv#Ixq+WK`mMs*jxv-Z zt^G}*lKw3J?4ut*RHn0t+OTe9*+kKribJj)K}=acMxH=5Jw8LZlIKowSA3w~pgct9 z>er7|4w3zydfl~W|K}O)NloalC#UIOkb~`AzxrBQs`OQoQMhCb&GgD|dcR*&SI|3= zMX&L?Gi1-tjNg!b-%u9Fi@1!dxP}|JiQey<*CKmf%@23Tdw76HsQ8TWb#efCYvoV$ zedoC_f-FMIG<}pWmxNLDaVSQbUkVfHUGFJ>%Kc>eROGm`+!?a_l5xf8{GXp&+hhM< zbpFrB>zOV&tKa=IF&o*Ry&C3{rRaOvT!DF+dGx{b=a+;9^p;KfFl1`1?>pRH5c)E# zK<5zo1Kr3Vi)ejP&F<1rn<`btOVy91>c`TMAd{y{LqmUQSmn2CuommE9viV4ThYGs zHSOPP+P~Mdf3KcZYEIN`Hsv;D|7e;RH@0hB%UFM*ADe zA3D*6Ze)-}4viP2|BCb@I_seIr1aNHzjx7wD(^cjoK9qM2C?C#&R;AI=je4K#f|$s z{URDRh?{sOHi_$y(r}sIRb0aj+{A6%!99FDUR@Bv1MaMTZUvsu2k_74zm&Q9S<0U> zm?Rsx^ZrkH9wShMQ5b`9C`S8-`rGK-tAC4becueS^c)(O8-H7^tdcDsntOk&KaMoL zt%u)ghm#{hyT4PL~iRiz>vdEx&mvjHaOQCA4wFa)u zMNHVG(Te+*Pfm~xIzBgVQel~=ke>3s~ zncz;64Lh74P@g||hVUWJI)Y<3fm4W~Mtfe1_!R9AqB-U0Y}vv2f9`eei6e<-q|u2i z&S22~J;?sW$M&yw{#pC}@%g`Z*}DDgUov%F|KQ4>>|gf!IpLhgMO;R@!#z#b%+tH{ zB|34H{z!h!jb#&w*P#6`o>954x~1NHU7r*&&$!{z@chBIKGDC}CjHzExGkJJxQ7RLgeMq4-nXRxP33=s@=tc{Q2xmbca|KS ze;UjFNAoV}M=MfDqYcr22M!a?2ozxy(vRJ9-O1A4<{Mi8{>Yo{QuV=|a?ZNnr5*Z!T%4Q8(>hmj6<}nTP1?gGJ;L zEW-+{!apnjyOqh~%H}R*6uH!YyZrCmVEmz4`AMk1m)k!p%v6*50c+_M<{{RRox<%p zEd2e#pCNqY5S9J)uJ8WtTVW%)8L@uz5ZFqudtV)J$y`CS|K0p>!wz*DqCLj-r|oBS zPZ`QliM~c-6Th&ghkgLPZyVcSi}bYHhvPi9L;Q~57*606VyLi>Ap7;gFgQLoOL|Jo z(eh8C8H4}-_YLC!^eoQc9M0n+F5@b$;RbG^kG)?}Uugf2e8}Cae{hGqhX;6sXwCN% zasYX6s;d#5EgYROH-bJm|2V;(0QxB89_kw+Gf7^Zrv0C0efcbN+$En_|G(S3A{siZ z(--a-zZ-{Q>>R6{A(~s5$lbou{5}Tf*|)Jt-(s60JJviq8mq1UueJVPSS?M~|8HX3 zB08VH4b|q>v(|o36;_PBJei!1s)RXzGWsuq=syV>5^QoT5TDun>-fbZ`?>MwFO9`0ZaU58CGBw z)?h8xVLjTtr;h#XF|zA8`=6eP(v)KVZ;R|d=|?kK&PxAjdkc_88>$``g^j}5jIG#? z*huRS#ukM#dbB4aj&gb>8VbY>3HL;27!KyQ(Z0uc~Ph@`=X%?BDs?|HayRvURogpGk!D^^Aj0`x-T4LX>0z%`{KTBbubpemo&6|3j3WD<4`IyUb>l8%@3-vh(B|*? zwspwdEg5|oGL>N8SL^fBr(!xfU)MgMTiMJk_HD@AW8?p>&Bk1mVjdP?5&Aw5kMHD% zo?pv{+`TV5=aO83Rak?n8OA`!ia)mwm|Tz86#IWC{v-O2*E-bG6NuKBMQ8O6^PBPuPuB`WYX-J*m!b00PuB;uUo!svzBZ~y`;YE} z+NR^$sKeI3?X~`Gq4p2|?EiP~YyZ%O#vb-NnuoLB(K?p>jx@augXaqrvfuf2p_^X@ z&(8NP7ndWxZ6&!62XH9z!!gv{w|;>=A7|&+T{rLl-Y51ip7hKq<{8{~3NgfyUakF| zpbtRrnlEi=j{K3!NEJE$AtoI>u)NIv#nQI7;_ z{I<5q+}uLz59EpZ)xHgxlt&uKtA6vz^#RwoZ{Q}fUmFtIcbWg*Z~l9?`R}9b|Gnz= zj5z9;(6oI9R% z4;8LIAk(*$Pj$m1`rx^luiH;UA3&1cuu%D0s(c~u|MGs6g<<3f#7>%5AV(ouA5>fG z42F~TK8kN#yc5^$fkeZ7eYJk+_}t53jC;qS7!xrWQ!yPKJB&dhI(xel(b?PG$kC(! zI%_)Y9e5`#i@gJSYPENOHg4yAg_**bjkzerJS@N>EWs!3r)Au$um*en;GMlaUcVqe zWPkax|L++V*79G6_1K8b*oy5aLpdt3579Y@2gpM>f@6`Nxrh_wDa0bTFymyjKQKu~ z=l?ZFZuNRPa(`=B*g5h~?eP?8?Dr1%KU-gtrJq5?cgD*f>Yt+KgmH{&RHJ|j3MfVe1yoSX z4cx#D+`u(sm=5Eb8WM;hffyPX&+g2g*?WHOJ-_z^6won>(E$}yP(c}{puh=CK>;05 znB33W80w_w-v05`^So=n@7nKr-*^3Zp7o2~G1$0(VK0Q6j&CFHxJP)`D1G?C8?G52 zaLf1rve|fm7BYLo_<%9S2cYdm;|q)%=$IoOvTKCv#u)=3jvjH{73Y0i_w79-2QcVc z+CdnKYU2`WP#6c${RjIC9DX5GE+`Jeoi`GrF&0T-RVb#{N_*<%;xK_e3H8D=j?=>H zJfn}-zmxqw71L4P;u)joSBWs&afPuOZ<*6o-eoOt$8(Wyk^graf3#ozM=Y!B)JJJ# z==CSf4|m>tEW~0g#WJkGDiqeAKQ8~H6J7Yd_5Z!^Ml`+1*N2ul+J+N-KT{r$KkZz{ zKZP~oT8pRa^IztlLYz0hUie0AM!9b>w?+Qnpzq3YN?jAzm@1{0p|Ef0PVI<;+7YM_ zR_Xj*$n^{f>48^401t$9bGUeE2%YU^4%0 zHZ6G-*U|qe{=cH)aFc!;cX1yNF@Qm@`~EQ$+vg}BhG-vtV2r%u$_M%}wabo9`=jvF z59PmCH-yH-8=+~)8=-mpw$PIJUdWF6UYIGKBu2U>|9S14XW7s1*k94{SQKLdCgG^^ z)ZEZexh;hE;~sXS%$dITZ1{)7Cqwmk>rI~gBp>>BL+z07@>zX1q{nRvnJwSphxtyZ zzNYn_qqQxulbI}aA|Z4`wS^i}8? zrR_0G8)TZc$d010Mp)&XqOg`+kK}`*u#w!1DthXCk#*y^|xnQg{RF47J;X`bCC z;}2hdyl-A=i}uMy?SgyS1=3VlfAE^}{R8h0(cUU^eZ_b5Co4yG(f6QjoAeKs{$bKj zc8!yMGL8}GAsY^Be{E84IIo#(S)^^VT>6(t{{mrmimcHoKjILMAh*pNJshKVHk#Y_ zn)#OW6nYNwZS6P5@2I(cHQtl3%4|_+B6CR2az2?y6+Jc1d%ZU}oN#;!nX}&OW$*cx z_Z;7SyFNJWfZ7k_Q8KMesKb->KTf;m49?*KF5wEU;yMcB|JnG__gGl}*MqJ^CEt+`fvxQ;HmlpR)fOUtyoV%sxd6J-dK?x`BO)wjJzSbf6Pm z=tdqrxbGRw75_ZUM}^~sX)#8cd~7#cm|_FVf^bd z*Cd5i?Kl3OUfaw5H3okbeGTewxK>#Dp1819So2Qf|G%Ytdfq#wuNSrv*}ZK4-NyeL z>%ZCYR^+GgOW?`)|7v!0Vf}+w-QO$XTrTdH{RiqdvB6zah6?P$9_+&b975Ys&j%gD zJm0~d?>Nsl;rXI4|9hC{`+?_s(epj;`8ImK$klkhuB$vgJRA|vF(i?SQdpI9GxS>5 zr{eYW9O6C2y&2O9_v*I}VR@XuDHPfxGkj0V{nL)m;2g?*GkH{eQ9I;+hHy#P6;vPB z20ttBp;o)Tu>aKzJ~H{Dp1kUu>$r*AxQqLEhyk?uw%g^unD;u-wfC`YUf6$=-oVap zT*CfeF0YY=^||gm&U>w7XQOLtqjp}#&P{3_6M21W^A*tN^OowPsM}qiTeH1F~%VN8g`su)jzf z?OkJ?g_of3pX@6{#_|92$%R;qrC5fFZ)&$#zkdZit_8A+%x;taHkn&RUyJqV(AMrm z*8|_jS?>Zp*yy)P`EWD270GVETvz(++v#*>E5p|K-qdh&+P4GNk{D!@@Co66IfVTxWdBEcF8l{^=U^gSzwS{`5z! zpL0X~f{qW=FDKP6m(?%F)i3CoW8Xb-ecV1xInJO77knSp>WdnrUgd{I-D~PMJQ;^p zomT&4+2`HrKeEno`m*u-+AH~JNOsSq@HbF&A*`j&8`$L;`o5(8EkX$oWliNLc#u@sLe%xV*g*IUq@_H ze*mO<|QAjCCOIBHI7=$%m*~`EU0Bfa5{m_G})p|9d~O|LU0uRzZ%?{J3vy+r;-yg~ce?QTjLwc<=rm}qb z^sT6WplrG)Z||4Kk^h-JM1_~30v|8`b~)aIeet*dCOyIYa{3V*LlP-u(1aX1kjDwc zeE`aT{YHrP_9@4GU;LwRnmmJZxPa!@&9f!1;3}>ow~~z|{3g9H|6;sxWAwXtI{(Le zkN)@j!X9D(u^bq*&UZs5)5?gizY!|7yKnc9y5;-0=KJXNecWIlDm&^i)cL*agz};{ zL*M7LAO7)~Fg%8Ru_%lr``g|^+Lp?!a;Hcn~itSaTx zDpfv}DxXS~Po<$@b!li^R~nkOl!oRFrJ?1uQoi-lkaJ#Zwlq{PDGfC%OO4?u4YjC4 z8X44Mg8w-nZIdGOXD}I4F&)+7tU(I3sN4Id@BdBy_c!_9-wZRIGaDtCi+Pxjg;c`QP8(MjVvq86Wx+dC>eH6RL|HVC+;xkTq9vhvP zH%7f``M;%Wv#_nmyzIH4@SL1mO|MzxJbLXm;huNe^Ugf*e(xyv<*B#6q)u>c87i;~ zd$13`xBd(};opt_+0Xtz%>E~v7qI`A_%@fTpUAlWO!MV!;edD!;Ruc)cWYb7B1!Lj zjelT~_5nSE!upqcwSN!t54@~REv)k3wvZz`kgVAj^5h9r(Nm+eE5_OX*70d%&THFW z*3KBLtxuj2b`BSC2~Wpo&I;j*5fsPgS|kZudo|9ml!Jv7U|l?@n^wWK6|$ z%*1Szplz7`-x2(7csjrOyz4Hj-^m8$KqH#Ac-9*{|JOW!?G8Tz|?zx3WuDHr|`|5VDJcr&bxVP7i^ z>&d>)m4@q{;Zk}nTQP;gxHht0y%_h3sZeIV^?Bv=PV4PBuZrAEZbgzF_wOmCm!Sf? z@MQm3K=vZ zhqfE)e{?)h|D%iEjr?-;zxw@Y`zFEG9jARGZCSQ)-0QIQqVa!?%Eyn{A06UM))@bH zR2=l$N7^PhK`(#bH}QeC$#HEIvhKWde&HQT$0@&`My^JCf;@+~4q;(li1NR%{@1g< z3woS47U$k|<7xU|lYX{&oi;-pmypTI|26u5^Z{KE*CkxRRb0nS+{S-6{^+9b@2Kw& z&1gYkjq$y{KUA{E?~3O>9%2AVwt1C4ph5qq^skmT~TA$r~!Du1yR z(52n-w0}dpXR+V=zMBY3$>={@My|jrtif8W$3|?%R>ZZ;OUW`+FOdIZ`G(pWY2uHF zdlYBr^(eRge}(gQVGs7<01hGl-C?0^o%}yo9#sxJwf`LF9rut87xjOl$$8DIJ^yW< zKbb@866^mPi`Dy=Z2p$$1N_9}@qa_uZ_2+T{^J-@$e;>bO|-+iUeouEC+qVy4;db= z`=6V*jl0OrU?UIaTcCGtaxEUx2hg*G?*ZMbACI*k^d0rj0{aw_Ly_DtJPapCqUvS$ zJ$vd#o!2~Nc$grbNtleO$h|E6 z(m0*osSN0FJd-{fJ&yD8a5vf2Xk4+d%Gb>wC+8tKczBpkE<}}drX1Hw!(zuvk-6sG zJFdH@9ZCM%{CjpZe^%XLZEG@v`mA=lYgS+t)?h8xV@-gw>4 z1pDH3>+1+Rgq|VZv#_WAm#eL@Bm5YWNFgUIyGa`9P4O5VsC--AA*&9W|3p7QFV`=6 zicIZPKHO41JcxNn`9QC~W?Zq~&LIEigG2e(28VO>3%GoK8HM$k|9Ws3N*|7q7>)inhKK%Y-_IuBqT^yrz$E0R`Nl>i z!en~qINuL_Dt$V7dfA4Ll%eRteg8F6_-vG*!tq>k9_FKZxB6NAmO89{x~6`5q<%W9 zenLGO8u<^}`43)YOQYpA_Vp|5YsCF^pYH!NOZ|+({y#6OH^-=-5!e4;=zkVtDV8C* z!TL8#>?=pF)eeYr6IapmKlM$jmowdu`|#_??TfU#U-SL=4x82YJ2^nI+x-6~;~`vA z5uR5*dInSc|3v>kNBe-xBl_~I_evj9s70N$q>)jN*JG_X)?*_!fzy?_KjgTy=>Oj@HaT%_d}@IusOVSaC0ahvNh~nw>cc*fBA`e<%r*oA&Fk|RNs3| z|JovG^B+0e|faIVb6pg;oWUR!~PlnDb(y99jbSZ4z-C-DXT|^^oEh4 zE;};Rw@(e3#23QRZStCHD~}e3V>S9^8^?zC@4XQI;o6^uB)$9>Z1k@^ADWz#LkIFW zfm3KSFRbC>)X=PtvFXO-ki9o4v?M+k%D*!%oc4QRelHs?`mkd9&j>q*x7zeweq~&^ zM8AToxQ?5+jk~yyhZw-1jq)q{wwsSk_WsnEJF?%{!I9)>j72dfU=k){D&qcr)5$*m z|C#Zak9KxEuG9ac9T0uv@&5Xs*LN&@F7jDq|lZ&J|OFV^zC<&U5>k#7$306|18kIDUL=op&2bz z#uwBWU!d>5b-(`q7p0c@Ro1`B( z=QJNI4jp73Ipx3!@)WX-!e3P`;I!j2$j{L(P=<8P@(z?E)vpwXnmEP+@xSV}iTj}Y zc-w#N(EhIr;hgI(;1aIjDz4)u+S1w|+7un@{0~{!f11oY?jajK(EdkLjc=t&`?Fi! za8&yPt^181di{C*7te=|c(F-o<@9!~h2UU-AluVmL-3+W3`=#)Z-Jsx9L}a{r(( zmR^hrcsf7-j{5hJGU1;3*S9~}Z@s@!zma`!Bno?R?ARo~Y%{h;SYiEv_lv?z`fQY7 zF6N>C9et0lYX2j(T>Y*btJ@-eWV*$l)%N)5;4t603$YmauA;D%T!s~Bo8tLDUPFU~bs zi}l!u&De@k+=%V|-`G##Yrb2@&HI&8hDcC&O{v7tB>o*H2Z)1+r|c>?4bHz{n_N4 zC;bOGdI$1RE>Qn!6a3-)zv`FOzY8AM@&9i9fz{816Rtgl(>Q~3xPVKzg0|P#|LAyK z{OH=Een)=wE-v@nHoAJk>neZxtNFf$j$QoOtX#;z4I0I2Nu(pqUW$SGP==)oo|@Kq^?=! zw-rckoG8YXASQ^8W_;AFb&7dF-##*Z)1f`!4%U zi?jSQd=72w`meN$tUBFhto%5G~zq# zT<)Eb-P!|rGLApq?E0#0=1XrH7OvCBI=2`TP`S>0@crh4A2uJHtbft?eBqOka$LLH zn1gH9>2o|CGcg-EVcC1bLkYd}DEs{)`;HZ5tq#rH4>VM?Ws(z|W z8=E1X44RNb^1Su;*%2M|+DCrB=R2gIK>b8{1L@1Y4QyX7|0)B^R6qx`Q_&CoFNPQZ}I7M3GYV!qP~7q@3j8cetmqX9v=DK)p z;x@|lf8HhU<00~27#s%3L7U|<^nF$Pp6va+xdCLQJT;OWjjg8I%cB;bJ1^ahI!=tsGENf#~duA z7v}#zJ2)(+=Y&Nc(^7ipEq%jSMqhy*&n2(C?dAvQA`A5o`?9d_YPWiwom$vmhpZp- zi7?YOtFQ)Zu^t<-8C%iD&Td!Vb_`Sh4p#q;Q~#2A^vvLYSI0J@iA~<@+!pp?*7&y^ zT2VPg|ABbQP=Q@Y3XA*N?V-m#hf>%_KY;rE?Ef0}KR-Yn`SJ4Mkl&Bs7|Ory8~ZE$ zar6`_ex)A%n(vCQ~3xPVKzf~&ZWe*H{0$=hhYWo;hv zJ|1EKao>Y%uXT9-Z_j_XJ^(yJABvur_3Vz}!^qWlZuFa~fez3q|wFV3g)OX!95r_?Ql^@oP=KcGooZ$7F1*DlSHagV50 zvf`&-331)^VsTX((>H;vN*nKIjNT;rWaK|@jy@klE#fzu9_Je->xZdZUp79#Inxo_ zoHNPhqsGsWCCI-b?=FxpH_7*82j5%gI{tpY&BJ^w#3^}fF}W1WumY=4t)8k`^0D^0 zx+^VDXBw3c{D=+8ipIy71n8NrZ=XNSz3i}U}dBpvPBQF0o-{rfB zaKLe&@%@L$BdGX>=l+*-!ZCUhDU_Gn^PFr#4*mKD^56bS=vB{mIPUvv$K(l|!f7<0 zHD;JRhYPrb++Ock-F}7M+3nlFRr+=GY!U~a>>pX(Jtx$dPn;T465?F*x@jdLy{IH) zP`|*ud)It?e9ukCw{aKu(PmzI`{k0*L3Y0Sl5hGY{(bZ7={+yMr2ozQWi*Mq87+6r zUq;US_SRe4j(hECE}jbI>03WD=8~Q~TVnn1k}&9dvHo#yc!oX{^)uWX;u-~Y7%r^& z@JnGNIU2dDm%>=G7}@koq2u+JLZ@{GCODpiynE}h7C_fJ_qqC|Fj?4COvg<0ebYJ% zWN(-gO341-&IxnLd6vi(iYWZuMd`{*a_mB-)_OCdbcCdfZvO)et4y}mu|Bi^~ z7?Ozl0OgjjKV}%;=UeF1Chyqb{`{6foKqb4)_AghO_Q)V|1U>&ASrL=$rGrG*NLZg z4j;bb)5zRWZlKP2X;jxpKT_?^LmfSh%q;H;+m(|~%HK1tKZm@1e=d<%&~`)liw?XOqaUrX2`%ay<6AFlt{|7m-?iKj6C;hzVG>-6$(s9(tbpO=K& zWG{J_?E9iM3X~!DW0-csLo&B*P#7QwZSlQt(oah^uVx33!%^@1Rm%s6BERMcnHP3n`lS9={fUD!;_MhQON zzcJTw{@eO=$wL3P{+#*rg;2by=<<3K!H zQHnC;q%qFXub_8cQ}!O@f2Z$3&n@E@(0#-Bg?q*|2s?m7ID%tHB8C1R6om}g`_JlM zvhUaYB`>NkqCKO(E6-mQ_v!8MTcP}8f8^=O8QMRd?+JSJiKO%qoT8sbT)Qx?VNme@ zZ!*?EShMo|9C-n8UCB%26=dm!b%A_)R~=tR-m~dJVIC@3Esxa1e1clkWqtqhYhit? zH2>GHpA9!%cN=$c9}h8rL0dh4eQ)jP(C^lXr|o-s?2BtSFaKYb|Hq{X#I^j_im&{~&xZBnMr_7bl%fn3h`!D3=>M!a z%j7O$d$14rpFJCPw%9N1Q}#R4_U#L!LoYwnA;0x~!~ACZ3m%~#Lq+&xc#Dsr`S7qX z$#D`XWRPS3WwXOV6TR~RJMfM@-sm0Z8N;^LuiWjNF64z(UbKcEc?!wB!@_Cu460n0 z5>IWnJ>DE&K!#0Q&$g{|UK-W(nw9Kd)S?bg_qU^8a?KT7#dX}oZQR9uv@Njyz#`-P z(TT1N#up%u9yA>PgZ1|uXOTlInr}Q89*QTwJrM@T1IYC{NBE%sNBRe|;W3o{40`B! zbn{zup|Jn%%ihPg>|>xWvf^Kjum4AVKh7PA(J23pK3cLEy}#7oPxk$V=T26>{#=+$ zPQ`T0L~%k8TtNgYGasK>Tay{bs_`>{o^~pxZaSVAJ`xD0i)hR2| z`1_;Jh9g^shQqH94ey=(WcW$r%y4Ma%y97Rm%@*Gr-vV{n;s6Vp02O&rSR^`lJLU~ zC1Kx;{~Gpgm>qtwWp>!UUwL>~d3aR+zyIj}bM58tJ{L;qeb3wX&a*6|_x{rN`&Y_K z`RSPFef0A1@Y8m_oEkm?znA~4DCCaP|J8W>e<@O~Tf;+m_XcH>vZjZflBe$xmQ!{` zUqOemsO+-&hl&4cZUme4XUhB$FNL?pyk!32e+@gA&knn^oBnR%e-8UxcL00ZXN2#M z`Y+*~8UH!#-XZ+xe+fUlI3(nMJ|-NB=QIwpw&ru;-7Wtq>|gnx!lA*>g`a4TAMx8U zB*8rq-qTJ>(R=@bKZ%TU`N`mp{aG}ru(L{s8diEQH6iIx%nBhmlP z@NmlSH7E6{QAhy>sK1<=h`zkhYKj!+l}5AE;(*{dvIt+ z$6@=w=_lxFH#ZD2x6HpIn;+T#jh)PU8T7GFJE~5822VDjk;-r!)@m@uVjOh_mLZKO@FR57^X|0=Pwu;e-ibD}OICLe4K?YZVW|Hcj*%FRu_(p_OhRFQ1?`^H6z!i^wSN|9|9C%{M)p4@ zJ7+4UVGbD9qu|47d|FQ@I$ zsvS{TRrGt~ALolRd95f^oh%9q>9wy))9d_7^kt~eO0%#u>hv2`eAD=fPui!>Z_PXT z{>iw9c-%XD4Sg-vh~I9h4FZcv_I;sqwD(3*owIReJNRn z3UtZGF^|W*9ryhDLw{h)UhNG$8E@1;Z$uNCu}d6#unz}t2yxxOBV?aCA^)xC!!ddi z{r{vbMrP2294g;dhD>?fri*<89m0~k&0j#CUOQM?aDsjs_4Ev$`2Q+C>-qhBTsY&m zbGU#@xPpH3ey@_f)*HM|_I>vg;U;+-cX1!h%9e-Z00wRIjU(5njnS^pi5|zK#6IZZ z^pSYF{?9Aw08}orU%YEa`)w?Wk=&sFTR;BJ3Mf&p5 zjFvn4|B*v0s`cmB?DqfCQXAJaAk&UB?fySo9M<}e_1K8b*osn=p#p8LX;16tuPWBR z>6vQVb(4klU9<@s&ia2ep&2dW%yt_$K(@NBd04SJ#y5z4IDnk6EDq5-M~NFp=*Q6G zz2r9(^RX6(E|huxm9KgaOS}g@_#{35p8iDVR?$<7qziAop>6Ut^NMCjmuFiS*Dye} zyjP<>Pp#Iz-lkrEJ+`lXqo_wYUuQ;KO~|1Gd7Qv0{9%6UIxj!+$K}bM54Hc#YX71M z&GBLfy;KiRz2eKi=~~E$Wa)2K5+l&7e~G3bFk&lpKzc7>l;u z+W+!k2Vy&`tK0k6F87Q=57}^y{eO%7|A75}hy8z1-b7CRY|Zlhf5ti!;_3VR3toY?xdv;o9cP>;H{Fbjt0md{;y9m<4Zh1Q%74crk)NhrFvoYg$aji=*Z-|7Nbi;Z zQIFBC8H-{}z$8q@R7}V3uYawry-D8GwvBs)_3#1yN9$kD6vu3opz@KqFl5yY&tROr zR_ODw5UE+pC*{JEb%Qfo+@HL@*l$a*4CTfS6#P#^e1Eg}Vuh{3TC7L@m(PZco_lW&}d|0?i@6>19kr*Cs)9<3kao%w^*~JfVUsxZX#Y3|9x7M;J2W?kg zVkm}VBt~N_iqZegXTt%}6$y|IfDFO0N}13Z?Wi)Q@*>v)tnx>E{Qi5Ej>c z*hTI^?twKb$pgq9_g&V=|H_9$j*p=gQ+zxrO6J6(xFS*PIPxi=H4KJ$y{oW+bX0pZk*-`9+ zan`>lJH%1`p7Y7d9oorc)!XuaBcDCJ;C^s^D*uoA{nkM9+d~Xs&<@`{`t)NBC41|XyJWxmZzMSy1^fA${C7+LZ9M0j zd>mgj4(QALcHbKwiiJ%;{#|uG`DFb6RQhzxME`G%{Wt!9HoaLHUP9hi{?8@nAva7J zGsJoY^v+&3$r$Yc`eO8)l?QI{kt6!bbMAYR@TFLW6jj!;pvs;_hwJl_-^FyP`~%1{{I@bvVMb)_y6zm`yT8=+&?0Z z1N1{E^gp~~P8Izal1QQY@JH#Zl0Ipvlh(rghV#<*p>#T@2|08ij}thB(`Zwsx5s>j zPQ*P`yXD8H_IG?fyFaqOS1bRwc{gMnqtQw>PvOHC&pBMcCFB-qBTTgZ0KL<5=uppJ zrC&$SQE|8XkH%PsYdZ+5)F!x1-bHeh^#{m@D6Bs)N4ka?C+2uinLMn{slTS3>%8Bb;o-`Q`&pY8plC4R(Y?7z1Mr*Gd;WCyLp}80#DX4%Fydk zhcvdgTdROAT*e<4`*JG&^0$fTFUWsM9&ta_tJS}o)W6&0FS2f({GH|B@77O84tLH- zjK)|LV*(~>Ih>)c>e2p%Yyr4N=CCJ>AMIa=zadqWtHN68WF~HnEt#6wA=B9$G=h z{{K~EpY0-CQ4BtGu{xFjqmEPHPtafRNw@^^`jivx+P^zwi4PG0|A zA}_3a)9(^pTYi_Qel(D%nK+P0O&Lhkl67+i5@|ByxSq^^fltu2h4J@%0XONlaToW| zw&Qn+c61#4U7{0RZ;LzYKN^3R=t=)B(Xf0V(Rl55iKbh>OEmZXF402I(sLJomuN+0 z)$bAy#WR3Gf1~_HQdpHZhSF=tyEpL;r;kMai|$QWdWL(QHINuBtog=3Vk}vV-2Q>Y z1acCx!aEuV5}oY>iOG(qqOdQFGN5bkK%yJfx5N#KgKj^rn{OJ`hx{*f@8m39V`)o=KB%0A8&u5hZIkNRe9RK$yu~FDjjj{zH?ELO$!+PhG+f%gs zAB)09dc{}O-(NSDhQ1Z0D2w69^VL_2s|In5T%mox-}t}7@;_Ox+}P#3J=li>C^uI2 z5P1a0(8mAYjyMOf6J31z-N@5>&>&woDg&BM^7p0nKeqD+B1dnnvX6*3QplhQIdq`^ zSK=Uh^`D&}`@XGhL2lP>-k}dSj)^(rxcPzoj>(E|>G%07ed+Yva%~)3qIbTk++eF* zp5p2<-Sed=riO{3`hUJ=*K5V zqf(hRmaIB&zcq3KlJrUBWYo&EgqW7QWYw`E}Wl`w=+amj|7|$Q= zCw9VA*Tr!w)5)2bjS}>J&AI<#&C~A|sq^haBCIfv`B+bsV~zf)w`&_XWx6*EW-+{!Wyi_dTd17CieF>|3P+s zsC{u>y`?_OlRb_b)V+=3ZaU2VCJXD|sW)RC+ltC@pU|K4>%?YpZAB@PuNeP7!<+_s z?ILyDtDguJ^j#>7Kiscwds!VP{KzX05`SOyAo1SbM~TA=9wZJed6f9c@<)ju55AK) zs4O^8bvN;&m3I>FuDh4mKjU6vU+;~?4|m>A{9wti6ML86NHjK%3k_A{Li5{WLetCU z)+9a`TJDVrd;Hfv96(u(Jf?3ejx{@`-=T8wpb+<@JKAjy;z@0L=Tx%ej;YtHthxC9 zed76$*)+m9g#N_eyx5;OB93FI z=)ISCYsCFT`K+6Xox5))c5S(z_`BXaiMak;%I|v~JW70Dnext@yNTT^?3LeCuiG#m8O zpb5=rS)?BaIkYYi_DWH>DxT}OiQC9+D+*cRcj=wkBEFrXaG(AVJ^PFJAB)&d+DI4> z7Wb|jv{T+hauy#UIUH5OQ+J9&Ek-(ydl_cV7KM7$^%jLRdd>MOe^&qh=Y6yM7h|2* z&z>oa|Np|UQ0%x*`(Xmv`&(mr<<&{?od2e8h@6V)hmr6d@MwAn>9RzFQ(VN?Y-}KHY}wtL%rjS<1|^fm%nAy zb79B0=R(94X?7l(exVo8!hxKa?WeL z_gtu4=ibE=*T&mL?m<%DdzJ8g^xEBg11PjVzOC&{&mfID9B@vv`#(e;K^*^oj7%ci z%P)|X?(W!!uZ}@p-5=-WJstl);-mQw!wKm66s$q{d@-H)z+B z`2VV5;R?Mr`UZ>-xJti{`tj-wb=TAJ|HIUWe7&(gyy^GbxQn=Ve8n5`%CC#UL&pOc zR3VRGD28Js3iC4DV__Z2iQbF!w;r}nBAIpE(e1r@&TUoRGd(}WdmZIHd&k`qp9`bK zF&4#`fJvB)shEybmFMamRG;*mFMF56-|#W9qX%FFxS%^K%#MJbZ6>3>%~meFgKkttNr zccFfVviYDgdatsY+#@XZA?za$AV)t$9zpCw=uoG}b$O3DP9pEP$8lFy8-T37#{Ry= zzd+VLQvZ`r{R_*5yC#DsZd@~&jd>0dqzjJ&Yd3w(j-^n!J2^!M;!zcNNkMjkfg`WLTJa^2HLg|qsF&+Gp_tDpF!erj=C!WCS_b=<^l+(p|; z{qN{NC%Vv$JbKX3t^eD9H0{>cO|~4?w@v08x020cio<>JJj4J7{jK-D#5r?{!!z{G zm-T;dDGo#F!_nh7|C;{qMf$(Vk-{pM7l+a0SR_a2PbDWHj$ufNr*^P$1n+C_@IPh7 zNtfd~GCfNFw=~yCa|*Q|2)`&C8G8Nk;@?~UXOcK8tZnhucde~LpNju*{hwF+aUiS46o+Nx z3dCnI&of;`uRX4h`vdQtjC%~kxy5mg@fyFa#d>VSW|V)%+WurI%20t_*n@pIgd@m* z=dn#vnE$fHT$fN}{GEE{yVjWZd;ha9ge2Kp=lPO-|LVDtO~|1Gd7Qv0oJRlG%@-uk z;R5>JXGfE9{hur3Rb0nS+(z6}=q`C54>5q8u16}jep$k&Hq%p+;Pu~z5`+1 zGqi(e>HnK0|0A_q{@*G8t3T6Z2GK??tp9Y+7(@(reT6aIZxsy=Bk7~j=KZ!S<2%UC z<=)AwAJzZzcn=Em|EtvhY5D)C`k!8ypX+~Gw;2~Ij$%x}BuvIsOh^CUn*Xi+)cf_~ zFw=40*X<=imS8UCq4E{wC%F)du@p&RRm!zx^jdj5^{Rc<=&MlwqO=K1&yZH>F6^(X zZb-3(YuBkC_?ip*>(c92o44kgHCT)F_;~-%M#pW}*xxtQ^AFVX=%UB5@o|hm4|}^| zoch-}O}Es)WXmJx$X*Di7o;@E+Gg*0&pkG2<(?5@H=X6cfPx7*U0^wJYeD#?^TYS5`SlR3O zjk2GPu$b1k=V1orUosa>9*OTdh5Rq9fA8A3j>K&;d(r$?@;-9vzl!a~(|?(7?WDFO zo~*0YGfFhYji5Oe3QXuJ_GW zkCPt<`({xqti1Z!FvfyLYsrdV z#d!zzAEze|8vnP~xJ7y`dpw2B^sR_}sxhr`%wru&g_WTKyRZlQZ~%qt3*9Mn)IV?iMU_!ABb!1 z4|UCOjKpY+MKLB|5(??R_Xp|U%fEphG)QOTHR<6f;t z^jdy_xc>iidY*mpwEsWe>nwf1!sD2qtommrJbeHyOY=l|9@!Vw!NTI$gB%Luf0T2nd(t;7 z_KRvG4VI@6=l>n?AIFeF22IGJ19=qI|C!^N-tug(dB%@CYclV+hisUl{WpVs=bUD; z#qr12|Jg1)j`@rGpZ42pprXP2g@5Ar6n8)0KwUQSlen5ms&%(bIVw-xSc+wcK8(2k-wJx?LG|x`>krb`phvx$f1v)oqy8n= z3ai{?3_ zGQNv?a=S4aJ3jP%oYcPlrtj)|{FLH(tIoHgZ>r6Bj`oYvZ=6RQ>(RB>*beE=@0b3! zrGJ6%Z;9`3x$lpBJpYuR=#KUO(Y$F;*dxAuIDkXQW#yCA=H=2m_dfO^9iu1FGef>o zPIT|!Ln2ec;vSS4vfQ|r#M3G(HTg$7jf)$O+40IKA^l`ER0rI{IkzjB|hJ9`FAA*7v2E{C;fz2Ib;c?DOoLVobm! zlz+io`k$JoPM?bYH~veQPR@+_XV?Q|2`au-B7eOU=F;b3KKkD^cAkvo#bPp!4O~i= z-FV5GOD~1(cU}sW=8Atm@wsqcnwI%(1q%Dm3tvUAHGe#{x+JWjuSNax6783gkT#dA z&TmInemVU8rZ0#0j(;f}&dv&ls%C_rY%=$2%NN7J4b#Gb@l(Q&c1{cLuKPmRzxoU2 z%YHumuxd*9!J^NFz4XRmpAHR!KOLIQOKMv3X}*!qgqG}Q!g~L;5u33Ur6|L(vtKbz zD-nLWX_o%4uY{u?$Opn>AIvd%zG_^N^&yMGKRozkNa_o#Njw{>*XjTIP(KFJXFv70 z|LgpSkh%CN>o!abe=}ub*d>lVs5t(G@YaYap?utnVdtn9!>$*ngujdT?Y9H*oN-?a z-BdiZFtR!sLR^5TJ!PXh{e|dfNy$y51 zC3@dity}PAeb@A>=>N@2;W~K}6+dPNo6p@WZRMXV3b%#b#eL+4%rX8As*cYI!yS)Al0KRoi`qGJ_;Tii^prWF4)vp~ zm4V#r`n&x;0a^MaviVi(0+Le^_Y&$s*KutFbUe^jz;wUOMD-Nw4;gPzSbr$3T*?}M z(9KUo)?eh`P!>Gt-%sFG1>nHzbCm2D-ib|Uq$x5As>?czbXl9$@SQX&8TGS zY$dBU*$;&*Ly}%W?n3P~Wiis1wXg7`|G%1@S);CtW9)0^sFx|Zp9vvC;vcQ9M`7W?;}y0!Ns`~R}A8g}ZG z$Ip2CIOV-KbHd{o`3$}D197Woo9N}n7ZmJ&b$0hG^{=`$?j2q!-V5=&b58Q0^T|A_ zZb(w9>)dl;1zjSU>|GMuQzo%SR82?X?^>ShUU7Bq!o>MrDGdPC} zxP&WcQb-o%dNSp==k)hXPtZRxf0h2Km(~)n}-%PgMVsG!1uXe~+h22 z-W3{N(*{SA^P08CTOP5;$sAhG%U|l{9fD$PRJ^4 z>ZJT!LEnWvNXe_U_`~%P`hISW@=sa6&ssfkp5FEi(t}u@?sHwm&-ewtJ}exfA3?u+ z?hoeT(vwIbgC^wAfjmy2|NXfB<1lNVTmQjv->0l2OP;|wTtM?Z{Y~T*T*YEh?ZKCQtHPh!zjHpae|NBdce8(YvVXI~!vWXa$3qO@c zav1w}$nY?dUOR&QORtFYUyQ-3-{RgjxW@$hSNLe>j72e;v(JSIWY#_8+`}aIJIV26 zbQtU3i7tKnPw&q?R=>^$MM|8th;s_k$epo<$eE zTl(_S_1OO>{dc4v%_rIa$E6=Rw4(BXK40-H#!@Upa)k7cF_wZ}JHx$U6@3lr2fH_< zol`e)`0v$EYyG|+8&R&!mq*1{jZ3p8`c`43C_@EyVGpWz%m4f3f7GhK>XZkuj)-GK z>mS*x*Et7p2uIKpJ{^vcNus|0g4!Cgji&<#Kf-^7L4ybf`B^&`+VTujfJecd!2&Upy;7wtDzhGMx>5J$8+x`K2{Ly27fBsYEm-{{c`J!-_ zypM;7Yj6&bgZ6rsztj%0XTdY{q3AOQW;ogV%jd#Kvj5Y@D3D`Oj0u>8$(V}in2Fga z!CcJ4d_@1>&Z3dV==nw*$29^9>&K`kWBIaJSo1V~ezN=*=Jb)PkbBYdV|%Tk$2Cdf z8W3yg>rq($OB%b6%l~Bc4dbtndSLt&>gZ`?)D88xE}ctVrw=H^{nIwmH)AVG(WVY= zzo?GtRsW-Fue#~5I!gT-_xfpgRsDyiEiv`MU83 zD+h;t^jLSNaDaXYg?)*{o8F-gBaa9>hGu>8Nis{O$P9AVJ`py%|0a58w>bz$jSVn% zuZw@7hs>ioq5hxfKgO#kQHS&t^}n#V&T-DQANOx`IL_lllwV|jdq(Xj?2q_?^m`WF z$kTh!Ag;z~(mzA`he-bz=|_&HUA;{a^I{ z`FHAk18HP@L$R;uzH1(00E700?e9c8mmG@WXuGBTE01?5M>= z{j5#Ga_B&uI~mKqJiT^^=Ql_BNk4^p-$L9wFzzuQ*FdY@J1*25w8sC@aiJDx4m5dKiT?facKL{_<{4r4_r2Wfb6g)l%4 z`l0qSh9Y;%e_%MhbB45yH_m`Q8a*4NO}~1#|LpP~Wv}aNJNiP{{+jP^k@@#EFNCqq zD@GMPwc35TrZA7|*Pgv}$8`d?=KC3N_IM?gx`v2Z{Gg_4SS>(nTe}ZQ3c&>QnVLlcjCoGG_ z^v+?vdn~0dLk~TVZggRVuuAWD6}bjU`dV^5s_3!rxfUB8Z$^e*k06hvt>$c#(&21jmrmu8(UBCh48p z8?i4iMbDt8*Rzq|y6-&p6<5mlP4OCZAdh6b{L?7U(4Uk)r|72<*93@b1E#0RKjax< z=g|MxFN6!^C0xN(T*uS&jp9>u-22Pt!)>zfZ(j&^$- z8vnm34!r??X@7t(*e9T&I1GB%cZ#7Hj*%FR^75h(_ZJ*X&+;$kMkPWqeF7%o>G-jG z(*EfGrR?rwtgi0G->(4%g~L$c2o>s}7%}3naD)_Z@j57`7%^gs5hJD;F=E7@c*PV` zjDrkk7=$BKs6!npR2XN@JncP?d(Y$ETTC%xiYca;Vv6ZF#fTB7aEn*G!nv=t5w5m9 zx4-+xJD<;5`}VY?DY(wp}hW9;1Nn28&3 zBj(^%+=dJL?-m(CwpvyDwMt+_>*?0I{-72eo zmE)UT*dJ*l`;U%=@*mRZMC^a4l}-baXv6vbhcvynlnq}6dKS4#b_W^HsSj_6i~SF8 zl5ZpSKfFV}i+uls^y9k1R9apwU z8^C3)ecJ@5bj`CQvV&qitU2V%WH?*|A+pZ%<3hg8ZJ7>PJ{w+5r> zjjpYMUow_H9?il@;RM;_dI$c%#y0WaUtwc0(J|%L2AD)%g==sfreh`sFW1jX-WYZE zIgYhBzn)`Ue_)RI0ev&Kl5zcwJK}LqYNLKjJHTs2;V$93aWC#ikGfYcx@rnTx492l zb*~)y=oxjhHu3EV^BBg+M@Z8YJ1 z2p+=|cnaB;QQ>K_ZZiKD4QMPm=Tj!8@iF<9ajyMsj(G-aunra2ge};HF8%!7eC-}S zckc@R^(y|gzV$4b<7>C@Z(Dcsf6 zb=A@vkXymG7MEGY*GA0u)yMfovHnM|J?7dS*M=H;gZ6^hhn^PhL6RQ#F*rZZziz4f zmrg^e~lQw`G2$fuXO)A z-K+ckyZv|l$9vLwA0OaDq*uBBqsBbYdl$O@`J=-p^v{s1lJ-{rG0**rKPj%d)jAC1 zm#CdFI-DhkYI*Jk;jFW!R->uaxKUrN~*vgMfkk2ZO|{e=8~SRO~ZTmDbU z`w8zY#r|jXMeeqixHMB_T+44JJ?u%V-+n-ubidypz(Xh>HY{ZE2tDrk^%(gCp2C3o%F|^3J?c2*8mvPF zzS+O9Nq7sk;pbbw7Y1K3|Km@}rr(=iB5vR>qr)z84=OIxuJhusP<8aX;br{ln6(CH z|4Z0;#yX5A{w4fce%vKrZk>8Xc=5pZ!Y`&=5w@voS6UnJrK$fKemUX0_G0_j@IwD3 zVe^zr!j@^5grA=_)=Jvjv1#_D;Xf)b4dur!3+oFn3l&E%3mZ;c8fyL4fORu25C1;y z^6*Oiu#gmPLmEBEV#mQ@;aBESy<~ll%A*&D?f7Nt;_!yw-o&=Wqrxw+dus@93s)CB z8}?M`zw3TByteh(@Sjyb3$^{Fp}uT&sN4Os(75rZp`qZXzS$>3)8e0o=Jij8hmVG~;>Y<0kLqK1G`u6tckv$H#|QWjAK?>xhLfl(G5$b1Km!`J3p5>3 zuh?h&0h)`oyF2Ea{{NT4XEEfL?o)q!7aQ7*o~hbDv>EhG=Kmv$99opYt!P6#^6ek9 zl;b7*e{BQp#TSK<(#o&@Yp%~|dfYoPrEWBq-kXv(#?vPvcS73g5&89(YKDhN;;I*4 z6s{t#L9II1b>wu^jB#I%Z^TUD8<0G}K1eUWjzd4YQP2NpOByo#e|}=q6zzWtwaK9w zH#%nyZpCdVzsVZTLU-E6L78i$Zyo!t}G1=;s^Cz4PM5+)7y|n589V_ z7Pmhevh+9bCgQlJxEA=^^j`NL*JgQ#{x0I46v2xKhFQ3Qg=A>To~(r z#$zHTp?2~b>-Vn-SJ4}5{5P(lUx(&0_rKNsr`G5TS`(&=n~586Bj(^%+=e@lUvEjf zRII1mC44u^^%Z4X%;lulC5->^J{oXg{MiKc^bzbd^6du0jIDF*19%9J;4wUbE&&If`p9@2(#3?U^lOr)2V^RKiVHi(N#3WpW!ONZt*O1qt z{lt(kot%jqF$d{mo?pMUL+HIL`G(8YA?+hr@!MhN#$zs)|C9r9^6R_oRKHXI zjO)8RBCdLoHJ!;PP`kkUCZ9&lJadQK{|)qKumZC8GOp9R*HS!H})skV2rcfR%kwkm@xJ_U2hG_Z%BU;kzws zUraZ~)04_>B9jcN}V+(}OJDz?*m*@8Df@&FB9kj;Za% zh4~-q*s-i_@r*7!pUs|+XPH8p-nrg0^ZR?!c^@C(L&Um4YPNQKdhc@fe}Z*>=$|3C zg#AZmvHM?XjDWam>3vRqiQ3i11du~^xc^f3<=Dn)=5Yv*L{eJKXqx3di{1aBulxUf zuZ?J$C0~}PBa_Y3)Xxv_(Z4RgMmv8j;{2fOPmK+rUl?z{QT=?qGGXUAA3a;9ey)Ds zvPk`ZiTXd;&JXA~t^SWRy|Z7v{7QcDCB}tH>ndD>>o6UI=JU-Y`{jol$N_u#Wxp^+ zfIbJeB97(h;a6l;q;C_>`L8T8=#zf?2xDx---WwzFVaU`1Ma8SdB^q0uW!}uxzO|N zKjy_YkJG2-n1}EP9>WuO3Qyx1bWPy5PqY5OlyiQ3-{Et9d-ec7ejmSmMPX=N#g9k( zJbwEUetU`a2WIi(rxu2Ob0YiiVecO*_zaZSU9gT^z^8_-;;K7<6C_G<&JTTCI`80JyoWe9Acgnoz52m>#*7Xh(8nXUnE%fw&inuT z*AK;2^MgMkKS3@1Gx8*A=nae9*AjlzYeU25;*#UsSF!u#KgV_c>RR1D8V)#apLo}r zAd`sxe}4Yg3H`zN()n@B?S>BPZPJJQ%Ka;6^Xos7z4CmY@;GybeXo-LE9L*q?td=( zi*|G%g*Z>R6YZ{JxO7HhG{zz=F6Fw%)8n2p(f^-FpM;!n78z;x;VN;}p2Icdb*QCJ zCugE&%-8<^UTs#wHzG-obN`wSvJc3Qe=Ff5%kPcya8s51k0iZW9-iZzTX7riz+Jc- z_u_tZCHVi#)IV0Je~^8p>K|lQI7hbZm;cdLFE7@}{~392_c{N*vr_qzQEq=-zC0kk zhmidP|CxLOab8|0gK8}Hy<#JxDm+;iNEqx`Z$ zdu(Vk6`#G-y7uJ2?}mmC$$st7ACVQmQ%||i+V=F%a1x*6OPs}!SJZzo5`#^~|9?8n zejcO4XyG{jZ!9?;6EO*K&D5*NYj7Q=qjs_Uzfjppk82t<;0F4QXr3bf&zArB1WhIK zf7RFaJ;6?7lz;4af}SK}`}cdUDfZ38wzai;FA8&{aVz57&)di@cDx(;b#~ePJ~ltI zl8t8XbK3k{l&7s|Q?|CVtrzUyYVH4sebjeI=Ptx?Zxz?G^FQ&elnf7di_4F5Tg8{2 z$L`?~*K@DacnFUmwt?5+F?zIp4S0h76rxZ6&Gm!p7P_6h1$nDbEfnC^xbUcP{UQ6$F?LBCqCy|>VZQ%_1ux?!Je^mcj>K!4D9cXi0 z+<&;H#(B%#7s|C^_QW*kaW3Hb`^@{ln|&jd?0>g!LVX}V{)cQnpx(b$Kl8)#Oic5^ zq2UekO}veF(6vhbFO|p0UirN5u)KvVJ-3(r&+z}H-?pCrFCTU+k~f#g|753d9RKsK zbjmMQcPHP+`SCv=(9f@*^&$Nuq@joZY&ygSh;~Q@* z8WO$~K8xfb<=PSD+_-q3<}2=$-!Kw`O~b=zaxBJUBC;P}9ww1j;W|u5|JsYfOmg5s z&t07}KKFHKFICQpPpweCFEciuUU6ly{BG|4Y4(8)$@dQ(R))8-4;XwkggK786}RCI z+=aUl_d6+n{PNKMTm4_casJ=H?e_Ad_g}BhPgYCwA#%NOS&xv9q4t<}-*0RJz0ox_ ztSSgk(Vs?h3EvWlMQi}-j_d!|U*0fV|1+AV>X$}xr~c=y*8O+RGgyOlsEG2kd)9v% z_bTnG*Z+^6`TFnCw^;xEJpK0z^xu;$C(QppZT|mWbN$iLt^XhCg#P~;;{(R%-$xtT zwNZ8;rOh(EMF0N6D?-;w;{#S3A23(?=&NL3cCs&Ij*q*^^`yPmE#x+A#|~6{q21wk z`Zu+C)*DyQaM1qr8T->G>|G$uB%0Cgo_9HZ4{FhXwEIrYi_gIKmvV1ti}A>9*8g9o z|KBlvuD?fIb*VV=4b&d8p91+dY6?78_uq(jgx^JSpXa*YbME(?9b4xe)R!6ej7Bse zvC%l?R(qY`J?FfS5AY#A!YB9)C(*^mcC)oTWSk4rM`nbxWX|{9vfJF3gt-PazRzy{ zzq)10^V1)ap9}N3G}aY+pNQkHzZ5=;A-jD0m)b{;EU(j-MvldJOvEJoT;6M+KQvrL z&+k9WR$oI;i%a1;dhb+a1DiXYJ`=eK^6xbH7k%0gZV*?!*?1jt4&vS!x01IZ?xE43 z4&QiOo1^euNFMt-|DIA$p=Zm7hP%bzi~I2a9>ODd4Bu=&ctZFoJcIHd7$;A*PgA!e zHyC$NaVH<0o)(wFCVFr5?N%3rE%a^3W#nCCy5;4C{P&+-5w?pT_}vv@2e}LV#$E1- zagQ2rh&AYBX>OM-fpOc@9FTZqHsHMlTi(d*imMI66H;I+L7wpeTAM$HuCPt!*t;)~;-~2cBPdK-p{gdXm#{aW{ zDWs3He@Fd(!2G;J=I0&M7I5770KR$ZjP`?L>Idl39^XAh{bHK-12VsEKbaNIk)vJ1 z*mymzYdkp-lW-NTLESj_$7VK2yHUDLWI~!r|JmH_KMRdM-P8i2nE8WH}!pKmLB2=Q_(d`VsFJpL9L34w4^d zNM2Zf!7*{1e$y(?zs9>sct_;gWAY}}osplf)*g8MckFLvtb?>3Lf1a||A72Y_8yV{ z=^4l7$9L>h|30GqZwmjz_uM|2|A7?J=tO>8oBH4*(s~TJeSBJ7-Rqp?+<5?9S9-b8Le?ObDu$?d4AieoJw9wW_FemLjSuUq#)nP2$A3LMi*onpizkH_s{S=>9y2LyTRAcO z;^@TC;J3k#uMXQ!3=hBb?p_jC>AmlmIwbtc{UrU~hBW%G{a$$Gh_OXiekc5TvNasl zYj@5PH|=}jSN6r)ar%l-HT#P2a_bf0mjz?ZVf)umsn6`Ch2z67^qXy)@!hbs^}FH4 zssA(leBu8L1I7=O4>L~xa^q2oysuf_SBZDxzp{8E$}8=QN4|r>JB@p}PrJv1_Qex^ z5AWjxl>g*A;X`szd)Hw3*W>?M*!@2l|M##qA-{cs&u|i-<4a@%U*Q&gzw{xm$`2Tc z(HM*In22iipFP;E?0r=py4Ue@_|fecgQboqVcFIb1^#r5uER=C?S_oAcVTJ1Db!~OIJ@DLus zV|W5j;c4ud7uV3TPXvAU0`sZ0`}}9Y55sHbBi5AaS1Y(FG|nptb@OM3`lGXzxidm@ z>5R~{#9X$5>(#%sKe*;N$Dt8T6I>UPMXqz2dGgX-hYD=M7Hq?I>_Ats_7~5&$FaR+ zUx{ZU&&NKV+yU(mi@cvD?vu>FpIM%*h5p_kr6 zuXvu{+NVz6FW!29nbY=vbnd$OY|p+T>&9v)q}N(|v@NEAnnS)DG>YpH&LWvAQmz$+ zCg&tF_J36Wub;>NSfZZ3NV&0Ey&U=WhmHIV=e&ux@ebnNHSdz|;eB*DrhAz>#tQxi z`FHyd^FdnChIVuyg)}##&bc2C;2}JM$M6K6Le~QJc@g`(kbPdxKJ)1_ z%h=}?>@(T2pZ!PM5x(vr{_g?ye--;)%D$5^?rG^fgEd%(^l8T^$1CW)uCE9A_W$q8 z|FQjl1p8aS|0Uy|o7G$SVRMyPsLdF2?Yu3>um3ZjUBx!x?MNvs_m8*f?;y8AT|&Jhv&#LiHZMS2 zZ2y0cd>^&qKOjFuzWslp|HVhbpCCEe|4wxsC9cE&{9XJ1LiK7S(TvZWa}wE4t@T5m z#gIL|e~iRGZU3Jk|DkP`{HMPDx9$IH<=Zm8NnHOTjsYAk&D0_JlkYN?9>@QTC(qB@ z?c)o?zQ-(b*xrjDB*n+_y`EJSn-)kcx2S!=@oZN*y zs70Lr*FYxGhIC|}I^I#=EIq&8%T(Vh{S91Le_(=dc}i^mHNSk;9M?8SJ#|iK5>Bk2 z6Ow4|Hs9DeZ{lsdgKy6Ndsn#2G2Q5ye>4C8X8!-pA%pCKn?r8y&7mb>etOFM^j7oJ zH=CbcWqvx+8_iEgwcq0Wm-nRgK0ZKg;T&yObHa!8#+9yZ`J8k4pFeeB{ei`X9u5YL7t9O0=vtzgG zLmHjvI_mz8yFaq`jQR8Q%#k_ltNHVu;gD*10V6RQWAV8>GM=1>x+R|Pai?+qUoZ|;++DaE_u_s$fWMpnr_P^1ew_|>;vvU8g2(U#V*URq@@YJS zu449=9sO_T|83O%hqkHmKRVc^6w>rg?Ee4^HIiHW)#AUx27AmyWZ@AN%qoeo% zzg1U{=bHbQCEviCcpLAa{QK%0A@asJ;2 zp@?G#rVG!+`T2i0(9h5RyOBNz|9|KIrCswi&db-ojpezOejDzlwxfl220n{!(H~;S;`uX{PkI)~(-_HMgLR`DHgQv)+kv?%zc!peq6u+*=Z*hN{ zb;1?M^7(V<+ozsFb}iR_fu4=pFVM%9W)R2N<>xPsQ9meFKVXB~9oNC;rjVw0E@eOG zv+s+(QGbf{3N|>olAXnE)xPa-*pE%FVGFj!Yk89IP{~K7=g0ruZoMgbZA$;edgCAH zjjpA^F}3stG@p?+5@;%;i;MIB+Q@XI#J!MNd~^Qa8^UkK_)_(jWy*dsKmRZD|2_Zj zZRfm$ckv!#{(qnR03YJQ{69Ybx90z~8lQ*%mHB@kN#_%MhLfmWeQy5W=k)XQZ@#3T z#ox~VD_bFdV@QqXT&UgSC!@kh`e+Qswe{5x`Y$)fPJQ)vx{k9~mF;q&9$;&5iNf-MAO`BaYvCfP4s#;4z#Z|Mvv_{P@48=+EHq z$Nv?D;o_gh8mvQp{day^1^xW`@A>vW{Xfm)_@+qk>zc6E8vA9|*;}{U`u{bf!zSmX zcJnXIwckSDhVAH?XMBM1$bDqSIssWSXIyn1zqFoz+OU-WTgv}kChgRBLNfE6&`j=d z?k?;>EgFzS8`9`9&bfP)@dw5o^pbtX9c0ExA33xf_>T5PeY!_nAK4+Ca$I_)_5V?Q z%(>FZ;tjlsT0U~kaciy7&#yo54*gv;Ynw>&)6cIz@SeDD=I{4~Kfs5G^Y7!ln~&%l z{-o`Wo%w|R8BSum@40S;``@SzS7jX6R&BGsnS^gAd0P7)%3lrPbH{#(vlvp#USK3f zQb#}b6mS}_rm^f z^v*^44<0m^!1@evZhx$Qq@@|h{gkP*#J-Cj;n;?sCEtj;y~1MsWAJyz%?Rh$A7KCA zp|>k*-X&9|#!s(Or>4J;574tv`HVjPLVkP-nLEzM@!OkdXf^&D`EhZ@>|KP1` zYzF9#<_MK?khk4-o14e#QFE?2I^B~DRnE%lxFR2>;H?tf!?S-5!e4Of7Muc z;pW(PpiYsHev|%*IpX5JLizRoFZ2FV_CpeP8&VnfK3}`RBK2?KyO5pjxub8M_dwRU zu6lKb{5m}g+4PlcJCfbu^i-MuuWzPL-+l(!QvLs{^#AMcZatv?oNPa$ z|DQ|=r^!yowV#?49+S=!cnVJ=UF;Y3SZT;wL=RZn^{rHp zbt%thy>vE9hivj}5}r%)jC5Rki}=<`_lNcx_m^?)-*~_I?_;6w192^;zb${;r?{Vs z^+EZsJ@J2$o-B=7{*&Ij()};@fAluQF@+cQKUnHHimN7j$Si7?O$u+2Z=%Mz`E?Pb z^|tUk$nSq}P(8!{#{Cca@0l3h6+iHkk>Ne^eSClq@ew{j)*d*Yktgx<8P|m`$-&?J z-{CCzi>1@Uw&H&aTMu6sUYvhj_~l{!Wvj-9$|C(`d#8tA73)u%J3ds+A0J*W`fm8O zYuYvDdts-3yH{4LJM6YMM1z&pBUxwC#FN_`eJT&)z9+Cxr4T&iyL(}n-p|RjEp+TLl{*bYqM@H+5vA@;+ zk?M0J^~qcus{8p>C+wYe)YzYT-&Dc>2>*`Z^pU8T@o!2M-s{e7x_^_=+|Kr^6h4QxwLwUF;Y+tC)5HBtKUZ|WsG3+Rv zWFDM$O=*usnX+Q-qJr?sV(p5)hwNK?67dr;30L77T!+EmPYTn?{;TZ~K@L1>d=Ysg z=HOQJE>}NWEPvDQK(1Jsh0FxDex)+!xHX-{-;H~5KhmxzCH?_=b&>slyvK*=kKqy2 zvhOwGpP)Bx)Q8n=Ttw{ue^&kfj5!*JYs55dEeva0?H9<8UZ?Fnj_-TQIjP0k_h(pp zhyD!Kpob0ZMISQABFC22v6uDT?B6Q(e?6PJlWk?kliKK;CrH=171)F=*oN)cfnE64 z{DMO17fauNXOTmTK8aSet=89o4*ECeCsg~dJ<_Q~1CmiM<$sS;XP`GGTpQB#9>hHX zlEQI}WD~OD-oTr98yD;Y+xL#}yLcb@{fG4{eL(*ZAK??!Z8rX=O8x(^`hU!qC)EED z*O-XwPsjTIXO26G&+#SBVn_pjz^s^f&`hz516 z#zo%aeDf%gJmS6Wi~TF!;~{e!UE^qs#du7_BwU4S(0-@cHf7$8yPB;-#6L2j{eQ{NB-gd!>#K7 zXhvLr?=ETGjeBuF9>7C*1YI-OfAk=>wg27xzk}-kXhXc$jxnA;(&$9LzWv9fGZ5P< zZuw4lf*$)HpNes>>l-7V!5R$e2l!O`%etsPYzzUp30trY?cL^Hk*Rw1e|dZdeHZp1 zmJz+^bN?CS$ER1R|E)4_!tb?cKr-sBMWJSyeq4HE<+;B9>}%?3!g24kBogcS|M=GY zzh!)B$E3(KKRip%&;Pqr9gIKS%ir%)HfQ+ZS^jvAtXs_g)ppQ;Ml>OTB%1MtG~UG9 zcn9y|J-m+(&{e?yM-O_7rC%idS<)|w>HGd&ODliBjj!Lnfd9XU|G&ib(L3kz|EHQm zAf1o!2|h#ZWd6VSlk`UZeuMUm&*@(xjva_=118A0hum3lLmK5pjKtv8MPW2K7UMC% zPn$^gUuJK2a_uxw=T zH{eG6!})(@@;`EDSuFpf?YQz;`S5r1|JdI-(zzA4;SQvIN2ykJgWkK7eZk%Id-1pP z|JHwT%Gfh&(E05F#JMLAk&mF}l>B#?Uya9vpTOVF|LZ!Y{6f!isRqDN{tgFdf(tEYD_N=n58~q*RV%q>R>HvM{fATxwUGW25=BT`G{=i$td0+%$fuC~b3u5TtoW00N&Nn2=xeYp#$gi%TZV-#WbD7)Mh^UBSlCYP zz%J}TUDen2zsUP2l>dvpFEYRX#4Pszd1Hzk*MKD2kVX%(=-Mm)pa;F^Lk3yokYE3Q ziu^zM>+yf|IJWh?{dq$gZ=!uOKbws6e%~SAMOxf@D<|@BkgY;J8 zlF8{vIi`*+tVhFQ*M|JMWUE~BO7?$+dwTRt$iDVpVW#76z>S!LTX7q@PFw!~`F5W9 z^7ImUd#*f=Tq*y59Q$9){*&$d+5f}JR;1~j7`T%EuMQCRHygNQ__xLn-XZ)9TWFj zN}{gxY^X0g>$kI^5l#H81d`ony}PsFUg&+rlcvc-%y5g!ANssJ7?E=4(Z=hzL^X9uRlwUhEyeTd@+kK(Qaf!KS&2Lryv%%}o z?z-M~Ov-hp51kF~&?_EfchMt%_R5!i@@Iz33dj8&-*wD;cpo3&L-fCXCVWH=yzo`{ zg!~LAG1&1{_?-L_XE7ux|4;S&(NN+#XSpu-l348dyS`@EKin}RF&bkr9uqMMSK(Xp zkJ+6I?SB(o-#FjjKK9=|wvp{e)c?u+{-R{(>Vj~MG_J#RRCk{VGs&8RXF~0vGok!< zL&IF*tT8yT4Y0A$x8qw*kV)ZYvTVM5K35ye2>$F6DP@L{4?8J z#6}}gz(yDIBgv$5TKbI-LL1^-z7BqQ${3&g`rsw@_9-;Jzg97ULsj#u9QVmZ9#1`oU@cUGEyu)a@FOq&L_2&$&awa>uQ}O02^9@dvBv=g04r z(#w#WuS{@GtV8$7KkLP9#Aa;8;0r@TC0T`?7+hj9e`Nc%?P8h}UX zy(PX~9HSpcuAgo2U+339%#Z(H$j3$F0Y2>^zU>h{F4?@F?wk`ih0{2Lg66Qc5F_xd z_5aif^8R-L8;$(>e|-B^{CDgBRUaN6ilj3J<1hhn4Zs?dzv7$Yi#H&)9~b+rnaxgi ztAnUJG?8n4fAJe!w^;p9XX`@r_^o%U>zl3afGj;XSskfr zc$n(AX_$dosMR-7qb*}Lz4563cT5R=E}D;fHsTVeJS+77urSOMKXCQ1FrQq2g;<2e zSc0WkhUHj+l^Fc%u&|1(JFWd=g#Q@h`A?JPY-vyNAM|E&wPQ+AhV?k#PZs@$jlx|= z`JczVW3u;*{7+_tvt(|u{O>uo>PKlqJ30{eWsZ9ccB1Ye`^O%|yxAyE#k`pylW3kL zpFKPzZ1q2tsKQR{Mh)uGHAViM=J}Gn@@pTNU!O~!%b{g~{5@Iz7T@mo4l?EVG}-CD z+SeO{^OiD2T5%3wE14FTssug1uh&N9$i@2WUy2Uq`^f!hOeh2Py0_iu%7A7vmH`L+b`Xbf7=v#O4M)g+9K}G#&~Pk<)xVFE zajaF@D&Jda2q%P3;WT33UUnGUP8PJtABb}RD{d(Y8>}bTd&)cVelj)QQMY#^-)89} z99M)fDA)cmj+}sE4F0wtOeXukKRiq!W8X;h|EJQYVFqTQT3voNS%NtCZ!S3xHS~s+ z>XoYt!hGQc$orM-LX)~>VygZpW5Mf<9d982ZvDT?(cz4HTj;z+Sd1kw4=|KrExPpM zck`w5{rijg-}Cw3$nUeq=WaP+{P}6)&-u#j-R1|>pBvks-f8}SDgR#^K>ZQ^{|Np+ znkMl73;F;2_-1mc|67LT$Qqluf?SCWKl4rK2kjc?|BLy|42_9@$aGbu8CK>N9K^5g$5_3iEFAE58B=YuRg=eYBB zxqgJYaJTe}-@?SRQLB#oean5gC z`#-J$8q0#t+48>l)LdnO@EPgUZZ%%LYG^2E^(~WyVsZ&KsQXk5 zv!+uV!#8Gtx&vw^}5#iVF_mv`RKOP?uc9@&_m8J-zj}^|EIpX|113B#HsM&nbTqG@zY^l@qg+6`ZARGueqog_j%Yb`}0sf z;>)o9#9zavy?+V+p>J)T-{xaW|ETcuaihZvvrdN11=3554!FhRPEo!;XW)!>^Pzi~P12WyM2f)}i{pv=f|?p9?OLpT~##&ErEInk%R4&-=bU zps}H;YHX;knH2V5x3-8Q%8LJ-FwxkPiJ``Raj)&XA}o>SQY^!AtiVdF!fLc1y)Lw& zHSuqu<>>TKDy|Hvf~&Q~Ul;0>U-h$;DJ8CjY?`L5NhxzO>ObUq$8N-CY{iB0qdSC3 z;jRVz|0VqY724NF@ChcI>wC-6a|Omf9#HljQU)GT7Lpypac#cXKHo`JNu&I&;;@^H z>-g7@^%%U}_jaGPKjZiSL$TJYJ|gCVQ2;J>)*W?Z-6i!~q<{AsogL^rJ3eeSnm8+|f8i|96T1E!H2c@3?uD z{_i6F-_!Je`>kDHct@qa>z(?g$xh*}l<@%>{nKQx_`db}?iX1f!2JFk**)=yt+7?Sa}tN$-vP(%n-q$iHwO9f&yN>` zar6l&#$<7yHmD+%U~^omCvBNNXyR z!p)VJ`ws2HFr`@gjy@WDG)(i`4AhP(4ztMFs4*#}ebJ;)LZ6Fyn2+=X&kqaey=2eq zNns&<5pw;mjUCFkw!VT%VX?R+Sc+=457h;s4K4 zSD40sU3Tud$1#xQfluSu)!6W)`q@{*LK%HMHexfjq7qfui8ywBH(7&vB+!Z!2LEX7 z2QrS~%a8+?7lgg!KJ3Q<^se$fFIVS~Uk(cAlr33g&?jHSJaZo(p9zNGk@Ei5-W5OqJ3SIT`KQ6TYEq1MJ zYZm$TzXRXs|8rc2I#vp4dgpF?4qa=k!w-ym`l6&G4|y zam!I7zF`@^dWCY6Z?)kT`CqtMI6u#xT;aIEXA8qhaursi6lGYCjo6H>s6-V89xV(z z$$srP?FWq|q1T`u38dX;3a#|sde3IJFufZ&_C6~vgFervuKVlp4-;G`^6T=Ic>c3o zr+dse=bPh;_X_XBejG%Xx@0%<>&wX37wVVFrQ9Or&lJ}&&GRSYno1q?RI%qj&hz(8 zSFH71{yZccl2)~GABV{r<3MY1gx-&%XgF?s=uu-n;@A%|iRMGru~UaX=J)d7$W!x% zhU4_umvDkSg*etOhd9}MyZdCs-Q}3r&`&LJgMHqwT&E6RjXhPnP zPYeyEzRPibpMYYl? za%Yqcr<4(e-W4{B+loq*-!dvxkvp*)gYtR}*?+Zfgd8xJtKvoP>#I?rRXByUe7`vE zZ5{uw`iO5qT#fW={ZEFz7yA&`{%AzgM)iLrU0<{7Jm4La_3_n=7r{4T@^kw+I zHGE+8#vEB!#{WkH8qtKrX8!;BbL0PyxQ2cl#W5Vm37o=dbnWE-C;0z0{C~dvxAq^@ z4$*Ru|Bp7bqa(%t&+z}rPUp4rug^%QAgzqW2;|ov6kkN|RoCso82UKmR=f6yEk)dUCG!hNgwy zBT8K3T+G9KEWko6!eX>9EDB4=rC5gLNUya1!0Mu~g5Jwk_UJQQNneGW`gL~9xjJ?q z`?*?N^|+!?N|vE^R#8|_ZbVIqu`BFj;~C?4J{}sjii>?-&Fo_n`R6LUQ^Kcl2Kn)CS8C(w zl+Q2%MW|zg>r>h%GGC7`7@=){2LB(;(~P^X8ydzqZX70{7?UvtQ}Iv7ziAt2ox=Z@ zR(lEmpG=M8{}=QBwG~d2M!#{_GsuCz7KT~mY?NRw=3zb-U?CP^F_vKPW6zwgyKb7i zubvq1eX01kc0g*cdI-Ij?e9@XSWeIKAL5+I3-+JwuTBjQEB#h+t$coGL0CnvouU7s zK-)jPajEA&W_T#2m!Wx~=fB+ZM_j96y}0&_b|i8$(#rL%WF?{v>XFZTmlT95;hl(m zKe?mIiFv+*Gse%X^!+10|AqY9{cX!Xy(#Q=UJdGzKr2${M%NPlrh4{&yZ*)@_1`1< zzsdF${NL5;364+GJIP|-Mn*b&5$m%1$eJ0(vtU2{01l#|SpFR6`ikVwlsZ8x|6DyF z?|+P7|0aZR$Z?0!kL)Ekg`;G}>oCGx_qw~fg+5-I7~n> zzFq#xUxz){eexHgt^d3Ee}7Z{_P?fWNIC;Q_Fb&KDU@G+6M1u(B5o?CVFqSlHcBuT zaqRy*vaHm1w=#tJ^w=k~kX#ghzcYlzWNfQkLdN+|OUY$ej*9zkR*$$TwC^klM?8lG z;#OcK(ueHdo+=5e=)I@y-+rPbtfrSDH(`$QcTUJSrVnM}st=ch_2fp>ZY>F$$*rhy zUW0TRGbN!?xC+TdbCkbxLX+bXs1vR?m%m}@oY06SB#=ZiV*cOhyxlQ9)FXjbq|i0* zX6-NL`J2n%yTZJF^ZhgC`)A3VaLeACLo3?Qjt-=dMkm&GE8h{HUAOf5*Ukxh$$@K2 z!alM>8}Ei;#-LwZ67~xpz(E|sVYJu#Kk^9raTMv@{zLpRdhfhBp$Et5Cy=9Ok#XOB zs9t_^I3@lx&Y+;%GhBLes1aXCZ(Q%$USxVc?|#lwDma- z=-c1NU)Bd3=i|+g&W0xS=e}W~i#_h1#zs%k{&h_I*J(BgacocyEy|SE)$;#b`5ztf zb*hAYn#KQ}%1>QU5@tznHfl>tLJ7IT_gHPsq`CCOW_cdX{cQ4ay86&O@%eo`68z^c z^lb?b{FRM=eOOpPUx-Cmj3ro#Wmt|CScy2VXcbwfOsRJd4X*#f{wLG?mv9^-v)VDG zD8qVe#AcMY3=3Pyu7mFXu={s?z3AKO{&%|nO839f{Y$IWy|$sf(ETgNQYYL$I??~L zo5R2l;+%&$_7At7gR(5H|6M8VxQ192xf?aeUO6n(lY@Vl69#|l8=$wM-E+>*e{}!( zy$8f~BPG7aGwMybCgHuvy0+X(*I6UZHBJ+^6Z^0q2XGLFa2WaZ^VqNkAr!%=#Tc?PvOMn8@dIE89)?dl1R;TqpU`n%}mW39!Ai6XZvsVH2ZJ} zMZ)>@bJ^3(1pfDA_IIN>2FmO*tkrfm#xeQ%f9o#_hjj$d9s&GU7g zjjl7+sS**V@8Cy}O@2|c}`}=;ry)q`hFZW*d z9nIRbD;-mXo!E^U)FXjboZEl=>+z4q`}V2dWRR^=&q2#(?eFu>^+Eo_{m19ZkJ9Nz zZWy13OvkuI>d*AJra{kq^%DC2c#LqiO5WKj50MAN9mF9V#^7tl50L#hih)biJ!1Gi z?W0!~`7k^m#5SE1F`nJ;f7Sf{SGDo~_@c1>rBUIO_`%!17f#3DuO1T4kONOn3yAcCA;f2RW+9cRVB%iLa5r$B^StD{cZ=j5r6P!L=tAdv6PsZNhPnr@CeQ zwpIL3{``gg?^66YetKO0|G592?EER1ifQ;EZo)0-(y!jVg8#jYAIUH58|N7o^CQWe z{`?m00Ii3#4;;}xKz0bHR`Mg!>Adz+qr;D+b35+DkCC3`82;ov^xiT2Z@&0_^q(Nd zH_ZxX^qcpQdH=ih8~!)n`9a6!{qNoGix1woXmof~T)FWRN#W)b{8KV9Z*=(eyo~t@XIMP!gf@am4ugyO2RKT-W;}#`(fBxGCRD8 zpD&vd2Aiyv5Qc>fuNH*I{m+y5DF#0-2tOnHjd6XJjOF~=D2-()kMS25h26Ug!t?ZM zW#1lk;+g})!fRu!Ay_;i)S`ZOu{MGUZ1d&DuxWeWIwmyfGixrm)cYF~T2GJD#yUT9Q}VYLzCZHu%-0};pa1M2rrb(44bFT4BMvM5Pos+;!yr0We5AS zecZosK4ScjtDY53l2uvJid~ z__JfG5045Tlb@ni|L9-HzoN!@4bo}Mj0#@}e}&{C9MK8)yBKT1B1=x6tgVE6H)@K2FtPjl!)2EX@AekA^9cou6>j_2_L>h#^` z+XqtG2adD3&PgCiZ$7Gjzn*`Ow)y;fbS&oIBTer_*J|?*=DCi!u49S+rDqlxA3)}2 z8~;~4JiO?CUc$?G1+|O$-|Xoh|yGO@41d`OEAt zzpH~@5%kyo#y)}cKD>_K;4So3yzE3(%5 z|AI^}^8L&j627AMu9i1f4w0zu6gl5k7U$QmyjWaZe}5Et32Mg-373+Wp~iU)(uwuz z%Z0B*@-*9nCdVakt+?+aJ4~N;m=vz3{{TP4O<2p8m$|of?x&m|U(w=uzBDx4;S2Ynjd}FI$5{-&|aOOSL0x_(O51uvY)eem}qd)+_Yh1D+pVrN4$8 zJ&O$b(B}QOFH?_>^|VFm&86ziJM9xh#xW#4n~kwj56OjMqJ-)n7F#h`seX?`x6xCpGON?(S~+(6zcmPVf=x<{mxm& z9~2pXFwS)pyAHBXICIqagX6{@kkwnS2p9XGifh&HZ!ZX==(QV-!zjBVTtaVjOam^Z zUxsGqCHw6maLQf+xLjQOv`OJg@@m9!57(04M;r&y;~sl)z3>l^U8P=Ls-C{vb)fE` z`#bFZ`i(z8(?a79kVG?n=$xBy3x0&#aVLI^d(d@6{%7CvN#`ec5D%mFp!a{cI6O*kJmvl4ar%?U@2BaTPaO6Bkzap) zvGPX!XPy3!pE>4PtVMa`)1l#ca>MiT?x(}T3-lN95?)5#diDRxb7T4%YuLq%zP>~1 z{|DJgyyBQw@mf3E5dI_ngpYB4 z{jE>w=hxpVzgph?6Z?Be{>SOTKgFN% z6+%uKkBc!1m!NJX`-BEGqDdJQ*UinZqf6%3_dm-2Kdu}jJI*M#$n)#_cOBvXuVjB$ z{bT>X{qXQ`ssFhQm*YyLoge$pucr4FC<7gHE&cn*31=tp-^cLZ$?L^ctBd@A{2^jH z!A;~Xs5znTlG2WlDGWanz8%Sh`mGVyE=VBmof~a;et)C>f^er}YM1GEExjoGnBG{% z|94DW|0mnTCJV=ev{ruk>H?bNQzQ;Zf&3jwkU`{0z@xExOq7ZuE@sKZVjQ zmj4Unf8=KI|K;-w{eO=8mi=EUeQ7+87f`J}_aa$yOnVF4{1W|Tyn=6yk7?yQBF>M0 z)o-sMtL!c}#-fhigcfulKVDwnNc4BRg!}M1Ht-i>|9e~$_$}ez;&=Ex(k1dJ{y^_l z-|iVRH2jhNC*->2?N)i5>?;@={wywz5BiuK&_44i`4{{ZU*Ic**L~Nx7^83rF2&%T z{D(!_|K#BYb>v3;ZU0BsI$@VN_HtZ_tFcagig{`+x;(>feSjdHw(G z|M2{M4=LY6zW(LB{zuh6{=)x{>;L@KcP{qfu6^|MhU>(7G=(VNVRdF9Z&S`8|I3)ap{vhI-a>*0wm}Jvj_rIS1znPy*=J)@j zC;0x!6hE2I{sZScj7RY}p2Sb_Gdzo~g#LZU_Bf}P?9*qQDdnS+IsSc1J^x>Po8Q~X z4#&r}{qy7h$+-XDTIrPIdAxvhiDL>!hZpI+{P~_0{7L%D$Su_WzMTKR)PIpN@5cTA z^8G;c+SQ}OD~@{=HFMq9RQEMY|GTy8UlW&{=Dx=1e+CVBZ041{)rhPo3L@7IdHseNnFV{?T(l{@dsMAMyUleE*NU*CM^v&F+7_d!6t7 z|39SNdvKQ7o!I%KTN^x5H;lmskLZR8OkhT2U;?wEBX!disG_&%TBtx3WMLO-p#r{0?h#5#A3khsc1X-9s1PLUNf%bmR zi(z`~BvY0B<6FPqInVQ+=Q+=NuD^3z>iNmqRem8Inw^7Z%YV(`nE}B+Hh{3;1-c_IZUo{ZK#C zeh-sfE5bC)Kru=%8*?xZ^RWPnumsDn0;{kF>ri8EP%Y}%2@2V*!F{jS4?a+4=o4k^gZH!#u)#AnVGCMI*=fl3sq72v|7G;F zasEAIcNhBvQVr_vo$7)Y?C4M2^P%`J7Jrln>-T+w^cde@llcM9bHiXsPN?wvxc+ZH zc@T$j6vuHAHAtWtZAc=8p)1n5JU*~V8sU!X|IU)<(T_{0e3Tuokk@bnw@`gg{vXH= zx9Rnp<$v6z-^c6r8~a~Ec~>(<{e!yFU)Z17)8p8F<5v9yl>1GzvAwbnJmfBy9v+iV zk-VUON35fJkfQe@tr!U%qqkF+7kF{s}6Mkpl5BkrMFw^zI{k$W;4=}kzW0U7)I z%3svK+xf5Nzh3;wrekk}BEOl287M{xW@8TKA^Al7wN<*wU)eu+$A4x1qk6y7`_C7~ ztNDTp=y8tZB610qp>LM>P8VM?j#s=I&lu&Kt#G}v!Tf`*FVkRIOoPkJ{o)trKCW>+ zp8Xf+cJ7+@N!Wec`T_1Zw=*+;VB;HMoqL9Eu+Na2um#&thH~tQ^0+ii_D$Rx_LGBa zz7h_S1DpJRm$SoRdZzv_+a8Y6JM{147}s%n9DC|kN1deCpif?XZ9g{#RhuUb%2#o0 zKaTOoxy5l`>?U@aOte0bO?U$7iW7!VLj_bxXr>H*;#We}Op>$r|t34vzepIz9cOEErgnfzo8X9jZ zcf4z2;AKB$*NW|7_m=I(HnpX~Cn28gdc%FU5X<=6Lz%S0d=$oQEpQXLx z+R%+R!b9>gp5i&eKjc46{ww-83>fRr<&Jx!4U2M92>IlI_GaaUtT2K;3OhG!4P(ga zGv=Q0FQnI#b?36ec=|-dJwO^;l>hEYsIzKrZucL29O|+@4)sW&0gY(F74I_H?}{)D zGw_$z|4sckbPaqQy3vCadXYvSnm_nBw0!h&IJNZS(7O2J&^Ghq&_3y7m%P4W!&XxJmb4w^qqa1 zhO54hHe?Ii)+uxKTG2*tzi9p5Bm3JRsZZU7Zv4vme$wh5VOC&2R{5_El812=$5ErL zQHwftU;Q06$`|I4k&S4&8p28Ue0hFx4R->~NH1bHE>oA?&kjlM6i(wT&LeFN=HRA} zLqB~WxjkGWuizSP;1+Jwo7BX`+ncenMHgWEn1Gq?xJvO+Ogg4r0l{k1TMY~7d@=8^NU0E-a!R%u_U zA4uZZDiOr!6S z`fsNCzf}ECwic-WN2}Y%ssG8&;nu#LSQlFLr8D+7`wMoQu$P?YB+%Z%Zg7X)fUUoo zyA5f2+yf}}gdLy$lV@APkMC@;pXAnXbi%gqqet7q4_9tCez!3kzP=&+U|>V|{?<+5 z(E3f`AU&&<{;lS24VgI=QJ$yQ0efZX$KL|--r?BgzHDULm&7u6r+OQMfuG$>F z)3rIAcI_;_yKzJKY{#}xF>7PkhwpjT=e66zdDr^!{k2=e4}71416#tO?OW}AnP>f* z@g>);;2Lh=Xl)3$$Vz8u{nY<)0=Kz;)-pU)+o!V1xoann7}Gj1THkDRs5RbKvvGK6 z8aE;|-W#cp_HrDs)jGISj|xM}8MY$!qBeQzu5j81#<0bV4fp8}@fc6>dVc1Moba5x za&%q@=fr!D{-d_)FnaYQ<3BU=LO#8IEgQ-$@0LccYn#x9BvLqyvpA2M z>H5d|k9Ar4$9O$IUH|g+{QpV%xB9WIWZMLNcXXf=$#d)j`q6O>e2+eLitOc1+bf_C zt+j84e$TmtE4YS^%fh(+X1GC*X9jk^cr)Chr;GI2{5~DSa8JrTvENzw;LVWfhc489 zJM?C_?cTenI_AB*y!TH1c>Aiw{qq`kcyAWlUVz!-Y{dSk#Sq>o2asXZvsusEMB zmA!1Z?~A%|-gC6~n&7?Ah$c+*o5?7`G|WITN-!HqZMd$h>KOg`9x}zF~Tx_K7*dn1}hORNgEgtEvk0A)NDf!<;(y`z8G9?kS6qFlV5_ z8Gwywx@kVkT=mgM>LWIQO6hG`{QU>cy~PT8X8)g{9-gWmo+Le%%3ow7nnv4mV5vU9 zPS#zZvum#&thU9Af`}NugWY2bO06f43hYNmfjo+X^vwRc`pJjsN73hf)ADmK;{LkF`JF@!5{ToD z&15|Lw~frq3)ioRc7fQBPV!6PG~)b&xG&_uLG%BMVg7&Id*Hll{kViHxP}|Jh1HjX) zM?~D~HqoyB?^XYkP26Yw_Bp~olKwFa`51vwNUk-$j#uOSsj=#1qzly3#vGfks{geK zPLZwdYujpk9&vx3&XvaBT^l2uLX5{mRF~?%Vlq9hiHq~!i|EtP)XV;k1|+iHFu_y$ zTQB{s)_z{-x!3%^8-<=(YyJ3p=GcO@M&ih>#|3mB_$2^1l&&9u3 z7$umEIhcp}Sb#-HZj}GfjUK$-|MjYGEH7r_-y;5K-KYKIIqeJC|Impg!l)F-W#kG} zYfCNiy;sqz=yjvL*G7GL?sdqt%MNJ6#XkJZ zZFI*z`W^Z6h5Y$I{?s<_!(G?z;~^g7DV`&om)=mLOsK`{@`2ufMl_-M1Nr+S`FpOs zyjY&w>iev=$ZYAT#IvgGUGlYm0c5F?ps(z4)ff6R8PqcBgiqR zKfyl1_SaCW@888fafp2a<;D=w^TvhUtBn8Ow~m($tI++i92idy9nA?7$;l|fG|WIT zN-!I9Fc0&w0E@5$Lv6ABJ}wMwlRmiP89*z@Rak>{Xw@FyKyJboY(t#e+5RNUA0*$O zkT$QY4{jHRJ=}c_^eW{*i?pggP&3;2;aKB`Q;Z)Xv%Y_l@x!Uc56Mw}^Xap9jLE+v zQtyOv?h5R3KGAM#DU)Z6ucI41NTC;L^r3mV@k`;H5?OV5dG)H_jm;_a|s zcn5J9M^Rn%wsnthhvW1(CSG^s?QoJ_gQf@G?T#_dN8a@r__ZE!&H&klj^1}dl1!n! z-5Kky_24x3S){ib_eTo7sPRs<3q518_^%b-R$-%&-h}gh(~nEIf@`>eTeywnb@BI3 z-QJ}Kse9s&^fB>2B>rQ?AE)@WqRl<+=%9C^^5)Au3|_4tx+~1Mhe4J2-KW>PUWb$N z#6#}5cR?fK-Uac$ihE~8+fzC}D?D|*gZ`Wh7sOxr5^YXBldL10=l?Q)EKTp5>c5{Z z4ItNj!w~0Qr1kal=|eT%_Bw8nlZOXp*1e89TMwpf%m02OjvDV+d)c#5U!Yta zt&g0iZ=9u%j3u783@fk(@$A5LyBtSQ`mJ}+z$)=(;hZDbkBqr1ZYTVxNAhi`{H+=GSAJtqhB3HC>~F~C;e z>LC3vj-s3mpyQlp+{_BcxqB{qw~PAk^cwWFNCOxA_h-B-S$RD#tm2IDo#K9WM6@Bej7`|m^Z z0~ebgxX@fJb^q)Ai6?1)Xa}^aV@C*Q6vm(saSng`fj7c()mdv&gI!hH>0>e_qkbEtb}{vQ(b2E5w; zzf2o##|!P7Ga<|oM%?pk_a-(c`eXV0zqtPKfW8v`s{Q|mj5*I2)&eX-To<#1T!s}G zy!Dl^ij4NJHPLN6YF%_ovm3}b|7{bw1>ZLhZX5Y({#zOS)%>?|`X2o9{I?2z`*9GJ zFSN7Cst4Bp>8l>4AIC}5DGOp5kw7dXV%gAyFV8QiabE(>NH59{Npja|{p*R!1o~;5 z#d-AO65`lHt$bdGdL-oi2IW9z|K(Y+{w)Ys+;wPeBeVbVLiu0bZ=E9l3$uNa{EyDj`u64=J`~QNxrC3&r-*AXo|EAp%g^iH3b|x@ z#am$*nU4_|(iRv+mW`G^#!4Skjs5iNL#)uA<{#T1h4DUP1>?!g`3L3>Or{rM8fKtU z-?PoLCen*hg6aa}$CyozebRU~{T%u{G_BM(-L8*{MAn;OKEK$9UqCKG2Ym^-4DIx8 zYw&xpf_oLx^gg`WC$MI@{_lFvSgrpX!z3HH8_A}wx565~S%(eSge};HGL$1}jd_DYuAn1NJ*jTIM(Jd0o}FRsf07-*JpX0FT!B?sgLT+|E!c)K z4BfW&-`s$5dgU?w7Gpy@*ummnkmX0s-P&mUzdbwbaXqvDkGSoc=X>_&hS&3d#5;jZ z|F=p#rLSL4#yRZ`C)DxurkihsO~RR#N6WX3r>r>0i_A9dcZzJ>oq z@t-dLp$TOdv^DW5Gx;sQPjAsC#clds{FU=>7s`J)g}7JDFVDY?XA<5QPGg# zS6=Uf64T@m8`#b{u8+{BaR1=7-wC@Gl!o2L*p_h*owRNw%Gudr6}blMumPK}1?43r zVH;T%b?m{Q@yH4?j(@i<%nAGH2XPoj(Xln!fO5iddhGLePiGUS*Wi`itC#ID7446u z^8XI`|A_p5K%USZ$ejNv&o-gF##(YD{I(fwNFs&PQD3P1MK_|2Ew#~qgEac^E9?LH zwd2+Ke`W3RZm;^AJTJUm&DQ1LDhd7cp+#(TMb-r`lBT%__k?hTyoMXNh02A}BH4HC zx58cWKB~9M{~MLV^!i!iHa$B$rawjI{6A@=VYIkn|I~@$K;Go=y@JW%^Xrqt!JSjX zp_xVD`{#%@BL8w;(cwb_k9EDY~1_$KhCZ% zcwhhL{V>OG=3zb-U=fyJ8CD?azOK>sKS0kU`yZ6rkKl!G{^Y&T_u#$Iyxsl>AK3o@ zt!P90NA^E(U+2vCL*mESL+>H`KUh;)JI?+C z6YM`wYX5;r_8*vP{{gaTsc;MA4{hAoHaP6}M{yiAF|4G%zx>*zJ<>ha_#0B%D!oX1 zMtn}Quv%u8hEr(GD-CU))qX)I(tH?E|^4mIXkGQUX9rp$_j??~lqMb28J7cu? zcj^D*_4!|=%H~P_+o|ela+BYD*}k%cdmGA--e6tf4)cTdv48Aj|2V?_v6uZreUet6 z^eJbWmur70H&3AzZD_w|e$i#~i;%G&R%M6Get45#=8HYTu0T8kES~+UT>qGj}$MmoF+E-2=zH6uc`M%gcmp*;BUZm-L*l|pKh!vg{+t{nfHCTrY z*cHd7v==wgw_qE}P#%fj{)j$2y#o7j5FN|C0}j)B7JByfx582Sar8~sm;X?o-X3+) z22r_G-<*F95@<&CG4>C%(d!TBoA;W>Ku@9Rk^cK${r4UE>f~vDXK^0=`11JLCGK)| zm@DM&yKyhS+;EM41GjJ+HPT3}G*d^`Px9ZC{^k6C*FE>~5RdT`&tcJNSuWUULl?TQ z%LDTBuk3#z%ob(IDY8}AZS;6HOo!)nK2s+MBOfEsdcfLU^40#dW9Wq#k8U=(IEN(l zLcK+%5!bR+KgtdhU7w6N=e&rlypSEHku%WPtFGFoty!h+qSv)+XOqRQmEiSyPyhXF z?zHwq`IwwAk3Js@un0@A3@fk-yW$*sV{2>Z>#zZvum#&N)XX+WMq7C~8P^5xAuF&S z2XPp2-NRAxI8LGl0}1~F8SU$3)1}eUm+g%HY=CVdyXH@#;}BYo*Z0YE)01IS8xqCa0|C_7x(cH zk1=%ntx&z1ZH4|ERqL}u_$R)9gLysVFfxg@PG@$MS-yiv|jX=#2^)Kpb)l*1x zy|ha=(wi{KJzuVW#&8#6Jkp!AzZ%s4?dnK&gB~))-OJXVMjx6_=>OvsTG58MF0P|W z{qMPRymzz##QkI2=pChO?ZTdnXak6S{~qib#_p~Elcx6}wb64B`~F4lorW1GM)g+X z7p|4i>xCU{0JG_H5YNvgEm5y_uQ`k_d@*7iT_3MC);j{KiR?ENwz*PwlAD@*nmyw$aBxg zH^LTrX8q$V>(c3E_~rGF<@_rBPkYD;RDWPU1F~GYuUaf#+r?|H_fZZV=HIwnytor& zgX=X%^ncGt7pO-94f1cJeBFc{#_G#()Nen1W{$vq>+k*V$GJ};dCvIyMSX0t=caZ6 zz1J9j`iXYJv0seO8>2skRec$Pp`vxzC zaGSh~`xq*=em2U->P+%!)SsGvqAq*YKPeC6!gK!NpUN8}#)Vgy( z1j~@DHU5q6<;K|;8du+FTpj7n#@W{zmw#dW`=ashbH=|LjDL3-|3(MB(>Q-CeT8sV zVGR!YejVf7gLT|J!-YNT?XZC!_wVo9ZfqTy{r^WAJJ*J&eDU_nd1wpG|6A(1dSR3M ztLSy^t^erlm*d~c^G0DcAz{2fv;Y5cw+Lq&%Hs2}2Nl?l zgLu9EcB^(CQrd#O$h7mW%KtmXf1mi1t;fWlZ0GJEJGI4HAG{q73+E_~<0LxxwWEgK z^P%{E;JxV0=;Kav_mZiF!sAz2Yo7x$g=+d~@+_+8b$Q}dU>*Z^KN`84xD%trldPGb z4URh0BY_4qq6wG$<_fMMy}~#Ec?)-OAIZJ)Kf2}ho|q@QRN+q&eyQ-uH2OyC zf7~;V+4Ws()W6z_;filCU>_y^x%B$A;0+ljYch3PhXoe)1p=<0vxg z57a%!>2XY=8z<>C=zF0KMI0lKXT@jw-|Clm#$EjZWk$QQ*pAjRB;|zH#dRy~-|}(l`H=`G4-IRL`Y^a~g3T+F7!C z;mi4d=jpHZ-^tYf+oZ|fFU|j>_q*p3;@&@3$hh~x*Z{d7RrI=Z%C(C* z;UM>6G;%j_CzL-8WM+TwXkV0n%Y!)w?in~K?~sGWUTeq%nlUtu?SM=oh11w|%lv}J z+VS-B=*J}t^}i9WkOR%qBN@;3y+Pi>ZQR9uJj7!>#dCyzreB9)i2KLw9AkfQVdZlV z7HV%yQPzy}zWPfe_+|PZ{q~<*V;?}{`vaH$NlwQjeY|JJc3khdF8^Pa25y^!&K=vN zY4jqVRa5iG{%NQ~JrdLPZPAD(ob*nk{BArZVls*_4Kt9uXMR7r^@V$OnisF%+^cV# zMqj(W(qi+^mz#f1wz{wFnfd4Fpmz?KKfkpg6bq*WvoQzNE&AVGZ-#mF`Xl<^2h1~| zFF@QozYz^cc*Y`rt!xfU$YtobXRZOc3hnf6Hj5s%iW%auhF_X(qL0lW#lQE2ed{L} ze@7jD<@`hMyv}bnU=y|=mhn4=zpSseaVKYqKe{i7KjNB%Uc@v0`p`U8{AY^4_syJ- zFk1Y_ivMu&M`i7s4iJ`4%hV5SJUiJ4svE=~d-&Hs@^1I6UzlusVGO(2P4T}h{&&Qm ze}#KmAE*P!gNSoK50gg`_xa3>ORtxnxlbZZ?_2J_k9|;jjXC_a=JnT2kpGcD1L7W^ zO{npk1e(!?pN?cR$8qm{Lccb-m;D_XJK-UHT7CQ8&GP7W`JZgQWBmJp@o%#Ag}Hb1 z_M7Zve%tBZxPQfG=e`+|!cO5ds!y;V@;^(@>_6%~&eQwR#0K6t#XBO-A^7nmdpPFCHuZQnle%m;gIj8O4 z3cus${ej)td^8Yz$0J-#Gc%A>XP2*hka`!(*zH1{e3S&@+@u<UTkn>wx?aSeaxnK*|~{fO?Z+6Tz&zc)$UJ5n87 zp#J|bFHH2D$tc1!RDWds8D`MycdGwTOfNx`y08&(@3I7D^P7Wtn2!Zmge6#p_^oyz zmX|BI~UMg5O-e@^HZ&Lv#K4cx+Q4Ba*sMn)UneR8nK{0Qv>Mqq@U+hU;lZ| z&$6E8jNo@-v^`SC>06X4V@CeRoQAB2IgL~QeNI!>zt5=|`R6&cNB%sgF6(hl{kZ>_ z)0TBNr+xLm$w{Amo>PwItou1Fi-&SfeKeHQy7AxUj1t}$6kLTu4;<$U;i<~9&YGrJkL%EDz zzutd~74%ie%&T6i{9Gt*E0yp2zR0OP^hHkHu`hD!$wbQ+ISsvEvDkH>!V6weW^OT!q3e2hTyL-S9B)xF$v$doX9 zH@|G-MO$;TvcKh`@`r4_sr(_^x#Jx1&h6%Zx4+04C7dycHrPV4`ofExDvYPst6$>W z+sX8_@$n|^IQO=JjC**NeJFh{_J1I*|0{A|6(JrZcBRX!b1KB0Ms@@1d$Wv9HZylUGkZ}%!+lrf## zm0#YYOZm`E_AFN>kiFb#vhNvlfik1DKpyg}C5UzBGI9mt8o+LOq(}Z)#k~e`?O)$= z?VQcpIrMe>HeeIBU>jopp^S`cfy&7}sKAhVCo^C77wz}`{4(u6bE$WaVH+sQwPszK z$MJZ7jea{hu<47O8glTV^g%YG4N0VM8fVdZAS;|FU#&0er(ePqbo;M+q=(dc>Eng+ z`H8%6Pyc3$`fss%0vY@FA@$!ebu1b82|ehy*Kh;3a2t1V9}kh4|Cgt4tuF5&Q~Lb9 zWM=%mRR8~p_JKO}6xq7k`1^L_?`#Dfi1YsjN92Xa!Wnp&8=jJ{+t=#s=iK3+`$oT* ze~?Qbvc_>3xtl$9m-cX_cg^P>fl(NPYISNA3hDJ*#ciX0GJPWAp23aJ%rSUmt%3GR z%>nU89Wv|xy2QUq{2Rodoa{G6n1&fBMhRwP4w9?oKi@Rd&i0Kn`}%Qb_W4&AH{TS0 z;hYj)E14PpsMS6?@^btm?uj%{IP1)QoU#LL^dy?-(FPFr7>zc76u;9ri;2?Pkny|o^nP5zAiK#Ga-bqBTqAGb z7VhFcGW$PoR{m{gKbUQv?L+o}Ed}ABYmf01&k_EGvKzyYj}aJ!F(|}%OvGdqVH$?| zwa@SC)7uAV2KV3?dytSNn2kATy<;s1Szi8Dm`^UitMz|N=yC7K%=*9M`C%D%-vnuM zmNHnlDe;HYhJ*dE-c@+D}0eenV-my0z{Va*5t^RoJ*fzlOe+!7ZB7SiXylG@H;@P()9@*l6)|J;!{zi>`w#D-SD^2@cf0HzNBe$=XTHwhzaIy27}e(LRhj>Hl%CoD|508z zPCtnzby1u{-{77E$`)$>Emi)lWQ)*dsBzD$_4f&SX8qqH<@W>a19fi-ao?WwW&Qt) z+6V4wLlP;R##s!_&JE|ufoW{~FaEZKvYq)`1h<)GN>y10q zX=^;CKSz^sfX3zOe|`zqYP>_Ocd0{MC-9ff-#unt{Y~i|!;p_J=l>Dh$-V3w$c+DM zL!`RY%}6iQ|3~v3_5TC){|oiMHc-Ysa!&n!M*Z);8vjMD|DDiZBiF+};`FtMfIA=_Qzr%=sM3gVZs3Z>K!y-aay}@tx!PJXFco^U2Dq z_M{~jp^@Hn^JSZ&fvkHVKVD|9e{5e7*K4L5e?%SXkvL!uAR5tR-rh3ztiUR)!8&Zf zCTu~n*Zil|=0B}B|A|bghkMC1cOTiTt()0j?V|KqtAE&K4q%lzIw#BlL|L!(9mA#H zvDPjMuMFuW=0lFMp8u%x*Vl~;XO(?>_*cYhslu?IJcz?+eWsm49>+=4AnxrD_jpa; zFedKXcW?E-@^40_{wEJI$9pSV|_m! zazDmXJV(v&ckEAN5BzcOg!<9%ghYY8?~U&_q6y6--!Z@Jop6f%wDrO};_^;tKl6_C z{SNz|wfN_p;m*JNs&7$ien6M`0Z7yPPWX*A`r-eP$1n`}=(sG5Dr?Z`J@L0s?7vSR zgFeqm&k{zdu-sS3Z#*VqGKw&;;+-&!9BeBLGst3;U?_|Wv&lJ_hxw?S`F2=9F2WKl zL$z`Bs!8T0(Cdw}*KKAeuF(hNZmKdjpv%~KuQ7D@m3{OV{omFL*2uc2-FNMvucPle zuAP)C4X6`(8vN(&{(Ij(O~$<#YL3YNs4I~F^ZX~{{5ND~{pn2Qyf8Ll3$~#Q<=BG? zBqz!LQ-wcE_()9=KGHX(|EtpfNAkaWPPwO*Y%7&E$&Lx~zh~_i#z7oLJVWXzS#?Cd zrXQ!DL=EcX^?G?X@kG7(;$`2UDY{*2MjK-LH%X>&8fTHQ7fN5Bj+2hL`*8`o+v5J; zxf%Q4HSQa@g`vCV!IO7!AA`@$fhS}7e@s5bbA*2>&7gIqv3)WhBQOfD*8hy5$3A~I z3hCp~H=t}#CiEhXe>ZojpK)rq?}N6nzE7U-gHGQnNoLMhTkrd>_I+3SzIe61a_6$I zgo(nPj3SJZXQq)eP>h=C>=(0?dl!5^B(D2@XrwnG?%6X?_I4<7?_kPV1ol{%9d+p@ zJt8;EqtC}szH~}1!V)Ztew*Gl|IPZpSOyN1a)MasB+{Rx0#1`}Ogs}$eumPK}1=~=Dq&l*zLH$={{Cl|i zeXRN&nf-tA)bE$oe>jC!{POvLaZkW<;p{;L_M>CC{%;oB1HEUouyL4v6n$IOtsB*` zdFomm=QnUXH=HB~muZg__!cvzw^FtZehDs+GbkMJm*U(OX zW&gXueG9*0|I;6@MP{91sqa6@_n+$ff9U&vpl#zfcX1yN@fc6>9O0Jl|Dp7WxVKYg z{n=LO6KUxu+JY^MOI@J{j&*wmNSN|E0BKkq~CGUFWJc5 zME<~-+V@u*TbnyF96a{*@cG8Chwm*OZGXjole2&6pXK~y_vOU-+lYj2wsAruOKaQ=H?JXzV29e#S%eu(W~3CH(JJ6Xk{dH8$UmhXmB z``$Hn@LQoRYofJ3cF@~BkaET zjZl8PAQbuiwr4G-(qIYy*_eYN zV@~tPxc+ZG8TbEQKrX@(EJHl|a|O8yYp@O-$Mm0$WQPs(p1t}{z4{3BEy(O&won^x zskYn!?f)qSVH^K4lw%L7ms>}$v>;T_>pwI$yj_2rei%(h?EQAY9&lu0VZmQ+|4%iS z+CA-L#|7)(>6!NbFl8`z&pGyiGwcIMqYo3^a}Xy{g9MtAFwsFqHV3Y|L7QJ{lRGK58T%^lYIg`d7jU|_mQ#{eW+ZiAMH8i zXS2d-@+_)%N+3Zxxju*~EOhyqp)b;I$^r`7_&RyL5eg?f5 zne*?au)!g&0ZRAhhDv#?#I@O|KBGTC&O_B@b&1Vw_-_|~vX8r2 zd|RG~KU&X;zqq%HcSpPU>kkZU(FWJAj_vHh68&u9uS0rNZrDJUC$hs9a`zVY`TV@F zjb4T!d-V*>)Bk>?4(Hy33hYPb4Bi3jqUdo?xbC&)WYEix=Z3yn^7&F_v_3*?OB{{< z6}jPfl%Y7BBx{gBGwP(jm)Ol&+YRqRUaU7g%* zWcy~eqvg>qRS=S7*WzfGDq#07(Do?^y-x~4JpXl*=d>Y-6spZdj&;CkdR)6!H^n-8 z`gz1N0UF1uqeiN$)LZ@hF5wEU;mh{>8{D^W8=3t#*$eN|@8cmJqo(Q?=lk{Qe_v3i zURSrGk=}GhJ3>3?sr#NI{3~rf3`0Ifz*_9kb=Cim9%($b>3R?O|Bw0q$!2wV%WCWY z^!Ho0>ub^5*BgHzJD*4sGtILT&KMM8JUW(Ye=Ib2n%;9l9sZGV0D2MnYPCQ3^^&P} z`~L8ofuVn^hM)7K!{?xPLAfsD3_b^Ka;^%KZV=uoF`A-AEO-o046V0l(3<1WW5 zyFlE7zL$NVW~25g>QIkgIsYb66889A1@_}04&x|}Be~Z28oGzG&m%QX*^sAPC}961 z|I+z4?t8sIAH7q#a8ejGNT5>RqM59kuK$5HdJ-wbvjO560SWDnxNrBX{dtGRX#bA( zjpg-di$Cq&^Vs#YM7e2h0sRuL;2H+keI?{dO9N}Hz2*L^?0>i1a~pSY9}n>uPw^bd z&DvkveP^=gqCBk}@4YFHU(o(K!~WC$U$FoAUphZh_E_5&2EEr~^FYb+F{NP`nU4_| zg)u0^cud4(3|XsCMDExw-Wx-hMvrq`ipi3AUA>WBWbcLjSz$K!pgjcVkn=DfyRP{@ zkFA+MRvONV#|(Z8un5&xOWFTQ!xDP^Gi$RSm4;>X6=)i(T{ZH((BPf~R`F{+@m^R% zu0uz|dtn2)3GFS``hRF$I<|0cLz>=)6nas!_`OiO`aN?L-V60)V!N={dPbM^?bmvsXrs5I!#$lF-_N9- z$^p-5QKz8#!TaI3aMSvmRgdDjeD8(w+s0z~H`1GsKm%HDmV_GqnfV3AYZCMh>*Cv= zl!Rt_kG1pNE!L9LljvLO-4=RB_oPs>Q2ddJ|4QMa0k6;hIxbE5-D#Y~dGzBFt{|x{ z>_V(#dXSRmGwpwRADUl$sr|3MZ0pj$MF+i8+q3mfX}Bhw8@Pqr=oqj@-rD`U^mrz3 z_pI!2pZ*Yi+u8omyH)#fqO_w8mg-c^#TUS{*;9(Zc)D>)t$F&Raeh8ZYE-2bP9 ze6|12Z2BC`!+-1kKXL!T`F_6ui?9UC5ZC^#Apd{w|1$~aC5$;Ia7>0a|z~H9bFp7+O;*B8-F&+~!8AX_e87Rh3 zTW%;JXQM`+|MmQfTIGkl*?>lR6XN{+IqsW>`B;EOSb}9pu9yGy6T0;wdyt~{7AX6t z%l~M;F8||{`&w7a|LUrCvICv!pdGzAY~aS;jpalec-)(Qg>cjIUxzw)4SgMY)Vb1t(*`dnyUn}=%Px9OKlszS`*LcKMa8F*>9!`+4EQou8ZE?>w zl%X7ZP=P_;dOsQ0;T-}7yr`9?_7`_Sxq3r->KmDo1&<=Ez{{r|5C?*?w+Htym+9%AT< zJ)p?g|9?sjp0qbY{^;AL*A|)i1fJpF(zC+t$~1$qM-5!X5xk9wW{67FwCd5QdOU&kapInMX@eYz+4{`chn zXR%%HI=v6gANu|aeSfr~ZKk*hw}b5TyUM-#g2LHlY&@R-ahhK3Op+@8XX*8a*njrf zBaq&Yrf2Lw)`>LiWdFe>eyzvk{dw}$?A*|?I44};cMX~SLpJIcm=wCdOhc61}oZsE_J2K7PN8T3ZUEIe*?A$gs zJSLxFm9$$kLH?HS;vQJ9?U#@AAJBy7?hF5~yo6yGT428^as)M4S?YCdjJ6hI-wnpV$;t!T7!}4RCdutt$blJo;WjzwOvk(AeLTctRE~50-qe?Eh>U%YU-eb* zug&qCUjNAZ-_yst>wlQ6PCw(j-t_(h-k<+}cKw0>qEWa_WcohapWkNIKaQ6+=_4=- zW02f#{KbFRUEn_;Q@(NUaKD>n{{b{>54CLe?cLW(wk`D^%=PX4znx^w0r}&IGJu`o~)SO=W3N$H8V%~2ctzqY`_-mUSobh;kb~Lr@HoOe~~@%R*L?5e0MAR(?abpyx#xu zk@god=da%}hyR+kg?evCmHH3cgk6Sm44t*F13ADpP(cnBTO(k8!2akbEgd8eBQxL6 zw<(`psEua~m)~)mMBi$0K<`!WhF9x>YFta8(i!5L$Y!)5iE3lwRaMR+r`L}*{*BZ0 zvuJ96J2avp&-gda^XtbYT)~&e->z}rz%8^ZFE@VEd$;+<*R+ASH*?n*|F0eWrTGQZ z%`Y&v-)K%j(}Z`}NB-jet-tj9?cDZQ30>FO|Jb;DkUGHrhcq(#Ukjr}n5WQ+w&CU$ z;MMthned%+Gqh-2@F~KM_>7ciUh-8{3mXi6X#oXS8^B)bPELzZ(v$pAz=t2hT=^?>`zD4(%+mc5SM;0Bqm~+0Y*SR`}Mw z-wx%6emm?OC)!|o&pqTlzPasOt>&j&k4FuZHjBhwx3!v%iBb_xFK!*@4qp;UCkJ>%SWQguH@( zj+?jz%MQyX3+G?cyXXTa-wwaSJ-Eoe3={q^^xK1N$Td@9%l;jnKv$})zsz`o^#gxS z|K2F~tgwbLWQQ-fzv}nNM_&yE*BtJ>`Tg-5q3mDc-=UEEKauZ{U;Robn~E{`5BOcw@_(0XBL91`T{-vn$j*(w zo&ER87Pbgmrj@l8Ov&Cy_TCHOIQgH@fUdE>ll>3Lo~5I*-x(Il{;qc@A%EAm{2$3# ziozY_M)Dt#zeA39Pbs;K{M+RJM9y{Xf5nH~jy)**JLFdWOUd8#ZvQjcQ}CPFm+1YY zen0yi?!ML1ihS0~R(!`hl&#gj+id)GV^;Xq%?a7%Yrhh9?rpR;!ybkCuMZ^&a=;RpKNhc9P^BkJ8B zs(*i^{5`t%4g05#%Kou?euCqhM`fSrdL#VwLu+w%PR%|!f!%Q`J0$;~wX2^`jLfcG zI4V1yPt-C&JW?~WFP6;A_WEUYy6y=y#V)*SXYnuauW-Tjw~#!cZQ#G`gsP+LPh8V9 zExVcLKjqh*r;NHPJ>0Vg%?o?aTu`^(`9^lCKwX=q-X5^W6`J+yTg(;hu>P~ty=_nI zLG!@6&{A#3GtSW?YiHUw@}fB=t|iEZb9v#X{44YF!g0?yG0VJyae3iq+$YJZ(e}IX z4nOky_sGTg@y)#Olj*s}$+N?;t9jw?^V^G)-g(+@#;M@yHu`7&yMK#+hyDKZZ2$io z_`dXikh@7<`~%m%gCF3hsEfGv=hE4)za@R6Klg8DUu>S1-9MhZMUKE4ESZ*lu_Efz zvoDUCp51>X%HPlK-!MM=;-$Zy-9L>!k$-+k_Qf^tXZMeJKl|d0C`+?1p8mb;{y8P| zS=s%?zn6WnhIc0oaANkw z5fiif%m0?&|1H<~r}!t_^VIWi6=z@ERGj_S#o<5rJ}ag1J-9gjxBd2avg`O2`Ck1e zz3*}N7ynlFALnuxzbpL+Z^W$Zi!0vC?)Nd%rN#mu6lMQ2*L#$yxxP_X>2GHLsW1%1 zl~wUK4WjH6`3KUC=7{s2L)m6}Q?K*vj{J@6hN}GV54h{k{bqKK>t|j6Yvd)8S*&ad zeK{(##$+Go_f6rB!%vpyhaWG@H$Nml{B`ahEuE0vM7E#}N&Ghc1efsn)Zfbfr{p^S z^&jA~y!`Opjrn2U>in>k`#W>TXRq-7duRS`_WwfuJ#6E@f&4=-b(IC*WrydMtwfOj ztt0w0-`hRE$h?8*HrCf_en*@69e>K*G2HwQ z#Ph?G3d`hN-=F=J{_PT!G^h@M8nEN^8U5eE@38;D?=~&+N914q=1JB8{PG;(j^Co*_nWE6kAHBB`p9o44IKM; z7rz^M>z}h9Ne*Q!7b-){=lJJ#M)!z>Z{nMXKsP3aIk-j2H+nk06y|y2SF;uzDsFJW zC}@1EB%8i~Hatjjj;*5q6)d_L^rEI#q5p*aA-;e57KNO*T@<=fio;flf%CdchPJ5E z`BhSuwvxW(O8%+4QYzD_uh_p(9l26!bX<%1IAdpH;!3Hfuh+o!ja+Zy`r~)ww-z1K zeXGPmU#SH-8oWZReL=i0>%Yj+Q1tV&vGd(@7&#+6mHr~n;dI~^jebDHUjQ^y)zM2O@WL--GHh!o6*h(0=6DeA1N;3i0dhu~*W=3FJ^yModG3YN;f!BPd) zm}~Y0OKn)N)W!SXKUnIK4WaC*2uBx=wyz1<974P32ocLN?c^fuWB~0VZKI8Fc4QmZ zwIdzaJCL0bw5$3M-rs*dGyei!4w2q~5b4X}eB}(WwF*vA?oIopE8@+|*R?mHyU@jh0}w!7)$VE!8v9So8g+T3*kv@drD z$<@dWuo)PFYHkF&mzsWIE$1u#xrmuzm}dB0)_2aXkoPcu1n##<|3>Cr3Yd3k=f6(4 z4IDWnt;d685%ZUjBSG>{q>l9z+Xm`m;wrc=NJ5Zn;Bx4R<=I|DM`R;&J~1nVX+RBI zM`;Hb!|q!l?;s;-XZ{NwgWo_2yhgZ>A(*h&09_1?mv__7+@NyiZ%~?L%E8hN>O#Jg z_qnsH7zgp)lio#80D36Vg~)fgws@9uU4*A1#NX^Sc|-k{2lUMw}7`%#;*MO7UQ zmFmgOsvdj8^!2I^Y0O+9k8tf%(71fDWFgDob1?I6R%nO0pD@-#_5vzm=o(QD!e}=z zd*OL_5nh7hZ~{)kDfkP#4e!DSK$l;07CwV7;45I*pwTuSk|3mc@gZfIen_<}JfvC| zGsJp2gR^fBh`suNwD}I8AACR@FhV0<4{3co4O*B>Di+)zTLyxN8$59q%$OY!_+F`PauCCJj5!%}8D zEalF_Qh}`W9hNF&HTIhHLsA=iNb155iIMlLUpOQU(71GnvH2ls!rVN6NX(Ik#1ef- zTA(%YkXVs6uCpWCQV&V{zC+?5t`1};>Dq;KV(&)w;NKg4i2WC&KXQQU2a!Xh^Ki;< zWMnEsMwc_iwU8n1r3~>*XNniI5BIUj3>lx!pdcKO?8F12-E}~6b{>%2qywT$J|KBZ z&q#jO0meVfYhW)-IlzC=pOa$38BEVfNgwC-L_Q~F$#3N#W)0*$^IOUH{#Lp$kHYit z5}bnf;S5~0m9YhEfr?)qlpBz@K>2+K+9njx(PzLTi$XYJ* zDeyA90)xLeC__O9DG)0p+q6Qo$Q%c{@GknlkVnTq9|{&$h#m@;82>^sW&@P4hF%I~ zbkxhCg7Ir5RHX#)-wXbOfw>myG8z9uJ>~{z#Lomxn47`uLf0EwjxqiP>-5)qm+Y9^ zpnZuo3h2Px3I07xPUyzm1HCThSD}9w>)SAx!u%=>WA^W_{LlVO%pUOK=YuiKhS%XucnjWv&*92jX?q|F z?t(lhgbr}S3-AtH6wka0JP1F9U%_+088DhWD1;WU!wc{-yb78t*it#f*2@P*4>u+TY zsLJ_YO9ktUl~9$khWuYc{?j*xy394?{~Gdt4f)SGUHF-x33D@;U7RBZEyq}k1nV@q z*I>uo2JK6%k3t9LPUynV3Eh}`px4FvCiL%OeG>*#Sl@(U%p)+G$@(a`F?+y^pAW_` zkNfSJLE?ikeUOZs=vQV0q0bk@dPb0VU~qqs48bsrKri$`KMX(@VVuy7xd+;lg2VwG z&hR;Yw)i{ zmSHasroS0Ve-l|8M|p%2D1`#hLm?DFF6bZ+@<9XHpoJW`_M3dua2xyz4!|MMLLT(P zFpR;g@H%`7U&48a+Af;!z=QBGJOPDJ0!{D&yaI2*=WrfW0^c~Sg3I7ah=Om!ci=8~ z0-l7Y;1Fmb4@#f{YM>sPpc{S$ZN=C1jQg00ZhhT2{8P36D+&9O(u=W@1tLHi+{iw0;;!a;m`*ZHaxZ8vK z8OG>-ooa0^I%JF?=jb5L(K#H)Z;pK$zw=AR$$#)m*5Ur>zlJ&dKlvs0Gk36N^GY#UOOdHty zb$BE8v0U67%=H#4d6FH#AP9AhmFt&q`z3Qe zR|iRx4l`@k{lq&=|7@&_@n1}cTsWVRHC}BoW55rBM9W;zueitPS*~F{*qF{9t-Z)h z){TkVZ}#7B>`v~9e-jgT7rs~9zx;jJuf~5p{;aEv-ACL|KSNk(K6;VNt;WrZ{}TQ` zVZGur{LkUf`b;x4O(UlW7ett7=EpY@=d+j-zjo7pm+-jz-|b8z&lF7f@QcL1KeRrB zXT`4NTEG7sG~w19O1uGIKjYl3#D(2|X0^XeoH>ghZ2KnxrxL+=5&~S7G>55L_ zLEMA&_Q*G^z2jQ@VdnH9Vz*9iCiIoCOf!^L%&{bBs??$3Lp zgKHk;`WFdfB)mT^z6Wg;b_05xm^~t-J35rCCpGOyZvwmaA?DtLD8IxvKp8XkG57yV z+GyT)WIN$3tZChfKhM(19G2gH=5hc1&>2`uIG)|Pp6hfxR~l)+Gx+n=|Bn8;z;5Ol z%LtF(9N)A54E#9;oO28$=NL3zs80->Nx6;ZJ^uAIM$URX!*ic`i1PnS*bLVZmN=Vy zgyo$t(EJAtK@pz3+~{Wjl%aO z@*MUv*U|UkK4)$utqZt+2KNsasi0o0K0&(2VxJT#A?(;o=r8`9vp%WkwD>nA5l;+y z0r+Wizs`rTmE0HmMc47%yj#<0(%=N~?*BSoe>wC2m)XcOoFOmQ6RwAER2zhD;eA(2 zuUySJsO)jV+>}cEd%52Gb@(N|r~TB0{=CaT`tG<|v?!{KANhu4`s>KS$glH@J@#{F zBQLZQS-4-wSJLl7{_);=zneb~`5ydvwBWB#|HAY0JuO{9JaHh}O|3$X|T8^O0GQ)lt`qVc1)^=pu zGWx0XxgF3k$vii7#i6?b-OvNQyV0M6e(?Vbb8tWUH82b#FuEK49B_jN{{7#sf9v7- zNP{DA6pq0JOu`gQ!wk&A*$qnOkqdAd&cPxyF5V`l<=bQlb9tGPWuyak!Y;ogkKJjf zWEV0SM*D6P7wpEo2T~vvb`y3lav$u$oC2w^57HnV_Cp3_LKb9$4)kDva;OG>oohs< z5!YGF=|~fH3)mn4doYwgUp6d4BL5CM^3V-9H#^8*g#5pY5cW4SXg z?NCFQXRH3EX6s&6b5(y=b8COEW~+wPY?(>T<+iA~mH8@y`$fW;(E)X4dyz76&D+Fx zW<#wy^Y+_H`>v8S>?@gzb03|SHAsrP=1L&RHP^z8a5HR&Z^L)t9(Vv|HP5QE^d0Bc zKc%#ql`?C-M9r>T$Nkr+xht+w4-@9rK<;zSD1CeW|(&8O^iB09`cA zgAj{34ro?1Prw1tLIIRO71RUOndT=DPuK)V$NV_=O2nK5RF4{}1`XAa<~gW?C!qqK z2C4zgNzkwco}Eg&yodfT?NM$fIvJ3MIUfpAE)u?{$qF> zDniyvCHuCk&awUuHBbw6leB?QpRisUkd3VCo1iI+wmxz_bv1Jo(2&R+1(+~5!baY~ z-=8a|KT|e&kyJ)g#-SR&DyWTQjsx`Pc*cc`qzGBKbdebP(AC0T>bOWsT)Z3Zn$x@+ zQj5QCl6S;EADK7pKRdyHh8ktlM;QelW-p9W7mPt4=3W@UuOEgm55kCvG7kQK2e$Vy zH8^ zBENtr%&VXYvj&ENCQWl5@_?pL(}AShp(#dQhP)a=_@+N%F6?FIGjdnZwgpqJU^CnT z-+_DK?2Y_G7MTh^g$kIv`{}?2vrZo?qjUChjHuAxo$sY z@;Szr#f(9ld9HSn+|9jSWSwS$`@hb7*I)UrJ?O1;^DH*eEKv^i%q3co^NWD{kfK89ZkY{z^fl$$S- zPq;S1ABH$H@S7lgdU==GlRE-uAH6bg?k`&d`Ttko?D|gwXYYJ1aPH0z;dg-pgc*i2 z&wdnm=J8JhU6|+n_V2zGc&08oaCWdLaQ2Scz`27hfpc}3wgC(Lo;ThxzBOp#8f< z^rx?s!uhMDXk(-lCq#+?b4l7-DV@4f%5+yrc{1mn@4Q4RS+lJ|R%5S0)@Jb!KBN(Q zJ+dL~D*k(WiI|`Xn!$YJ60txFw1U-jvDm=wxLDdIIG=x!{|_#+{~y_jy=$8N|ImGm z{r}MGV*fw%r?LMZ2KTc6ABGcH|Ao;o_Wy&Me&GL2KmIe);_vV!EQ3&7H^6KV-#hl# zU=8+L;a>PT9EKX8cxgU|O9*=@-+0nW>Sx%2Ibk#NDbNZpf$LhO|N=29rbuN*4qFIC3U|B0vn zLtS1&onDKqOJ}T>@h|-+WFvM{JmWORdCf@k1bTW?=s!`r8Yr>Wzp zH~o9iJE1E9-D$Y+ACE-p#+}rW$zPu>I*>};i2XnR7s;Y--9`TgF6{ryLO*&R`hq-z z{|r?P@9zlb8w=pu;v4M%C*Nro^jO&EfTEiv<6<%Iy;xdLUo0(rleYPb#R_eFTlSQd z;v(EAgA@k5@P;vU1^hrM??l)Vk1(vN)zIf(xVav1w|!rcu&gnsZsIauHX zWSr4AZc|@GbZO{EoWdy&&3#VAg|R-9^*`@Br}1X>y?f<_O17Qxi_u>)=~(KkS8P zARp>Mh~pBt24dk3`0+~0EgT^pmfJOvA^!Seo!o-F9`{&?^M}FjFSI=`Z=)YiTjN3Q zq+ig;IHuY&6d69R7&?qm2fZm3~s!U>m$+=Kil z;qA!s&Eyqf-obqfG{U10&h?++K96}lG{XmQIUIu)_!zE&<6wus!!n>MpeaPAAOiul z1x*s{g4^H<_=31UBTOvj)$lI%SFx8sD%Who?GpF^_bJ@U;YYYTkv~Sx-F+#2XZT{B z%#Fgwn9cADc=l2`^L!|C2Jj5#2cRAP0;Ktw4eNxZFb%)w(X1gpR9iHsFr%iW*@$@s zem_I5Mjk-kiu@*YU>*ikSr~V$<$nL-nK0%|Ft3Dn;j^`J#tU!5ao7%P;g|p7KEmYk z%pbru%=pdy2=kp_g+ZS2CGg8SI0%o!eXt%rSWDe%tQyFEUZ` zkp=ueT_2yw_%~6Ckj2;yxR>BxiY!Y{l=6&3smMx{N@NxGYTRq^uSM1o-WZ=q-#Sqm zkd4?)xHsY7j5ME46w6|wv@9n|E7FSHhPxgAHe@^D9r5fV=lV`$7j`G^-T3z)d(-*9 zdj|h^&*J~?$U*EwxDSUV$_R|cC5j8&-~n$K|DA_17zYjichBbCwY+;y=nlyZ-yyol z9g>I4$6gS>L-dI|q!3wzy%=``{w2s#>}44{q@1$^Dv*`ft8lN5*da9`JERus5_X6Y z>M=J!BYq}m!rTnzr5$2{7R;?+#m@$I%x%z~utOZsfw>d9@N+^p<{s$H-6@7o? z2=>to##mYCKqEcay}0}EA485~?;`J7+N(N?zM`k{`+B2hxn) z5=?%P*R4peiS)FQo?JhU9L4U^k=_Q<8#y>be&9Zg{|K@dd*4y=Yl8ej7Vo=V4C%K^ z39>Znb}86-JNg#4OChoddoJ!e{PU3c*fqho3;LR(Mdn~{Ox-S~dA_I9d{4+a?8cqj zSwGw^4ah3jcGeHKvwpap^~3E_#&zXfUxBO)NRa2LgHFL)a25_wKSfbrG9|5Hn5=mS zvkCb}@WG4JZGWL{`YmnID-eQxE8GP?hUcIh-k^Ou3n7G!f_S(aeh5!PHdMivfEt|U z3fKa-!A`gz9)TZ08dO6Qr1Fdpuc1wV+ewbDRkSe|a~Yw&vk_bS@r=dkBtzmj+^=2^yw zdr)(w4CO}1aKU>rQvB|Px!k@g{ue4&$Ux&&=<9wgKI<9Qbv}`C>uDL4x5dR_B5n@G z@o-p^^?4DStQPxAte3M1;vM2&!8-(VeY z{~Px{!hFL0in!)d;_)kdW`j0itK=**{+Va|bDHrFGC%7kDM-3W^c$5FX0rb&ntuzj zm(YML!L2lsHH>}eKQnJ!fvn6zzZ+SNy#`r}KkEF9y_uv8U5!B_9tec|H>RrC;Xr1L;UA_2gbJ-{x6joCI8<4J8~NR zmnrrq&agib`JeM=nG+f#u5qxCJ_hpPJZbe)()8P;qnq@3557SfU4z>WWH4q%+*k{#2g{iVKzcNehtuw*#u24^q;`Ii#(`i zZf+-YbUcFG&LJeLM%smwhA_nZ#UPBpFu1}=L-2qb{Qoxeg8$!!V_;!iZ7$~= zJx3_}L^(IX6^agfsI+0XBOUm+<9^{k#7Ji*b@G1JZqk^aMV3b}J`ZDj9?SR~S)IuE z9BQ%GfH9KsJv5{=lHvcuZQ@0dA7a`^dGaR|B-{(hj1Upe*`&7cvn32Ki7MZ-szjf z$NP+h4a%}!3-9#L)#MV9MT5$?1gUNo^?p0?iy**Un9-X zh~0#}BAETdi|nHcp{y7Zq^9p0#+8gSSR=0vxLOK*%u6OQPpM;`(!{(Z=F(lvQyxnY z1M8jIaP}M1&T4{{WFzw?XxIB_=dtUKQtp?~mtjJ@57|4*o(UAnhr_4`BB%$jd*Uhg z;EJXm0RKP7$H4y&axb(pY1{(-Jsf6eGqHCAY~a`Z>tw>dqmMlt(Obm-FU=k!dpF91 z#fj{)pu-n{E+6+U&q$E6MRfeI*F>Q67l!U1vVnaX^$EdZj6*jN*&K>%j@9@coOW;0gCeYCR{`LybW?FTV)?o&bih_Tj8UOX8Fr0?1OUHNLfvUFv{mf zNCYFi3uj?9W%g>gn7G!#f5DHT5;~y)df*IvkMjEi_#xy#2xU1Eo}m0a40&)F@Ai&g zQqG=)L(l@hhnL|)&=@HH)s%k|eQ=Bh<%UEe*uin0U3A9F%|JYXSIe z|M$`UXVLy6ZP@MSBBhObrrpB)H~jzpe@8ssPTCL~^WS?Tq>nlB{%OiT{no)nzFqpU z!^jcrqem(KlYGN_BiZN6H%mBQ;^i`Sly7-5K)xgm){suC{NDi#!+UTI`FKCv%s22D zyaJbz?@{m_xCS-@@FbK#D9l_&e!v2pfjRgX-iCFTlg_Y+`BPvBsL`O8mJR>FoWr_$ z?hxmr5+<(?ePJjlN1qr9p$Ll4vHlJvPzq(`=>J!v|IZ{rCGk}0Sbt~YpayC&*ST1K zXX2oqcpLgyf9D=1^y2*baLrs}-n&99`&Mu^JO2VsWB*?U`_J~T5IeMCZr{cEz{#A! zzmxNUli2f>%HFRO&IiW52lw7M&i9SyeBVU&pCxeiPc-NIZsdGH7{NRmfo@$SXA_09 z|16CCXQAvr3qcp}96Cg_E1D4UKa}zxN&ZKW|I;Em^o#PQIFAS&t^&g830Jr*?0?{V z#RbmspzSG{XHV-a?UIT8zeaSwoap~L(ElBxUFs9sDUn*tb$WEr4Cry`L>jU=|AO!) z!Z+dGjJr8Q#Im2gPFd`4%@nbwJ)msq4=DRy_PL_>)Skkg&s4_1dqg^SbIwRI|Hs+I z|8Wv2{|S`;m;sD9KQt@gJoy-kTm=y@{rH3G8^~ygg6rT0xD{@KRtxvG@eJiW zOEvf8ne9Bg&BwF2xF^rp!LvGe_IBQ(2f8skaqGfwU>UuwCC=DBhfdofdRs>HwoK@8 z!60Uj6TK}5dR*LN6fT@cL%rtz_qaEWGd+2RN8nDNTGHGN_rvWledBI*FY+PCT37UYev4r)_Kd(x^JS(Qqf?MF+-5N$NhR|=o=&lN&imt{ZrWwfE>a;jQj}yb_;F$=_KiJ($?E((|xq< z$ZqUCNV9{!L3t8uhj)tq{|Z+4_x}~zF#nS{uHd;Jg;Zc!U1Qo4EQgWJDYVtdN@()S z;D7B0K-PrPS3r*9{zo_i8^fqW;U-9g`#`gwz5!?<2Xc4QH-Nmm|AwEyFW_0I zfLdq$GV24EEa2q)lUxG0>pO1Kfe3%lT9_zj?csTqXl;V4YNC$N(5=5n|d5+Dig z0)7v#c>**}%0KO?)<^kA=3>`PQUA|S|04@d)BZ0~|1Z=2Ba5*ca4*5X6j?_2@*(Pf zuCGK^VXxkU{$DEkf5^IY^#5ox>a)=QLpEYJ;ogLQGt%s23^|1UpO3yI(u&2+5ZyE{udYRKa3`@ z|Ha_%!?OP+jQuXzlsy>Br2h}Oq(K=pLMOZg6YvT7|4%rGnc}V~0;&g1Gf>#!T=`5w7{15%R~ zB-xc!W%?j=41(zY21zAU z^##%X1u_4{`j0b6>Z*gp$YOPU8tXsMn92GNG@<|2%pPcSDC<9w=vG9q{<9O^ieT1% zlF|Q(XZ>f0Jq}^4|3C+H#4Hcvk{U6*bP5!bgJG-9tuHsIfgG+}Q-HtT3}vuJy>`QD%v ztY8B>v_U)l7Ke`S&A|7D>@x8^TKFEJ2YNH;|3E+er2!rL|0jZFXp#N@%Zz1@QT~_s z-oQ;;iu&(7_1}5wzw^|8=f#+IUg|T?GnPFsjhIc)lyY90!E8G(7Uy~T zAm?cx&(l7h7aL|fZf(eR<9X)L&P&I_dFecTUb+^~i}T!h&hR_W`JLyb*Kl6?s?SS5 zVFqAOe_r^%JoVps8S$N$QQdj!zw?~WcV0ZE^WsJNvd_yHjDvlee*p#4?>w>+-AKmr zoF~x=X2#Q&p_S4dKtB_@=w~{iBawb+H2qSfBc6U{7X3`Fzwlpce?A=J9EN@LOUaKu zxbPoruJ>}S58U)iJuu4kF6?>qS@R(`mVJ6iZ7AO%@oK{OE{V5_pnD87Yk@W3G4Kz?5V-++hV`;ZF9;2V4g`N-db6*?giw+G-^I1G8v2446b zprWAp9L~Uf)XQ0r3l~$zN5G}Pk#d@7WE>oX9H@jJLK-xK9iD`HX%8NRzhV9orr~Ya zgxl573s3W2eb51K!5gracME}1cmg!Eh1sBm9LP1%{_AM}^|b#`K%1_oZ7)O?8EF5j zY5xgRf-J>eKpfxX{VSGf{}*ZhPt*S6S3{UuWSxWYAJn^;|AR)%Ci)0XHpc&iG4Esk zKmGqQ{>Qy-hCcT^eQz7(-%0sLcKIm($p4K0XJ~KcX>X{{2atorKeWexzU05g|5KEI z!nlzh;_y!VYyO{j#)kss1kYXq-z8uEN&0Um4Xa5zJ&b@0dlBvdm|rH$iS6QQV$Hew%pT$88Bip6MGN1He!c4ipp<8_~sx9_cn+Jru8+Euo0pm24W!&{>(Lh zg-PPnB$NNU$$!YfoSV%0-$v^Ho#cO3fV@GNmO$PQX1L}x>{H<5Su&9;crU6yO+J*v zYU~ZjE08wiW@Ha?8`6c0NB)Vv&K}aC4jSMF-uYoL!*TckK7zkNC~2`4eho)pn?Jpv z7Mh`#@2HROsUPY856mEP2>UQ{B$fH!ea!!)GtZ0k{|nrU{4>|x&U2)JCfFs}v*@Nn z4&*{R?=}GW3+T2_qkq5DCxwfB=(zXM|LqgQqQCt|$9);yc>K$u0{=$htI}7f>T~FS z5T+LD@H0;JOZ`m0G|+EobkY7p6Xxb@^gk?&|Dk1LzqHz@hiMaSj4SO)12RQ??X;DS zYU*7R^)B*$zMYrhHq!0ed^f$z)U!J3UBdkw`=F6}6FE%S5!^Q4z-;0jP>a|7D8z=e=uZcz@E<2=%Aw|B#-Iq=|`iYa)%BF`Gl^|3C}@B?{|DSWt0#&6Pb&Q%%wxFu^40gXa3$1!TL9{GmLX_LfPAx$zH$=_Qr;v zmEN?o(uaFL@eB}dka>OT1sRTIE+U%oeFSq4vwZ)j`Tpnm{+9ye6yMbhj4$S?HrB!3 z!Tdh_iSjuO1C;eyK8-Bulz&7~CQs_r@wavApO~{_D8rj+TfhKb(#8j4yz{uxi!N}m zxWKKazXgM&!O&En4A1n*2w{5r`lXMw>px0Afplvoju+u~*HI_IIViYRG&=5+1~K@> z!t_tfivJL3rXS!NMRN3zrV#SsW9q>(Jlki;x_zW~SigLQd3u{!RV9?G>SXd`C;5>| zex;FLP?17@fo9n&*;9>5yU!~*N4=6;?iHQMD|t4rF=tA$> z3Eh}`pf?5mf77J&S5MOaeO(6oCS?eQr%%cVj4qty{F{^FUOFir@M8ACnCqmBgJ##1 zWP>(kN^&3VvAOiN$*G~fTU3^?Cp{6Ee6zsdUl zUu0xvMn>mn#I-mh?&TTU{~7V}^FN<$27R>|ImA;s>^mj3>8GSB;}m)@r=&jh6#u_mmKE%0t54ffLRFE`$_Gc--0==7C|173wf@Ca` zdA}dg7iRx^F&oAVT|u(Ub-u+y)xL3D9I@ll0iB8C)UV^>+%qoSyT_Sd9v5@OO0h5* z+CsS2xB;;e#uhy;_Rs-oLyj&Ch->1HoEI`69#@EX>1+EqRCg?CHS4IH&z3Mw`{YAE zbDZ^=Kcb&G&iu@{44)og+%V4g(#QDHCxs{^7e)J|7=>$tkMs4S$D~xhTGRq{PH2c| zZT|TH&LzuUDLTkAaz3SVwbbqPi4p44Ls(xnsYVtCOrc)RDqw%j{tzh(ACvO1W>pd2 ztSUpBRaMBCR71^vpVWeOG)QV`cU>=%hL57lbRW7*Z1Bn@jd~L~>yrDg0IDhpL!QOo z9mbe%GwJv)b|K25yEOp!_zQ>+~eYi(~|DvjvCHPfkTLhs#pHbUw?yGk0qxLoRGJ>w(#;h^F9x`=;b6@7}; zj15AWYl5fX0H8LZIS7YA3*}G?^({P$M z=%1`*j`>aGsN5*7;;rH?xJlf!J9&+l%kgKahwEZR_xR;9g4@ebAm}07xL!^Np({hR z{a3h>=KD@~1fGE+*v_lm0e8Z8;cmDOtn~dJK(=JC&PX57O#j6K-u-Uzl@H4pa@;m7 zqvuA&mEjh*@fGnP2lu*VDBUf?nQrEjRO9ZuGHU5ySkjltk34Qj1#( zK%X=$g~+0eVaW{`WjyDWytG%C&vMh>aZ5JOp>?<=$A&$d{%@#9wBaL?6W}4dM|2xU zBoCRN=#hdDkLWQMMtGQS^GNZ2j~KE%Qj+G8(tRE&v$&)@+9MUm{v?&is*N7%{}HJ{ z)-H}n-NK*5xO0T@UxR8Oo<^4k{SOcQKaVsY@rXIhL;tTzwe0dptD#m|xu0#QR@oCg z?9m)y{ii`Wc)pIK#BmG!T7`61t}&S#Z86YXDk zfhsWRl-^=x{o5)<)mACqSfC7X1*!yDdfH0+XP5G1t5oc1m&zooR6+ILcBw(uW?7|f zmsO0I>r<@Ku*WKmaaJ)UTBRw*D$UVWG4HjDW!@?+At$62X`Qu-EudZO$hP=)X^%O< z{8u~rZ@H@Th*i2Wt^A+CD&54>6JTZkyH)yj6{-FZs|-vOs6p;Gv{;~q2{&@Ao&I00 za`Aj_+H%i)f$}EnlyAS4{;yTWcUmc+dX*iZS6XDwjE(+Jo9H5K!Z8<`{4g8!vrY72 z4(9)C@+fYPg8}!F5Sx?++n8^)p-*j-iU^xjhTE9`Y?B`mre=B){U4ju5!QIlA@#_H zqYi0Ynv|d5-{jD#X57rXZ0M8Qq=k4|<7{F@+9C>-J;jDDiC(oQ*m!@v>fnBzE{AmO z(kUm;*PS>iJwtlco0Y5jl5EnSX+!_VhW?*k4NdCRFmiM&v(t{QWC!z#tWm`B4e`CyI}4T3SE%Zc`B`?! z<9@nb+%woNIX=5+gY#7OQU`sh*v9y;O=>3Fq;{6L&b6`rU!dw8ZPJilq#766SpO+fP19}Y@O6qg zGhbO^+t^R=nzZVQlr=U_*}~ey&U3Xzx3RaoNI5J;ssq`X)y6!eO`N_q>9%!BPhT75 zzm2umPU%MuoNklBr8XHl*CxZGjb+jQUo2J{pGIY8TSV)! zu>NP^yEQ0Xm_g+s^Cv8{C#|B7wMb#Sll{*Y>OYGZ0-REUERD1Nm<)TKG9d2fp}IZKquSE3q`IceR@U9?DcYB!zK7RiUaV6D(w zO2J<8KfM+G|5o}Ftx`Nm{_kl;|N9LoMV1k^e6olBNUK!N_i+B{8&aLoBQ^RQRf}7l zgZ!UwmHOFMX_#zf{MRa`rDE0OYGq!&RGA}M$^TN-!u?u}J?MYrC|hDH``_M>w(3&V z9;sE1jjhr_xX$oabOuY6v#(TjBYSwR-Xsh239ZsU)r09w9x^|}ECp$&M1Pd}YZ?8WxZg8>iT(}~za>oKmL3!8e~V-% zuNUn`=6`2LRc=Cu=pZl5r}B5NXMUgg|EW<`I6?W3^{C>#>%}l_P$lX7|7PEMDa&O2 z-!-Z#cKKB0PLHYzT`$#4^43H!|L+)8b*UX<4B#I<#NQCSp8l>+nRKJ7Dbu5x^`pw1 z?NgS_QPsjBSgqCTDgWJK)2|o1k@_GnycA^UizWB?< zn>4OGF_*Jfa8$VhM%5_uaU-XlGK?IGyqvj(%Vhxip$~eQqw7f-Ro%(V$)#P6ZW42J z$(J)%>l8=Q<cid?V_dh??JH5WLoHGh+>K79R#g$MvQMijGP)T9WUI2+ZuZP|OG$D!dosGEm~chD zZYc~dQTipy`<^!?e;4(Eshc^S7Rg2C7^yEZ-jr;lCbCP8x96&f`|{NB4KAch9lx_g z-NpBIyiUh|GIBZ3K1WSFkfV;9k;TYu8vfUz;oly}T#c%~g`p$w7st1%ryr0EkHG&x zC1ijJ_QGK}ewO>>a-RoA)kK#^X(l-Tk#A8uBa(y6#jaaK|BUZ7A6bC?5x(^!++zxz z$qASN7h~0pl$El5jK$MgCn~sJ;;|>fPS^#>&?4J7WBnE}f51N5kM9us+1sS;v+Kkv zw~Fm63K~j4+4N7esbP|{Crol}UO-@MXJ3Rr!#Q?|)2Hx_qi?_o%9N_*BiV)l$oKb&gIkW`?o;&%8`>7~g-8n9|2o z6ZU45kIarRu|SI}Oj^OJ4-#8Sr`TOV(xw|z?Y=SPFoj9Syi0YKhe_ADFxG#=q`RE{ z|6-W*E(A$mj8FAb=MBK%^r#v#hSC2Cl95=S8Vzno-(pO;iQ5xE|KAqI{7e}8UxH*j zz^60;F8+TpuCy%3msjOQcT0ZeTIvtxzmqwCbE8WY&3ILD+_*9v@v4#p zmnub;p`%fb;#Ng=hg9xfD^*-yjWSFPvUcaVs@uh(hX!Z_6Ey8*?zgW)%*+p4 zOyjDhdR(;*trhFcsIocMihX)5`af%>T~Gi2^jhi2M!zh{tGf7ZozUIqQa$I^O7A)J z)8f6VKi0wcXIu?tua%($`u~QtGNM~6qtnbsM|hQc!KFO&)4~VPC9iC+IiL{cJYj?JM^GT(9QE&lGd@t$=b$#uWCWs_N)^tvJGhmV+LuY^Qs19 zy}_+a`gQ0?FgL1O#~xval!fO#wUu4ts%FTo^u~4QsB$)H z{J1JyR)@4^(*I8` zQnrjD^glbK4ccQI^#4fP5C{9e8UO9<5NA@6>fTqRdQyv2FKtyH^e2)3Fu30#LogiM zAtNzG)Zsg?&sPE7h32Y2eo6eXox zQ%1P*g(#^QijvC7D5+YCV*D2+H8W9CI}s&y*p1lh@oO+fiGzFh!7TUoA*sIEI}*kC zKT297qU0!Uwv=eGCqzkGSd_GfbItx}nZUg>E?T+*qS1efmhQ+X=0Bq7|3}exkCOiQ zC>hutC4-sl|J)NL!>Lg+k{l(Y*j?D&_<16tWYK?bI1T4OW7tanX{%_R?0@xbW&Lj} z>wjBW|Jf?}Gh3x#eyiwDZ{_@_t+GV;0NS}=2!(JcE9c*WPyv-t)wflup=M|+_1`U= zO>>JF_uRty54T7|#4XZjyoK-o7RvTEY2LMs@!vMF9NWhDk9LX;W7dgnV&fot`}{WM zf3`{cP@Fhianf-*PCEPQrE9WAoPD=T_t5PU!To!as_6gL(EqKc|64=w58v4IAa@3#xSsSD!dxOLfpVhfVVvz~ZR=z<} zk&bg)`2WHd?!QI4vbTs6x=kCThiiIW8>DYxgY*w=kiCQ*T-v~T-v-wEHps}t2HA<5 z3wtusW8A=617!^|AQLnRTO@mVgJ=UbNKV8CNykl>vPJR|Hn0w}K?=e*py#uN^xs1N zbqn(-TNr9}q5qmv;4G|lt zTW=Cm@az14;U;MYjdO=&5A9$KwS)05=U-sgxn4s5o%1gyIR9di^DmY;|HAkZb0?fv z5b!PT|1Bvoyd zjY!k#>=v$Fc_M4G0z=jKMhge{Pr^ zkKR?{*LqhM^spT0Ww9obzi*23Ptbp0{k;&1SdTAWIwpop^dC~tf1tf9OFKqil=c5a z+9>3O_5Y)+|EK;x^nW>bq$ve`OfWmpH-#1#`hQ@>YyAfW9eoETR9ijQ$Tg zK2CIfx{*EUzmr~c0Q=xS|IfxeH1VDcqw6zbL;vsCd#p#J|C5IP4|p@t|A8^gMZ(>Iyc6z&FR?#_ zd=$P(U)Dj`Utng*Lz4?ZA5xDXLy(QgIxs^o41$yJFCve_2{;LTxUC`l5c2QX{{jDm zDcYYaaDOwN@gnzf;r}h{p}6nB{yp&F_Cw_VK*z?<`0p?0e%LtoW8!`3-gy?iO3qo? zb(T4b&!lDFJJL$oFuOSS1MJnD17hM_5W?G#?vOj=e~D)l>4M*2&WEGi;|TQ6aLz|C z=hP&hkv_`QaMoGoSl*=%#W^);cSt19R!aC*XoC^>Bm55j0NSB{$e)m!Wy&dKaSrqQ z@K0F5IJn-&xiZTWQinA19!)8n0|Jd;f{JX;rAb?0ocgYm_i-)__S)>vSf_Yjs*OA3 za^koFZsa+(Ag_X3;9Ky0h{OF6R_agrbj`3dqjrFZ>uLaLY&DM)(2bB22<4vAqr)-WY+s7+4`RJ%=>1fz^p5G+F`D z2(Y#GAPF(j%;*AfgyrbE@B6;*>Z7{4yY9PcnW|EE&q9rc4y2hLBhO6NnThORW7!Dp z25Wzww_2<>?5Ovb`5gIV<~N_`ec$KF{N-C`*2l%yX`6n}_W%1#Ux)ZR*1sZN{UQD+ zTKBxZL7SGhX!{BNc)I!L`|hv*jK7q>o)+u)>uK4(6}o(8eEtr9{;U2!#g+ZIw$Gpc z=l(y1_{R5)?;G$N`$hlXLOe0IACrIcqcKI(bcuSO@%xC>|HpnGkp?Xf(ePin2bNFk z_foWd+3zcU-R~>@f!|l;pXjo`oA05AY8_KY^*{7u(Ljwq@ng|M%|G&I(efid=1bDf0pm2=Ih3X z`E07h{l?%2{@m|ev>E5Bx);ONN30M2C7+MD{YU&R2JcR*xXm%$;-0_tI~n3G>sR$H z%)Fn^M||ZmzMfC%Q?PzbJo^d0pig}xCVqfV$i6YhOk2LR|4K~q{7ljM6MjRTR%wm4 zUv=K7G|y2yFW&{_+!W8rWBDiaY0%<7)TeRwLL}G0zoa+m-_eh{&-(}TQ}omHhpv$y z7XK2xhra8Y`gQUDYWw5juTYugYWkYxdMc;Ck*--hO#L)XyRN-uaf7rkh`Yq!68~%J zxBSEU5`L6MEKkzUS$-G&t-O9o{5|ng;@_sa}eHHS%ON zQL{E|`TC2|`s8=?e>>0A@!da-&aXSKpLL#p@}Eb~Gp>u@;=_3Oh3Nl;>*VKM7tXx4#Mc3x?mCTQ|+oL8ErOLX~V*9Bdr8M^kc>w>P+4Z8Vj&MVE+0xf>od8K7q zq19h=UC{dX{`c5Whs`I=YgdPDb=WE5?|Rnt+_)*;@|?MThfj`H_y0w#iI;6(v42s# zWdD28w>}{r{T|=n z&|k%{c!UONi27-Oda3x|38i@y;?6JsRdk8l9or$VR&krWn#Cw^yBoO{+xSzdd>Eq zw*C{AU$=ZjiMnn3hqjH2r|JK)?O)Nh<)5_ON7lu^u>39hN7nzH^?zykXD$Dr&-{O5 z`G>{-iSOi}692sIZxcUGAE1Y=|G0hsB|T>OzZU;9+kaC0dGXiir!D_uYPbA$aliPV zB=_yo&s$!mcUxW;|L5)t9+T!>^nPhROy9BnU+ZJO_~-n;f64#*SNea&mDa2NmjCHm31|Ib7Ee;(5R^N{`@|D&Bop8h{#bnBrQ+keRY??e0$59$ATD5k{I)-Q=K|J_4z zMSRuzjQE=Uv*PR4Z-{R?e(wGLzx|UB`JD#;-~R9J#L{m)p6`BK{152AqMxE))@DB~ei!``{T#iAo}$O; z!}L-5b$Xw)AEgf!()M4m?Q8VE(eKz+F8&SillJ`@{ifwl(I+gA+jo_&(>g8F3$#t& zpcm;c=(nW3C;kq7%JTmy{+vAio%jcx&!=tsQE`{g#b<5*GJV#zXXstFf6aQkxSOui z#U(_UEukA+rr@j{*^68x7 z|DWam7x#Du=>4quR?nGlB_8;?`G4Xe>%-!aCwBG!x&NnenxILVqG`HBm)~&zPk%rE z&+;r?ryKPDd;dRXJ{qmi>eGB#v`!neNn5l%wHrHQyRlxhfj0SzGwp2o1v;Q_TfZl+ zvagSv=Pq@#w{&maq;tSSS#2*%y+4kGw-=*j2YgA?1rv1~F=c&$m6D?c*Q`_4te?$B) z=$q7K{a@SnZ|Dd8&cF}TJ=Ro>{=I)2y{?Hq`}(CR z{r~nm|2B%>Z+gG{T70)&bdOO+IdqivcG}um z+S*y#+F9Cq$=1uX5N|2g|6D1r%H!3>La(+7n+lbdnk_Y#mRc;el$Kg8wU(BOv~926 z6t>4(?w9u!L4W*Y{G`_}$4|w76aQ`eqxk9g?-=HO=HZ{Ew--Ta=|ZveND(|*1dkQL z<3;d}B6w#JJRvBOT_}z!k`^h8ghjd{S&^zp^lo|&y_ft>;Lp6DK0v=hAEXb_hv`@8 zBlIMFl>RAwjDC%No&0d{&wQLdK~K>q={M=O=(p)<`W^Z-eTF_uze}H^-=k;f^YjIJ zmY$>M>5KFw`Z9fmzDmDOe?VWOKcqjRKc+vSH!3fd!tzpBQ3|U{VRb32DTQ^Vu%Q$- zmcr&z*is5xOJQ3nY!@D`7I_}77P%d+7RMg0>FoWP!}a3W!}ZQ0+?XiB&9YKh9D7tX zQwnE`uzs-!n~J?hO-1^n)}|tC+bqI?fg&9A4|RU#Xm(n7+%r{#gSDlwDDimkauJSR zEy9~cZYO0${wH;7ML1BDelodTgi}S`PNs@-PiuMHw&&@ z-dltXlSMdG)F)pm%FQ>6dj56!wIb}QEW+N&zaD+C@ZEvZ!f?@6e?3tg_18Cx8vgZK zQMd0_6ghvlv1p&~cFF%|+?~_LK6p zcsL$@Ydrk6c=+vJMWiK)aIjWbN+3nC|KZY(hf6yiF73Dw4_~n3LTSf^(vAzI9goDr zkJ#}@X~!d_O^?RIkJ|KTY15;nO^?OHkJs-bdq+$KsL4-weP=xSL_Au`phWa&acGI^v3TsQ z;k@dCf6V^JOW`}C1o~K!s&u9wkH_B{PIU?U@nUo7Y`-Jk@z!v<-%+YmsVUx3>@1!4 zcg8#48cuwvVcuD6E}i=);)%D0lV574CyLFb^Z%}R*Smf({`>eJ;uphDK>s5BQv7oK z@=wMu|8o43cz3+}6Y=ghYrCF{_r!a?9Pf?yzAxVU#ka+KZTrIK;(hVH56Am{JKpyv z@xJ{n+K%_f2jT}K6_?7p>uYB-N;#WTQbo|O6#|PtsABzt@6(9Uu*!ZFNQ1PM< z$A>-ar79aayeC%US(o^xVUyqM{{QV*Iuf?y& zuYWauBYxw3@f%OZZ&>(Rd^|q>{*T1RW%%(Y;}h{zJoO>3k_092PsS(T8=w5`_~h@z zZ^mza$m>J#Tk+fRKgRzQpNfAL|8x8=@pL@>w&&g!PyfQF>8tVdi`(%#@jFj{B|aUW z{)I2nAH=7hel|XB^)vD5=e#b^Bk`H|%zNT9PseATjn6#ib%AXCllY95{A_&osrc+y zJ{P|mzgxVXp=YCrgwMt2;&Zb6z4$$BzxQ-J6VDVc`g}a|d_42Dc;=7d^YMlF!n@-O z_`V?77oLhQd@{aJRK>~rg77)73-m~Q;rHVUTJqU=_Ve-VbMfr+@$45r7tj7tJgf1a z3#lY}?%na+Q}Ns<e#J`-P+i#i{1LzZHV2**lmj4=GbkC z-L}|mkKK;g?Tp>7*zJzpzS!-L-GSI0jNPHw9gW?w*d34EiP)Wt-Kp5U6uXyW_e$(u zjoq2py%xK(v3ossZ^Z7+*qw{r`Pf~E-No2lirwYdU5nlI*xiWT&Dh|KeytFbo|d)H!b zHukQ^-i_G18GCcFw-|d%v9}z1E3vm0d+V{c5qq1lw-tNav0oAUm9bwH`_-{u6Z^HX z-w^wavELN?&9UDS`>nCx7W*Bs-x>Q|v2TE|C-!?|zc2RtV}Bs_2V;LI_J?DCB=$#R ze=PRLV}By{Cu4sq_Akf&mDs-;`!lhBE%s+)|9b4-i2a+fKNtJ+vA+=ei?P2H`^&+h zzrPy$Yq7r`ocQ~j;SKo1Rjn??aXnbQVzA+QuxDnsD8Mm6^R&(5HiCe94t1WJ| z$E}XI)fuWN#uajP$G^~bG&xHTBJhU3;q+!~ErV{vOdZcW6k>9}<%Ze5OB zSK`*yxHS{EuEnj{xOF{l-H2O?Sd3dsacebht;MbNxU~_tHsjV-+}e&?J8}DB+%AjT z<#D?rZdbSpw`<~dZQQPl+x2m~A#OLu?WVZh9JgEIc5B>ji`(sSyCZIQ#_g`S z-5s}k;&yM`?u*;~aeE+c56A71xIG@Xr{ngexP3WpUy0jSS2#O;;1(;9c$;!b5MyFai=ft48)zmxHA%W#^TOI+?k3y)4}|I=StkU z8h2*m&TQPd5qECJow>L(A9ohw&SKnIiaV=uXDv*Hc(E*AERPo};>Egnu|8gGh!-2< z#nyPSEnaMo7rWxcp?Gm5UR;Y8H=hrWH=b=g8VNe$pgIm}f@j>4w~bjB@SBS zpe+vC<3NJWIOvLl?l|a)gWfpki-Z0+7>I+xI2ek9;W!wHgV8t`i-UUc&R2{s*RWG z;-&g{sUco!jF+0?rRI2PFkTvpZ(fXVmc=(K;+r+`&BpjosGNKU+!lPh)$3a;MX*`~n}Tl-#<$zN zij}r+?Zmg+y^56%uOjaBD&nqhtrdZ#?jqc)T(Z zuS~`(Q}N2Q*DIHb;93#P7Qyu*m@9&L!K+n8P+bHyMNnG=bwyAwc&*s+TCwA`V#jN( zMbH&RmX}_wc;#}D&!tx@{Yi7lBfVfTUb*a5lz6!)QBdS{xhPn0zU;WmMfsPD@-G+V zUoNt^Toiq|NOC1!x$0HqA}CT7k-bG^|J5RE!Fht&^8`w`s)SPF>*t9}rPZQDv_-B(RHQgx zwuIt(QS|lVs8TbO8llt#H{z9>UV2W7+RweR@M`U=l@>}HUTZ9>6a~_PSCNOH$VF6S zzi_@>s>wo8j^KQIDf5LQ&xN9Dg3{6FP}a^jf?X)3FDmQ;Su7F>N~=ZQiv`VjRHP`1 zSS&JKENwkMLzd6ilnpaVrptO2kS?lL(rOH_@jw>QZuAMJiTK6iB zT`$rKz8^_jtQ9GWwCk2$z39CwXf6e>wiQuJDL7wlEtZQ8I8iBRk5|jQWG|R4g6pL~ z8LyT-2#S2mlpwHF?p35Lf3;HUilh{rZz}3mtd$ZLhm;pf6<)7gDgwn+6e%l;Vk%s! z0!IkG9~H@q11pLH?XUDXD3~aMsUnb1Ws#5IK~x-St#m+LRV6C{|P)QbbY|kt3_m_ms-Be7>i|SzVM?{mNVs z%nM4#%D6c8LH<7HEaR;{-zq;VHAR^A$r^7n5rpFE3EWKmb_ zkf6ReOmM!e?)B$wUtiRzzNk}uQK$MMTfz6E;>e;--n~U2!}?MVMeYvNl8#)9SJ%U& z*H^dW)t$I^G455wy~?;(9rtSDUTxfKjC)OSuQ~3u#l7CRHx~CM2#>+!X^c&#B`YYg9#uJG47;`Pa{ z*C#hc-RDuyc{F$)jh#p1=g}3(X3iIHoJVuEEXM28W3NxkV|x5Nx>1TQHN@+e8sqiL z-LGG^^K#F5Go=^=*|%_! zYN%MYZ^6DL@lp{>v(it4G(^Mk`dZWLtMl>t`poO=edp0wyuQ)&`nrvqj@i2S`u38j z{Ppb>QR8{kb{=(~M+4{4-0NEo+7f{mZL7+5Yw7Uq_EM7V!SiVBJeod_X3nGezdvUF z{LqEJ->^_@c;n)9yiqY2`n#!&%Bg}XsfwzphH9yf>ZySmsfn7Yg<7eN+NqPesGo|w zhiI5aX^h5cf-cb&nxShnOV{ZJ&C_zcQKep0%CAyhRS)%2AIYmqURCm{l2_FvO%a|d z`Bq&fc~@N}`B%xmO8!;yuabY&O`0R+R4vdVEyWwvxT|qj!Q3CF)vBGtj?>_u1dQq-KzAfSXPVe z%2-vWRpqQYhpWn3bq-gRx9S|ODs$C2Ty+jtF|R6rRh?IHuR4#b%3M|Es7Yxvjj zui;8v@UP)t!@q`q4gVVcHT-M%*YL05U&FtKe+~Z{{x$q-_}B2S z;a|hQhJOwJ8vZr>YxqqLe`5{*8vZr>Yxvjjui;8v@UP)t!@q`q z4gVVcHT-M%*YNuhp*Pm>ui;aUdZsPQ{^2R34O`MxJH*s#_ z+{C$wa}(z#&P|+~_%`uv;@iZxiEk6%Caz6fo47V{ZQ|O*wTWvJ*Cwt_T${Kyac$z- z#I=cQ6W1oLO~J@NVJV!n=ic z3-1=*Eu338w{ULZ+`_qqa|_=VzAb!P__pwE;WMG(jVMVr7QQWfTllu{ZQAkwsCE{CbzL|W822Ijcps-HnweS+t{|TZDZTUwvBBY+cvgsY}?qj zv2A19cJ8+EZ98|{7`HLHL3v{v=eF~3n7B&5KL+7Ex)b{7Sr8?Qmc7Z~B^lvsyOQ{WL(= zWt}YR zWLY;#<1|ZB*4?0+G)If1@^!1U7H`&HB*)h~zP^fTNgnmr$no`#uXlWdJR8PHz6}#} zmDI68x(4YwVRcK>(-3b?%V)Ye-kcfwGo>tz#r=zAR8F;2NA=V|jnqWV)IzP)M(xyD z=r`{Bd2}(G!}pig8y_qkH4J@!>H7Eg9@lj|*mm62^Zlj4YY&zTSATzL;KAM^_ipNm z`(Qk&ptL@9xw0yeI{qid|T2k-w%Z2W1lkyv-!kiiFiY-^3n!2v< zmtQSZ$`VSkq(lu+UX(ghDx*l@02x=DSJ=wz{fZ)~J=Y4AHWbBLQl$cQw$S~GslQKX z<-xXD)i32&lv8ZJUoloHxAq+Ne3LpqDDS#t*UwA3e!t)^%C)2(7tdF2*dV?7g3~NT zLDpr2rpZdtT>rkz2TN$q8_S6;pDWU`JKQgyr-DT*pGT#$1WS4KrR_zoLzWh4sZdd9 zsRE^y(pf1LT>!dL%3UetE2WlraOzfVD9Uo_ly4L&wOes2&zEW~6_mxbv`ssKwb1u# zS)BHYa;l(8s-kMDDO4)4sP+TG3a7rJuGG2(LPh=kie^y*HIf!8tvBC)(Bu^@wzQO* zvdFu&PzlKSow4FQe0~A{`|3Wppo`?*TNNFJ&J%Z9?7Z(XcO@3}DKfBLoUijGtz6-K zT6zn7|2iuw>@6`-DzyOVD(xwfb{D#@rkb?;(s?dDws{*@^cMM+@05-za__bKynVb4 zEBZ>USG1)!Wbr1`yrSZgD(Y;>>2X?$B^QH}R54Jfbd?m5^Iqh7zEsp@uu!RtqK-p_ zO0DKl2_D&Cl-=W!pBR+1WgtyffcnpUn(;4iBjPcrNSqQ z&!?gam*_HGp`vKzs`i8PX{Fd+9I3rKWq7`%!JMjMb5WgZ=M@wc?c<$xo^#P01+@;TB%jODT~WCiE#dk4{uWaX3&DhtrO^G#!UmuG4ZHUY(D_YYTCBqd5*23eD1L z94;x}v;CoGd+tH1qk2-7=l4U;G2JOU=dxfKmGjZgb^T_w(k&FMxTk^;?c2s$lq|u*qR8>Vy)Jc;xMbhZA zInrmt@kq0@5=Yh2SIf6rdN*lD)m_w0J*13k$5%_QPv%J9%TcvsYU-$w25Fc^$-Y{7 z)mBgqIlgv?lvk_1wHt9%S53;Pne3+Z2IV)%yJ3yw z(}=B6K8@R7uh`$)~A}v_q40P3qgEK20}Cc}?EbA^n7NHL3hbWlw6CNp+rdyw8H8Np+fZZB1S}o`o@~d8eREL7!61DNR2m$&~Cb z$^Md}F01Zkhg`A!%5)rEbsBtx99>hDYuj-&t9fQ&%-VNdRj)gh*R9`hYHrBmhGTE2 z-VJ%)(A+nizMHCcQz*5_P8b57r!W9Br$yr$6OeB>X79WBXoNqI|< zm+W8KjH6}9%jbB##xxuc*(8<5!%<74`ISaOACjq|50@m(tPN!f~yv^eP?c zK|0cVbfnklNUzP29+@LOF-Lk}j`W-y={Y&lJ94CVRirMhm|Dlf5O<-gU=a-E@ssEyGL2xamPIqG!@6a&Bybq z(W|<>cJyI>#L_E+cQ~jALK=$8(qBcpm8dP8=_2pap3cG~a@*TI%W~% zqV$XEzohO-KBrhCQX}qx%^Ms=HjGXecSD8?~RiVj2-rMOvg#5V>)f?9HB{4?@sKU z^6Xq7ZP2OSo!Y5OeY=#`Wq-G_yW8W$+u@`aOYacLqpzHl*@w4J+x2Uoe#`^P^rd9F z16?B9y%A0Z%ShdQL7fcY9g@zM)XA_kBhrt^-vxg%rhUh><#;2t#mR(p6P72`ZSpE< z8zY^?^?%}<=41-%lzRDv71Jt68B^*$r7qLToNgj{PPdS{Os|q-FUi-p(#a)dUDifd z)aiqJ?FL8 zylo5O1@&6c77IAN4^G^4o-8_cQJohtFFOBA+Hy%7EJ?R4pJm6cIIk<}VZiCcP3eh2 zniDsfCk9&`sK=oj5J8qXwF#`8YLTd0J^-O)pK*Wx7iC*T|=4Gfr#euLti` z&)sRQblw-IwIgw=tL;=*+o_wrQ{8K)uKm+`dDpkm5Y3T1>bK&wVTz{Xw9)oP~HId(+*{K*w!Kc4t4D8j?=Em zIPGa7ZQ^F?v{(MU^6kalXM0~O$+J(MuI~e%fz&U_4F-n+gAr?L%0GJ= zUQ)M9j=wCwtMa<4&9ADbYw>i(z8Ps|)O|)?GmgC`pKIzgtNqhwOlI6>IdD_7B)UXnhdZP%WvKFZVNF?q@^N4q+Zq zhR?jSkx^2<&%Lveoj7w1osCwJ{iEtVD(&b-oVi&)^WAgKTFT zj(1yoW?=2iz}cDa=QFpqXPfG3KDo%9+4e9Yj>@QxARxO`4;5TA)Q*qGiJ92`1fK zqjlP#P1>Su+KJ@+q&fU^_~-D?;h)3reV*pDl`+=nOk;Yp`gTEM@6e*wRHljO5LE#P0k?>;3h;9tPM zfPVr10{#X33-}lCFW_Imzkq)Mzx$fBfZu0DTEOofC%MN-3-}lCFW_Imud^*J;9tPM zfPVr10{#X33-}lCFW_Im@BSz);9tPMfPVqM&!Mz{e*wRHr?iNlVJ9u(U&OzNe-Zy8 ze&1bb5&t6oMf{8S7x6FRU&QaeD=p$*#J`At5&t57&nJobCoSUFJCGLf`wmRZK#3VB zd2UII_!sdn;&<B^rA7RU_!sf(Bu$=$ z(jxvv{EPS(@h{?E#J`At5&t57&r4|${}O)BP02lD(u0wf@Gs$C!oP%n3I7s)9=gOs zmw4#X68P(zJx%zgSO8_?Pf6;WvPp zmhih@P3{rW682j_?Pi7<6p+VjDH#b zGX7=!%lMb^FXLavzl>jJby~*1jDH#bGX7=!%lQ49`Lv9G8Nd7Uw2Xfl|1$n%{LA>4 z@h{_F#=nez8UHf=W&F$dm+>#-U&glsUW#?lJ@75sY0k{+_Of`0}73VzS- zX$AiZ{uTTy_}w=q_l-$UT3W%sg5NVvTEV}9e+B;ve$V{L{YF~Bzk*+{Thi;6R`Bbr zPde+9=c1&;J~84YM!dv`ml*L9BVO{nlyu@Jo%o3nFX_lnjChF=FEQdJM!dv`ml*NV zDt<=1#E6#|@e(6m(&?Y{IV48Bw2Ge*FS++gtN0o55+hz>#7m5Li4iX`;w6Iwi4ia9 z8BC0Li4iX`;w47BWZ)n%;w60;i4iX`;w1wKi4iX`;w47BWKbb_#!Chkl7WT9h?f}g z5+h#H)0i0Xl7WWAh?hJECPuu(h?f}gl4ruih?f}g5+hz>#7m5Li4iX`;-xkGjChF= zFEQdJM!dv`ml*L9BVJ;}ON@Al5ic>~B?B3W5ic>~B}TktP$MzoB}Tl&h?f}g5+hz> z#7m5Li4iX`;w47B#E6&H@H65iM!dv`ml*MqzMI5|ml*L9BVN*Lni%ntF4N?mGBM&M zM!dv`ml*MqZq&qxmvp5jM!dv`m)v(I{XdBjFBxP>jChF=FBxn}23ry%URuY`h?f}g z5+hzR0FxN;5+hz>#7m5Li4iX`;w47BWN;=i;w47B!vK`$}rCHLn^7j)7EojkiG2ED|fml*UCgI>}t zof!0zKDET4ml*UCgI;3LOALC6K`(9KXV6Oquo8n_V$e$rdT9ecgI;3LOALBR_jY2? zOALC6K`$}rB?i63pqCi*lCJN>pqCi*5`$i1&`X{j(gyww{2TZ^M5Gy0`1{Q9kuVT{D^m$vXT{iQAZjDJagR??r9 zw(v6mrY-zi__y#IAWh7Gi5W04114s`q~9wUG)>Hai5W04119}o$q-30M3OvLCeM|L z889&eCT76I44Ag@GXp05Wr-Ou8A?gafQcC}=|4;QFOp}`#0;49VQ!o)zBcJS}u-@(sJm<$;uX2Qfwn3xIE4*nhdJNS3-@8D-J zObmvJ!7%OMXEIDohKb2AF&QQ%!^C8mm<*GC_rz$JcJS}u-@(6we+NJFVcNmZe3%SV zB?iRAfS4E%lOe05-!kpsXBtR5`1RkXot?-RFH#wmQw3F06;)FW)lwbRQv)?p6E#x{ zwNe|kQwMcY7j;t)^->@8(*O<95Dn7^jnWv6(*#Y@6iw45x=dH-D$UR}nx*S>gKp9s z&C>!c(h@Dx3a!!_t#Zv-IUM{A_)>3_ojMF2m2>m&@?8_~kPEY<{^6zdqw!hM(Op zm*FqN&-Rzg@U#BqGW`1Wav6T(E4d7R8U8Z-`kJ%8=FAqD_4{Skz|0z$4NGSBz-$~Q zm*Hm-%#04X48Oj?Y-}d$pU(QHb2)xPn7JH(IsS6|<@n3-m*X$TuMayj6K4I`xg38v z{&M{K7;`y({fxOBe>r~rjkz2@BT6pEUyk26P-Z~P<@n3-m*Zzf%;osY@t5N-$6t=0 z$1pP!=5qYy_{;Hg31%+A%n_K&@t5N-$6t=0uP&G4*SDUT`P?#3TV}e-JZ+h$Emz>@WXl!!EAVr&WlpwSf!~mBHg=VH*D}*u=2puU_$%=1 zQ_U6lIny#TT4vwMEN8g_KPy@05z7_$4GCvsUzxcivvOsAt<0sB^~YwOs?0By4H;*4 zsLZ&N*`YG)Q)Ye2%qW@RDKj=@hNsNMl)0EP_g1dJ&$5&mm9l=_%&3$Zm2w6C3j7uL z8J04`Qf64n3`?0|DKji(eZZM%DOcb(nJSx1l})C~#wN1KRJjtr$yC{7s%$7bn@p7} z@taJQO{U5wQ)QE>vdL80WU8z`Ih#zCEAg99l})J1mG~?1SK_b4Z-Q0U=bTNl$|hN5 zldN(jeiN;-alu@P-$biiiN6wmC4Q5xawYys{7gC7w)vdLk&3O`d)uEJl1pY0%5;jhA9g}(}a6@I3rT#cV`DOck+sVtjRmaFks z<2Si1SL3h7UyZ*SKZ8?dVaV0^*%&fcdS-aaTh{Hzn%#I|f= zTV|oiCbnhc7@4^$SL0`}%GLO*@mJ%o#$S!U8hWN!Ox+&UX4$;Pg;v65Va-{iSmgTDrU4So~pvT?p_GF`60UxS~~ zE1OuC**&t!b(!HS*Wj#>_038P2kC$6SlQ7C-Y@ zW<$wl5#(C@wfK!m=34x<_-pYSx6fu5WU~u$E&f{kwfJlCGp=Rhm$?>yEq>#exfVY& zTdu`#Of%Qwuf<=BzZSn43b_`)SqhnXG4lgt#<$E9ka+@fE&f{kEHSwje=Yu6{I&RN z@f)+sd;^(pAlKqIewAzSGtOl`f?SKg7Jn^%o`PJ5-}HuDhrbTLX%4v#KZ9N7H^_DP zO?k+5_*rjq9e&2UT!+67KR-gQ!(WG=EhpFEuft!5zYc#Letv~qho5I5*WqW~$#wYa z@Ymt5!_Ui*>+sj%uft!5zYc#L{yO}1`0Mc3;WzCf8w<|Hf^!{y(=M_x;arE`^owlz zMK)%a83VI%;%uBa*Ws_jZyYbz;jhDAho5&Mo1T&D@z>)wO(UD8k?Zl-<2PL+GZ*H1 z{KlGdJ^p(9_4w=Y*W)+-oa^z|+#p)ugA~hkxd)Prj2A?k6e%6xOc9{Z|plWKIVG-_4w=Y z*W<6pUyr{Ye?5NV9Og0@RH{fr;-+;dXe*^vo{0;b-JaYs72K){989p<^XKujH z7n2+Cvxnsd{EhgTgL5PPM*PNhGh=9G49)CgxedZ^Yk-zY%{U{zm+b_?et@BYu8|+=!o{H8E~&e>47O{JdPb z8GkeWX8a7uxfy>m{$~8m_?z)Jpv&`l;{B8K# z@VDV_!{3I#4SyT{HvGJWxeb3C{xXB;KcjAL$KQ^>9e+FicKq%5+wr&KZ^z$`za2l{WNydLLY&+2 zx8rZe&&Z$K@wek|$IsNC+wr&KZ^z$`za4)&{&xKB_}lTf<8Q~`j=vp$JN|b3?fBdA zx8rZe-;Tc>e>;8?b8F8p2iyYP46@50}OzYBjC{x1Ao_`C3T;qSuVg})1b7yd5%UHDBz$*l3Y z3x5}W{@>h%zYBjCev_?o7yd5%UHDDB%3b)o@ORF8p2iyYTbveVa{N4Dw@pt3z#@~&f$1r!}@5XPMLGH%ijo&1n z+>O5*zsWwC4>5P+Hw__oF!QX?w2R}b} zHa#Nu;P1iTgTDuV5B?tfJ@|X@_u%ir--Evge-Hj1{5|-4@b}>F!QX?w2Y(O#9{fG{ zd+_(*@4?@LzXyLW{$BjO_l@$<0fUi`ej z*?f-Ni@z6tFaBQqz4&|a_u}ux&lj3`-g7U0zV~eYNAAVni@z6tFaBQqz4&|a_u}ux z-;2K&e=q)C{Jf>P7k@AQUi`iId-3<;H*qod;_t=Zi@z6tFaBQqz4&|a_u}VM&VBg% z@blm2KKy<7`|$VS@5A4R-^7&Mho6@<_u=Pf&3*X$@bfrllgM%({yzMD`1|np;qSxW zhrbVhAO1f4{Lr}%e;@un{C)WQ@b}^G!{3L$4}TwizUgdoTIQY3efasOb07Xb{C)WQ z@b}^G!{3L$55EaCxevd21i24C&u#9*--o{sKmTnuzaaPF@5A4ZzaM`;{(k)Z`1|qm z=;nU>{Mxx6e?R_y{Qda*@%Q8J$KQ|NWS!iPzaM`;{(k)Z`1|qq=#hJG__v7!!-;ci^zlp8c{E9q)e*pgg{sH_0_y_Qtbd(4158xlbKY)J# z{{a30`~&z0@DJc0z(0V00RI5~0sI5_2k;NzAHY9=e*pgg{sH_0_y_P0;2*%x_ni5j z^8o$<`~&#S_sD$Ec>wC8#od@unFqH@J z58xlbKY)J#{{a30{3cUnb4l_b{z3eM_y_S1;vd9sqE$B0Di7ix#6O6C5I^sJ9>hP0 ze-Qs5{z3eM_y_TuK$%U>%7gd^@ekrRQ7aGPAH;9&N;Y>T58^j@D-Yu5^Uj0#2k{T$ z=T*+;2joHggZKyW58@xhKZt)2zsZ?-5I=u-9>hP0e-Qs5{z3eM_y_S1;vd96h<_0O zApSx8L->dA58)reKZJh>{}BEm{5%fNA^b!5hwz(dmWS{U;pa)uL-FMA%sKZJh>{}BEm{6qM8-188A^Ca>R z{vrHB`1!c=5dIdA58)reKZJh>{}6t2EAkM2li~ck6T&})e+d6DeiPL5F#ciu z!}v{@%jRO_Vf@4Rhw%^NH@_$k;~&O9jDHyaF#ciu!}y2s591%kKaAg`yF84482>Q- zVf@4Rhw%^NAI3k7e;EHT{$c#X_=oWi<2RQn591%kKa77E|1kbx{KNQ%@eku4#y^aI z82>Q-Vf@4Rhw%^NAI5K9Ngl>OjDHyaF#ciuBlt(~kKiA{KZ1V*{|NpO{3G~B@Q>g( z&mfQBAHi=ja2~-wf`0`62>ucLBlt(~kKiA{KZ1V*{|J6_6!HlE5&R?gNAR1okj;0= z=4<5<{3G~B@Q>gh!9Rk31pf&B5&R?gNAQo}AHhF@e+2&se)Ar(3Cei{{|NpO{3G~B z@Q>gh!9Rk31pf&B5&Wb0&6CKZ_($=N;x}g^kK!N2KZ<`8|0sU*DDo(N6QJ`b{!#p+ z_($=N;vdC7ihmUUD1H+yvw0VJ6#ppxQT(I$NAZv1H@_#3;vdC7ihmUUDE?9WqxeVh zkK#9PBah-A#XpLF6#poGKdO*N@tcgDO~%fn_($=N;vdC7ihmUUDE?9W=6>W+{G<3s z@sHv+zbKF4AHzR}e+>T^{xSSx_{Z>%;UB|4hTmMIJci%Ax;%z|4F4E@b4T+S{xSSx z_{Z>%;UB|4hTkOdJcfS^{}_IAQ1Tdl^P2J){xSUKH{~(>WBAALkKrG~KZbt{{}}!; z{A2jX@Q>ji!#{?94F4GZG5llr$MBEgAHzR}e+>T^{xSSx_{Z>%;UC9u&TAgWKaPJK zzxl6u9RE1}as1=>$MKKjH;*un<2OGxkK-T5KaPJK|2Y0}{Nwn?@sHyl$3KpL9RE1} zas1=>$MKKjAICqAe;off{&D={_{Z^&<2O$ykK-T5KaPJK|2Y0}{Nwn?@sHyl$8X|& z9>+h9e;off{&D={_{Z^&;~&RAj(;5gIQ|Lz6Zp+5%MN|@K4~Mz;C`$p1?nWe*(X`M|lFjIc(V+ zq&$It0{;a53H%fIC-6_;pTIwXe**sm{t5i%EM-3|kSFl_ae+L6e**sm{t5hkY#^H( zmnZO>AD7Mf%;q@d3H%fIC-6_=pTzG+3GyWVN&J)e{XjvU#6O9D68|LrN&J)eC-G0> zpTuv@U7o~0iGLEm`O?{s8stg*llUj`PvZ9@2YC{|A3DgB_$TpC;-ADniQkVOQK2|nYHBaK7#6O9D68|LrN&J)eC-G0>pTs|je-i&B{z?3k_|0?8 zllaYb&6D^i@lWEP!f(!CHpe?p;h(}kg?|eF6#gmvQ~0OwPvM`!KZSn^{}g_6WwT#r z$W!>I@cWg9JcZx<**t}R3jY-TDg0CTr|_Fso2T$k;h(}kh2Jkb^A!Fm z{8RX+@K52N!as$73jY-TDg0CTr|?hV_sbA@3jY-TDg0CTr|?hVpTa+de+vH;e)A)< zIlXxrzj?iR8viu@Y5aa(Et@-;r}0nYpT<9p-(1Q(jei=yIl$Q*;5?0g8viu@Y5ddp zr}3LVm#6Vh|36jTOKxS2x@Kjv7Zhm&P0SQo@TC9@@$=ifVgw;?Hk5DnrRujD51 z?1Y4*;2B;aYel@F2zz ze(l};vHy?#f9(HbzZUQQ*sndlKlcBz|BwBD?Eho`AN&8<|HuA6_W!Z}kNtn_|6@Oq z`Tp3iS-wB^zu5m`zrOEY?0>QU#r_xjU+jOe|HXcN^S#*rV*iW%FZRFK|6>1({rb{- zvH!*X7yDoAf3g3?{uldS?0>QU#r_xjU+jOe|Hb|n`(NzWr{0VGFZRFK|6>1({V(>v z*#Bbxi~TS5zu5m`|BL;)#Cx&-#r_xjU+jOe|Hb|n`(NyTvH!*X7yDoA*D>CU{d(AY zwV!KnulB#%|7!oM{jc`F+W%_*tNpL`zuNz5|EvA4_P^TyYX7VKT!eeI|JD9i`(N#U zwg1)rSNmV>*M{G#{jc`F+W%_*tNpL`zuNz5|EvA4_LEKS)&5ueU+sUj|JD9i`=Lqq zYX7VKulB#%|7!oM{jc`F+W%_*tNpL`zuNz5KXm(E?SHlZ)qb7&z1ja}|C{}9_P^Qx zX8)W0Z}z|0|7QQ2{crZa+5cw$oBeP0zuEt0|C{}9_P^QxX8)W0Z}z|0|7QQ2{crZa z+5cw$oBeP0zuEt0|C{}9_P^OrbGbMB-|T<0UvqkI_P^QxX8)W0Z}z|0|7QQ2{crYb z?eES0H~Zi0f3yG1e*OKu+5cw$oBeP0zuEt8|GWL~_P^WzZvVUe@Akjj|8D=g{qOd_ z+y8F=yZ!I>zuW(A|GWL~_P^WzZvVUe@Akjj|8D=g{qOd_+y8F=yZ!I>zuW(A|GWL~ z_P^WzZvVUe@Akjj|8D=g{qOd_+y8F=yZ!I>zuW(A|GWL~_P^WzZvVUe@Akjj|8D=g z{qOd_+y8F=yZ!I>zuW&||A+k__J7#_VgHByANGIP|6%`!{U7#!*#BYwhy5S+f7t(F z|A+k__J7#_VgHByANGIP|6%`!{U7#!*#BYwhy5S+f7t(F|A+k__J7#_VgHByANGIP z|6%`!{U7#!*#BYwhy5S+f7t(F|A+k__J7#_VgHByANGIPuV+8b!hP8PVgHByANFh9 z@5BC2`?c=(Y5%AFER*}R|I_|Y`)NY=X+QM)KJ5p8->3cX@B6g>)BaEUHPH8I|EK+* z_J7*{Y5%AFK(qU_|I_|Y`#&x%U z{xAE#?EkX=%lzwBqv+?W0QnftQ;%lzwH0A|I2>1!F}8RZU49Z-}Y0Y?%V!v z`@ik~wx54+-}Zmo|84)b{oIcGw*TAyZ~MRP_kR-HxBcJtlcw(5{%`xg?fZANzmo|FK{HfBOH^|DXQ<^#7;-KmGsd|4;va`v24apZ@>!|EK>y{r~Cz zPyc`V|I`1U{@;J0>&<@s|LOlv|9|@b)Bm6T|MdT-|3Cfz>HkmvfBOH^|DXQ<^#7;- zKmGsd|4;va`v24apZ@>!|EK>y{r~CzPyc`V|I`1U{{QsHkmvfBOH^|DXQ<^#7;-KmGsd|4;va`v24apZ@>!|EK>y{r~CzPyc`V z|I`1U{{QsHkmvfBOH^|DXQ<^#7;-KmGsd z|4;va`v24apZ@>!|EK>y{r~CzPyc`V|I`1U{{QsHkmvfBOH^|DXQ<^#7;-KmGsd|4;va`v24apZ@>!|EK>y{r~CzPyc`V|I`1U z{{QsHkmvfBOH^|DXQ<^#7;-KmGsd|4;va z`v24apZ@>!|EK>y{r~CzPyc`V|I`1U{{QsHkmvfBOH^|DXQ<^#7;-KmGsd|4;va`v24apZ@>!|EK>y{r~CzPyc`V|I`1U{{Qs< zr~g0w|LOlv|9|@b)Bm6T|MdT-|3Cfz>HkmvfBOH^|DXQ<^#7;-KmGsd|4;va`v24a zpZ@>!|EK>y{r~CzPyc`V|I`1U{{QsHkmv zfBOH^|DXQ<^#7;-KmGsd|4;va`v24apZ@>!|EK>y{r~CzPyc`V|I`1U{{QsHkmvfBOH^|DXQ<^#7;-KmGsd|4;va`v24apZ@>! z|EK>y{r~CzPyc`V|I`1U{{QsHkmvfBOH^ z|DXQ<^#7;-KmGsd|4;va`v24apZ@>!|EK>y{r~CzPyc`V|I`1U{{QsHkmvfBOH^|DXQ<^#7;-KmGsd|4;va`v24apZ@>!|EK>y z{r~CzPyc`V|I`1U{{QsHkmvfBOH^|DXQ< z^#7;-KmGsd|4;va`v24apZ@>!|EK>y{r~CzPyc`V|I`1U{{QsHkmvfBOH^|DXQ<^#7;-KmGsd|4;va`v24apZ@>!|EK>y{r~Cz zPyc`V|I`1U{{QsHkmvfBOH^|DXQ<^#7;- zKmGsd|4;va`v24apZ@>!|EK>y{r~CzPyc`V|I`1U{{QsHkmvfBOH^|DXQ<^#7;-KmGsd|4;va`v24apZ@>!|EK>y{r~CzPyc`V z|I`1U{{QsHkmvfBOH^|DXQ<^#7;-KmGsd z|4;va`v24apZ@>!|EK>y{r~CzPyc`V|I`1U{{QsHkmvfBOH^|DXQ<^#7;-KmGsd|4;va`v24apZ@>!|EK>y{r~CzPyc`V|I`1U z{{QsHkmvfBOH^|DXQ<^#7;-KmGsd|4;va z`v24apZ@>!|EK>y{r~CzPyc`V|I`1U{{QsHkmvfBOH^|DXQ<^#7;-KmGsd|4;va`v24apZ@>!|EK>y{r~CzPyc`V|I`1U{{Qs< zr~g0w|LOlv|9|@b)Bm6T|MdT-|3Cfz>HkmvfBOH^|DXQ<^#7;-KmGsd|4;va`v24a zpZ@>!|EK>y{r~CzPyc`V|I`1U{{QsHkmv zfBOH^|DXQ<^#7;-KmGsd|4;va`v24apZ@>!|EK>y{r~CzPyc`V|I`1U{{QsHkmvfBOH^|DXQ<^#7;-KmGsd|4;va`v24apZ@>! z|EK>y{r~CzPyc`V|I`1U{{QsHkmvfBOH^ z|DXQ<^#7;-KmGsd|4;va`v24apZ@>!|EK>y{r~CzPyc`V|I`1U{{QsHkmvfBOH^|DXQ<^#7;-KmGsd|4;va`v24apZ@>!|EK>y z{r~CzPyc`V|I`1U{{QsHkmvfBOH^|DXQ< z^#7;-KmGsd|4;va`v24apZ@>!|EK>y{r~CzPyc`V|I`1U{{QsHkmvfBOH^|DXQ<^#7;-KmGsd|4;va`v24apZ@>!|EK>y{r~Cz zPyc`V|I`1U{{QsHkmvfBOH^|DXQ<^#7;- zKmGsd|4;va`v24apZ@>!|EK>y{r~CzPyc`V|I`1U{{QsHkmvfBOH^|DXQ<^#7;-KmGsd|4;va`v24apZ@>!|EK>y{r~CzPyc`V z|I`1U{{QsHkmvfBOH^|DXQ<^#7;-KmGsd z|4;va`v24apZ@>!|EK>y{r~CzPyc`V|I`1U{{QsHkmvfBOH^|DXQ<^#7;-KmGsd|4;va`v24apZ@>!|EK>y{r~CzPyc`V|I`1U z{{QsHkmvfBOH^|DXQ<^#7;-KmGsd|4;va z`v24apZ@>!|EK>y{r~CzPyc`V|I`1U{{QsHpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq z|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq z)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ z|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJ zr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c z|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUc zPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnx*Y@lG z)BmUcPye6(zkhAN{y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ z^#AGq)BmUcPye6(zkg%D{y+VH`v3I*>HqsT_Ur%C|EK>?|DXOp{eSxZ^#AGq)BmUc zPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>? z|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm? zpZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v) z{y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6( zKmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp z{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7n zfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH z`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D z|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ z^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ z|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I* z>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq z|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq z)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ z|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJ zr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c z|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUc zPye6(KmC9D|MdUq|9i0i!TtyPAMAgy|H1wT`ycFou>ZmS2m2rFf3W|-{s;RX?0>NT z!TtyPAMAgy|H1wT`ycFou>ZmS2m2rFf3W|-{s;RX?AQON|4;v){y+VH`v3I*>HmAM z|H1wT`ycGr|EK@&!TtyPAMAgy|H1wT`ycFou>ZmS2m2rFf3W|-{s;RX?0>NT!TtyP z_5bPr)BmUcPye6(KmC9D{~qmswExlmNBi~v>HmAQU;p2u{g3uP+W%<(qy3NeKidCj z|D*kn_CMPHX#b=AkM=*>|7icC{g3uP+W%<(qy3NeKidCj|D*kn_CMPHX#b=AkM=*> z|7icC{g3uP+W%<(qy3NeKidCj|D*kn_CMPHX#b=AkM=*>|7ib{{ZIBk+5cq!ll@Qj zKiU6e|C9at|MdUq|9i6k$^Iw%pX}HFr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ z^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ z|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I* z>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGqd$#}C{%8B2?SHoa+5Tty zpY4CP|Ji>1fBOHP?SHoa+5Tty_5bPr)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH z`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D z|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ z^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ z|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I* z>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq z|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq z)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ z|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJ zr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c z|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUc zPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>? z|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm? zpZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v) z{y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6( zKmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp z{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7n zfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH z`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D z|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ z^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ z|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I* z>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq z|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq z)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ z|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJ zr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c z|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUc zPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>? z|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm? zpZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v) z{y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6( zKmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp z{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7n zfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH z`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D z|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ z^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ z|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I* z>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq z|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq z)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ z|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJ zr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c z|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUc zPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>? z|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm? zpZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v) z{y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6( zKmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp z{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7n zfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH z`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D z|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|DXOp{eSxZ z^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIa z#r}V>U;m%}KmC9D|MdUq|I`1c|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ|LOnJ z|EK>?|DXOp{eSxZ^#AGq`^)~n?AQON|4;v){y+VH`v3I*>HpLJr~gm?pZ-7nfBOIQ z|LOnJ|EK>?|DXOp{eSxZ^#AGq)BmUcPye6(KmC9D|MdUq|I`1c|4;v){y+VH`v3I* z>HpLJr~gm?pZ-7nfBOIQ|LOnJ|EK>?|L^VJe_6r+gaHTx5C$L&Kp2290AT>a0E7Vu z0}uuv3_uuwFaTiy!T^K;2m=rXAPhhlfG_}I0Kx!-0SE&S1|SST7=SPUVF1DagaHTx z5C$L&Kp2290AT>a0E7Vu0}uuv3_uuwFaTiy!T^K;2m=rXAPhhlfG_}I0Kx!-0SE&S z1|SST7=SPUVF1DagaHTx5C$L&Kp2290AT>a0E7Vu0}uuv3_uuwFaTiy!T^K;2m=rX zAPhhlfG_}I0Kx!-0SE&S1|SST7=SPUVF1DagaHTx5C$L&Kp2290AT>a0E7Vu0}uuv z3_uuwFaTiy!T^K;2m=rXAPhhlfG_}I0Kx!-0SE&S1|SST7=SPUVF1DagaHTx5C$L& zKp2290AT>a0E7Vu0}uuv3_uuwFaTiy!T^K;2m=rXAPhhlfG_}I0Kx!-0SE&S1|SST z7=SPUVF1DagaHTx5C$L&Kp2290AT>a0E7Vu0}uuv3_uuwFaTiy!T^K;2m=rXAPhhl zfG_}I0Kx!-0SE&S1|SST7=SPUVF1DagaHTx5C$L&Kp2290AT>a0E7Vu0}uuv3_uuw zFaTiy!T^K;2m=rXAPhhlfG_}I0Kx!-0SE&S1|SST7=SPUVF1DagaHTx5C$L&Kp229 z0AT>a0E7Vu0}uuv3_uuwFaTiy!T^K;2m=rXAPhhlfG_}I0Kx!-0SE&S1|SST7=SPU zVF1DagaHTx5C$L&Kp2290AT>a0E7Vu0}uuv3_uuwFaTiy!T^K;2m=rXAPhhlfG_}I z0Kx!-0SE&S1|SST7=SPUVF1DagaHTx5C$L&Kp2290AT>a0E7Vu0}uuv3_uuwFaTiy z!T^K;2m=rXAPhhlfG_}I0Kx!-0SE&S1|SST7=SPUVF1DagaHTx5C$L&Kp2290AT>a z0E7Vu0}uuv3_uuwFaTiy!T^K;2m=rXAPhhlfG_}I0Kx!-0SE&S1|SST7=SPUVF1Da zgaHTx5C$L&Kp2290AT>a0E7Vu0}uuv3_uuwFaTiy!T^K;2m=rXAPhhlfG_}I0Kx!- z0SE&S1|SST7=SPUVF1DagaHTx5C$L&Kp2290AT>a0E7Vu1JJwu@Akjj|8749APhk7 z_P^WzZvVUe@Akjj|8D=g{qOd_+y8F=yZ!I>zuW(A|GWL~_P^VY0SE&S1|SST7=SPU zVF1DagaHTx5C$L&Kp2290AT>a0E7Vu0}uuv3_uuwFaTiy!T^K;2m=rXAPhhlfG_}I z0Kx!-0SE&S1|SST7=SPUVF1DagaHTx5C$L&Kp2290AT>a0E7Vu0}uuv3_uuwFaTiy z!T^K;2m=rXAPhhlfG_}I0Kx!-0SE&S1|SST7=SPUVF1Da^kM&p{U7#!*pC4S0}uuv z3_u_Df7t(F|A+k__J7#_VgHByANGIP|6%`!{U7#!*#BYwhy9=Sf7<_P|EK+*_J7*{ zY5%AFpZ0&+|7riH{h#)K+W%?)r~RMyf7<_P|EK+*_J7*{Y5%AFpZ0&+|7riH{h#)K z+W%?)r~RMyf7<_P|EK+*_J7*{Y5%AFpZ0&+j{yh+(5L;M_J7*{X+H)a3_uuwFaTiy z!T^K;2m=rXAPhhlfG_}I0Kx!-0SE)om;GP%f7$a0Q6=5m;GP%f7$a0E7Vu0}uuv3_uuwFaTiy!T^K;2m=rXAPhhl zfG_}I0Kx!-0SE&S1|SST7=SPUVF1DagaHTx5C$L&Kp2290AT>a0E7Vu0}uuv3_uuw zFaTiy!T^K;2m=rXAPhhlfG_}I0Kx!-0SE&S1|SST7=SPUVF1DagaHTx5C$L&Kp229 z0AT>a0E7Vu0}uuv3_uuwFaTiy!T^K;2m=rXAPhhlfG_}I0Kx!-0SE&S1|SST7=SPU zVF1DagaHTx5C$L&Kp2290AT>a0E7Vu0}uuv3_uuwFaTiy!T^K;2m=rXAPhhlfG_}I z0Kx!-0SE&S1|SST7=SPUVF1DagaHTx5C$L&Kp2290AT>a0E7Vu0}uuv3_uuwFaTiy z!T^K;2m=rXAPhhlfG_}I0Kx!-0SE&S1|SST7=SPUVF1DagaPpOf2ysc0Yn3c1`rJ( z8bCCFXaLawq5(t$hz1Z1AR0h4fM@{G0HOgz1BeC?4ImmoG=OLT(Ey?WL<5Kh5Dg$2 zKs1180MP)V0Yn3c1`rJ(8bCCFXaLawq5(t$hz1Z1AR0h4fM@{G0HOgz1BeC?4Immo zG=OLT(Ey?WL<5Kh5Dg$2Ks1180MP)V0Yn3c1`rJ(8bCCFXaM~?`)L5t0HOgz1BeC? z4ImmoG=OLT(Ey?WL<5Kh5Dg$2Ks1180MP)V0Yn3c1`rJ(8bCCFXaLawq5(t$hz1Z1 zAR0h4fM@{G0HOgz1BeC?4ImmoG=OLT(Ey?WL<5Kh5Dg$2Ks1180MP)V0Yn3c1`rJ( z8bCCFXaLawq5(t$hz1Z1AR0h4fM@{G0HOgz1BeC?4ImmoG=OLT(Ey?WL<5Kh5Dg$2 zKs1180MP)V0Yn3c1`rJ(8bCCFXaLawq5(t$hz1Z1AR0jb`1?r%hz1Z1AR0h4fM@{G z0HOgz1BeC?4ImmoG=OLT(Ey?WL<5Kh5Dg$2Ks1180MP)V0Yn3c1`rJ(8bCCFXaLaw zq5(t$hz1Z1AR0h4fM@{G0HOgz1BeC?4ImmoG=OLT(Ey?WL<5Kh5Dg$2Ks1180MP)V z0Yn3c1`rJ(8bCCFXaLawq5(t$hz1Z1AR0h4fM@{G0HOgz1BeC?4ImmoG=OLT(Ey?W zL<5Kh5Dg$2Ks1180MP)V0Yn3c1`rJ(8bCCFXaLawq5(t$hz1Z1AR0h4fM@{G0HOgz z1BeC?4ImmoG=OLT(Ey?WL<5Kh5Dg$2Ks1180MP)V0Yn3c1`rJ(8bCCFXaLawq5(t$ zhz1Z1AR0h4fM@{G0HOgz1BeC?4ImmoG=OLT(Ey?WL<5Kh5Dg$2Ks1180MP)V0Yn3c z1`rJ(8bCCFXaLawq5(t$hz1Z1AR0h4fM@{G0HOgz1BeC?4ImmoG=OLT(Ey?WL<5Kh z5Dg$2Ks1180MP)V0Yn3c1`rJ(8bCCFXaLawq5(t$hz1Z1AR0h4fM@{G0HOgz1BeC? z4ImmoG=OLT(Ey?WL<5Kh5Dg$2Ks1180MP)V0Yn3c1`rJ(8bCCFXaLawq5(t$hz1Z1 zAR0h4fM@{G0HOgz1BeC?4ImmoG=OLT(Ey?WL<5Kh5Dg$2Ks1180MP)V0Yn3c1`rJ( z8bCCFXaLawq5(t$hz1Z1AR0h4fM@{G0HOgz1BeC?4ImmoG=OLT(Ey?WL<5Kh5Dg$2 zKs1180MP)V0Yn3c1`rJ(8bCCFXaLawq5(t$hz1Z1AR0h4fM@{G0HOgz1BeC?4Immo zG=OLT(Ey?WL<5Kh5Dg$2Ks1180MP)V0Yn3c1`rJ(8bCCFXaLawq5(t$hz1Z1AR0h4 zfM@{G0HOgz1BeC?4ImmoG=OLT(Ey?WL<5Kh5Dg$2Ks1180MP)V0Yn3c1`rJ(8bCCF zXaLawq5(t$hz1Z1AR0h4fM@{G0HOgz1BeC?4ImmoG=OLT(Ey?WL<5Kh5Dg$2Ks118 z0MP)V0Yn3c1`rJ(8bCCFXaLawq5(t$hz1Z1AR0h4fM@{G0HOgz1BeC?4ImmoG=OLT z(Ey?WL<5Kh5Dg$2Ks1180MP)V0Yn3c1`rJ(8bCCFXaLawq5(t$hz1Z1AR0h4fM@{G z0HOgz1BeC?4ImmoG=OLT(Ey?WL<5Kh5Dg$2Ks1180MP)V0Yn3c1`rJ(8bCCFXaLaw zq5(t$hz1Z1AR0h4fM@{G0HOgz1BeC?4ImmoG=OLT(Ey?WL<5Kh5Dg$2Ks1180MP)V z0Yn3c1`rJ(8bCCFXaLawq5(t$hz1Z1AR0h4fM@{G0HOgz1BeC?4ImmoG=OLT(Ey?W zL<5Kh5Dg$2Ks1180MP)V0Yn3c1`rJ(8bCCFXaLawq5(t$hz1Z1AR0h4fM@{G0HOgz z1BeC?4ImmoG=OLT(Ey?WL<5Kh5Dg$2Ks1180MP)V0Yn3c1`rJ(8bCCFXaLawq5(t$ zhz1Z1AR0h4fM@{G0HOgz1BeC?4ImmoG=OLT(Ey?WL<5Kh5Dg$2Ks1180MP)V0Yn3c z1`rJ(8bCCFXaLawq5(t$hz1Z1AR0h4fM@{G0HOgz1BeC?4ImmoG=OLT(Ey?WL<5Kh z5Dg$2Ks1180MP)V0Yn3c1`rJ(8bCCFXaLawq5(t$hz1Z1AR0h4fM@{G0HOgz1BeC? z4ImmoG=OLT(Ey?WL<5Kh5Dg$2Ks1180MP)V0Yn3c1`rJ(8bCCFXaLawq5(t$hz1Z1 zAR0h4fM@{G0HOgz1BeC?4ImmoG=OLT(Ey?WL<5Kh5Dg$2Ks1180MP)V0Yn3c1`rJ( z8bCCFXaLawq5(t$hz1Z1AR0h4fM@{G0HOgz1BeC?4ImmoG=OLT(Ey?WL<5Kh5Dg$2 zKs1180MP)V0Yn3c1`rJ(8bCCFXaLawq5(t$hz1Z1AR0h4fM@{G0HOgz1BeC?4Immo zG=OLT(Ey?WL<5Kh5Dg$2Ks1180MP)V0Yn3c1`rJ(8bCCFXaLawq5(t$hz1Z1AR0h4 zfM@{G0HOgz1BeC?4ImmoG=OLT(Ey?WL<5Kh5Dg$2Ks1180MP)V0Yn3c1`rJ(8bCCF zXaLawq5(t$hz1Z1AR0h4fM@{G0HOgz1BeC?4ImmoG=OLT(Ey?WL<5Kh5Dg$2Ks118 z0MP)V0Yn3c1`rJ(8bCCFXaLawMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifp zG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C z4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU( z0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy z07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=F zfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfP zU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR z7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR*uS=)1~3}HXaJ)Dj0P|o zz-R!Y0gMJP8o+1(qXCQtFdD#U0HXnn1~3}HXaJ)Dj0P|oz-R!Y0gMJP8o+1(qXCQt zFdD#U0Q)!g(*Q;T7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=F zfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfP zU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR z7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|n zMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y z(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifp zG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C z4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU( z0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy z07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=F zfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfP zU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR z7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|n zMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y z(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifp zG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C z4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU( z0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy z07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=F zfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfP zU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR z7!6=FfYAU(0~ifpG=R|nMgtfPU^IX|*iQo(4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|n zMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IX|+D`)*4PZ2Y z(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifp zG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e7Y zll@QjKiU6eKMi0sfYAU(1K5-OPxe3A|78D@{ZIBk+5cq!ll@QjKiU6e|C9Ys_CMMG zWdD=>Pxe3A|78D@{ZIBk+5cq!ll@QjKiU6e|C9Ys_CMMGWdD=>Pxe3A|78D@{ZIBk z+5cq!ll@QjKiU6e|C9Ys_CMMGWdF1M&-Opt|7`!W{m=G4+y89;v;EKZKimIo|Fiwi z_CMSIZ2ze+fM@+4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|n zMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y z(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifp zG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C z4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU( z0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy z07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=F zfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfP zU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR z7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|n zMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y z(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifp zG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C z4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU( z0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy z07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=F zfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfP zU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR z7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|n zMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y z(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifp zG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C z4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU( z0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy z07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=F zfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfP zU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR z7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|n zMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y z(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifp zG=R|nMgtfPU^IZy07e5C4PZ2Y(EvsR7!6=FfYAU(0~ifpG=R|nMgtfPU^IZy07e5C z4PZ2Y-~ZBuLWlqUABPVI*LfU%9Grb|cyjPM-r;}$$Kn5Q@TJ|s&;1Yo#eeJV@Bet` zzx)5as9@IU>>5B}%>_`$#P;NSkQKJ*_?`G3FT!9Skq|9$X}XZpAQ z+kg0wfB(*Z_>lkbz=!;kt6RVS94i64`o!@^E2>kx#(*5sW&V&B`<%HAkU(V7v_`Uq)e22q--R6=(C=UW&Y$vM?$!PM%S}$df4OVr_b<18{Qk|k>fgUP3HkdsXJvl>=4Ha~ z-~7A#{TmM8_it{(|NWa=!hiqf-VO)9_}^Vw|NXnmln(!kgNuR=|9H>o_20icC-D1s zU-WT-*6$zROZ@)v;_>$nQ^LV-?a!y@`}2?A+8=jl|Ne11?e8D=6aD^i z1Ih1;E4aTePV@Y}_`3W1A~*ki5##>8xCQ<9#l2m>FK#&cef3Ju!5`SG&q2Sh`ikFI zciR5Gxor6R=9 0 - 0 -[CLS] 0 -[SEP] 0 -[MASK] 0 -( 0 -) 0 -" 0 -- 0 -. 0 -– 0 -£ 0 -€ 0 -▁ -2.18897 -▁the -3.07046 -, -3.19023 -▁of -3.84038 -▁and -3.90112 -s -3.98745 -▁in -4.02529 -▁to -4.11988 -▁a -4.12029 -' -4.66983 -▁was -4.71638 -▁he -5.01875 -▁is -5.1344 -▁for -5.13717 -▁on -5.16612 -▁as -5.17253 -▁with -5.26674 -▁that -5.27698 -▁i -5.28573 -▁it -5.31903 -▁his -5.33088 -▁by -5.46618 -▁at -5.50243 -▁her -5.63072 -▁from -5.64459 -t -5.72809 -▁she -5.74154 -▁an -5.97169 -▁had -5.98572 -▁you -5.99577 -d -6.02673 -▁be -6.03156 -: -6.0695 -▁were -6.07489 -▁but -6.15265 -▁this -6.17737 -i -6.18926 -▁are -6.23201 -▁my -6.33094 -▁not -6.34075 -▁one -6.37951 -▁or -6.39012 -▁me -6.39659 -▁which -6.39764 -▁have -6.40973 -a -6.42151 -▁they -6.42303 -? -6.42328 -▁him -6.46108 -e -6.56261 -▁has -6.56911 -▁first -6.5801 -▁all -6.58411 -▁their -6.59372 -▁also -6.60981 -ing -6.62165 -ed -6.63919 -▁out -6.64346 -▁up -6.65525 -▁who -6.66534 -; -6.67707 -▁been -6.69055 -▁after -6.70115 -▁when -6.71438 -▁into -6.74839 -▁new -6.74952 -m -6.75288 -▁there -6.77019 -▁two -6.80739 -▁its -6.81006 -▁would -6.83967 -▁over -6.87167 -▁time -6.8721 -▁so -6.88286 -▁said -6.92655 -▁about -6.92942 -▁other -6.93468 -▁no -6.95107 -▁more -6.97471 -▁can -6.98718 -y -6.99795 -▁then -7.01511 -▁we -7.01778 -th -7.0317 -▁back -7.0542 -▁what -7.07443 -re -7.09367 -▁if -7.09635 -▁like -7.10495 -ly -7.1179 -n -7.13194 -▁only -7.14591 -▁them -7.17918 -er -7.18488 -▁do -7.19064 -in -7.20056 -▁some -7.22326 -▁could -7.23233 -o -7.24173 -▁during -7.27382 -▁where -7.28371 -▁just -7.28773 -▁before -7.29572 -▁school -7.30887 -▁made -7.32042 -/ -7.32135 -▁than -7.32569 -▁through -7.334 -▁de -7.33405 -▁years -7.38892 -▁may -7.39097 -the -7.40187 -▁down -7.40578 -▁world -7.40943 -▁most -7.4157 -▁between -7.42986 -▁will -7.4327 -▁now -7.45064 -▁under -7.45703 -▁three -7.45966 -▁while -7.4645 -▁well -7.47022 -2 -7.48206 -▁city -7.52662 -▁1 -7.52917 -▁later -7.53384 -r -7.54364 -▁around -7.55047 -▁part -7.56483 -▁being -7.56509 -▁know -7.5662 -▁did -7.56888 -▁such -7.58002 -▁state -7.58041 -▁used -7.58053 -▁people -7.5884 -▁against -7.59441 -c -7.60197 -▁many -7.60691 -▁national -7.60893 -▁second -7.61967 -▁your -7.62722 -▁university -7.62921 -▁both -7.63761 -▁head -7.65151 -▁these -7.65851 -▁year -7.66321 -es -7.66643 -▁way -7.67983 -▁go -7.68829 -▁until -7.6903 -▁get -7.69312 -1 -7.69381 -▁even -7.69869 -▁known -7.70707 -▁off -7.70728 -▁man -7.71299 -▁work -7.71315 -▁film -7.72068 -▁2 -7.72614 -▁team -7.73097 -▁still -7.7433 -▁long -7.74603 -▁war -7.75584 -man -7.76148 -▁became -7.76493 -▁since -7.76587 -▁south -7.76627 -▁united -7.76748 -▁us -7.78049 -▁high -7.78087 -▁how -7.78134 -▁because -7.78255 -▁any -7.78466 -! -7.79377 -▁again -7.79454 -▁american -7.80825 -▁family -7.80874 -▁house -7.81314 -al -7.82159 -▁right -7.82417 -▁eyes -7.82717 -ve -7.82963 -▁see -7.83751 -k -7.84859 -▁season -7.85123 -▁took -7.85278 -▁north -7.85922 -▁life -7.86762 -▁states -7.868 -▁3 -7.87358 -▁name -7.87692 -▁same -7.88177 -▁each -7.89311 -▁however -7.8938 -▁day -7.89453 -▁place -7.89697 -an -7.89898 -ll -7.90051 -▁much -7.9056 -▁home -7.90996 -▁group -7.91038 -▁including -7.91585 -▁found -7.92658 -▁area -7.93125 -on -7.93289 -en -7.93324 -b -7.9352 -▁don -7.93812 -▁four -7.939 -▁didn -7.94031 -▁hand -7.94436 -▁left -7.94514 -▁another -7.94837 -▁called -7.95081 -▁going -7.95111 -▁away -7.96319 -▁won -7.96353 -▁series -7.96458 -▁music -7.96597 -▁make -7.96988 -▁number -7.97135 -▁here -7.98133 -▁last -7.98469 -▁company -7.9849 -▁several -7.98613 -▁john -7.9941 -3 -7.99532 -▁end -7.99766 -it -7.99781 -▁never -8.01171 -▁album -8.01252 -you -8.01648 -▁best -8.01922 -▁take -8.02061 -or -8.02609 -▁following -8.02665 -▁game -8.02785 -no -8.03262 -h -8.03491 -▁very -8.03804 -▁good -8.04492 -l -8.04732 -▁district -8.05459 -▁played -8.05738 -▁own -8.05741 -▁want -8.06122 -▁began -8.06331 -▁released -8.06497 -to -8.06766 -g -8.06966 -5 -8.07286 -▁little -8.07654 -▁too -8.07811 -us -8.07992 -▁4 -8.08012 -▁held -8.08422 -▁side -8.08763 -▁county -8.09217 -▁c -8.09341 -▁those -8.09378 -▁early -8.09396 -▁use -8.09957 -▁face -8.10335 -▁think -8.10854 -▁league -8.11136 -▁& -8.11234 -▁west -8.12357 -▁came -8.12677 -▁air -8.13285 -▁government -8.13555 -▁small -8.14219 -▁march -8.14908 -▁town -8.15015 -▁u -8.15323 -▁club -8.16289 -▁thought -8.16736 -and -8.1749 -u -8.17986 -▁looked -8.18194 -▁line -8.18326 -▁international -8.18811 -▁june -8.18883 -▁went -8.18962 -▁general -8.19014 -▁show -8.19355 -▁september -8.19572 -4 -8.19872 -▁something -8.2002 -▁re -8.20174 -▁along -8.20315 -▁men -8.20466 -▁york -8.20543 -p -8.20735 -▁m -8.21215 -▁water -8.21495 -▁set -8.21505 -▁few -8.21553 -▁october -8.21587 -▁station -8.21952 -▁july -8.22389 -▁college -8.22476 -▁old -8.22538 -▁august -8.22638 -▁public -8.22642 -▁our -8.22834 -▁black -8.23077 -▁january -8.23431 -▁father -8.23918 -▁member -8.24518 -▁band -8.24639 -▁church -8.25268 -na -8.25297 -▁co -8.25505 -▁april -8.25848 -▁next -8.2615 -▁system -8.26174 -▁got -8.26288 -▁5 -8.26641 -▁10 -8.27033 -▁la -8.27114 -▁b -8.27204 -▁located -8.27518 -▁former -8.27798 -▁room -8.27902 -▁song -8.28094 -▁love -8.28199 -▁come -8.28265 -▁river -8.28477 -▁east -8.29018 -▁night -8.29344 -▁november -8.29463 -▁single -8.2968 -▁party -8.29797 -▁16 -8.29969 -▁age -8.30376 -▁car -8.306 -▁population -8.3201 -▁p -8.32082 -▁every -8.3219 -▁building -8.32206 -▁st -8.32343 -▁five -8.32459 -▁december -8.32528 -▁15 -8.32747 -▁body -8.32803 -▁white -8.33012 -▁book -8.33552 -▁look -8.33587 -▁though -8.33751 -▁within -8.33991 -▁women -8.34067 -▁service -8.34147 -▁without -8.34227 -▁un -8.3445 -▁open -8.34793 -▁17 -8.3501 -▁large -8.35023 -▁top -8.35083 -▁death -8.35228 -▁started -8.35281 -▁great -8.35563 -▁local -8.35729 -▁need -8.3631 -▁named -8.3632 -▁should -8.36544 -6 -8.36792 -z -8.37102 -born -8.37635 -▁once -8.37744 -▁road -8.3804 -st -8.38056 -▁moved -8.38059 -▁born -8.38511 -0 -8.38541 -▁british -8.38805 -▁order -8.38913 -▁12 -8.39121 -▁children -8.39212 -▁built -8.39422 -▁door -8.39625 -▁major -8.39878 -▁say -8.39921 -x -8.39928 -▁due -8.39933 -▁f -8.39996 -▁village -8.40384 -▁6 -8.40825 -▁km -8.41584 -▁red -8.41973 -is -8.42189 -▁knew -8.42294 -▁park -8.42492 -▁president -8.42544 -▁main -8.42759 -▁let -8.43099 -▁february -8.43187 -f -8.43424 -▁asked -8.43751 -▁turned -8.43832 -le -8.43998 -▁power -8.44008 -▁art -8.44337 -▁per -8.44427 -▁wanted -8.44767 -▁play -8.44788 -▁although -8.44854 -▁received -8.45103 -▁different -8.45255 -▁third -8.45272 -▁served -8.45516 -▁near -8.4564 -▁himself -8.45906 -▁final -8.45918 -▁felt -8.46238 -▁century -8.46342 -▁together -8.46436 -▁voice -8.46506 -▁front -8.46665 -▁based -8.46805 -▁son -8.46811 -▁20 -8.46994 -▁football -8.47349 -▁times -8.47478 -▁king -8.47703 -he -8.47862 -▁behind -8.47872 -▁died -8.4789 -▁saw -8.47918 -▁put -8.48178 -▁members -8.48417 -ton -8.48846 -ers -8.49488 -▁street -8.49608 -▁history -8.49983 -▁help -8.50513 -▁mother -8.50608 -▁award -8.50731 -▁law -8.51181 -▁having -8.51188 -▁7 -8.51214 -▁point -8.51635 -▁army -8.5176 -▁late -8.51778 -8 -8.52412 -we -8.53337 -▁center -8.53868 -▁division -8.54021 -▁young -8.54043 -▁ever -8.54604 -▁far -8.54672 -▁across -8.54882 -7 -8.55227 -▁games -8.55446 -▁published -8.55693 -▁include -8.55807 -▁8 -8.55886 -▁told -8.55894 -▁light -8.55895 -as -8.56491 -▁hands -8.56585 -▁18 -8.56745 -▁country -8.56793 -▁land -8.56909 -▁find -8.57356 -▁often -8.58112 -▁london -8.58238 -▁cup -8.58242 -▁led -8.5837 -▁species -8.58621 -▁why -8.59043 -▁french -8.59143 -▁run -8.59224 -▁english -8.59263 -▁j -8.59293 -▁office -8.59485 -▁g -8.59506 -▁six -8.59526 -▁must -8.59627 -▁gave -8.5976 -▁al -8.59771 -▁tell -8.59782 -▁court -8.59873 -▁according -8.60256 -▁among -8.60426 -▁2010 -8.6044 -w -8.60484 -] -8.60728 -▁original -8.61021 -▁short -8.61174 -▁full -8.61284 -▁given -8.61372 -▁form -8.61485 -▁included -8.61485 -▁million -8.61818 -▁business -8.6196 -▁days -8.61961 -▁really -8.62214 -▁enough -8.62253 -ar -8.62737 -▁14 -8.62972 -▁community -8.63079 -▁live -8.63204 -▁council -8.63394 -▁player -8.6343 -9 -8.63621 -▁half -8.63664 -▁opened -8.63681 -▁central -8.63776 -▁development -8.64135 -▁san -8.64172 -▁woman -8.64247 -ra -8.64512 -▁wasn -8.6455 -▁research -8.64602 -son -8.64659 -▁lost -8.64763 -▁might -8.64832 -la -8.6488 -el -8.65555 -▁become -8.65586 -▁mi -8.65946 -▁fire -8.66119 -ta -8.66128 -do -8.66338 -▁non -8.66733 -▁13 -8.67205 -ma -8.67594 -▁seen -8.67762 -▁2011 -8.6782 -▁close -8.67966 -▁making -8.67969 -▁career -8.68064 -de -8.68158 -▁11 -8.68326 -▁german -8.68369 -ia -8.68419 -▁always -8.6885 -▁free -8.69612 -▁hard -8.6972 -▁island -8.70241 -▁hall -8.70649 -▁support -8.70748 -ne -8.70871 -▁almost -8.70936 -▁force -8.71123 -▁director -8.71217 -▁round -8.71376 -▁9 -8.71605 -▁sure -8.71887 -▁2012 -8.72486 -▁things -8.72495 -▁education -8.72551 -▁v -8.72957 -▁married -8.73048 -▁using -8.73148 -▁control -8.73529 -▁2008 -8.73589 -▁record -8.73598 -▁inside -8.73902 -▁students -8.74044 -▁better -8.74413 -▁field -8.74502 -up -8.74637 -▁worked -8.7466 -▁continued -8.74695 -able -8.74997 -▁big -8.75109 -▁title -8.7515 -▁heart -8.75172 -▁feel -8.75277 -▁thing -8.75355 -▁human -8.75461 -▁james -8.75512 -▁returned -8.75986 -▁2009 -8.76105 -▁am -8.76251 -▁give -8.76291 -te -8.76623 -▁2006 -8.7669 -da -8.76797 -▁mind -8.77046 -▁ii -8.77067 -ic -8.77225 -▁role -8.77273 -▁sea -8.77314 -▁championship -8.774 -▁total -8.77409 -▁act -8.77481 -▁anything -8.7751 -▁radio -8.77615 -▁department -8.77629 -▁william -8.77982 -▁feet -8.78367 -▁association -8.78427 -what -8.78433 -▁story -8.78447 -▁case -8.79056 -▁military -8.79218 -▁royal -8.79302 -▁established -8.79406 -▁already -8.79614 -▁version -8.79627 -▁2013 -8.79628 -▁various -8.7978 -land -8.79887 -▁w -8.79905 -▁period -8.80152 -▁special -8.8032 -ry -8.80489 -▁2014 -8.80501 -▁2007 -8.80636 -▁program -8.80678 -▁nothing -8.81013 -▁hair -8.81263 -▁win -8.81356 -▁rock -8.81363 -▁does -8.81373 -ley -8.81453 -▁region -8.81609 -▁television -8.81661 -▁living -8.81762 -▁o -8.81797 -▁[ -8.81914 -▁production -8.82029 -▁working -8.82121 -▁least -8.82365 -▁past -8.82541 -▁society -8.83259 -▁written -8.83276 -▁keep -8.83724 -▁l -8.84075 -▁call -8.84347 -▁sound -8.845 -▁green -8.84625 -▁england -8.84654 -▁position -8.84753 -▁western -8.8495 -▁soon -8.85021 -▁ten -8.85027 -▁further -8.85164 -▁others -8.85221 -▁brother -8.85237 -so -8.85506 -ka -8.85556 -▁taken -8.85658 -▁dark -8.85733 -ie -8.85881 -ro -8.85931 -▁level -8.85975 -▁wife -8.86316 -▁reached -8.86358 -▁george -8.86395 -▁ground -8.86476 -▁union -8.86504 -▁social -8.86617 -▁project -8.86802 -▁joined -8.86946 -▁produced -8.86989 -▁lead -8.87007 -ch -8.87158 -▁course -8.87159 -▁political -8.87291 -▁information -8.87456 -▁done -8.87908 -▁post -8.87989 -▁created -8.88083 -▁k -8.88244 -▁important -8.88374 -▁appeared -8.88427 -▁real -8.88438 -▁david -8.88725 -▁upon -8.88932 -▁board -8.88954 -▁services -8.89161 -▁moment -8.89287 -▁site -8.89373 -▁2016 -8.89768 -▁2015 -8.89819 -▁battle -8.8991 -▁works -8.89967 -▁either -8.90004 -▁girl -8.90147 -▁blood -8.90261 -▁summer -8.90677 -▁police -8.90958 -▁looking -8.91033 -▁instead -8.91143 -▁god -8.9117 -ist -8.91599 -▁announced -8.91795 -▁design -8.91836 -▁blue -8.92128 -nd -8.92145 -▁arms -8.92261 -▁low -8.92412 -▁followed -8.92569 -v -8.92579 -▁couldn -8.92595 -▁30 -8.92857 -▁0 -8.92918 -▁france -8.92972 -▁words -8.93398 -co -8.93508 -▁ran -8.93595 -▁class -8.93918 -▁outside -8.94017 -ness -8.94129 -at -8.94419 -▁finally -8.94618 -um -8.94677 -▁considered -8.94774 -▁mouth -8.94915 -▁space -8.95114 -▁lake -8.95133 -j -8.95224 -▁toward -8.95293 -▁match -8.95296 -year -8.95488 -▁19 -8.95597 -▁european -8.9565 -▁present -8.95756 -▁square -8.95855 -▁professional -8.95984 -▁someone -8.96159 -▁wrote -8.96348 -▁india -8.96389 -▁america -8.96455 -▁taking -8.96545 -▁records -8.9667 -▁northern -8.96983 -▁dr -8.97145 -▁described -8.97156 -▁h -8.97321 -▁stop -8.97365 -▁bar -8.97439 -▁trying -8.97627 -▁australia -8.97802 -▁california -8.97947 -▁heard -8.98021 -▁change -8.98103 -▁miles -8.98125 -men -8.98168 -ism -8.9818 -▁common -8.98273 -▁paul -8.98369 -os -8.98434 -▁rest -8.98458 -▁r -8.98458 -▁science -8.98781 -▁video -8.98805 -▁race -8.98827 -am -8.98829 -▁gold -8.99165 -▁leave -8.99174 -▁yet -8.99582 -▁wall -8.99619 -▁hit -8.99711 -▁25 -8.9986 -▁middle -8.99863 -▁modern -8.99962 -▁museum -9.00041 -▁southern -9.00152 -▁election -9.00199 -▁able -9.00228 -▁star -9.00335 -by -9.00412 -▁move -9.00478 -▁care -9.00488 -▁pre -9.00523 -▁daughter -9.00574 -▁above -9.00888 -▁founded -9.01205 -▁today -9.01504 -▁less -9.01539 -▁return -9.01579 -▁minister -9.0179 -me -9.01897 -▁playing -9.02204 -▁track -9.02506 -ca -9.0267 -▁tried -9.02698 -▁sent -9.02722 -▁everything -9.02796 -▁im -9.02873 -▁met -9.02892 -▁start -9.02916 -▁= -9.03048 -▁recorded -9.03193 -ling -9.03354 -▁floor -9.03499 -don -9.03853 -▁turn -9.03878 -ian -9.03953 -▁event -9.04113 -▁100 -9.0424 -▁brought -9.04259 -▁seven -9.04295 -but -9.04308 -▁2005 -9.04472 -▁arm -9.05004 -▁2017 -9.05107 -ter -9.05262 -▁language -9.05424 -den -9.05429 -▁months -9.05507 -▁points -9.05531 -▁mr -9.056 -if -9.05679 -▁robert -9.05731 -▁example -9.05816 -▁2000 -9.05904 -▁kind -9.05916 -▁railway -9.05981 -▁closed -9.06148 -▁dead -9.06493 -▁result -9.06685 -▁release -9.06804 -▁thomas -9.06901 -▁michael -9.06923 -▁word -9.06975 -ge -9.06986 -▁similar -9.07061 -▁canada -9.07077 -▁fact -9.07138 -▁training -9.07364 -go -9.0753 -▁person -9.07611 -▁killed -9.0777 -▁finished -9.0778 -▁formed -9.07926 -▁popular -9.07963 -▁doing -9.08057 -▁tour -9.08099 -▁sat -9.0819 -▁addition -9.08204 -one -9.08294 -▁child -9.08553 -▁needed -9.0897 -▁21 -9.0898 -▁health -9.09078 -well -9.09114 -▁deep -9.09339 -ity -9.09474 -ation -9.09486 -▁route -9.09579 -▁table -9.09669 -▁friend -9.09766 -▁centre -9.09969 -▁average -9.10006 -be -9.10167 -▁rather -9.10174 -▁lot -9.10325 -▁current -9.10428 -▁stood -9.10437 -▁decided -9.10634 -▁despite -9.10741 -se -9.10787 -▁currently -9.10808 -ion -9.10824 -▁bed -9.10861 -▁festival -9.11097 -▁money -9.11301 -▁stage -9.11521 -▁week -9.11611 -▁eventually -9.11797 -▁forces -9.12023 -▁coming -9.1205 -▁pulled -9.12065 -▁idea -9.12284 -▁boy -9.12343 -▁mean -9.12392 -▁developed -9.12396 -▁brown -9.12461 -that -9.12704 -▁elected -9.12718 -ni -9.12797 -▁seemed -9.12826 -time -9.13064 -▁throughout -9.1308 -▁debut -9.13088 -▁2004 -9.13139 -▁pro -9.13223 -▁bad -9.13238 -rd -9.13684 -▁says -9.13706 -▁bay -9.13838 -▁construction -9.13903 -▁press -9.13918 -▁minutes -9.14182 -▁chief -9.14403 -▁available -9.14447 -▁added -9.14471 -▁1, -9.14508 -▁mid -9.14551 -▁signed -9.14668 -▁indian -9.14789 -▁probably -9.14833 -ur -9.14977 -▁originally -9.1498 -▁maybe -9.15088 -▁germany -9.15095 -my -9.15163 -▁songs -9.15166 -▁forward -9.15195 -12 -9.15304 -▁cross -9.15399 -▁grand -9.15535 -ko -9.15537 -▁charles -9.15537 -less -9.1563 -▁areas -9.1565 -▁character -9.15714 -▁di -9.15784 -▁sir -9.15809 -ri -9.15827 -▁appointed -9.15829 -▁talk -9.15865 -▁el -9.15879 -▁private -9.16129 -▁australian -9.16136 -▁institute -9.16335 -▁remained -9.16464 -▁peter -9.1652 -▁24 -9.16838 -▁possible -9.1684 -▁sun -9.16844 -▁committee -9.16971 -▁media -9.17046 -▁episode -9.17166 -▁mark -9.17167 -▁plan -9.17243 -▁sold -9.17325 -▁running -9.17349 -il -9.17431 -▁hill -9.17602 -▁study -9.17678 -▁food -9.18084 -▁usually -9.18262 -▁teams -9.18262 -▁process -9.18293 -▁friends -9.18457 -▁bridge -9.18803 -▁performance -9.18872 -▁smile -9.18936 -▁herself -9.19033 -▁morning -9.19513 -com -9.19553 -▁1990 -9.19663 -▁else -9.19726 -▁events -9.1996 -▁books -9.20033 -▁bank -9.20147 -▁strong -9.20166 -▁features -9.20179 -▁list -9.20303 -ba -9.20494 -▁eight -9.2056 -▁province -9.20592 -▁sub -9.21013 -▁2003 -9.21189 -▁hours -9.21293 -▁census -9.21478 -▁quickly -9.21582 -▁coach -9.21626 -▁range -9.21641 -▁whole -9.2173 -▁hospital -9.21776 -▁term -9.21869 -▁network -9.2192 -▁tv -9.21934 -▁guitar -9.2205 -▁believe -9.22156 -▁performed -9.22184 -▁lower -9.22497 -▁seat -9.22519 -▁official -9.22546 -▁hear -9.2271 -▁attack -9.22747 -▁myself -9.22762 -▁x -9.22831 -ha -9.23033 -▁ship -9.23063 -▁news -9.23245 -▁beginning -9.23531 -▁china -9.23583 -▁shot -9.23846 -▁base -9.23867 -▁type -9.24063 -▁europe -9.24113 -▁eastern -9.24132 -ja -9.24132 -▁leading -9.24314 -▁designed -9.24326 -▁players -9.24431 -▁arts -9.24658 -▁le -9.24908 -▁henry -9.24926 -▁studies -9.24972 -▁directed -9.25117 -▁involved -9.2516 -▁stone -9.25199 -▁changed -9.25375 -▁towards -9.254 -▁getting -9.25421 -▁movement -9.25564 -▁van -9.25576 -un -9.25614 -▁below -9.25657 -▁future -9.25717 -▁academy -9.25765 -▁22 -9.25853 -▁kept -9.25885 -▁super -9.2601 -▁hold -9.26166 -▁action -9.2621 -▁japan -9.26269 -▁sometimes -9.2632 -ner -9.26328 -▁professor -9.26329 -▁washington -9.26415 -▁style -9.26438 -▁sister -9.26457 -10 -9.26607 -▁placed -9.26611 -▁civil -9.26701 -▁magazine -9.26784 -▁jack -9.26808 -of -9.26818 -▁gone -9.2685 -▁1980 -9.26933 -▁mary -9.26947 -▁longer -9.27032 -ya -9.27223 -▁hot -9.27245 -ke -9.27267 -▁dont -9.27275 -▁section -9.27285 -▁wide -9.27342 -▁du -9.27472 -17 -9.27495 -▁data -9.27631 -▁schools -9.27649 -▁alone -9.27873 -▁capital -9.27916 -▁federal -9.2795 -▁sports -9.28155 -pa -9.28254 -▁model -9.28511 -▁captain -9.28759 -▁uk -9.29115 -▁female -9.29167 -▁con -9.2926 -▁completed -9.29301 -▁walked -9.2942 -▁lord -9.29504 -▁officer -9.29511 -▁featured -9.29609 -▁bill -9.29694 -▁size -9.29895 -▁earth -9.29981 -▁fight -9.3011 -▁largest -9.30257 -▁competition -9.30602 -▁cut -9.30613 -▁entire -9.30801 -she -9.3091 -▁fall -9.3091 -▁theatre -9.30961 -▁anti -9.31014 -▁lips -9.31175 -ty -9.31349 -▁tournament -9.3138 -▁thus -9.31458 -18 -9.31538 -▁medical -9.31574 -▁2001 -9.31664 -▁breath -9.31862 -16 -9.31906 -▁rose -9.32223 -▁2002 -9.3224 -▁hell -9.32425 -▁japanese -9.32633 -▁rights -9.32705 -▁management -9.32729 -▁richard -9.3278 -▁technology -9.32852 -▁passed -9.33102 -▁senior -9.33225 -▁kingdom -9.33272 -▁includes -9.33362 -▁coast -9.33479 -ce -9.33495 -for -9.33498 -▁leaving -9.33507 -▁means -9.33554 -field -9.33563 -▁2018 -9.33651 -▁spent -9.33705 -▁natural -9.33709 -▁sam -9.33811 -▁mine -9.33915 -di -9.33934 -▁chinese -9.34005 -▁reported -9.34058 -▁especially -9.34135 -▁self -9.34164 -▁studio -9.34272 -▁actually -9.34353 -▁energy -9.34363 -▁fine -9.34402 -▁independent -9.3444 -ville -9.3463 -con -9.34667 -▁raised -9.34732 -▁vocals -9.3488 -▁master -9.34924 -ment -9.34979 -▁try -9.35162 -▁phone -9.35164 -▁1970 -9.35187 -oh -9.35273 -▁market -9.35465 -ga -9.3551 -▁23 -9.35551 -▁staff -9.35586 -▁fell -9.35623 -▁fourth -9.35863 -▁replaced -9.35945 -▁bit -9.36022 -line -9.36203 -▁parents -9.36204 -▁itself -9.36289 -▁christian -9.36309 -▁aircraft -9.36331 -▁saying -9.36434 -ine -9.36506 -▁campaign -9.36694 -▁true -9.36723 -▁valley -9.36897 -za -9.3692 -▁russian -9.37013 -▁canadian -9.3704 -▁leader -9.37152 -der -9.37215 -▁previous -9.37238 -▁allowed -9.37259 -▁awards -9.37296 -▁matter -9.37353 -▁paris -9.37353 -▁interest -9.37403 -▁saint -9.37545 -▁organization -9.37582 -▁countries -9.37596 -▁smith -9.37675 -▁degree -9.37747 -▁artist -9.37776 -▁groups -9.37821 -▁roman -9.37836 -▁silver -9.37875 -▁provided -9.37988 -▁writing -9.38008 -▁stopped -9.381 -▁awarded -9.38207 -▁kill -9.38317 -▁queen -9.38335 -▁stay -9.38348 -▁african -9.38434 -▁provide -9.38463 -▁didnt -9.38466 -▁deal -9.38579 -▁higher -9.38617 -day -9.3864 -▁italian -9.38761 -▁ft -9.38844 -▁skin -9.38981 -▁martin -9.39088 -▁happened -9.39092 -▁cold -9.39231 -bo -9.39284 -15 -9.39498 -▁republic -9.39593 -▁goal -9.39679 -▁whose -9.39681 -▁via -9.3974 -et -9.39763 -▁conference -9.39764 -▁certain -9.39826 -▁earlier -9.39926 -▁command -9.39991 -ting -9.40092 -▁onto -9.401 -▁job -9.4048 -▁collection -9.40546 -▁clear -9.40615 -wood -9.40668 -▁student -9.40687 -li -9.40691 -▁novel -9.40849 -▁nearly -9.40956 -▁los -9.4103 -▁opening -9.41055 -▁reason -9.4143 -▁ma -9.41472 -▁medal -9.41542 -old -9.41553 -▁moving -9.41662 -▁attention -9.4185 -▁security -9.41917 -▁50 -9.41941 -▁gun -9.41953 -rs -9.42 -ham -9.42107 -lin -9.42199 -▁cover -9.42226 -▁foreign -9.4269 -sa -9.42745 -▁industry -9.42769 -▁date -9.4283 -▁camp -9.42916 -all -9.43003 -▁older -9.43225 -▁meeting -9.43293 -▁standard -9.43328 -▁unit -9.43357 -▁trade -9.43552 -▁chest -9.43644 -▁stated -9.43645 -▁hadn -9.43658 -▁systems -9.43777 -▁fingers -9.43802 -▁guy -9.43904 -can -9.43914 -▁key -9.44054 -▁1999 -9.44084 -▁library -9.44127 -▁feeling -9.44341 -▁families -9.44426 -q -9.44445 -ler -9.44468 -▁husband -9.44498 -▁regional -9.44669 -▁meet -9.44698 -▁primary -9.44761 -▁pain -9.44773 -▁girls -9.44842 -▁sense -9.45095 -▁chapter -9.45149 -▁stand -9.45219 -▁26 -9.45234 -mer -9.45244 -sen -9.45355 -▁wouldn -9.45355 -▁everyone -9.4536 -▁source -9.45455 -▁governor -9.45525 -▁lived -9.45602 -not -9.45687 -▁africa -9.45785 -▁ended -9.45826 -▁spanish -9.45839 -▁28 -9.45852 -▁native -9.45889 -▁anyone -9.45932 -▁introduced -9.46046 -▁heavy -9.46098 -▁complete -9.46306 -▁success -9.4634 -based -9.46511 -▁airport -9.46726 -ad -9.46729 -ive -9.46809 -▁shows -9.46836 -▁mountain -9.46872 -ul -9.46903 -▁standing -9.46983 -▁test -9.46994 -▁regular -9.4706 -ous -9.47335 -▁forced -9.47362 -mo -9.4739 -led -9.47445 -▁port -9.4747 -▁prince -9.47679 -▁entered -9.48016 -▁27 -9.48063 -off -9.48101 -▁successful -9.48176 -▁question -9.4819 -▁read -9.48227 -age -9.48291 -▁foundation -9.48309 -▁contract -9.48421 -11 -9.486 -ah -9.4889 -▁movie -9.489 -▁twenty -9.48915 -▁historic -9.4894 -▁operations -9.48988 -▁commission -9.49058 -▁prior -9.49072 -▁author -9.4913 -▁1998 -9.4924 -ten -9.49317 -▁limited -9.4932 -▁channel -9.49481 -▁personal -9.49485 -out -9.49537 -▁plant -9.4959 -▁edition -9.49613 -20 -9.49617 -▁mc -9.49634 -▁cast -9.49642 -ally -9.49666 -▁die -9.49726 -▁1960 -9.49798 -▁dance -9.49802 -▁report -9.49962 -▁da -9.4998 -▁ka -9.5024 -ized -9.50305 -▁forest -9.50322 -▁couple -9.50529 -let -9.50737 -▁holding -9.50777 -▁texas -9.50813 -▁castle -9.50839 -id -9.50841 -▁parts -9.50919 -▁weeks -9.5092 -▁previously -9.51007 -▁scored -9.51169 -▁practice -9.51229 -au -9.51269 -▁shook -9.51443 -▁active -9.51641 -▁ask -9.51694 -▁glass -9.51781 -▁additional -9.51919 -▁economic -9.52034 -▁se -9.52039 -▁property -9.52345 -les -9.52385 -▁eye -9.52525 -▁approximately -9.5254 -▁lee -9.52553 -▁individual -9.52657 -▁chicago -9.5271 -▁traditional -9.5275 -▁speed -9.52755 -▁covered -9.52947 -▁makes -9.52968 -▁culture -9.53101 -▁themselves -9.53216 -car -9.53235 -▁whom -9.53265 -▁understand -9.5336 -▁wood -9.53395 -▁1996 -9.53436 -▁pay -9.53568 -ate -9.53584 -▁buildings -9.53603 -▁immediately -9.53618 -▁hope -9.5364 -▁singer -9.53654 -ak -9.53824 -▁male -9.53832 -▁meant -9.54 -▁access -9.54002 -▁manager -9.54035 -▁caught -9.5418 -▁takes -9.54242 -va -9.54419 -▁secretary -9.54468 -now -9.54553 -ti -9.54589 -▁wrong -9.54642 -▁required -9.54646 -▁nine -9.54755 -▁ice -9.54765 -▁navy -9.54789 -▁attended -9.54794 -▁shoulder -9.54892 -▁ex -9.5495 -▁paper -9.54966 -▁units -9.55087 -▁fa -9.55131 -▁direction -9.55163 -▁decision -9.55231 -▁lady -9.55396 -like -9.55396 -▁chair -9.55419 -▁catholic -9.55467 -▁engine -9.55515 -▁edge -9.55532 -▁mission -9.5556 -** -9.55634 -with -9.5566 -▁structure -9.55675 -▁1997 -9.55974 -▁parliament -9.55979 -▁winning -9.5598 -lo -9.56041 -side -9.56218 -▁40 -9.56321 -▁view -9.56321 -14 -9.56341 -▁defeated -9.56367 -▁producer -9.56394 -▁starting -9.56472 -▁mar -9.56588 -▁step -9.56705 -▁neck -9.56713 -ford -9.56738 -ted -9.56806 -▁computer -9.56845 -▁relationship -9.57029 -est -9.57072 -▁stadium -9.57089 -per -9.57104 -19 -9.57144 -▁offered -9.57294 -mi -9.57373 -ey -9.57404 -▁doesn -9.57428 -▁giving -9.57438 -▁commercial -9.57473 -▁thinking -9.57534 -▁bass -9.57736 -▁break -9.57767 -way -9.57852 -▁nature -9.57861 -▁evidence -9.5796 -▁championships -9.5799 -▁slowly -9.58002 -▁problem -9.58047 -▁studied -9.58154 -▁quite -9.58157 -▁ready -9.5817 -▁executive -9.58268 -▁operation -9.5833 -▁hotel -9.58372 -▁watch -9.5847 -▁helped -9.58481 -▁musical -9.58489 -▁ha -9.5852 -▁highway -9.58699 -▁dis -9.58705 -▁runs -9.58748 -▁writer -9.58826 -▁window -9.5891 -▁ago -9.58986 -▁figure -9.59049 -▁walk -9.59077 -▁owned -9.59105 -▁appearance -9.59391 -▁generally -9.59404 -▁reach -9.59434 -▁managed -9.59445 -▁whether -9.5949 -fa -9.59496 -▁location -9.59573 -▁assembly -9.59577 -▁length -9.59589 -▁pass -9.59601 -▁temple -9.59619 -▁annual -9.59666 -▁inter -9.59696 -▁municipality -9.59721 -▁assistant -9.59747 -▁1992 -9.59749 -▁metal -9.59805 -▁1995 -9.59906 -▁policy -9.59917 -▁review -9.59953 -▁isbn -9.60025 -▁places -9.60149 -▁surface -9.60194 -▁films -9.60195 -▁material -9.60205 -▁drive -9.60293 -▁double -9.60309 -▁smiled -9.60311 -▁experience -9.60372 -▁caused -9.60375 -▁particular -9.60394 -▁bring -9.60503 -▁hurt -9.60533 -▁miss -9.60576 -▁complex -9.60585 -em -9.60656 -▁chance -9.60693 -▁significant -9.60724 -▁del -9.60843 -▁prize -9.60893 -▁upper -9.6095 -are -9.61012 -▁listed -9.61031 -▁wind -9.61063 -▁fast -9.61087 -▁issue -9.61153 -ard -9.61205 -▁29 -9.61254 -▁cost -9.61304 -▁legal -9.6141 -▁remember -9.61445 -▁ben -9.61478 -ki -9.61546 -▁carried -9.6156 -▁soviet -9.61609 -ir -9.6165 -▁completely -9.61699 -▁noted -9.61751 -▁loss -9.61774 -▁trust -9.61787 -▁train -9.61926 -▁mexico -9.62026 -▁1994 -9.62084 -▁corner -9.62129 -▁companies -9.62308 -▁plays -9.6232 -▁2010, -9.62356 -▁becoming -9.62515 -ny -9.62556 -▁initially -9.62564 -▁31 -9.62606 -▁dropped -9.62689 -▁joseph -9.62735 -▁tree -9.62762 -▁artists -9.62847 -13 -9.62872 -how -9.62951 -▁ireland -9.63012 -▁youth -9.63095 -▁goals -9.63219 -▁numerous -9.63231 -▁issues -9.63255 -▁subject -9.63442 -▁lives -9.63448 -▁engineering -9.63563 -▁financial -9.63631 -▁highest -9.6364 -▁mostly -9.63649 -▁frank -9.63659 -▁justice -9.63677 -▁angeles -9.63715 -▁winter -9.63717 -▁lines -9.6383 -▁famous -9.64125 -▁pa -9.64149 -▁empire -9.64282 -▁nodded -9.64462 -this -9.64503 -ful -9.64514 -▁2011, -9.6458 -▁arrived -9.64604 -& -9.64772 -▁believed -9.64838 -▁champion -9.64934 -▁mac -9.65073 -▁spring -9.65087 -▁actor -9.65093 -▁victory -9.65357 -▁recording -9.65407 -▁zealand -9.65594 -▁baby -9.6564 -▁bishop -9.65973 -▁feature -9.66028 -king -9.66072 -▁talking -9.66102 -▁distance -9.6612 -▁ko -9.66134 -▁oil -9.66195 -▁1991 -9.6625 -▁income -9.66483 -▁contains -9.66497 -▁sex -9.66507 -▁effect -9.66528 -▁italy -9.66836 -▁ball -9.6685 -▁ancient -9.67232 -chi -9.67246 -ish -9.67268 -ies -9.67362 -▁related -9.67387 -▁associated -9.67397 -▁straight -9.67448 -▁create -9.67473 -▁launched -9.6755 -▁retired -9.67563 -▁administration -9.67572 -▁2, -9.67667 -▁suddenly -9.67884 -▁township -9.6789 -▁bo -9.67933 -wa -9.67975 -▁1993 -9.67978 -▁stars -9.67998 -▁guard -9.68 -▁lu -9.68021 -▁except -9.68025 -▁virginia -9.68084 -mar -9.68153 -ji -9.68219 -▁month -9.6822 -▁score -9.68309 -▁mass -9.68348 -▁mm -9.68594 -▁prime -9.68605 -▁represented -9.68655 -▁answer -9.68679 -▁comes -9.68714 -▁beach -9.6881 -▁boys -9.68817 -▁response -9.6888 -▁2012, -9.69043 -ana -9.69161 -▁junior -9.6918 -▁religious -9.6921 -▁beautiful -9.69225 -▁tracks -9.6926 -▁watched -9.69283 -sh -9.69343 -jo -9.69517 -▁* -9.69555 -po -9.69601 -▁theory -9.69615 -▁edward -9.69662 -▁mom -9.69688 -▁grew -9.69747 -▁yes -9.69826 -▁increased -9.69844 -▁greek -9.69846 -▁2013, -9.69946 -▁commander -9.70011 -▁activities -9.70068 -▁box -9.70069 -▁stories -9.70093 -cha -9.70129 -▁basketball -9.70149 -▁particularly -9.70246 -▁2009, -9.70246 -▁allow -9.70259 -▁congress -9.70281 -▁fellow -9.70292 -▁ca -9.70342 -▁simply -9.70407 -im -9.70512 -▁sky -9.70555 -▁larger -9.7057 -▁terms -9.70633 -pe -9.70663 -▁color -9.70682 -su -9.70883 -▁cell -9.70941 -▁historical -9.71008 -ated -9.71026 -▁brothers -9.71039 -▁hour -9.71092 -▁waiting -9.7124 -ina -9.71264 -ger -9.71332 -▁pop -9.71344 -▁sign -9.71349 -▁overall -9.71352 -▁remains -9.71474 -▁cause -9.71485 -▁journal -9.71487 -▁winner -9.7162 -house -9.71629 -▁bus -9.71708 -▁rate -9.7177 -▁dan -9.71778 -▁branch -9.71792 -▁doctor -9.71861 -▁regiment -9.71882 -▁minor -9.71922 -▁flight -9.71939 -▁scene -9.71989 -▁gas -9.7206 -▁changes -9.7215 -her -9.72156 -▁2014, -9.72201 -▁poor -9.72226 -▁crew -9.72318 -▁majority -9.7234 -▁secret -9.72392 -▁happy -9.72402 -▁beyond -9.72414 -▁failed -9.72503 -▁directly -9.72542 -▁selected -9.72543 -▁okay -9.72801 -ex -9.72873 -fi -9.7299 -▁louis -9.72995 -tv -9.73013 -▁tower -9.73077 -▁legs -9.73088 -ang -9.73148 -▁mike -9.7319 -yes -9.73193 -▁1950 -9.73216 -▁problems -9.73231 -▁matches -9.73259 -▁store -9.7355 -▁fear -9.73601 -▁likely -9.73611 -▁shown -9.73616 -▁marriage -9.73845 -▁touch -9.74093 -▁subsequently -9.74236 -▁separate -9.74285 -▁programs -9.74299 -▁expected -9.74342 -▁peace -9.74472 -▁horse -9.74617 -▁2015, -9.74655 -berg -9.74755 -▁bi -9.74787 -▁cultural -9.74835 -ze -9.74852 -▁attempt -9.74866 -▁results -9.74867 -▁heat -9.7496 -ac -9.75025 -▁transport -9.7513 -▁follow -9.75132 -▁2008, -9.75254 -▁sleep -9.75326 -head -9.75389 -▁direct -9.75474 -▁cd -9.75477 -▁des -9.75484 -▁variety -9.755 -▁letter -9.75502 -▁foot -9.75569 -▁florida -9.75594 -▁iron -9.75668 -▁1989 -9.75683 -▁plans -9.75688 -▁nearby -9.75875 -vi -9.75898 -▁wing -9.75912 -▁chairman -9.75966 -▁rural -9.76103 -▁gaze -9.76124 -▁wait -9.76251 -▁rules -9.76304 -30 -9.76363 -▁weight -9.76363 -▁recent -9.76364 -▁ring -9.76373 -▁characters -9.76458 -kin -9.76471 -▁fair -9.76473 -▁irish -9.76519 -▁truth -9.76624 -▁agreed -9.76865 -▁pretty -9.77055 -▁travel -9.77253 -▁perhaps -9.77352 -▁na -9.77418 -▁focus -9.77456 -▁1988 -9.77604 -▁democratic -9.77619 -▁soldiers -9.77646 -▁appears -9.7765 -▁ni -9.77799 -▁status -9.77805 -▁operated -9.77821 -▁genus -9.78123 -▁islands -9.78126 -tic -9.7821 -▁dad -9.78264 -▁closer -9.7828 -▁spread -9.7828 -▁vi -9.78296 -▁wales -9.7839 -▁lack -9.78453 -▁therefore -9.78461 -▁claimed -9.7847 -▁chart -9.78481 -▁drama -9.78523 -▁code -9.78634 -see -9.7866 -▁serving -9.7872 -▁beat -9.78798 -▁creek -9.78864 -▁joe -9.78871 -▁expression -9.78878 -lan -9.78918 -▁sitting -9.78955 -▁pennsylvania -9.79011 -ho -9.79097 -▁wild -9.79185 -▁pan -9.79218 -▁academic -9.79333 -25 -9.7934 -▁2016, -9.79382 -▁meaning -9.79485 -▁jones -9.79687 -▁lay -9.7984 -▁continue -9.79924 -▁names -9.79975 -▁parish -9.79995 -▁pacific -9.79996 -ru -9.8005 -▁vice -9.80096 -hi -9.80155 -ol -9.80301 -▁scott -9.80331 -▁physical -9.80355 -▁normal -9.80524 -▁supported -9.80567 -▁rule -9.80568 -ization -9.80721 -ant -9.80763 -▁presented -9.80863 -▁kiss -9.8088 -▁chi -9.80926 -▁safe -9.8093 -▁editor -9.81079 -▁stared -9.81112 -▁choice -9.81218 -▁ill -9.81266 -▁increase -9.81365 -▁mayor -9.81396 -han -9.81483 -▁broke -9.81486 -▁2007, -9.8151 -▁flat -9.8152 -▁baseball -9.81592 -▁remaining -9.81628 -▁slightly -9.81668 -▁discovered -9.81673 -▁fighting -9.81825 -bar -9.81892 -dy -9.81949 -▁goes -9.81968 -▁honor -9.82014 -▁text -9.82068 -▁piece -9.82109 -▁soft -9.82117 -ary -9.82156 -▁situation -9.82174 -▁pressure -9.82213 -▁leg -9.82235 -▁troops -9.82245 -▁border -9.82363 -gen -9.82405 -▁responsible -9.82485 -▁join -9.8253 -▁metres -9.82558 -▁iii -9.82599 -▁dream -9.82717 -▁composed -9.82781 -▁referred -9.82843 -▁cases -9.82966 -▁golden -9.83194 -▁mo -9.83388 -▁hundred -9.83459 -▁sorry -9.83478 -▁reading -9.83523 -▁opera -9.83756 -▁judge -9.83769 -▁looks -9.8381 -ating -9.83838 -▁spain -9.83902 -▁defense -9.8399 -▁individuals -9.84014 -▁serve -9.84048 -war -9.84051 -▁multiple -9.84062 -there -9.84116 -▁digital -9.84207 -▁multi -9.84277 -▁exactly -9.84344 -▁share -9.8435 -ci -9.84371 -▁appear -9.84403 -▁greater -9.84407 -▁build -9.84504 -▁realized -9.84529 -mann -9.84557 -class -9.84612 -▁label -9.84628 -▁fifth -9.84703 -▁1986 -9.84755 -▁russia -9.84775 -▁specific -9.84788 -▁firm -9.84925 -▁ordered -9.84973 -▁charge -9.84979 -▁jean -9.85036 -▁showed -9.85044 -▁bob -9.8513 -▁bag -9.85201 -ster -9.85201 -▁memory -9.85219 -▁trees -9.85228 -town -9.8529 -▁influence -9.85323 -▁emperor -9.85349 -▁1987 -9.8537 -▁knowledge -9.85382 -ps -9.85421 -▁cities -9.85551 -▁block -9.85769 -▁semi -9.85777 -▁value -9.85789 -who -9.85856 -▁piano -9.85878 -▁maria -9.85898 -▁provides -9.85921 -▁corps -9.85946 -▁sa -9.86026 -▁1984 -9.86035 -▁earned -9.86153 -▁latter -9.86174 -5% -9.86259 -▁prison -9.86318 -▁simple -9.86326 -▁windows -9.86334 -▁farm -9.86336 -▁rain -9.86364 -tra -9.86406 -▁machine -9.86437 -21 -9.8644 -▁squadron -9.86454 -▁filled -9.86478 -ier -9.86534 -▁note -9.86537 -▁duke -9.86558 -▁houses -9.86583 -▁chris -9.86599 -▁kitchen -9.86636 -▁exchange -9.86668 -▁steel -9.86684 -▁dog -9.86736 -▁watching -9.86819 -▁daily -9.86821 -▁territory -9.86846 -▁difficult -9.86942 -▁en -9.87 -back -9.87035 -▁authority -9.87075 -▁speak -9.87129 -▁image -9.87163 -▁oh -9.87169 -io -9.87171 -▁brain -9.87263 -▁sand -9.8727 -▁lies -9.87309 -▁cannot -9.87332 -▁fish -9.87386 -je -9.87441 -▁presence -9.87442 -▁kilometres -9.87458 -▁throat -9.87608 -▁stepped -9.87643 -▁removed -9.87696 -▁daniel -9.8775 -▁britain -9.87856 -▁spoke -9.88019 -▁2017, -9.88039 -▁3, -9.88075 -▁urban -9.88192 -▁1985 -9.88259 -ut -9.88345 -▁politician -9.88346 -▁extended -9.88373 -▁products -9.88627 -▁garden -9.88792 -▁newspaper -9.88796 -▁bell -9.8882 -▁recently -9.88847 -▁function -9.88931 -▁growing -9.88979 -▁broadcast -9.89 -port -9.89058 -▁offer -9.89091 -more -9.89104 -24 -9.89114 -▁forms -9.89128 -▁nations -9.89132 -▁spot -9.89138 -▁jr -9.89149 -23 -9.89163 -▁article -9.89273 -▁draw -9.89309 -▁workers -9.89326 -que -9.89353 -▁amount -9.89387 -▁pushed -9.89402 -▁cat -9.89486 -▁alexander -9.895 -▁easy -9.89552 -▁mainly -9.89729 -▁smaller -9.8988 -▁path -9.90002 -▁jewish -9.90089 -▁host -9.90089 -▁carolina -9.90208 -▁par -9.90234 -▁vote -9.90361 -▁yellow -9.90387 -▁acquired -9.904 -▁walls -9.90582 -▁agreement -9.9061 -▁broken -9.90649 -▁ministry -9.90652 -▁boston -9.90668 -ov -9.90705 -▁uses -9.9078 -▁estate -9.90782 -▁risk -9.90835 -▁gray -9.90854 -american -9.90924 -00 -9.91104 -▁promoted -9.91134 -▁ships -9.91145 -▁planned -9.91159 -▁pick -9.91239 -▁mile -9.91304 -▁minute -9.91404 -▁conditions -9.91426 -▁poland -9.91556 -▁officers -9.91577 -▁rich -9.91624 -▁consists -9.91629 -▁grade -9.91717 -▁mrs -9.91803 -▁solo -9.91835 -▁era -9.91936 -▁grant -9.91947 -▁max -9.91966 -▁johnson -9.91976 -pur -9.91994 -▁z -9.92086 -▁males -9.92089 -▁avenue -9.92102 -▁serious -9.92223 -▁card -9.92245 -▁protection -9.92282 -▁sort -9.92396 -▁warm -9.92474 -▁storm -9.92491 -▁marine -9.92502 -▁global -9.92505 -gar -9.92513 -▁sight -9.92521 -▁elements -9.92544 -▁sit -9.92655 -▁tom -9.927 -▁latin -9.9271 -▁soul -9.92813 -▁stock -9.92822 -▁campus -9.93146 -▁notable -9.93347 -▁mad -9.93403 -▁65 -9.93449 -ron -9.9346 -▁elizabeth -9.93472 -they -9.93588 -▁seeing -9.93614 -▁save -9.93632 -▁olympics -9.9366 -▁intended -9.93714 -▁1983 -9.93715 -▁60 -9.93815 -▁leaves -9.93832 -▁2006, -9.93847 -▁francisco -9.93923 -▁online -9.93932 -▁twice -9.93945 -▁evening -9.94073 -ring -9.94098 -▁percent -9.94228 -▁sweet -9.94256 -▁li -9.94326 -▁walking -9.94346 -red -9.94362 -▁constructed -9.94373 -▁proposed -9.94386 -▁electric -9.944 -▁whatever -9.94495 -▁shortly -9.94524 -▁turning -9.94547 -ber -9.94585 -▁corporation -9.94591 -▁initial -9.94601 -▁counter -9.94618 -▁finish -9.94778 -▁perfect -9.9486 -▁safety -9.94878 -▁method -9.9488 -▁von -9.94933 -mon -9.95128 -▁lieutenant -9.95149 -▁beside -9.95186 -▁picked -9.95217 -▁drew -9.9526 -▁numbers -9.95269 -▁dutch -9.95277 -▁affairs -9.95297 -ite -9.95375 -ella -9.9541 -▁moon -9.95412 -▁search -9.95438 -▁housing -9.95447 -▁recognized -9.95464 -▁basic -9.95596 -▁reserve -9.95628 -▁nor -9.95691 -▁victoria -9.95699 -▁bottom -9.9571 -▁females -9.95714 -▁purpose -9.95741 -▁split -9.95745 -▁et -9.95762 -▁jersey -9.95804 -▁ban -9.95804 -▁1982 -9.95866 -▁cars -9.959 -▁stations -9.95928 -▁visit -9.9598 -which -9.96038 -▁approach -9.96101 -ju -9.96107 -▁defeat -9.96208 -▁ocean -9.96221 -▁williams -9.96287 -▁pair -9.96298 -▁competed -9.96317 -▁memorial -9.96359 -▁mount -9.96472 -▁effort -9.96486 -▁picture -9.96499 -▁contemporary -9.96508 -tor -9.96552 -▁magic -9.96558 -▁alex -9.96571 -▁orchestra -9.96577 -▁highly -9.96578 -▁graduated -9.9669 -pi -9.96767 -min -9.96921 -bi -9.96935 -▁price -9.9695 -▁industrial -9.96963 -▁replied -9.96982 -▁ability -9.9715 -▁remain -9.97152 -▁ya -9.97269 -▁administrative -9.97273 -▁strength -9.97296 -▁jim -9.97317 -▁nation -9.97332 -ns -9.97361 -▁ahead -9.97377 -▁infantry -9.97418 -▁residents -9.97482 -▁account -9.97485 -▁powerful -9.97631 -▁trial -9.97635 -▁racing -9.97656 -▁acting -9.97689 -▁equipment -9.97696 -▁actress -9.97733 -▁destroyed -9.9776 -▁hockey -9.97771 -uk -9.97831 -ney -9.97835 -ium -9.97849 -▁1979 -9.97869 -▁ho -9.97875 -▁quality -9.97897 -▁glanced -9.97964 -▁paid -9.97986 -▁4, -9.98013 -▁fort -9.9802 -ran -9.9806 -▁protect -9.98108 -▁teacher -9.98167 -▁mixed -9.98194 -▁loved -9.98206 -▁settled -9.9845 -▁pull -9.9849 -▁treatment -9.98491 -▁contact -9.98504 -▁revealed -9.9856 -▁lo -9.98622 -▁seems -9.98649 -▁scotland -9.98674 -▁birth -9.98763 -▁brand -9.98772 -▁nice -9.98821 -▁mentioned -9.98831 -▁issued -9.98873 -▁produce -9.98919 -▁simon -9.98921 -▁1930 -9.98995 -▁levels -9.99005 -▁accepted -9.9922 -▁shut -9.99227 -▁households -9.99236 -▁escape -9.99327 -▁positive -9.99338 -▁potential -9.9935 -▁der -9.99546 -▁snow -9.99681 -▁tax -9.99716 -▁younger -9.99773 -▁traffic -9.99788 -▁steve -9.99807 -▁1981 -9.99968 -▁extra -9.99982 -▁quick -10.0006 -▁growth -10.0012 -▁literature -10.0018 -gi -10.002 -▁republican -10.0024 -▁za -10.0031 -▁crime -10.0032 -▁mill -10.0033 -▁basis -10.0041 -▁rail -10.0043 -▁fleet -10.0049 -hu -10.0051 -▁register -10.0051 -▁murder -10.0075 -▁median -10.0083 -▁gallery -10.0084 -▁please -10.0087 -▁appearances -10.0094 -▁1972 -10.0095 -▁vol -10.0096 -▁tonight -10.0099 -▁boat -10.0104 -▁buried -10.0107 -▁concert -10.0111 -▁advanced -10.0114 -why -10.0115 -▁primarily -10.0121 -▁para -10.0155 -▁1978 -10.016 -▁seem -10.0168 -▁impact -10.0169 -▁jan -10.0176 -▁tall -10.0179 -west -10.0181 -star -10.0183 -▁joint -10.0183 -▁agent -10.0185 -ola -10.0189 -har -10.0198 -▁ke -10.0203 -▁website -10.0203 -▁scientific -10.0206 -▁dry -10.0213 -▁needs -10.0222 -▁rear -10.0224 -▁slow -10.0229 -▁secondary -10.0237 -▁sydney -10.0238 -▁principal -10.0239 -▁senate -10.0239 -▁losing -10.024 -▁asian -10.024 -▁polish -10.0251 -len -10.0251 -▁israel -10.0251 -▁tri -10.0258 -22 -10.0262 -▁transferred -10.0268 -▁tu -10.0268 -50 -10.027 -ent -10.0272 -▁effects -10.0274 -▁supposed -10.0277 -ku -10.0284 -▁1940 -10.0292 -▁berlin -10.0298 -ab -10.0301 -▁leaned -10.0301 -▁naval -10.0303 -▁whispered -10.031 -▁capacity -10.0312 -▁entertainment -10.0313 -▁jackson -10.0318 -ver -10.0319 -▁trip -10.0324 -▁software -10.0325 -▁environment -10.033 -▁damage -10.0331 -▁1974 -10.0333 -▁volume -10.034 -▁elections -10.0343 -▁races -10.0343 -▁bbc -10.035 -▁projects -10.0352 -▁matt -10.0352 -▁candidate -10.0358 -▁flying -10.0362 -▁thick -10.0363 -▁entrance -10.0371 -▁officially -10.0381 -▁guess -10.0382 -▁brigade -10.0383 -du -10.0388 -▁screen -10.0393 -▁1976 -10.0394 -▁freedom -10.0397 -▁200 -10.0406 -net -10.0414 -▁huge -10.0415 -▁ear -10.0423 -▁content -10.0428 -▁seasons -10.0428 -▁medicine -10.0434 -▁planning -10.0437 -▁engineer -10.0456 -▁settlement -10.0457 -▁fully -10.046 -▁grabbed -10.046 -1% -10.0468 -▁featuring -10.0476 -▁nick -10.0489 -gan -10.0491 -▁unable -10.0502 -▁agency -10.0508 -bu -10.0514 -▁questions -10.0527 -▁suggested -10.0527 -▁begin -10.0539 -▁tears -10.0544 -▁divided -10.0546 -▁easily -10.055 -▁gives -10.0552 -▁po -10.0555 -ek -10.0556 -▁teeth -10.0558 -▁railroad -10.0562 -▁prominent -10.0563 -▁activity -10.0567 -▁taught -10.0568 -▁dedicated -10.0568 -▁champions -10.0568 -▁rugby -10.057 -▁finger -10.0586 -▁coffee -10.0586 -▁fought -10.0589 -ius -10.0592 -▁wave -10.0594 -▁columbia -10.0601 -▁none -10.0603 -▁silence -10.0606 -law -10.0607 -▁roof -10.0607 -ung -10.0616 -▁product -10.0618 -▁ray -10.0618 -▁andrew -10.0622 -lu -10.0624 -▁necessary -10.0627 -▁headquarters -10.063 -▁drums -10.0639 -▁1977 -10.0642 -▁steps -10.0643 -▁animal -10.0649 -▁happen -10.0651 -▁fox -10.0658 -▁mountains -10.0663 -▁alongside -10.0671 -▁1968 -10.0672 -▁killing -10.0675 -▁cm -10.0678 -▁singles -10.0678 -▁te -10.0689 -▁ohio -10.0694 -▁asia -10.0695 -▁background -10.0695 -▁efforts -10.0698 -sky -10.0701 -▁palace -10.0704 -▁leadership -10.0706 -▁headed -10.0707 -▁quiet -10.0711 -▁pen -10.0714 -▁1945 -10.0715 -▁challenge -10.0716 -6% -10.0726 -▁adam -10.0728 -fer -10.0728 -yo -10.073 -26 -10.0732 -▁owner -10.0732 -▁captured -10.074 -▁rome -10.0752 -ski -10.0765 -▁fun -10.0775 -▁follows -10.0777 -ance -10.0782 -▁partner -10.0784 -ship -10.0785 -▁1975 -10.0786 -▁concept -10.0789 -▁interview -10.0791 -▁motion -10.0792 -kar -10.0792 -▁empty -10.0798 -▁driver -10.08 -stone -10.0801 -▁guest -10.0806 -▁compared -10.0807 -ker -10.0809 -+ -10.0811 -▁har -10.0818 -▁purchased -10.0822 -▁renamed -10.0824 -▁notes -10.0824 -▁applied -10.0825 -▁enemy -10.0835 -▁occurred -10.0839 -▁cha -10.0841 -▁1973 -10.0848 -▁sport -10.0849 -▁shoulders -10.0851 -▁typically -10.0853 -ev -10.0856 -▁jazz -10.0863 -rin -10.0864 -▁formation -10.0865 -▁technical -10.0868 -▁bought -10.0877 -▁georgia -10.0886 -▁facilities -10.0892 -end -10.0894 -▁platform -10.0897 -▁refused -10.0898 -▁deputy -10.0903 -▁operating -10.0903 -▁liberal -10.0903 -▁1920 -10.0903 -▁revolution -10.0904 -▁comedy -10.0905 -ff -10.0906 -▁combined -10.0912 -▁mis -10.093 -tan -10.093 -▁zone -10.0934 -▁battalion -10.0936 -▁wearing -10.0941 -▁assigned -10.0942 -▁count -10.0942 -▁painting -10.0946 -▁surrounding -10.0947 -▁participated -10.0954 -▁draft -10.0961 -tu -10.0964 -▁premier -10.0967 -▁tar -10.0976 -▁crowd -10.0993 -▁learning -10.0999 -▁page -10.1 -▁conducted -10.1008 -▁2005, -10.1008 -▁alive -10.1009 -▁declared -10.1013 -* -10.1014 -▁learn -10.1014 -▁returning -10.102 -▁offers -10.1028 -▁45 -10.1028 -▁laid -10.1036 -▁pointed -10.1042 -▁santa -10.1042 -▁pieces -10.1048 -▁kong -10.1048 -▁lifted -10.105 -▁ver -10.1056 -▁analysis -10.1063 -▁holy -10.1078 -▁telling -10.1096 -▁1971 -10.1096 -oc -10.1098 -zo -10.1107 -▁prevent -10.1125 -▁creation -10.1131 -▁michigan -10.1137 -then -10.1143 -▁taylor -10.1146 -▁knowing -10.116 -▁critical -10.1162 -▁5, -10.1164 -▁scottish -10.1165 -▁supreme -10.117 -vin -10.117 -▁32 -10.1171 -▁tony -10.1172 -▁fan -10.118 -▁disease -10.1187 -▁letters -10.119 -tur -10.1192 -▁organized -10.1194 -▁chosen -10.1197 -45 -10.1204 -▁dam -10.1206 -▁animals -10.1214 -▁distribution -10.1215 -▁commonly -10.1216 -▁widely -10.1217 -▁stephen -10.1218 -▁adopted -10.1227 -▁gained -10.123 -▁rise -10.1242 -▁laughed -10.1257 -▁drug -10.127 -▁isn -10.1276 -▁1969 -10.1278 -▁hong -10.1278 -▁combat -10.1279 -▁wish -10.1283 -▁suffered -10.1289 -▁su -10.1294 -▁shape -10.1294 -▁teaching -10.1294 -ised -10.1295 -dar -10.1298 -▁crown -10.1299 -▁leaders -10.1304 -09 -10.1304 -▁shop -10.1307 -▁theater -10.131 -ria -10.1312 -over -10.1314 -▁beneath -10.1317 -▁types -10.1318 -ap -10.1323 -zi -10.1323 -mp -10.1338 -▁calling -10.1341 -▁languages -10.1343 -▁bowl -10.1344 -[ -10.1347 -bra -10.1368 -3% -10.1378 -▁tongue -10.1383 -▁unknown -10.1384 -▁usa -10.1387 -▁falls -10.1393 -af -10.1396 -▁resources -10.1407 -27 -10.1419 -▁yards -10.1423 -che -10.1423 -▁sides -10.143 -▁wilson -10.1431 -▁trouble -10.1434 -also -10.1435 -▁tim -10.1437 -▁parties -10.1439 -▁bodies -10.144 -▁1967 -10.1448 -▁strange -10.145 -▁ep -10.1452 -▁weather -10.1455 -▁christ -10.1455 -▁seconds -10.1462 -▁labor -10.1463 -▁communities -10.1472 -▁iran -10.1478 -▁motor -10.1481 -▁connected -10.1483 -▁receive -10.1485 -▁serves -10.1489 -▁dress -10.149 -▁clothes -10.1491 -▁shared -10.1501 -▁q -10.1504 -op -10.1505 -▁format -10.1505 -▁footballer -10.1509 -▁wolf -10.151 -▁sales -10.1512 -35 -10.1515 -▁yu -10.152 -ck -10.1521 -40 -10.1526 -2% -10.1527 -▁focused -10.153 -▁cap -10.1534 -▁relief -10.1538 -▁architecture -10.154 -▁sunday -10.154 -▁tells -10.1541 -▁drink -10.1544 -▁imperial -10.1544 -▁episodes -10.1547 -cho -10.1556 -▁arthur -10.1566 -era -10.1567 -▁sons -10.157 -▁transfer -10.1571 -▁tight -10.1598 -▁unique -10.16 -▁internet -10.1603 -9% -10.1604 -▁continues -10.1605 -▁sciences -10.1606 -▁surprise -10.1611 -vo -10.1612 -▁earl -10.1613 -▁kids -10.1621 -ise -10.1622 -▁apart -10.1626 -▁lap -10.1628 -▁check -10.1638 -▁claim -10.1638 -▁becomes -10.1638 -▁politics -10.1642 -▁3: -10.1651 -om -10.1651 -▁cancer -10.1653 -▁christmas -10.1656 -▁ken -10.1657 -▁jo -10.1662 -▁sharp -10.1663 -air -10.1664 -▁household -10.1668 -▁fc -10.1676 -▁plants -10.1681 -▁facility -10.1681 -▁eric -10.1685 -▁pilot -10.1687 -▁relations -10.169 -▁quarter -10.1692 -ini -10.1695 -▁representative -10.1696 -7% -10.1701 -▁weapons -10.1702 -ou -10.1708 -▁stomach -10.171 -▁trail -10.1711 -▁avoid -10.1713 -▁spirit -10.1714 -▁send -10.1727 -▁begins -10.1729 -▁sources -10.173 -▁audience -10.1734 -▁vehicle -10.1737 -from -10.1737 -▁wonder -10.1744 -▁wine -10.1746 -▁labour -10.1748 -▁reaching -10.176 -▁carry -10.1763 -▁bronze -10.1766 -▁wasnt -10.1768 -▁bright -10.1776 -▁providing -10.1779 -▁albums -10.1779 -▁alternative -10.1782 -▁1964 -10.1784 -▁pat -10.1791 -▁largely -10.1797 -▁youre -10.1798 -new -10.181 -▁grey -10.1811 -▁ba -10.1818 -▁classes -10.182 -yeah -10.1821 -van -10.1823 -gy -10.1824 -▁density -10.1824 -▁nose -10.1824 -▁silent -10.1827 -▁learned -10.1828 -▁situated -10.1831 -▁salt -10.1834 -▁35 -10.1841 -▁illinois -10.1842 -nes -10.1843 -▁setting -10.1846 -▁brief -10.1851 -▁shirt -10.1856 -▁cool -10.1864 -long -10.1868 -▁phase -10.187 -▁environmental -10.188 -ara -10.1884 -▁defence -10.1884 -▁harry -10.1885 -▁chamber -10.1889 -4% -10.189 -▁ku -10.1893 -▁angel -10.1894 -▁noticed -10.1897 -▁jose -10.1898 -▁olympic -10.19 -28 -10.1903 -▁worth -10.1904 -▁founder -10.1922 -▁kid -10.1923 -▁thirty -10.1924 -▁allowing -10.1928 -▁fame -10.1936 -▁heritage -10.195 -▁etc -10.195 -ng -10.1955 -▁seats -10.1957 -▁nominated -10.1958 -▁bc -10.1965 -2007 -10.1972 -▁cricket -10.1974 -san -10.1985 -▁brian -10.1987 -cy -10.1987 -▁classic -10.1988 -▁promotion -10.1992 -▁determined -10.1993 -▁conversation -10.1994 -▁reduced -10.1995 -▁powers -10.1999 -29 -10.2 -▁marked -10.2001 -pro -10.2003 -▁web -10.2009 -▁fit -10.2013 -▁granted -10.2014 -▁estimated -10.2019 -▁clean -10.2022 -▁bear -10.2027 -▁equal -10.2036 -▁broad -10.2042 -▁eat -10.2042 -▁vision -10.2047 -2010 -10.2048 -▁twelve -10.205 -2008 -10.2062 -▁+ -10.2063 -▁1966 -10.2071 -▁1965 -10.2072 -▁write -10.2075 -▁korea -10.2081 -just -10.2087 -▁connection -10.2091 -▁models -10.2097 -ging -10.2103 -▁holds -10.2103 -▁khan -10.2104 -▁attacked -10.2107 -▁expanded -10.2108 -▁ali -10.2109 -8% -10.211 -▁si -10.2112 -▁6, -10.2119 -▁newly -10.2121 -▁independence -10.2123 -▁vampire -10.2124 -▁anyway -10.2141 -▁circle -10.2143 -▁guys -10.2152 -ris -10.2159 -▁exhibition -10.2162 -ot -10.2169 -▁fund -10.217 -ram -10.2172 -▁generation -10.2173 -▁reviews -10.2175 -▁grace -10.2176 -▁toronto -10.2177 -▁billion -10.2183 -ray -10.2187 -▁uncle -10.2187 -ren -10.2191 -▁francis -10.2193 -▁stayed -10.2198 -▁entry -10.2201 -dan -10.2201 -▁opposite -10.2203 -▁sounds -10.2205 -tz -10.2223 -▁interior -10.2224 -where -10.2226 -▁armed -10.2229 -▁signal -10.2231 -▁reference -10.2236 -▁message -10.2239 -▁develop -10.224 -▁drop -10.224 -▁lewis -10.2242 -board -10.2243 -▁davis -10.2245 -▁sar -10.225 -▁massachusetts -10.2252 -▁claims -10.2256 -▁defined -10.2259 -▁hosted -10.2262 -▁reports -10.2263 -▁mal -10.2264 -ial -10.2264 -ig -10.2266 -yan -10.2266 -▁squad -10.2267 -ez -10.2268 -▁respectively -10.2278 -2006 -10.2285 -▁unlike -10.2286 -▁anna -10.2286 -▁critics -10.2291 -kan -10.2291 -ward -10.2293 -▁cor -10.2293 -▁clubs -10.2296 -ries -10.2297 -▁enter -10.2298 -water -10.2299 -▁mu -10.2301 -▁sexual -10.2302 -▁yourself -10.2302 -2005 -10.2302 -▁ne -10.2303 -▁supply -10.2304 -▁bird -10.2305 -▁rank -10.2307 -▁humans -10.2309 -▁difference -10.231 -▁confirmed -10.2311 -▁ram -10.2312 -▁turns -10.2313 -▁oxford -10.2314 -▁wants -10.2315 -▁ways -10.2316 -▁passing -10.2321 -2009 -10.2325 -▁lie -10.2328 -ee -10.233 -▁constitution -10.2333 -ken -10.2336 -ble -10.2345 -▁fly -10.2358 -▁organizations -10.2359 -east -10.236 -▁chain -10.2367 -▁sixth -10.2375 -▁dinner -10.2378 -▁fields -10.2379 -ica -10.2384 -▁missing -10.2384 -tin -10.2392 -ii -10.2401 -▁programme -10.2405 -▁brazil -10.2408 -▁narrow -10.2415 -▁kim -10.2418 -▁philadelphia -10.2427 -▁978 -10.2432 -▁intelligence -10.2434 -▁respect -10.245 -▁condition -10.245 -▁dean -10.2451 -▁tradition -10.2451 -nt -10.2452 -▁2000, -10.2453 -▁possibly -10.2454 -▁apartment -10.2454 -▁fuel -10.2465 -▁keeping -10.2466 -ik -10.2468 -▁core -10.2469 -▁clearly -10.2476 -▁barely -10.2479 -80 -10.2486 -▁citizens -10.2487 -▁identified -10.2506 -▁rare -10.2508 -▁driving -10.251 -ska -10.252 -▁opportunity -10.2522 -▁entirely -10.2527 -▁materials -10.2528 -▁municipal -10.2528 -▁explained -10.2532 -▁eu -10.2539 -▁micro -10.2542 -art -10.2546 -▁opposition -10.2554 -▁reality -10.2555 -▁representatives -10.2555 -▁2018, -10.2558 -ari -10.2559 -dis -10.2569 -▁damn -10.2571 -▁pale -10.2579 -▁guns -10.2581 -▁afraid -10.2589 -▁desk -10.2591 -▁faculty -10.2592 -nie -10.2592 -▁succeeded -10.2594 -▁7, -10.2597 -▁fu -10.261 -▁mix -10.2612 -47 -10.2617 -▁tone -10.2624 -▁shit -10.2625 -▁1944 -10.2628 -▁votes -10.2631 -▁resulted -10.2632 -▁jason -10.2634 -▁attorney -10.2634 -▁lose -10.2634 -▁resulting -10.2638 -▁alliance -10.2641 -known -10.2641 -▁conflict -10.2644 -▁pressed -10.2646 -▁reasons -10.2648 -▁haven -10.2649 -▁cells -10.265 -▁target -10.265 -▁creating -10.2653 -▁covers -10.2654 -▁2004, -10.2655 -km -10.2657 -ence -10.266 -▁solid -10.2662 -▁map -10.2667 -▁princess -10.2668 -▁hunter -10.2668 -▁ride -10.2669 -▁colonel -10.2672 -▁height -10.2675 -▁surprised -10.2679 -▁catch -10.2679 -▁sad -10.2679 -▁thin -10.2681 -ize -10.2689 -▁albert -10.2691 -▁roles -10.2707 -▁performing -10.2712 -▁truck -10.2719 -▁figures -10.2725 -▁rolled -10.2733 -▁ryan -10.2734 -▁sword -10.2735 -▁suit -10.2735 -▁authorities -10.2738 -▁cemetery -10.2742 -▁pakistan -10.2744 -▁allows -10.2748 -▁injury -10.2752 -▁trains -10.2753 -down -10.2756 -▁ontario -10.2762 -▁hat -10.2764 -▁fur -10.2767 -▁80 -10.2777 -▁cant -10.2778 -▁speech -10.2779 -▁laws -10.2792 -▁oldest -10.2794 -▁criminal -10.2797 -▁documentary -10.2802 -▁maximum -10.2805 -▁portion -10.2806 -ning -10.2809 -▁trans -10.2809 -▁federation -10.2811 -07 -10.2811 -▁perform -10.2817 -▁origin -10.2821 -▁orange -10.2823 -ric -10.2824 -▁ranked -10.2825 -▁failure -10.2827 -▁heavily -10.283 -sch -10.2831 -▁staring -10.2838 -▁18, -10.284 -century -10.2843 -▁thousand -10.2847 -▁kg -10.2852 -▁journey -10.2853 -▁express -10.2856 -▁doors -10.2856 -▁roll -10.2856 -▁conservative -10.2858 -qui -10.2859 -▁shall -10.2868 -▁task -10.2872 -▁reaction -10.2874 -▁finding -10.289 -▁titled -10.2898 -▁ja -10.2903 -▁application -10.2906 -▁walter -10.2908 -▁existence -10.2908 -▁contest -10.2908 -pen -10.2913 -burg -10.2913 -▁inc -10.2914 -▁ki -10.2915 -▁1962 -10.2917 -wan -10.2917 -88 -10.292 -tus -10.2923 -▁miller -10.2927 -▁greatest -10.2933 -▁1963 -10.2942 -▁24, -10.2942 -01 -10.2943 -▁planet -10.2947 -▁neither -10.2948 -▁calls -10.2952 -dra -10.2956 -ura -10.2957 -▁permanent -10.2957 -▁500 -10.2957 -▁buy -10.2961 -▁adult -10.2962 -▁acres -10.2964 -▁titles -10.2973 -▁economy -10.2976 -▁composer -10.2977 -▁atlantic -10.2978 -▁cape -10.2979 -▁display -10.2988 -▁nuclear -10.2995 -▁palm -10.3006 -▁climate -10.3014 -▁netherlands -10.3016 -▁fans -10.3024 -▁obtained -10.3025 -▁gets -10.3025 -2000 -10.3028 -▁laugh -10.3031 -did -10.3032 -▁handle -10.3034 -▁inspired -10.3038 -▁officials -10.3038 -▁photo -10.3039 -▁hills -10.304 -85 -10.3045 -▁peak -10.3054 -get -10.3058 -▁swedish -10.3059 -▁positions -10.3062 -▁doubt -10.3063 -▁thoughts -10.3064 -▁religion -10.3064 -▁attempted -10.307 -▁pool -10.3072 -▁canal -10.3074 -▁sarah -10.3076 -▁poet -10.3076 -▁ny -10.308 -ft -10.3081 -gu -10.3085 -▁northwest -10.3085 -▁pope -10.3089 -▁educational -10.309 -▁hide -10.3091 -▁actions -10.3092 -yl -10.3105 -▁attacks -10.3106 -▁crossed -10.3107 -▁remembered -10.3113 -▁apparently -10.312 -2004 -10.3128 -ok -10.3131 -▁frequently -10.3132 -▁convention -10.3143 -▁op -10.3147 -▁classical -10.3148 -▁landing -10.315 -part -10.3157 -▁abandoned -10.316 -▁passenger -10.3161 -▁answered -10.3166 -▁object -10.3166 -▁aid -10.3166 -2011 -10.3172 -▁wear -10.3173 -08 -10.3175 -▁chin -10.3179 -▁faith -10.3179 -▁arrested -10.318 -▁sri -10.3182 -▁pictures -10.3185 -▁worse -10.3197 -▁falling -10.32 -▁publishing -10.3201 -▁auto -10.3205 -▁relatively -10.3206 -▁faced -10.3206 -▁korean -10.3208 -hr -10.3209 -▁centuries -10.3209 -▁lyrics -10.3212 -▁mexican -10.3213 -▁poetry -10.3216 -▁internal -10.3218 -▁shadow -10.3226 -▁ending -10.3227 -▁visited -10.3236 -▁jesus -10.3238 -▁kar -10.324 -▁plus -10.3245 -ven -10.3251 -32 -10.3251 -▁gar -10.3252 -idae -10.3254 -▁vehicles -10.326 -▁factory -10.3261 -light -10.3262 -▁row -10.3263 -point -10.3264 -▁ash -10.3277 -▁supporting -10.3277 -▁qualified -10.3282 -▁bio -10.3282 -▁chapel -10.3283 -▁8, -10.329 -▁scoring -10.3291 -▁effective -10.3299 -▁cu -10.3301 -▁wa -10.3304 -▁programming -10.3307 -▁threw -10.3317 -▁coat -10.3318 -▁entitled -10.3318 -▁subsequent -10.332 -▁1942 -10.3325 -▁existing -10.3326 -▁desire -10.3328 -▁90 -10.3332 -▁nu -10.3332 -▁achieved -10.3336 -▁starring -10.3337 -▁selection -10.3339 -▁graduate -10.3348 -▁flag -10.3348 -▁interested -10.335 -lis -10.335 -▁drawn -10.3352 -▁fashion -10.3355 -sha -10.3362 -ists -10.3365 -▁pink -10.3365 -90 -10.3366 -bury -10.3368 -▁acts -10.3375 -▁ge -10.3385 -run -10.3389 -▁pet -10.3392 -ros -10.3393 -▁sector -10.3398 -▁soccer -10.3398 -▁duty -10.3399 -▁jane -10.3403 -▁publication -10.3407 -▁philosophy -10.341 -▁dar -10.3413 -▁domestic -10.3418 -▁fresh -10.3424 -ping -10.3427 -▁exist -10.3431 -▁bu -10.3431 -▁theme -10.3437 -when -10.3443 -iz -10.3445 -▁showing -10.346 -ita -10.3468 -▁worry -10.3471 -▁otherwise -10.3478 -▁ju -10.3479 -ud -10.3484 -▁investigation -10.3485 -▁gene -10.3493 -▁methods -10.3497 -des -10.3504 -▁occupied -10.3505 -nan -10.3508 -▁cheek -10.352 -▁performances -10.352 -▁70 -10.3524 -▁reform -10.3534 -hand -10.3536 -▁orders -10.3539 -▁1943 -10.3541 -pan -10.3544 -▁skills -10.3548 -▁waited -10.3549 -▁fiction -10.355 -▁elementary -10.3557 -ach -10.3558 -2012 -10.3558 -▁grow -10.3558 -▁philip -10.356 -▁evil -10.3565 -48 -10.3568 -▁stuff -10.3568 -▁address -10.357 -▁literary -10.3571 -some -10.3572 -▁wet -10.3572 -▁knight -10.3575 -▁hate -10.3577 -▁briefly -10.3578 -▁comic -10.358 -lon -10.3583 -▁invited -10.3585 -▁tiny -10.3586 -▁hearing -10.3586 -▁category -10.3593 -tes -10.3597 -▁designated -10.3601 -▁expansion -10.3602 -▁funding -10.3602 -▁lip -10.3605 -▁carl -10.3605 -▁kissed -10.3606 -▁missed -10.3606 -nik -10.3607 -▁streets -10.3609 -▁mobile -10.3611 -▁causing -10.3611 -▁formerly -10.3613 -▁starts -10.362 -▁couldnt -10.3625 -▁incident -10.3626 -illa -10.3627 -▁wooden -10.3631 -▁sweden -10.3631 -▁push -10.3635 -▁credit -10.3636 -ino -10.3639 -▁electronic -10.3643 -▁ty -10.3648 -▁establishment -10.3654 -▁spend -10.3656 -▁behavior -10.3656 -ding -10.3663 -▁sites -10.3666 -▁understanding -10.3667 -▁1961 -10.3669 -▁lying -10.3669 -▁sal -10.367 -good -10.367 -▁attempts -10.3671 -▁10, -10.3675 -▁folk -10.3679 -▁prepared -10.3681 -▁darkness -10.3682 -▁identity -10.3683 -▁explain -10.3688 -rie -10.3691 -▁pp -10.3692 -86 -10.3697 -▁1946 -10.3702 -▁tea -10.3705 -04 -10.3705 -▁sin -10.371 -ong -10.3713 -▁1948 -10.3715 -▁versions -10.3722 -dale -10.3727 -75 -10.3729 -▁restaurant -10.3729 -▁gang -10.373 -ette -10.3731 -▁bureau -10.3734 -▁gain -10.3737 -▁details -10.374 -▁wake -10.3743 -▁communication -10.3743 -▁jeff -10.375 -▁southeast -10.375 -▁patrick -10.3755 -▁slid -10.3756 -▁1959 -10.3757 -▁admitted -10.3762 -▁copies -10.3762 -▁sale -10.3765 -▁violence -10.3768 -▁purchase -10.3769 -ag -10.3771 -▁pulling -10.3771 -▁billboard -10.3779 -▁chose -10.3785 -▁anne -10.3785 -▁1956 -10.3786 -▁ultimately -10.3797 -tion -10.3805 -▁spin -10.3808 -var -10.381 -▁flow -10.3812 -▁col -10.3813 -▁advantage -10.382 -▁gate -10.3821 -▁rising -10.3822 -ett -10.3824 -70 -10.3834 -ec -10.3837 -▁bedroom -10.3838 -▁jaw -10.3847 -gate -10.3849 -▁pu -10.3857 -▁speaking -10.3867 -2003 -10.3868 -bit -10.387 -zy -10.3879 -▁crazy -10.388 -ky -10.3881 -▁1958 -10.3887 -▁statement -10.3889 -▁regions -10.3915 -▁strike -10.3917 -▁agricultural -10.3918 -izing -10.3919 -▁camera -10.3924 -▁formal -10.3926 -▁architect -10.3927 -▁dragon -10.3931 -▁promise -10.3933 -2002 -10.3934 -▁dangerous -10.3935 -▁circuit -10.3936 -▁sell -10.3936 -▁liked -10.3941 -▁carrying -10.3942 -▁val -10.3942 -▁temperature -10.3942 -▁wedding -10.3943 -▁bal -10.3954 -▁accident -10.3961 -▁sick -10.3965 -▁flowers -10.3967 -▁cambridge -10.3968 -▁priest -10.3974 -▁inhabitants -10.3976 -▁aired -10.3978 -▁journalist -10.398 -▁9, -10.3993 -▁1957 -10.3993 -▁jay -10.3995 -▁artillery -10.3997 -mm -10.3998 -▁standards -10.4 -▁angry -10.4003 -ative -10.4004 -tri -10.4006 -▁closely -10.4007 -2013 -10.4008 -06 -10.4009 -▁smoke -10.401 -▁36 -10.4015 -▁belt -10.4016 -60 -10.4029 -▁anymore -10.4031 -▁articles -10.4034 -val -10.4035 -▁guide -10.4039 -▁asking -10.4039 -▁communications -10.404 -▁wrestling -10.4041 -▁bush -10.4041 -▁tag -10.4048 -cc -10.4051 -▁singing -10.4052 -▁extensive -10.4062 -▁referee -10.4064 -▁anger -10.4071 -▁presidential -10.4072 -▁employed -10.4074 -▁budget -10.4077 -▁cash -10.4083 -▁shi -10.4084 -▁launch -10.4084 -▁struck -10.409 -▁receiving -10.4092 -▁pocket -10.4092 -▁gay -10.4093 -79 -10.4099 -▁shock -10.4104 -sp -10.4105 -▁mirror -10.4108 -rus -10.4108 -▁11, -10.411 -ida -10.411 -▁noise -10.4119 -▁plate -10.4126 -▁smell -10.413 -tis -10.4136 -▁besides -10.4139 -▁lights -10.414 -39 -10.4148 -▁cabinet -10.4163 -▁loud -10.4165 -▁sets -10.4166 -▁trained -10.4168 -▁2003, -10.4169 -▁4: -10.417 -▁winners -10.4174 -▁1941 -10.4174 -pp -10.4177 -▁northeast -10.4178 -▁junction -10.418 -▁tail -10.4182 -▁increasing -10.4183 -ible -10.4186 -▁bachelor -10.4189 -▁bond -10.419 -▁guards -10.4192 -cal -10.4199 -▁survey -10.42 -▁proved -10.42 -▁wings -10.4204 -sel -10.4205 -▁afternoon -10.4209 -del -10.4212 -▁contained -10.4213 -▁cole -10.4217 -▁1952 -10.4218 -▁accept -10.4221 -▁sr -10.4226 -ela -10.4226 -ani -10.4229 -▁howard -10.4234 -▁introduction -10.4237 -▁poly -10.4239 -▁legislative -10.4242 -ide -10.4243 -▁institutions -10.4245 -▁tomorrow -10.4246 -▁ends -10.425 -▁gro -10.4252 -▁cathedral -10.4253 -tel -10.4253 -▁progress -10.4255 -▁melbourne -10.4256 -ator -10.4259 -▁visual -10.4262 -▁pin -10.4264 -▁ridge -10.4267 -▁tan -10.4269 -cher -10.4273 -▁actual -10.4274 -▁scale -10.4274 -2001 -10.4275 -▁metropolitan -10.4276 -▁regarding -10.4291 -▁wore -10.4291 -▁approved -10.4292 -64 -10.4293 -▁va -10.4293 -▁bur -10.4299 -▁chase -10.43 -ens -10.4302 -▁1947 -10.4302 -yard -10.4302 -▁sought -10.4306 -▁ideas -10.4307 -▁antonio -10.4318 -▁kevin -10.432 -▁weekly -10.4321 -mal -10.4321 -99 -10.4322 -▁moscow -10.4328 -▁tunnel -10.4329 -▁stands -10.4331 -▁saturday -10.4333 -▁commissioned -10.4333 -pin -10.4334 -bb -10.4335 -▁touched -10.4336 -ep -10.4336 -▁somewhere -10.4344 -▁converted -10.435 -▁arena -10.4358 -ova -10.4359 -▁worldwide -10.436 -▁dave -10.437 -▁opposed -10.4373 -▁bow -10.4378 -▁represent -10.4378 -▁images -10.4379 -▁containing -10.438 -▁studios -10.4381 -▁communist -10.4385 -▁crossing -10.4387 -▁coal -10.4395 -▁link -10.4399 -▁fill -10.44 -▁kw -10.4402 -▁shooting -10.4405 -bel -10.4408 -31 -10.4415 -▁recognition -10.4416 -pre -10.4416 -46 -10.442 -ira -10.442 -▁concerned -10.4428 -▁wondered -10.443 -▁villages -10.4432 -▁mon -10.4438 -▁morgan -10.4438 -▁frame -10.4441 -▁specifically -10.4441 -▁ross -10.4443 -66 -10.4447 -▁dvd -10.4448 -shi -10.4454 -▁brick -10.4456 -▁pleasure -10.4458 -▁thank -10.4463 -▁anthony -10.4463 -▁drawing -10.4463 -▁33 -10.4465 -▁fixed -10.4465 -▁samuel -10.4466 -ea -10.4471 -▁choose -10.4475 -▁glad -10.4476 -▁hung -10.4477 -▁oak -10.4486 -▁cave -10.4486 -▁retirement -10.4486 -▁founding -10.449 -▁improve -10.449 -wing -10.4493 -▁add -10.4496 -▁neighborhood -10.4496 -▁chemical -10.4501 -▁cal -10.4502 -▁notice -10.4507 -first -10.4508 -▁stupid -10.4515 -set -10.4517 -37 -10.4518 -▁wheel -10.452 -▁hal -10.4521 -▁giant -10.4523 -▁1955 -10.4527 -▁pe -10.453 -▁developing -10.4539 -▁calm -10.4545 -▁consider -10.455 -02 -10.4552 -▁300 -10.4558 -▁lane -10.4559 -▁turkey -10.456 -ice -10.4561 -▁tank -10.4566 -▁bat -10.4571 -ano -10.4573 -▁invasion -10.4583 -▁resistance -10.4584 -par -10.4585 -▁ward -10.4589 -▁taste -10.4593 -65 -10.4598 -▁institution -10.4602 -▁em -10.4605 -▁fighter -10.4606 -ow -10.4609 -▁1954 -10.461 -▁sounded -10.4612 -▁mental -10.4618 -▁provincial -10.4622 -▁patients -10.4623 -▁constant -10.4625 -▁charlie -10.4626 -▁danger -10.4626 -▁warning -10.4629 -ena -10.463 -zer -10.4637 -▁shell -10.464 -uri -10.4642 -▁phil -10.4642 -▁treaty -10.4647 -▁consisted -10.4652 -▁alan -10.4655 -ile -10.4656 -▁senator -10.4658 -03 -10.4659 -wick -10.4659 -▁threat -10.4659 -▁han -10.4659 -mus -10.4663 -chan -10.4664 -▁pack -10.4665 -▁34 -10.4666 -▁lit -10.4678 -ball -10.4679 -▁juan -10.4681 -▁advance -10.4683 -▁towns -10.4685 -▁ceremony -10.4686 -▁banks -10.4689 -ye -10.469 -▁ye -10.4691 -▁clark -10.4691 -▁1953 -10.4691 -▁knows -10.4693 -0% -10.4701 -ai -10.4701 -▁12, -10.4702 -49 -10.4707 -▁somehow -10.4708 -▁disc -10.4708 -▁plane -10.4708 -▁1939 -10.4713 -▁funds -10.4714 -▁concern -10.472 -ped -10.4721 -▁assumed -10.4723 -▁douglas -10.4726 -▁observed -10.4729 -▁writers -10.4732 -▁twin -10.4735 -▁tennis -10.4742 -▁attached -10.4744 -▁athletic -10.4745 -▁roger -10.4751 -▁personnel -10.4754 -▁offices -10.4754 -97 -10.4754 -▁emergency -10.4761 -▁sur -10.4762 -▁device -10.4767 -▁broadcasting -10.4768 -▁attendance -10.477 -worth -10.4771 -▁minnesota -10.4779 -▁grown -10.4781 -▁weapon -10.4782 -din -10.4782 -▁favor -10.4783 -▁rescue -10.4789 -sk -10.4793 -▁bringing -10.4793 -▁hired -10.4796 -▁engaged -10.4804 -▁knees -10.4806 -general -10.4807 -▁rooms -10.4816 -tal -10.4817 -▁drove -10.482 -38 -10.4821 -▁arab -10.4822 -tha -10.4822 -▁mall -10.4825 -▁thanks -10.4828 -foot -10.4831 -▁victor -10.4832 -▁lawyer -10.4833 -▁successfully -10.4834 -▁collected -10.4834 -▁allen -10.4838 -▁stairs -10.484 -mu -10.4842 -▁incorporated -10.4847 -▁beauty -10.4849 -69 -10.4851 -▁worried -10.4852 -▁negative -10.4857 -▁capture -10.4858 -▁wrapped -10.4859 -▁retrieved -10.486 -▁fe -10.4862 -▁cry -10.4865 -▁hip -10.4869 -▁hidden -10.4872 -▁occurs -10.4878 -▁hoped -10.488 -bre -10.488 -▁grin -10.4893 -▁familiar -10.49 -▁las -10.4904 -▁contributed -10.4904 -▁residence -10.4907 -62 -10.4908 -use -10.4913 -far -10.4914 -▁singapore -10.4918 -▁attend -10.4924 -▁desert -10.4924 -▁properties -10.4925 -▁participate -10.4926 -▁ltd -10.4929 -ay -10.4934 -ane -10.4939 -▁investment -10.4939 -▁contrast -10.494 -▁finance -10.4947 -hl -10.4955 -▁helping -10.4956 -▁teachers -10.4956 -▁hamilton -10.4957 -▁employees -10.4957 -▁contain -10.4957 -▁finishing -10.4958 -▁functions -10.4961 -▁1949 -10.4968 -▁quietly -10.4968 -▁downtown -10.4968 -▁session -10.497 -▁string -10.4975 -ned -10.4979 -= -10.498 -▁yo -10.4982 -▁importance -10.4982 -▁formula -10.4988 -87 -10.4991 -▁manchester -10.4992 -▁pattern -10.4993 -▁combination -10.4995 -two -10.4997 -▁frederick -10.4999 -▁surrounded -10.5001 -▁philippines -10.5005 -rah -10.5005 -fe -10.5006 -▁mode -10.5007 -▁expressed -10.501 -▁$1 -10.5014 -ula -10.5015 -▁occur -10.5015 -elle -10.5015 -▁determine -10.5016 -▁papers -10.5024 -▁plain -10.5027 -▁15, -10.5033 -▁survived -10.5034 -▁birds -10.5037 -▁egypt -10.5038 -2014 -10.5042 -▁inner -10.5042 -▁items -10.5042 -▁mor -10.5042 -iv -10.5045 -▁scheduled -10.5047 -▁jordan -10.505 -▁2002, -10.5056 -▁iv -10.506 -vis -10.5062 -▁moore -10.5063 -▁walker -10.5065 -▁joining -10.5066 -▁stream -10.5068 -▁applications -10.5073 -▁kings -10.5074 -▁billy -10.5076 -▁examples -10.5077 -istic -10.508 -▁request -10.5083 -▁southwest -10.5084 -▁seventh -10.5087 -36 -10.5089 -56 -10.509 -▁jake -10.509 -▁argued -10.5094 -lar -10.5095 -▁norwegian -10.5096 -▁anderson -10.5098 -▁sp -10.5098 -work -10.5099 -▁decades -10.5099 -▁rush -10.51 -ua -10.5108 -▁massive -10.5109 -ston -10.511 -▁passes -10.5114 -84 -10.5114 -▁gordon -10.5114 -▁baron -10.5115 -▁representing -10.5116 -▁mention -10.5117 -▁tie -10.5118 -▁norway -10.5119 -▁finds -10.5124 -▁plot -10.5124 -▁universe -10.5124 -▁cook -10.5127 -▁registered -10.5132 -▁tied -10.5133 -▁protected -10.5133 -98 -10.5135 -▁thousands -10.5135 -▁refers -10.5137 -dr -10.5138 -ities -10.514 -▁fruit -10.514 -▁painter -10.5143 -▁sang -10.5145 -ama -10.5147 -▁1951 -10.5163 -▁throw -10.5164 -▁structures -10.5165 -▁bomb -10.5166 -bal -10.5171 -▁forever -10.5173 -▁tropical -10.5176 -▁usual -10.5176 -▁parallel -10.5178 -bus -10.5178 -▁transportation -10.5184 -▁14, -10.5184 -stein -10.5185 -▁loan -10.5189 -▁softly -10.519 -74 -10.5191 -▁inches -10.5191 -▁rob -10.5191 -▁kansas -10.5196 -▁manner -10.52 -▁cinema -10.5215 -▁listen -10.5216 -▁biggest -10.5223 -95 -10.5224 -▁horses -10.5229 -▁painted -10.5236 -▁favorite -10.5241 -die -10.5242 -▁aside -10.5244 -▁distinguished -10.5244 -hill -10.5249 -lie -10.5252 -mes -10.5261 -▁covering -10.5261 -▁hunt -10.5263 -▁austria -10.5265 -ery -10.5266 -▁certainly -10.5271 -▁br -10.5271 -▁amateur -10.5272 -▁historian -10.5272 -▁aware -10.5275 -▁terminal -10.5276 -▁forget -10.5278 -▁dj -10.5278 -▁hits -10.5278 -state -10.528 -▁muslim -10.5281 -▁resigned -10.5282 -sc -10.5282 -ming -10.5282 -▁churches -10.5283 -▁pra -10.5286 -▁injured -10.5287 -▁rev -10.5288 -▁capable -10.5288 -▁woods -10.5295 -ich -10.5297 -▁colonial -10.53 -▁districts -10.5308 -▁putting -10.531 -▁typical -10.5311 -▁gently -10.5318 -▁jews -10.5319 -89 -10.5321 -▁users -10.5322 -▁underground -10.5326 -top -10.5329 -▁luke -10.5339 -▁experienced -10.534 -▁13, -10.5341 -▁script -10.5341 -aw -10.5342 -▁1900 -10.5345 -▁21, -10.5347 -▁demand -10.5351 -1999 -10.5352 -▁vietnam -10.5354 -63 -10.5355 -▁breaking -10.5359 -▁file -10.536 -eo -10.5361 -▁bor -10.5361 -▁extension -10.5364 -▁reign -10.5365 -▁extremely -10.5365 -▁fired -10.5368 -▁arrival -10.5369 -▁merged -10.5371 -59 -10.5373 -▁commune -10.5373 -may -10.5376 -▁smooth -10.538 -level -10.5383 -▁sum -10.5384 -2015 -10.5386 -hey -10.5392 -▁weak -10.54 -▁beer -10.5403 -▁lands -10.5408 -▁asks -10.5417 -present -10.542 -ties -10.5424 -▁objects -10.5429 -▁anniversary -10.5432 -▁scenes -10.5433 -▁tries -10.5441 -rich -10.5446 -▁les -10.545 -▁23, -10.5451 -▁missouri -10.5456 -▁till -10.5457 -▁agriculture -10.5457 -▁maintained -10.5461 -▁influenced -10.5464 -▁dynasty -10.5469 -▁rolling -10.547 -▁horror -10.5472 -▁backing -10.5474 -▁factor -10.5481 -▁paintings -10.5485 -▁replace -10.5492 -▁hoping -10.5494 -▁jump -10.5494 -▁burned -10.5495 -▁jon -10.5501 -▁borough -10.5501 -▁kelly -10.5502 -42 -10.5505 -▁indiana -10.5505 -▁bull -10.5508 -▁shore -10.5508 -▁sisters -10.551 -▁2001, -10.5511 -▁promote -10.5514 -▁dressed -10.5516 -▁partnership -10.5516 -▁regarded -10.5517 -non -10.5517 -dal -10.5522 -▁decade -10.5522 -▁22, -10.5522 -▁26, -10.5522 -▁roads -10.5523 -▁mess -10.5524 -tar -10.5525 -▁controlled -10.5527 -▁steam -10.5527 -▁grass -10.553 -▁license -10.5532 -54 -10.5535 -term -10.5538 -34 -10.5539 -lock -10.5539 -come -10.5546 -▁und -10.5548 -▁vocal -10.5553 -including -10.5555 -ph -10.5559 -▁raise -10.5565 -▁colorado -10.5567 -▁dating -10.5568 -▁compete -10.5569 -wi -10.5572 -▁educated -10.5574 -▁smart -10.5576 -▁yeah -10.5578 -81 -10.5581 -▁derived -10.5583 -gue -10.5583 -nia -10.5585 -mont -10.5587 -▁bra -10.5592 -▁metro -10.5595 -cu -10.5596 -▁handed -10.5596 -▁conduct -10.5598 -▁hole -10.5604 -▁lock -10.5607 -▁impossible -10.5614 -000 -10.5616 -▁soldier -10.5622 -▁ghost -10.5623 -tro -10.5625 -▁pot -10.5628 -▁queensland -10.5631 -▁improved -10.5631 -▁ce -10.5634 -▁jam -10.5634 -▁delivered -10.5635 -▁unless -10.5636 -▁collaboration -10.5636 -▁cloud -10.5637 -▁marie -10.5637 -▁realize -10.5645 -▁protein -10.5646 -72 -10.5651 -▁weekend -10.566 -▁locked -10.566 -▁outstanding -10.5662 -▁wounded -10.5663 -▁understood -10.5672 -season -10.5681 -▁engines -10.5687 -▁rio -10.5691 -▁karl -10.5691 -▁19, -10.5697 -ks -10.5699 -▁28, -10.5699 -53 -10.57 -▁audio -10.5705 -▁responsibility -10.5708 -▁bath -10.5708 -▁knife -10.5708 -▁maintain -10.5709 -ix -10.5713 -▁charged -10.5718 -▁sequence -10.5718 -100 -10.5724 -▁maryland -10.5728 -▁var -10.5729 -▁golf -10.573 -▁oregon -10.5731 -▁clay -10.5735 -▁apple -10.5737 -▁sara -10.574 -▁classification -10.5742 -▁bottle -10.5746 -▁wins -10.5746 -▁diego -10.575 -▁crisis -10.5753 -▁burning -10.5758 -▁arizona -10.5762 -▁composition -10.5766 -▁causes -10.5767 -33 -10.5771 -▁tennessee -10.5774 -▁spoken -10.5774 -▁carefully -10.5775 -▁opinion -10.5777 -▁dick -10.5787 -▁boss -10.5789 -▁operate -10.5789 -▁aged -10.5791 -▁indeed -10.5795 -▁measure -10.5796 -ban -10.5799 -96 -10.5799 -▁deck -10.58 -▁ensure -10.5803 -▁feed -10.5807 -▁translation -10.5814 -▁27, -10.5817 -▁installed -10.5825 -▁assistance -10.5826 -▁mur -10.5828 -93 -10.5833 -▁values -10.5835 -05 -10.5835 -▁margaret -10.5837 -▁decide -10.5838 -▁candidates -10.5846 -82 -10.585 -▁dates -10.5853 -▁require -10.5855 -▁wisconsin -10.5856 -▁jacob -10.586 -▁organisation -10.5862 -▁producing -10.5863 -sur -10.5863 -55 -10.5865 -▁trophy -10.5871 -▁hy -10.5873 -▁lincoln -10.5874 -▁switzerland -10.5875 -▁establish -10.5879 -▁blues -10.5886 -▁offering -10.5887 -ability -10.5888 -▁cards -10.5893 -▁30, -10.5895 -▁gotten -10.5899 -▁locations -10.5901 -fu -10.591 -▁voted -10.5916 -jan -10.5916 -gon -10.5917 -▁gi -10.5923 -▁nfl -10.593 -life -10.593 -▁musician -10.5933 -ser -10.5934 -▁concrete -10.5938 -▁shifted -10.5945 -▁quebec -10.5949 -ell -10.5956 -▁25, -10.5962 -our -10.5963 -▁ham -10.5963 -▁israeli -10.5967 -▁panel -10.597 -▁affected -10.5971 -▁disappeared -10.5974 -▁sha -10.5976 -▁tired -10.5976 -cut -10.5979 -▁proper -10.5983 -fo -10.5985 -low -10.5994 -▁1936 -10.5999 -▁johnny -10.6005 -yn -10.6007 -▁accused -10.601 -▁worst -10.601 -▁gap -10.6013 -▁jimmy -10.6023 -▁mono -10.6026 -78 -10.6026 -▁somewhat -10.6027 -▁approached -10.6028 -▁prix -10.603 -▁stores -10.6035 -▁acid -10.6036 -▁reduce -10.6041 -▁bands -10.6043 -▁bound -10.6045 -▁musicians -10.6051 -una -10.6055 -▁context -10.6057 -▁16, -10.6058 -▁fallen -10.6058 -▁weren -10.606 -▁ph -10.6065 -▁views -10.6072 -▁normally -10.6074 -▁hi -10.6075 -was -10.6078 -▁cycle -10.6079 -▁indicated -10.6082 -▁medium -10.6083 -▁heads -10.6089 -1998 -10.6091 -▁user -10.6091 -▁1918 -10.6093 -sie -10.6096 -▁38 -10.6097 -▁concluded -10.6098 -▁consisting -10.6099 -▁ann -10.6102 -▁42 -10.6105 -▁rick -10.6118 -▁committed -10.612 -▁universities -10.6121 -ika -10.6123 -67 -10.6123 -1997 -10.6125 -▁associate -10.6125 -▁turkish -10.6129 -▁bruce -10.6133 -▁universal -10.6133 -▁fault -10.6134 -▁ti -10.6139 -▁pit -10.6141 -aka -10.6148 -▁stating -10.6149 -▁demon -10.6153 -▁shield -10.6154 -▁organ -10.6156 -win -10.6158 -▁rough -10.6162 -right -10.6167 -▁flew -10.6169 -ue -10.617 -▁expect -10.617 -▁houston -10.6175 -▁fifteen -10.6179 -▁liquid -10.6179 -form -10.6186 -▁cousin -10.6186 -nis -10.619 -▁kate -10.619 -▁pi -10.6194 -▁consecutive -10.6195 -▁separated -10.6196 -▁portuguese -10.6199 -▁hollywood -10.6204 -▁grounds -10.6204 -▁sugar -10.6205 -pu -10.6212 -ology -10.6213 -▁passengers -10.6216 -▁1938 -10.6218 -ben -10.6218 -▁ethnic -10.6219 -▁gift -10.6222 -▁feelings -10.6224 -▁adjacent -10.6227 -▁odd -10.6227 -▁fat -10.6228 -▁techniques -10.623 -tell -10.6231 -▁constituency -10.6231 -nu -10.6233 -▁mail -10.6234 -▁regularly -10.6235 -▁leon -10.624 -57 -10.624 -▁prove -10.6244 -ure -10.6247 -▁defensive -10.6248 -elli -10.6255 -▁sudden -10.6257 -▁insurance -10.6258 -▁changing -10.6265 -▁costs -10.6267 -sey -10.6274 -▁clock -10.6277 -▁confused -10.6281 -▁creative -10.6291 -▁min -10.6291 -▁faster -10.6292 -▁benefit -10.6292 -▁ms -10.6297 -▁mini -10.6307 -key -10.6309 -▁ruled -10.6311 -▁closing -10.6314 -mel -10.6317 -71 -10.632 -ala -10.6324 -▁mining -10.6326 -▁sighed -10.6328 -▁ser -10.6329 -51 -10.633 -▁riding -10.6332 -▁bathroom -10.6333 -burn -10.6334 -▁fred -10.6338 -▁repeated -10.6338 -▁letting -10.6345 -▁#1 -10.6347 -▁eleven -10.6347 -▁option -10.6347 -▁gear -10.6352 -zen -10.6353 -▁clan -10.6353 -▁leads -10.6357 -▁20, -10.6366 -zu -10.6368 -▁appeal -10.6369 -▁flesh -10.6372 -▁mathematics -10.6377 -▁tip -10.6381 -▁lucky -10.6381 -▁pure -10.6383 -44 -10.6383 -iya -10.6386 -▁fer -10.6393 -▁parking -10.6394 -ical -10.6395 -▁ceiling -10.6395 -▁2: -10.6395 -▁net -10.6396 -▁scheme -10.6396 -▁mat -10.6398 -kh -10.6404 -68 -10.6408 -▁persons -10.6412 -▁rod -10.6412 -▁crystal -10.6417 -bed -10.6427 -58 -10.6431 -▁meanwhile -10.6432 -dia -10.6434 -kov -10.6443 -▁17, -10.6447 -such -10.6449 -▁charter -10.6451 -▁discovery -10.6451 -▁childhood -10.6452 -▁expedition -10.6453 -▁37 -10.6453 -▁solution -10.6457 -pot -10.6459 -hara -10.6459 -▁jumped -10.6461 -▁29, -10.6469 -▁arranged -10.6469 -▁hay -10.6473 -▁resolution -10.6477 -▁sch -10.6477 -▁threatened -10.6482 -▁smiling -10.6484 -▁burn -10.6484 -ip -10.6488 -▁diocese -10.6489 -▁greece -10.6493 -▁fo -10.6494 -▁lunch -10.6495 -▁pace -10.6499 -▁swiss -10.6501 -your -10.6506 -▁secure -10.6507 -▁hart -10.6508 -▁moth -10.651 -▁horn -10.6512 -▁tokyo -10.6513 -▁1937 -10.6518 -cia -10.6531 -▁meters -10.6532 -▁carter -10.6533 -▁shaking -10.6539 -▁facing -10.654 -▁storage -10.6542 -92 -10.6542 -oo -10.6545 -▁accompanied -10.6549 -isation -10.655 -▁translated -10.6552 -▁residential -10.6562 -▁raw -10.6566 -lus -10.6566 -▁leather -10.6568 -▁harris -10.6568 -▁gabriel -10.6569 -▁tele -10.6569 -▁physics -10.6574 -52 -10.6574 -los -10.6574 -▁indicate -10.6575 -▁lab -10.6577 -▁copy -10.6585 -▁schedule -10.6586 -▁dust -10.6587 -▁uniform -10.6593 -▁index -10.6596 -▁begun -10.6596 -▁exit -10.6596 -▁additionally -10.6601 -▁matthew -10.6602 -▁400 -10.6603 -▁150 -10.6603 -▁selling -10.6604 -nee -10.6605 -sia -10.6609 -▁kha -10.661 -▁describes -10.6611 -▁assault -10.6614 -▁fin -10.6616 -eh -10.6619 -▁membership -10.6623 -1990 -10.6623 -▁moments -10.6624 -yer -10.6625 -eng -10.6625 -▁neo -10.6637 -▁ga -10.6641 -▁pal -10.6644 -▁notably -10.6644 -fl -10.6644 -▁waist -10.6652 -▁documents -10.6657 -ata -10.6659 -▁shoot -10.6663 -▁saved -10.6665 -▁rifle -10.6666 -▁conservation -10.6669 -▁gen -10.6671 -style -10.6672 -▁imagine -10.6673 -▁ears -10.6674 -▁64 -10.6677 -▁soil -10.668 -take -10.6682 -▁distributed -10.6685 -▁landed -10.6686 -▁arrest -10.6686 -▁41 -10.6687 -ae -10.6689 -▁courses -10.6689 -▁legend -10.6692 -▁busy -10.6695 -▁branches -10.6695 -▁shah -10.6697 -▁victims -10.6698 -his -10.67 -▁ambassador -10.6701 -▁montreal -10.6701 -lia -10.6707 -▁mph -10.671 -$ -10.6712 -lum -10.6714 -ada -10.6715 -▁norman -10.6716 -▁destroy -10.672 -▁interests -10.6721 -▁obviously -10.6721 -▁enjoyed -10.6723 -▁publications -10.6724 -▁dreams -10.6733 -▁counties -10.6734 -lay -10.674 -ensis -10.6744 -story -10.6745 -pt -10.6747 -▁breathing -10.6749 -▁duties -10.6751 -▁charlotte -10.6751 -▁distinct -10.6753 -▁kent -10.6755 -world -10.6759 -▁commonwealth -10.676 -▁kentucky -10.6765 -▁businesses -10.6766 -▁strategy -10.6771 -▁meat -10.6773 -▁hu -10.6775 -▁cho -10.6779 -▁testing -10.6782 -▁pad -10.6783 -▁flash -10.6784 -▁pages -10.6786 -▁kor -10.6789 -76 -10.679 -▁homes -10.6791 -enberg -10.6795 -▁lawrence -10.6798 -73 -10.6805 -▁detroit -10.6808 -▁degrees -10.6811 -▁gary -10.6818 -▁sq -10.6819 -lam -10.6821 -▁ron -10.6822 -room -10.6828 -▁earliest -10.684 -sson -10.6843 -▁ottoman -10.6844 -because -10.6845 -▁willing -10.6847 -▁landscape -10.6848 -▁cable -10.6852 -▁birthday -10.6853 -▁correct -10.6858 -▁roughly -10.686 -▁bid -10.686 -▁blow -10.6861 -ew -10.6863 -bert -10.6864 -ified -10.6865 -▁rachel -10.6867 -▁fifty -10.6867 -▁czech -10.6872 -▁grip -10.6876 -▁glen -10.6876 -▁balance -10.6876 -▁heaven -10.6877 -▁rapid -10.6877 -▁shift -10.6878 -91 -10.6881 -▁jonathan -10.6883 -type -10.6886 -▁superior -10.6892 -▁emma -10.6892 -▁racial -10.6892 -▁romantic -10.6893 -▁christopher -10.6896 -▁lb -10.6898 -▁sing -10.6899 -ale -10.69 -▁dear -10.6901 -cin -10.6904 -▁detective -10.6913 -▁cooper -10.6914 -▁bent -10.6914 -1995 -10.6915 -▁continuing -10.6918 -▁roy -10.6919 -▁argentina -10.692 -▁document -10.6922 -▁studying -10.6924 -1996 -10.6926 -▁plastic -10.6929 -▁limit -10.6929 -▁graham -10.6931 -▁charges -10.6931 -41 -10.6935 -▁poverty -10.6939 -▁sections -10.6943 -ub -10.6944 -▁debate -10.6946 -▁villa -10.6948 -▁hanging -10.6951 -▁slipped -10.6952 -▁instruments -10.6952 -2016 -10.6956 -▁louisiana -10.6958 -▁runner -10.6963 -▁bin -10.6963 -▁joy -10.6963 -▁transition -10.6964 -▁damaged -10.6964 -▁owners -10.6968 -▁islamic -10.6969 -▁occupation -10.6969 -▁tribe -10.6969 -▁miami -10.6969 -▁element -10.6973 -▁stable -10.6973 -bach -10.6975 -▁hor -10.6977 -▁agree -10.6978 -▁medieval -10.6978 -▁marshall -10.6978 -mark -10.6986 -▁1999, -10.6988 -▁colony -10.699 -▁reputation -10.6994 -▁visitors -10.6995 -▁economics -10.6997 -▁occasionally -10.6998 -▁fishing -10.7002 -▁solar -10.7003 -77 -10.7003 -▁praised -10.7007 -▁severe -10.7008 -▁cow -10.701 -▁socialist -10.7011 -▁hundreds -10.7013 -high -10.7019 -▁relative -10.7022 -▁lang -10.7025 -▁1919 -10.7026 -▁hang -10.7027 -bridge -10.7034 -▁criticism -10.7034 -▁stuck -10.7035 -och -10.7035 -▁mel -10.7036 -▁gender -10.7037 -▁aunt -10.7041 -▁operates -10.7046 -▁shower -10.7047 -▁matters -10.7053 -sis -10.7059 -▁successor -10.7059 -▁1908 -10.7064 -▁visible -10.7065 -▁rice -10.7066 -bs -10.7069 -▁survive -10.708 -▁48 -10.708 -▁talent -10.7082 -▁pri -10.7087 -▁responded -10.7087 -▁rhythm -10.7089 -▁protest -10.7089 -gun -10.709 -▁dublin -10.71 -gg -10.7105 -▁kal -10.7107 -▁truly -10.7109 -▁whilst -10.7111 -▁44 -10.7111 -▁alice -10.7114 -▁makeup -10.7115 -under -10.7117 -called -10.7117 -▁franchise -10.7125 -▁heading -10.7126 -love -10.7128 -▁memories -10.7133 -▁fm -10.7134 -▁kennedy -10.7134 -▁manufacturing -10.7136 -94 -10.7137 -▁existed -10.7139 -▁respond -10.7139 -▁promised -10.7143 -▁ceo -10.7147 -▁appropriate -10.7148 -master -10.7152 -▁rat -10.7153 -▁1911 -10.7153 -▁crash -10.7157 -ib -10.7159 -▁talked -10.7159 -▁waste -10.7165 -▁afterwards -10.7167 -▁equivalent -10.717 -▁domain -10.717 -▁entering -10.7171 -▁1917 -10.7175 -▁zero -10.7175 -▁tre -10.718 -▁kan -10.7182 -▁colour -10.7184 -▁replacement -10.7184 -▁vs -10.7184 -▁purposes -10.719 -▁singh -10.7193 -oli -10.7194 -▁fate -10.7196 -ked -10.7199 -▁restored -10.7201 -▁electrical -10.7201 -▁friday -10.7205 -▁productions -10.7207 -200 -10.7207 -ene -10.7209 -▁soundtrack -10.7211 -▁pine -10.7211 -▁parliamentary -10.7213 -▁dancing -10.7214 -▁courts -10.7217 -▁mp -10.7219 -▁poem -10.722 -most -10.7221 -▁blind -10.7222 -▁offensive -10.7222 -▁1935 -10.7223 -ification -10.7224 -ese -10.7227 -cus -10.7228 -▁nelson -10.7229 -▁wanting -10.723 -free -10.7232 -▁yard -10.7233 -▁je -10.7233 -▁scholars -10.7236 -▁1929 -10.7237 -43 -10.7238 -▁coastal -10.724 -▁eddie -10.7241 -▁rating -10.7242 -▁49 -10.7242 -▁harvard -10.725 -▁1890 -10.7253 -rock -10.7264 -▁raf -10.7272 -▁paused -10.7278 -▁critic -10.7279 -▁recordings -10.7286 -▁1914 -10.7286 -▁shake -10.729 -▁vast -10.7292 -▁helen -10.7295 -mond -10.7298 -▁cavalry -10.7299 -wer -10.7302 -lic -10.7303 -▁bone -10.7311 -▁austin -10.7312 -cap -10.7313 -▁amongst -10.7314 -▁honorary -10.7317 -▁euro -10.7319 -▁russell -10.7319 -▁forty -10.7323 -▁tools -10.7327 -dic -10.7331 -▁obvious -10.7334 -▁loose -10.7337 -tte -10.7339 -▁marry -10.7342 -▁symbol -10.7343 -▁kat -10.735 -▁suicide -10.7351 -▁remove -10.7353 -▁rejected -10.7355 -▁guitarist -10.7357 -▁triple -10.7359 -▁swimming -10.7379 -▁arc -10.738 -▁speaker -10.7381 -med -10.7383 -▁achieve -10.7383 -▁devices -10.7384 -▁photography -10.7385 -▁belgium -10.7387 -▁ncaa -10.7389 -▁coalition -10.739 -▁aviation -10.7395 -▁enjoy -10.7404 -▁struggle -10.7414 -▁column -10.7424 -▁measures -10.743 -▁temporary -10.7433 -▁virgin -10.7435 -▁hero -10.7438 -yu -10.744 -▁burst -10.744 -▁manage -10.7441 -▁unusual -10.7441 -▁dallas -10.7441 -▁danish -10.7445 -five -10.7445 -ons -10.7451 -▁directors -10.7456 -▁commissioner -10.7459 -aki -10.7465 -persian -10.7465 -▁75 -10.7466 -lee -10.7467 -▁throne -10.7468 -▁foster -10.7468 -▁represents -10.7472 -▁julian -10.7472 -▁adding -10.7474 -▁sean -10.7474 -▁mag -10.7474 -▁partners -10.7475 -view -10.7476 -▁1910 -10.7476 -▁linked -10.7476 -▁kick -10.7477 -▁sc -10.748 -▁gil -10.748 -▁dun -10.7481 -russian -10.7484 -▁oklahoma -10.7489 -cur -10.7491 -▁mississippi -10.7496 -83 -10.7498 -▁gulf -10.7498 -▁peninsula -10.7499 -▁subjects -10.7503 -▁franklin -10.7504 -▁nervous -10.7505 -▁designer -10.7511 -▁marketing -10.7512 -▁gathered -10.7513 -▁shin -10.7521 -▁laboratory -10.7522 -nor -10.7522 -▁designs -10.7523 -german -10.7523 -▁extreme -10.753 -yama -10.7534 -▁dc -10.7542 -▁friendly -10.7543 -hour -10.7544 -▁laughing -10.7551 -▁guilty -10.7552 -▁grandfather -10.7552 -▁depending -10.7553 -▁1933 -10.7555 -ante -10.7556 -rum -10.7557 -▁spell -10.7563 -ved -10.7564 -▁gardens -10.7566 -▁resort -10.7569 -▁parent -10.757 -▁luis -10.757 -▁bla -10.757 -▁gods -10.7573 -▁waters -10.7576 -▁climb -10.7577 -bin -10.7577 -▁adams -10.7584 -▁clothing -10.7586 -▁campbell -10.7588 -▁factors -10.7589 -▁sleeping -10.7589 -▁carbon -10.7591 -okay -10.7595 -gh -10.7596 -▁requires -10.7598 -▁drugs -10.7599 -▁eliminated -10.7599 -▁grave -10.76 -▁beating -10.7601 -▁requirements -10.7604 -▁seattle -10.7604 -▁stewart -10.7605 -▁treated -10.7606 -▁1928 -10.7608 -▁carlos -10.7609 -track -10.761 -▁print -10.7611 -▁ru -10.7613 -▁movies -10.7614 -nic -10.7616 -▁jet -10.7616 -▁susan -10.762 -▁basin -10.7622 -▁hans -10.7629 -ably -10.7631 -▁edited -10.7633 -▁visiting -10.7634 -▁robin -10.7635 -▁rapidly -10.7637 -▁comics -10.7638 -▁wi -10.764 -▁wo -10.7643 -▁harbor -10.7648 -nar -10.765 -▁useful -10.7651 -ct -10.7659 -▁possibility -10.767 -▁wu -10.7682 -▁returns -10.7682 -▁contributions -10.7683 -▁prisoners -10.7684 -▁seriously -10.7685 -▁statue -10.7686 -▁milk -10.7686 -61 -10.7687 -▁wars -10.7689 -▁concerns -10.7691 -▁dawn -10.7692 -▁ratio -10.7692 -▁31, -10.7693 -▁pol -10.7694 -▁glance -10.7697 -mc -10.7698 -las -10.7698 -▁atlanta -10.77 -▁signs -10.7705 -▁austrian -10.7705 -▁chu -10.7707 -▁gu -10.7708 -▁patient -10.771 -▁spending -10.7715 -▁involving -10.7715 -▁spiritual -10.7716 -▁poems -10.7716 -▁forehead -10.7722 -▁aspects -10.7723 -▁knee -10.7724 -▁jobs -10.7725 -▁policies -10.7725 -▁cab -10.7727 -▁aren -10.7728 -▁1934 -10.7729 -▁passage -10.7731 -▁premiered -10.7731 -▁instance -10.7732 -▁supplies -10.7734 -▁snapped -10.7739 -▁drinking -10.7739 -▁wound -10.774 -▁bare -10.7742 -ians -10.7743 -▁sigh -10.7746 -lyn -10.7748 -▁rocks -10.7751 -▁sim -10.7754 -▁abbey -10.7754 -▁1932 -10.7759 -▁slip -10.7763 -▁app -10.7764 -rat -10.7764 -▁upset -10.7767 -▁compilation -10.7769 -rick -10.777 -▁appearing -10.7772 -▁corporate -10.7778 -▁marks -10.7778 -▁technique -10.7779 -▁surgery -10.778 -gle -10.7784 -▁adapted -10.7785 -later -10.7786 -▁americans -10.7788 -▁revival -10.7793 -▁cro -10.7794 -put -10.78 -four -10.78 -▁interesting -10.7802 -▁shopping -10.7807 -▁mas -10.7814 -▁external -10.7822 -▁thompson -10.7824 -▁rap -10.7826 -▁movements -10.7827 -▁39 -10.7827 -▁stages -10.7828 -▁char -10.7829 -night -10.783 -▁tests -10.7835 -▁cleared -10.7838 -▁outer -10.7838 -▁mounted -10.7838 -▁drum -10.784 -pr -10.784 -bat -10.7844 -▁gor -10.7847 -▁charity -10.7847 -▁iraq -10.7852 -▁faces -10.7853 -▁appointment -10.7857 -▁fantasy -10.7859 -▁sending -10.7862 -▁monument -10.7862 -▁daughters -10.7862 -▁legislature -10.7863 -▁1998, -10.7865 -▁alternate -10.7867 -▁denmark -10.7867 -▁couch -10.7872 -▁bones -10.7876 -▁wayne -10.7877 -▁artistic -10.788 -▁jacket -10.788 -tam -10.7881 -▁1912 -10.7882 -▁differences -10.7882 -▁anywhere -10.7886 -bur -10.7889 -▁id -10.7889 -az -10.789 -ington -10.789 -▁moves -10.7897 -▁baker -10.7897 -▁bre -10.7903 -▁puerto -10.7906 -▁grab -10.7907 -final -10.7907 -▁acted -10.7908 -fish -10.791 -▁1924 -10.7922 -best -10.7927 -hal -10.7931 -1994 -10.7931 -▁definitely -10.7933 -usa -10.7937 -gal -10.7939 -▁happening -10.794 -even -10.7942 -▁rad -10.7945 -▁vienna -10.7945 -▁orleans -10.795 -osa -10.7951 -▁listening -10.7957 -▁ros -10.7957 -▁easier -10.7961 -rak -10.7961 -▁depression -10.7962 -▁mechanical -10.7962 -▁warren -10.7964 -oma -10.7965 -▁retained -10.7968 -▁suffering -10.797 -▁satellite -10.7973 -▁tamil -10.7977 -▁elevation -10.7978 -ava -10.7978 -▁choir -10.7982 -aire -10.7984 -sar -10.7987 -only -10.7987 -cor -10.7989 -▁edinburgh -10.799 -tia -10.7992 -▁allied -10.7993 -▁dying -10.7995 -▁orthodox -10.7995 -▁ze -10.7998 -gra -10.8002 -▁1905 -10.8004 -▁ethan -10.8005 -▁credited -10.8005 -▁actors -10.8005 -▁advice -10.8006 -▁blade -10.8007 -sy -10.8007 -▁ukraine -10.8011 -▁che -10.8012 -▁portugal -10.8016 -▁summit -10.8018 -▁iowa -10.803 -▁cabin -10.8031 -▁percussion -10.8035 -▁approval -10.8035 -▁rival -10.8036 -1993 -10.8036 -▁robinson -10.8041 -▁ranking -10.8042 -▁1922 -10.8042 -▁poll -10.8043 -ob -10.805 -▁describe -10.8053 -▁false -10.8053 -▁strip -10.8054 -▁blake -10.8055 -round -10.8056 -▁masters -10.8061 -shaped -10.8065 -▁debuted -10.8071 -▁adaptation -10.8071 -▁sole -10.8071 -▁mud -10.8071 -second -10.8075 -rian -10.8076 -had -10.8079 -▁maintenance -10.808 -ware -10.8085 -▁scholar -10.8087 -▁1931 -10.8093 -▁adults -10.8093 -▁emerged -10.8097 -▁43 -10.8098 -▁refer -10.8101 -▁goods -10.8103 -▁honour -10.8106 -▁strongly -10.8109 -▁morris -10.8111 -▁1927 -10.8111 -▁alabama -10.8115 -mb -10.8116 -nal -10.8118 -▁alfred -10.8119 -▁gal -10.8122 -▁shoes -10.8123 -▁employment -10.8127 -▁dna -10.8128 -▁1925 -10.813 -▁wright -10.8131 -election -10.8132 -via -10.8132 -▁eve -10.8132 -wen -10.8133 -▁industries -10.8138 -▁hunting -10.8141 -▁remix -10.8144 -▁scent -10.8147 -▁cheeks -10.8148 -shire -10.8154 -▁exposed -10.8154 -▁battery -10.8155 -▁1907 -10.8155 -▁hungarian -10.8157 -▁lucas -10.8158 -▁seek -10.816 -▁suggests -10.8165 -▁routes -10.8166 -white -10.8166 -ces -10.8167 -▁brazilian -10.8168 -▁increasingly -10.8168 -▁cleveland -10.8172 -▁scared -10.8173 -▁math -10.8174 -▁1906 -10.8178 -▁cre -10.818 -hall -10.8183 -▁leo -10.8184 -▁shed -10.8184 -▁jamie -10.8186 -▁legislation -10.8189 -▁welsh -10.8191 -▁funny -10.8191 -▁boundary -10.8192 -▁starred -10.8193 -bro -10.8194 -▁stanley -10.8194 -▁arch -10.8198 -▁circumstances -10.8202 -▁bru -10.8208 -▁ownership -10.822 -▁forming -10.8222 -▁pushing -10.8228 -▁bel -10.8229 -▁thumb -10.8232 -▁abc -10.8237 -▁merchant -10.8239 -▁1921 -10.8239 -▁traveled -10.824 -▁panic -10.8242 -▁46 -10.8243 -▁significantly -10.8245 -▁strategic -10.8245 -▁cur -10.8246 -▁considerable -10.8248 -cent -10.8251 -▁components -10.8256 -▁dogs -10.8258 -zz -10.826 -scale -10.8267 -▁vessel -10.8267 -▁bible -10.827 -▁admiral -10.8277 -▁waves -10.829 -▁wished -10.8292 -▁barn -10.8292 -▁monster -10.8301 -▁malaysia -10.8302 -▁processes -10.8307 -ero -10.8311 -▁1909 -10.8312 -▁personality -10.8315 -ple -10.8318 -▁paint -10.8319 -▁timber -10.8319 -▁josh -10.8319 -▁classified -10.8324 -▁achievement -10.8327 -▁jar -10.8328 -1992 -10.8333 -▁holiday -10.8335 -▁electoral -10.8337 -▁logan -10.8338 -▁rivers -10.8349 -▁indonesia -10.8356 -place -10.8357 -▁gra -10.836 -▁feels -10.836 -▁ob -10.8361 -▁sentence -10.8361 -▁connecticut -10.8364 -▁agents -10.8368 -▁belonged -10.8371 -ug -10.8372 -game -10.8374 -▁abuse -10.8376 -mit -10.8376 -▁couples -10.8377 -▁manual -10.8378 -ges -10.8379 -▁seed -10.8379 -▁52 -10.8381 -▁regime -10.8382 -▁vincent -10.8382 -maybe -10.8384 -▁totally -10.8397 -▁intention -10.8398 -▁oliver -10.8399 -▁whereas -10.8399 -▁illegal -10.8401 -▁ta -10.8403 -br -10.8403 -mat -10.8405 -▁1926 -10.8405 -▁eighth -10.8407 -▁proposal -10.841 -▁barry -10.8412 -▁widow -10.8413 -▁authors -10.8413 -▁initiative -10.8414 -▁considering -10.8416 -▁1904 -10.8419 -▁por -10.842 -5,000 -10.842 -▁charts -10.8422 -▁donald -10.8424 -▁worship -10.8425 -▁evans -10.8426 -after -10.8427 -▁roots -10.843 -▁leaf -10.8431 -ade -10.8431 -ati -10.8432 -▁button -10.8443 -▁pc -10.8444 -▁murray -10.8446 -▁stare -10.8448 -mor -10.8451 -▁gonna -10.8451 -▁hol -10.8452 -▁experimental -10.8454 -rid -10.8456 -▁silk -10.8461 -▁worn -10.8461 -▁popularity -10.8463 -▁kra -10.8463 -ei -10.8465 -▁1880 -10.8466 -▁harm -10.8469 -act -10.847 -▁constitutional -10.8473 -▁nicholas -10.8474 -▁careful -10.8477 -▁minimum -10.8478 -▁flows -10.8479 -mr -10.848 -▁mood -10.8483 -▁kon -10.8483 -▁gut -10.8486 -aga -10.8486 -▁restoration -10.8487 -▁hurricane -10.8492 -▁output -10.8494 -▁parker -10.8495 -▁blocks -10.8495 -book -10.8496 -▁tam -10.8503 -▁attracted -10.8508 -▁1916 -10.8511 -▁destruction -10.8512 -▁depth -10.8519 -▁trading -10.8524 -▁deeply -10.8525 -ona -10.8527 -▁marc -10.8529 -1980 -10.8533 -▁dated -10.8536 -▁cotton -10.8541 -▁qualifying -10.8543 -▁transmission -10.8544 -av -10.8546 -▁decline -10.8546 -▁1997, -10.8549 -▁slave -10.8553 -▁muttered -10.8555 -▁sheriff -10.8558 -▁emily -10.856 -ever -10.8564 -▁corridor -10.8565 -fm -10.8566 -▁meets -10.8568 -▁shrugged -10.8569 -▁aim -10.8576 -▁elder -10.8582 -▁archbishop -10.8582 -▁harder -10.8586 -▁finals -10.8592 -▁immediate -10.8592 -▁novels -10.8596 -▁pole -10.8596 -▁transit -10.8604 -2017 -10.8608 -▁51 -10.8609 -▁defeating -10.8612 -band -10.8613 -▁demanded -10.8615 -▁baltimore -10.8615 -▁influential -10.8615 -▁practices -10.8625 -▁disney -10.8625 -ima -10.8625 -▁coverage -10.8626 -▁seeking -10.8628 -heim -10.8629 -▁bon -10.8631 -tti -10.8635 -mas -10.8636 -▁admit -10.8637 -▁mate -10.8645 -stra -10.8646 -▁jurisdiction -10.8648 -▁jerry -10.8651 -rt -10.8651 -aria -10.8653 -▁stick -10.8656 -tier -10.8656 -▁celebrated -10.8657 -▁symphony -10.8661 -▁cream -10.8662 -▁filed -10.8665 -▁springs -10.8666 -▁denied -10.8671 -▁wil -10.8677 -▁1915 -10.8677 -▁colors -10.8678 -▁forests -10.8683 -▁adventure -10.8684 -avi -10.8684 -▁jury -10.869 -▁patrol -10.8693 -▁muscle -10.8695 -▁claire -10.8699 -▁commanded -10.8702 -▁lifetime -10.8704 -▁tons -10.8705 -▁customers -10.8708 -▁criticized -10.8712 -mate -10.8713 -▁infrastructure -10.8713 -▁guinea -10.8718 -ral -10.8721 -▁hated -10.8724 -▁formally -10.8725 -cio -10.8726 -▁liverpool -10.8726 -▁amazing -10.8726 -dor -10.8727 -▁mars -10.8731 -▁mitchell -10.8732 -▁loop -10.8737 -tie -10.874 -▁comfort -10.8747 -▁profile -10.8748 -▁kara -10.8753 -▁1923 -10.8755 -▁surviving -10.8756 -▁mai -10.8757 -▁hp -10.8758 -▁disaster -10.8758 -▁danny -10.8759 -▁nazi -10.8759 -▁gradually -10.8763 -▁indigenous -10.8765 -▁knock -10.8766 -▁twisted -10.8766 -box -10.8767 -▁accounts -10.8767 -▁gross -10.8767 -ique -10.8769 -▁diamond -10.8773 -▁hiding -10.8776 -▁absence -10.8777 -cl -10.8782 -▁printed -10.8783 -▁description -10.8784 -▁breakfast -10.8786 -▁eating -10.8789 -▁resident -10.879 -▁vampires -10.8793 -▁bobby -10.8794 -▁mills -10.8794 -▁fifa -10.8797 -▁cop -10.8798 -▁shadows -10.8799 -▁frequency -10.88 -▁convinced -10.8802 -▁55 -10.8806 -shan -10.8811 -▁rates -10.8817 -▁voices -10.8818 -▁angle -10.8819 -olo -10.8819 -▁passion -10.882 -▁sebastian -10.8822 -▁romania -10.8829 -▁intense -10.8831 -▁exact -10.8833 -▁$3 -10.8836 -hol -10.8841 -▁lasted -10.8842 -hold -10.8845 -▁fool -10.8847 -▁nova -10.8849 -hop -10.885 -▁teach -10.8851 -▁1901 -10.886 -▁architectural -10.8862 -▁intersection -10.8862 -boy -10.8863 -▁tin -10.8867 -▁ukrainian -10.8872 -▁driven -10.8873 -▁duo -10.8873 -▁reporter -10.8874 -bri -10.8876 -hole -10.8876 -▁lift -10.8879 -1991 -10.8879 -▁keyboards -10.8881 -▁mason -10.8881 -▁pride -10.8883 -▁ren -10.8884 -bank -10.8884 -▁stan -10.8886 -▁injuries -10.8886 -▁wouldnt -10.8887 -ches -10.8892 -▁pittsburgh -10.8899 -▁modified -10.8903 -▁cam -10.8904 -▁mont -10.8904 -▁stronger -10.8904 -▁hon -10.8905 -ore -10.8906 -▁cutting -10.8907 -▁engineers -10.8908 -1989 -10.8909 -▁expensive -10.8911 -▁losses -10.8912 -▁flower -10.8917 -▁stress -10.892 -▁layer -10.8923 -uff -10.8923 -▁egyptian -10.8924 -▁remote -10.8926 -▁ger -10.8927 -▁expert -10.8931 -▁exception -10.8933 -▁completion -10.8935 -▁monastery -10.8935 -▁den -10.8936 -▁noble -10.8937 -▁pr -10.895 -▁hosts -10.8952 -▁hungary -10.8959 -▁pierre -10.8961 -▁buck -10.8969 -▁1902 -10.897 -▁acoustic -10.8971 -▁scholarship -10.8971 -▁assist -10.8979 -▁1996, -10.898 -▁markets -10.8981 -▁select -10.8985 -▁frequent -10.8989 -▁escaped -10.8989 -mic -10.8991 -▁vessels -10.8995 -▁killer -10.8996 -▁brad -10.8998 -▁aimed -10.8998 -▁dollars -10.8999 -▁hammer -10.8999 -row -10.9004 -qua -10.9005 -▁luck -10.9006 -▁imp -10.9006 -▁premiere -10.9006 -▁radical -10.9008 -▁julia -10.9012 -▁ignored -10.9016 -▁nurse -10.9017 -▁naked -10.9018 -▁chemistry -10.9018 -▁stra -10.9022 -▁cord -10.9023 -▁benjamin -10.9023 -eg -10.9023 -▁scientists -10.9024 -char -10.9025 -▁occasion -10.9026 -▁territories -10.9027 -gel -10.903 -▁kicked -10.9031 -play -10.9032 -▁honey -10.9034 -▁margin -10.9038 -▁declined -10.9039 -▁representation -10.9041 -▁hyper -10.9042 -kel -10.9046 -▁pearl -10.9047 -ars -10.9048 -gs -10.9054 -ami -10.9055 -gio -10.9056 -feld -10.9058 -▁filmed -10.9058 -▁rabbi -10.9061 -rc -10.9062 -▁funeral -10.9064 -▁weird -10.9065 -▁bears -10.9065 -▁moral -10.9073 -▁scar -10.9074 -▁habitat -10.9085 -▁discussion -10.9087 -▁creature -10.9087 -▁devil -10.9089 -▁effectively -10.909 -▁1903 -10.9093 -▁definition -10.9093 -▁tai -10.9095 -▁broadway -10.9095 -▁monte -10.9095 -▁hop -10.9101 -▁pie -10.9103 -▁departure -10.9104 -▁hallway -10.9106 -▁tape -10.9108 -god -10.9112 -▁peru -10.9112 -▁argument -10.9113 -▁random -10.9115 -lp -10.9115 -▁signing -10.9117 -▁tend -10.9117 -▁ladies -10.9121 -cer -10.9122 -abad -10.9124 -power -10.9129 -black -10.9131 -▁ci -10.9131 -rate -10.9132 -▁greg -10.9132 -▁ivan -10.9136 -▁innocent -10.9139 -dell -10.9141 -▁violin -10.9142 -▁manor -10.9145 -▁merely -10.9147 -qu -10.9147 -▁replacing -10.9149 -▁arrangement -10.9149 -vers -10.9149 -▁fist -10.9152 -▁craig -10.9153 -▁drag -10.9155 -▁bun -10.9158 -▁equipped -10.9158 -▁copper -10.9161 -▁climbed -10.9162 -▁flood -10.9164 -▁1913 -10.9166 -▁victim -10.9166 -sti -10.917 -▁guardian -10.9171 -▁processing -10.9173 -▁bro -10.9176 -▁experiences -10.9178 -▁trick -10.918 -▁sculpture -10.9185 -▁guests -10.9192 -ali -10.9192 -▁fortune -10.9192 -▁divisions -10.9193 -▁ages -10.9195 -▁switch -10.9196 -▁instrumental -10.9196 -▁fled -10.9196 -▁trio -10.9197 -▁cited -10.9197 -▁tap -10.9198 -▁sh -10.9198 -▁cock -10.9201 -▁instrument -10.9202 -▁penalty -10.9204 -▁happens -10.9204 -uf -10.9206 -away -10.9207 -▁keys -10.9207 -ele -10.9209 -▁birmingham -10.9215 -▁bernard -10.9218 -▁alcohol -10.9219 -▁reaches -10.9222 -▁networks -10.9223 -▁purple -10.9223 -▁hull -10.9224 -▁collect -10.9226 -▁hugh -10.9227 -▁obtain -10.9228 -▁progressive -10.9234 -▁integrated -10.9238 -▁portrait -10.9239 -chen -10.9242 -▁dozen -10.9247 -hir -10.9248 -▁barbara -10.925 -▁revolutionary -10.9251 -horn -10.9252 -dom -10.9252 -minute -10.9253 -▁executed -10.9253 -▁whit -10.9255 -▁hook -10.9256 -▁1870 -10.9256 -▁violent -10.9259 -▁forgotten -10.9261 -▁knocked -10.9268 -ille -10.927 -▁trace -10.927 -bon -10.9271 -log -10.9272 -▁ive -10.9277 -acre -10.9281 -▁cargo -10.9285 -south -10.9287 -▁permission -10.9291 -▁newspapers -10.9304 -pping -10.9305 -▁welcome -10.9306 -pm -10.9307 -▁commerce -10.9307 -anti -10.9309 -▁$ -10.931 -will -10.9312 -▁beam -10.9314 -space -10.9314 -org -10.9315 -▁bri -10.9315 -▁trap -10.9317 -▁mystery -10.9319 -▁swing -10.9323 -inch -10.9324 -▁defend -10.9324 -▁distant -10.9326 -▁beast -10.9326 -▁electricity -10.933 -▁warriors -10.9331 -sol -10.9333 -▁jeans -10.9335 -▁gates -10.9341 -▁alien -10.9341 -og -10.9344 -▁volunteer -10.9348 -▁telephone -10.9349 -▁suggest -10.935 -▁nomination -10.9351 -making -10.9353 -▁gre -10.9354 -▁contribution -10.9355 -▁girlfriend -10.9359 -▁tool -10.9363 -hy -10.9363 -ean -10.9363 -▁seth -10.9365 -▁clinical -10.9366 -▁repair -10.9369 -▁finland -10.9373 -▁boats -10.9379 -cle -10.938 -▁managing -10.9382 -fin -10.9388 -▁nest -10.9389 -mun -10.939 -▁advertising -10.9393 -▁controversial -10.9393 -▁pants -10.9394 -▁encouraged -10.9394 -▁principles -10.9398 -▁participation -10.9399 -▁characteristics -10.94 -▁jin -10.9401 -▁ideal -10.9403 -▁greatly -10.9404 -eur -10.9414 -▁segment -10.9416 -nell -10.9416 -tum -10.9419 -▁victorian -10.9423 -mile -10.9423 -▁exists -10.9423 -▁meetings -10.9425 -▁brooklyn -10.9427 -lot -10.9427 -▁revenue -10.9428 -▁xi -10.9429 -three -10.9431 -▁mistake -10.9439 -▁farmers -10.9444 -▁apply -10.9444 -▁longest -10.9444 -▁siege -10.9445 -od -10.9446 -▁competing -10.9447 -▁spider -10.9449 -▁thailand -10.9452 -nz -10.9453 -▁cried -10.9455 -▁gentle -10.9456 -fully -10.9458 -▁operational -10.9462 -▁bold -10.9463 -▁elite -10.9465 -▁gran -10.9466 -fall -10.9468 -ui -10.9468 -▁catherine -10.9473 -?' -10.9474 -▁rarely -10.9477 -▁steady -10.9478 -▁outdoor -10.9481 -▁gill -10.9483 -ock -10.9485 -▁possession -10.9489 -▁controversy -10.9491 -▁justin -10.9493 -ado -10.9494 -▁athletics -10.9497 -▁extent -10.9503 -▁affair -10.9503 -▁bet -10.9506 -▁confusion -10.9507 -▁pitch -10.9509 -▁involvement -10.9512 -▁evolution -10.9512 -▁diameter -10.9519 -▁youngest -10.9519 -▁friendship -10.952 -▁lloyd -10.9521 -yne -10.9522 -▁concentration -10.9524 -▁47 -10.9527 -▁annually -10.9528 -▁bench -10.9531 -▁shelter -10.9533 -▁forum -10.9534 -▁suspended -10.9535 -▁uefa -10.9535 -▁corn -10.9538 -▁grove -10.9538 -▁skull -10.9539 -▁shouted -10.9543 -▁raising -10.9543 -▁opportunities -10.9547 -▁figured -10.9548 -▁1995, -10.9555 -▁hispanic -10.9559 -nin -10.9567 -▁venue -10.9568 -▁alpha -10.9571 -▁versus -10.9574 -▁competitive -10.9579 -▁bonus -10.9579 -oon -10.9581 -▁thunder -10.9581 -▁raj -10.9583 -▁wondering -10.9586 -▁practical -10.9589 -▁shouldn -10.9589 -▁nevertheless -10.9596 -▁ruling -10.9599 -▁sample -10.96 -▁asleep -10.9608 -nk -10.9609 -▁tribes -10.9615 -▁collections -10.9617 -▁witch -10.962 -▁prepare -10.9624 -▁terry -10.9626 -▁staying -10.9626 -▁peaked -10.9629 -pl -10.9633 -▁shu -10.9636 -uda -10.9638 -▁badly -10.9641 -▁dennis -10.9641 -bia -10.9642 -▁comfortable -10.9647 -▁jail -10.9652 -eta -10.9654 -▁latest -10.9656 -▁experiment -10.9657 -▁rico -10.9657 -list -10.9659 -▁technologies -10.9659 -rio -10.9661 -▁canon -10.9662 -▁enemies -10.9663 -▁portland -10.9664 -▁monday -10.9665 -▁dealing -10.9668 -▁dual -10.9668 -▁credits -10.9672 -▁reed -10.9673 -▁pas -10.9675 -▁intellectual -10.9677 -▁treat -10.968 -aba -10.9685 -▁zane -10.9687 -▁sergeant -10.9691 -▁ensemble -10.9696 -ions -10.9699 -▁larry -10.9701 -▁perfectly -10.9702 -▁pursue -10.9703 -▁steven -10.9704 -▁hindu -10.9707 -▁sessions -10.9714 -▁explanation -10.9715 -▁belief -10.9715 -▁ky -10.9716 -▁marcus -10.972 -ily -10.9726 -▁execution -10.9727 -eu -10.9728 -vor -10.973 -shirt -10.9731 -▁recommended -10.9734 -▁costa -10.9735 -▁kai -10.9736 -▁ralph -10.9737 -▁thrust -10.9738 -rn -10.974 -pc -10.974 -▁percentage -10.9742 -made -10.975 -cat -10.9751 -▁drivers -10.9751 -▁animated -10.9763 -▁agencies -10.9764 -▁kil -10.9764 -▁suppose -10.9764 -city -10.9768 -▁harrison -10.9771 -▁civilian -10.9774 -▁scream -10.9774 -▁searching -10.9778 -▁lodge -10.9783 -▁partly -10.9783 -▁occasions -10.9785 -▁hence -10.9786 -rac -10.9788 -▁milan -10.979 -▁sho -10.9794 -▁benefits -10.9798 -zel -10.9798 -▁cent -10.98 -▁terrible -10.9801 -▁bite -10.9802 -▁blast -10.9803 -▁1898 -10.9808 -▁eagle -10.9808 -▁identify -10.9809 -▁wy -10.9809 -look -10.9811 -▁nba -10.9815 -▁carrier -10.9815 -▁muscles -10.9817 -▁hub -10.9818 -have -10.9819 -▁custom -10.9822 -▁lowered -10.9823 -▁statistics -10.9826 -▁missions -10.9835 -▁richmond -10.9835 -▁eggs -10.9836 -▁gathering -10.9836 -▁graduating -10.9837 -chinese -10.984 -▁tiger -10.9843 -▁mixing -10.9844 -▁relation -10.9845 -arm -10.9846 -▁1994, -10.9847 -▁hips -10.9854 -gin -10.9856 -▁essential -10.9857 -▁relationships -10.986 -▁legion -10.9861 -ske -10.9867 -▁producers -10.9867 -▁laura -10.9869 -sure -10.9869 -▁rounds -10.9871 -try -10.9876 -▁utah -10.9876 -▁stones -10.9878 -▁similarly -10.9881 -▁recognize -10.9883 -xi -10.9884 -kha -10.9886 -vol -10.9887 -▁merit -10.9888 -▁dirt -10.9888 -▁taiwan -10.9891 -tain -10.9891 -▁doorway -10.9894 -▁debt -10.9894 -▁ok -10.9895 -▁informed -10.99 -▁warrior -10.9903 -▁abroad -10.9904 -mis -10.9906 -▁continental -10.991 -▁acquisition -10.9912 -▁placing -10.9915 -▁islam -10.9917 -▁recovered -10.9918 -chy -10.992 -▁claiming -10.9925 -tle -10.9927 -▁suspected -10.993 -▁competitions -10.9933 -▁biological -10.9934 -▁neil -10.9934 -▁breast -10.9936 -▁donated -10.9939 -▁tale -10.9939 -▁remainder -10.9948 -▁warner -10.9949 -▁cooperation -10.995 -▁mir -10.9951 -▁borders -10.9955 -▁deliver -10.9956 -▁voting -10.9957 -▁retail -10.9959 -▁forth -10.996 -▁behalf -10.9961 -▁nan -10.9962 -▁researchers -10.9967 -▁doesnt -10.9969 -▁limits -10.9977 -profit -10.9981 -▁participants -10.9982 -press -10.9984 -▁deeper -10.9988 -▁sank -10.9989 -bie -10.999 -▁boots -10.999 -▁reduction -10.9992 -▁54 -10.9993 -▁principle -11.0002 -▁tear -11.0002 -▁ian -11.0009 -▁root -11.001 -▁ferry -11.0011 -▁rushed -11.0011 -vy -11.0012 -thank -11.0015 -hn -11.0017 -▁indoor -11.0021 -ious -11.0021 -▁nobody -11.0022 -met -11.0023 -# -11.0023 -▁emotions -11.0025 -▁component -11.0025 -▁cass -11.0026 -▁ber -11.0032 -▁buffalo -11.0034 -▁publisher -11.0035 -▁arkansas -11.0036 -▁portrayed -11.0037 -▁bangladesh -11.0039 -▁explosion -11.0039 -sville -11.0039 -▁drunk -11.004 -▁perry -11.0045 -table -11.0046 -▁1,000 -11.0047 -▁jerusalem -11.0049 -▁63 -11.0053 -live -11.0055 -fire -11.0056 -1988 -11.0061 -▁citizen -11.0061 -rr -11.0062 -▁partially -11.0064 -▁wonderful -11.0067 -▁exercise -11.0072 -▁collins -11.0072 -▁dim -11.0073 -▁sacred -11.0075 -▁leaning -11.0076 -▁valuable -11.0081 -▁ab -11.0085 -lov -11.0086 -▁hardly -11.0086 -▁proud -11.0086 -▁shares -11.0087 -ration -11.009 -▁chile -11.009 -▁tension -11.0091 -cas -11.0094 -ans -11.0095 -▁pregnant -11.0098 -▁bas -11.0099 -▁grim -11.01 -eau -11.0106 -▁supporters -11.0106 -▁serial -11.0107 -▁mega -11.0109 -ants -11.0109 -▁gmina -11.0111 -▁businessman -11.0111 -▁drummer -11.0112 -mur -11.0113 -▁bou -11.0113 -▁turner -11.0114 -▁alleged -11.0118 -▁orbit -11.0118 -▁cardinal -11.0119 -▁concerts -11.0122 -▁tourism -11.0122 -mie -11.0122 -▁epi -11.0123 -pat -11.0126 -▁commented -11.0131 -▁descent -11.0137 -▁genre -11.015 -nus -11.0151 -▁excellent -11.0151 -▁withdrew -11.0152 -▁belonging -11.0156 -▁photographer -11.0156 -▁preferred -11.0157 -▁apparent -11.0159 -▁mask -11.0159 -▁bike -11.0159 -ori -11.0161 -▁keith -11.0164 -cott -11.0164 -▁bread -11.0166 -bad -11.0166 -▁discuss -11.0167 -sion -11.0167 -▁nbc -11.017 -▁pete -11.0171 -gia -11.0172 -oni -11.0175 -ema -11.0176 -▁mansion -11.0179 -▁venture -11.018 -▁delhi -11.0182 -500 -11.0183 -any -11.0184 -▁enterprise -11.0185 -▁decisions -11.0185 -▁ninth -11.0188 -▁glasgow -11.0188 -▁sweat -11.019 -▁fuck -11.019 -▁assessment -11.0194 -▁tommy -11.0195 -▁delivery -11.0196 -hard -11.0198 -▁wal -11.02 -lip -11.0201 -▁phoenix -11.0201 -tom -11.0203 -▁colin -11.0205 -▁kirk -11.0205 -▁database -11.0207 -1987 -11.0208 -▁chorus -11.0208 -iff -11.0209 -▁operator -11.0209 -▁lion -11.0209 -english -11.0212 -▁widespread -11.0217 -▁elevator -11.0219 -▁thrown -11.0223 -▁fi -11.0223 -▁120 -11.0224 -▁package -11.0225 -ash -11.0228 -▁terror -11.023 -▁throwing -11.023 -▁fr -11.0232 -▁machines -11.0235 -▁detailed -11.0236 -cre -11.0238 -▁belgian -11.0238 -▁1899 -11.024 -▁elsewhere -11.024 -▁reminded -11.0241 -▁rec -11.0243 -ato -11.0244 -▁saints -11.0246 -▁thereafter -11.0246 -▁sink -11.025 -brook -11.025 -ila -11.0252 -ill -11.0253 -▁comparison -11.0256 -wall -11.0256 -ters -11.0257 -▁stern -11.0257 -▁posted -11.0258 -ora -11.0259 -▁beth -11.026 -pop -11.0263 -▁crack -11.0266 -▁grain -11.0268 -▁photographs -11.0269 -▁opponent -11.027 -▁bars -11.0275 -▁syn -11.0276 -▁instantly -11.0276 -▁sul -11.0277 -▁dug -11.0279 -▁fee -11.0279 -▁fed -11.028 -ole -11.0282 -▁proof -11.0284 -ological -11.0286 -▁judges -11.0287 -▁expand -11.0289 -▁adrian -11.029 -hood -11.0291 -▁struggled -11.0292 -hen -11.0296 -▁discussed -11.0297 -▁fictional -11.0301 -▁settle -11.0302 -▁tribute -11.0302 -▁amy -11.0303 -▁grinned -11.0304 -▁viewed -11.0304 -▁folded -11.0304 -▁mari -11.0305 -▁yorkshire -11.0311 -winning -11.0311 -▁compound -11.0315 -▁emotional -11.0317 -▁wang -11.0319 -formerly -11.0322 -bas -11.0323 -iva -11.0326 -ets -11.0329 -▁pounds -11.0333 -▁sultan -11.0333 -▁fix -11.0337 -▁conclusion -11.0338 -ste -11.0341 -sam -11.0343 -ras -11.0348 -▁murdered -11.035 -▁ordinary -11.0352 -ase -11.0353 -sta -11.0355 -▁bloody -11.0355 -▁overseas -11.0356 -lc -11.0358 -▁detail -11.0362 -ovic -11.0363 -▁medals -11.0363 -nick -11.0363 -stan -11.0366 -▁displayed -11.0368 -▁clerk -11.037 -oka -11.037 -▁lou -11.0377 -▁defending -11.0388 -▁dock -11.039 -▁dirty -11.0393 -▁chan -11.0394 -▁implementation -11.0395 -▁hood -11.0396 -▁sheet -11.0398 -▁sharing -11.0399 -▁volumes -11.0399 -▁whisper -11.04 -▁baptist -11.0401 -1986 -11.0402 -▁dig -11.0403 -▁protestant -11.0404 -▁ticket -11.0405 -esh -11.041 -▁forcing -11.0411 -▁wildlife -11.0412 -eri -11.0416 -▁cbs -11.0418 -▁liberty -11.0418 -▁arrive -11.042 -▁wealth -11.0423 -tive -11.0424 -▁touring -11.0425 -▁wrist -11.0426 -▁tech -11.0427 -cast -11.0428 -▁rocky -11.0433 -▁skill -11.0438 -▁blame -11.0439 -▁1000 -11.0442 -slav -11.0444 -1970 -11.0445 -▁dramatic -11.0448 -▁vancouver -11.0453 -onia -11.0456 -wn -11.0457 -bor -11.0462 -▁scout -11.0463 -▁traditionally -11.0465 -▁suite -11.0467 -▁tough -11.0471 -▁pond -11.0471 -▁faint -11.0478 -▁ceased -11.0481 -▁witness -11.0483 -▁indians -11.0485 -▁1860 -11.0485 -▁chess -11.0485 -nas -11.0491 -▁1993, -11.0491 -▁56 -11.0495 -▁fabric -11.0495 -▁cer -11.0498 -ace -11.0499 -nce -11.0504 -▁todd -11.0504 -fr -11.0506 -▁lan -11.0509 -▁editions -11.051 -▁inspiration -11.0511 -▁pulse -11.0514 -▁psychology -11.0517 -▁1895 -11.052 -▁erected -11.0527 -▁substantial -11.0532 -▁cr -11.0533 -▁stuart -11.0535 -▁aaron -11.0538 -▁parade -11.0539 -▁preserved -11.054 -▁muhammad -11.0544 -▁bengal -11.0545 -▁ch -11.0553 -chief -11.0554 -▁hudson -11.0558 -▁bend -11.0561 -▁bigger -11.0561 -▁boyfriend -11.0561 -vic -11.0563 -▁unfortunately -11.0566 -pass -11.0568 -▁voters -11.0569 -related -11.0571 -▁ballet -11.0574 -▁tur -11.0576 -▁cattle -11.0576 -▁53 -11.0576 -▁1897 -11.0578 -▁kn -11.0579 -▁crying -11.0579 -▁genetic -11.0583 -▁spencer -11.0584 -▁1896 -11.0585 -▁lions -11.0585 -▁writes -11.0586 -bh -11.0586 -▁pioneer -11.0589 -▁convince -11.059 -▁belong -11.0594 -zan -11.0596 -▁harbour -11.0597 -▁nathan -11.0598 -▁assets -11.0598 -▁preserve -11.0601 -▁bore -11.0605 -uz -11.0605 -▁streak -11.0607 -▁romanian -11.0609 -▁regulations -11.061 -hur -11.061 -▁virus -11.061 -main -11.0613 -▁1992, -11.0615 -▁prayer -11.0615 -▁kam -11.0616 -▁animation -11.062 -▁attending -11.0621 -▁emphasis -11.0623 -ret -11.0623 -pet -11.0624 -▁cafe -11.0626 -▁garage -11.0627 -uli -11.063 -▁companion -11.0634 -▁affect -11.0635 -▁historically -11.0637 -lau -11.064 -tian -11.0644 -▁hampshire -11.0647 -▁fluid -11.065 -▁latino -11.0653 -ld -11.0655 -▁lakes -11.0656 -▁sel -11.0657 -▁allies -11.0659 -▁bug -11.0662 -▁cage -11.0663 -link -11.0667 -▁certificate -11.0668 -▁bristol -11.067 -ched -11.0671 -▁radar -11.0672 -▁conversion -11.0677 -▁receiver -11.0681 -▁anchor -11.0681 -▁fri -11.0683 -▁lisa -11.0685 -eth -11.0687 -▁dur -11.0695 -▁attributed -11.0695 -▁links -11.0701 -▁murphy -11.0702 -▁tube -11.0703 -▁lily -11.0706 -▁screamed -11.0707 -▁earn -11.0708 -▁alaska -11.071 -▁devon -11.0711 -▁hum -11.0712 -inter -11.0712 -ao -11.0713 -▁patterns -11.0714 -▁rage -11.0717 -▁grandmother -11.0723 -▁nat -11.0723 -ening -11.0725 -bl -11.0726 -ien -11.0731 -▁span -11.0731 -▁afghanistan -11.0734 -▁residing -11.0736 -1985 -11.0738 -▁lanka -11.0738 -▁lin -11.0742 -gram -11.0743 -▁crimes -11.0745 -▁discover -11.0746 -aya -11.0748 -▁revenge -11.0754 -jar -11.0754 -▁centers -11.0758 -cing -11.076 -anna -11.0761 -▁ol -11.0763 -▁load -11.0764 -central -11.0764 -▁madrid -11.0766 -▁zu -11.0766 -▁ranks -11.0767 -▁rip -11.077 -▁viewers -11.077 -▁def -11.0771 -▁ruth -11.0775 -▁attempting -11.0776 -▁voivodeship -11.0777 -▁patent -11.0779 -▁il -11.0781 -▁traded -11.0781 -ened -11.0782 -▁clinton -11.0783 -▁sixteen -11.0784 -▁instant -11.0784 -▁identical -11.0786 -cd -11.0792 -length -11.0794 -ox -11.0797 -▁murmured -11.0798 -▁channels -11.0799 -▁pub -11.0799 -▁mah -11.0799 -▁isolated -11.0801 -▁sung -11.0802 -sburg -11.0802 -▁backed -11.0802 -uc -11.0806 -num -11.0808 -▁maine -11.0808 -▁porch -11.0809 -▁hawaii -11.0811 -▁lucy -11.0812 -▁atmosphere -11.0814 -▁favour -11.0814 -▁sponsored -11.0816 -▁democracy -11.0816 -ere -11.0816 -▁kit -11.0817 -▁voiced -11.0819 -▁kol -11.082 -▁lean -11.0822 -▁wider -11.0822 -para -11.0823 -▁1: -11.0825 -sex -11.0826 -▁interrupted -11.0827 -▁breathe -11.0828 -ichi -11.0832 -▁continuous -11.0833 -▁snake -11.0833 -ites -11.0834 -▁chicken -11.0837 -▁boundaries -11.0837 -rl -11.0837 -▁stretch -11.0844 -▁presentation -11.0845 -▁demolished -11.0846 -say -11.0849 -▁input -11.0849 -▁options -11.0849 -▁prefer -11.085 -▁finn -11.0851 -▁globe -11.0851 -▁updated -11.0852 -▁midnight -11.0852 -wo -11.0852 -died -11.0854 -▁harold -11.086 -▁fundamental -11.0863 -▁ease -11.0864 -▁connect -11.0865 -▁tenure -11.0865 -▁texts -11.0867 -▁hint -11.0872 -▁1991, -11.0872 -tr -11.0873 -▁secured -11.0874 -▁rebellion -11.0876 -▁egg -11.0878 -▁thirteen -11.0879 -▁geo -11.0881 -written -11.0882 -int -11.0883 -▁licensed -11.0885 -▁desperate -11.0886 -▁impression -11.0893 -▁delta -11.0894 -uch -11.0903 -▁1893 -11.0903 -▁engagement -11.0903 -▁kin -11.0905 -▁stretched -11.0905 -uma -11.0906 -▁dialogue -11.0906 -▁boom -11.0907 -ridge -11.0907 -▁fitted -11.0908 -▁manhattan -11.0913 -big -11.0915 -▁tro -11.0915 -▁romance -11.0916 -▁joan -11.0919 -▁vital -11.0921 -thy -11.0922 -face -11.0922 -▁mit -11.0923 -▁scientist -11.0927 -president -11.0929 -▁everywhere -11.093 -ture -11.0931 -▁sta -11.0931 -▁cart -11.0932 -▁maha -11.0934 -▁categories -11.0941 -wal -11.0944 -▁hydro -11.0946 -▁nod -11.0953 -▁arriving -11.0955 -▁trinity -11.0955 -moto -11.0956 -▁butler -11.0957 -ged -11.0957 -▁finnish -11.0958 -▁vegas -11.0958 -▁waved -11.0958 -zhou -11.0958 -▁electro -11.0959 -▁trunk -11.096 -▁tender -11.0961 -▁furthermore -11.0962 -▁$2 -11.0963 -▁connecting -11.0966 -gli -11.0967 -▁slight -11.0969 -▁styles -11.097 -month -11.097 -▁suitable -11.0972 -▁dismissed -11.0976 -▁soap -11.0976 -py -11.0977 -▁logo -11.0978 -▁parks -11.098 -▁hms -11.0982 -▁reservoir -11.0983 -▁tang -11.0983 -rey -11.0985 -▁cameron -11.0988 -▁democrat -11.0993 -▁awareness -11.0994 -▁carol -11.0998 -▁ranch -11.1001 -▁monthly -11.1005 -▁consumer -11.1007 -▁herbert -11.1009 -▁blank -11.101 -▁slide -11.1011 -▁rebuilt -11.1011 -maker -11.1014 -▁argue -11.1016 -▁punishment -11.1016 -fort -11.1017 -ido -11.1017 -▁autumn -11.1018 -▁nights -11.1019 -▁derby -11.102 -▁trials -11.1021 -▁indicates -11.1022 -▁slaves -11.1023 -▁concerning -11.1028 -rina -11.1029 -▁comp -11.1033 -▁minority -11.1034 -▁settlers -11.1035 -has -11.1036 -www -11.1037 -▁comment -11.1037 -▁sheep -11.104 -page -11.104 -▁relegated -11.1041 -▁files -11.1045 -▁quit -11.1048 -▁alarm -11.105 -▁isaac -11.1051 -▁mun -11.1053 -lands -11.1053 -▁swan -11.1053 -▁tales -11.1053 -uh -11.1058 -▁marble -11.1067 -ense -11.1067 -▁contested -11.1068 -▁1889 -11.1068 -wald -11.1077 -▁mediterranean -11.1079 -▁narrative -11.1079 -▁reply -11.1082 -▁checked -11.1087 -▁therapy -11.1087 -▁1892 -11.109 -▁craft -11.1091 -▁bog -11.1092 -▁lover -11.1092 -▁wire -11.1093 -▁hug -11.1093 -▁chuck -11.1098 -western -11.1099 -▁1864 -11.11 -oid -11.1101 -▁inspector -11.1107 -▁1885 -11.111 -▁distinction -11.1111 -▁artwork -11.1111 -uro -11.1112 -▁neuro -11.1114 -▁tab -11.1115 -tech -11.1119 -mina -11.1121 -rod -11.1123 -▁laughter -11.1126 -▁shocked -11.1129 -▁collapse -11.113 -▁traveling -11.1131 -▁perspective -11.1136 -vel -11.1141 -▁conventional -11.1142 -▁mechanism -11.1142 -▁gospel -11.1144 -▁seal -11.1144 -▁gregory -11.1144 -rm -11.1144 -▁fellowship -11.1145 -▁gau -11.1147 -▁eldest -11.115 -▁nhl -11.1151 -▁lowest -11.1152 -▁57 -11.1153 -▁fence -11.1159 -▁merger -11.1164 -nah -11.1167 -▁confidence -11.1167 -▁marvel -11.1172 -▁recovery -11.1172 -▁pile -11.1173 -▁gilbert -11.1174 -▁collective -11.1178 -late -11.1181 -▁earning -11.1182 -▁tightly -11.1188 -▁nearest -11.1193 -▁substitute -11.1193 -▁earthquake -11.1195 -sized -11.1196 -▁swallowed -11.1197 -▁dominated -11.1198 -▁regret -11.12 -▁wool -11.1201 -▁62 -11.1204 -▁prisoner -11.1204 -ute -11.1204 -▁pla -11.1204 -▁involves -11.1208 -▁confederate -11.1209 -300 -11.1209 -chin -11.121 -▁interface -11.1211 -▁wealthy -11.1212 -team -11.1215 -▁giants -11.1216 -▁resource -11.1216 -▁commitment -11.1225 -▁beijing -11.1226 -▁sao -11.1227 -▁cruise -11.1228 -▁bang -11.1229 -▁rangers -11.123 -▁kyle -11.1235 -▁duncan -11.1237 -▁suffer -11.1239 -▁exposure -11.1241 -▁nar -11.1242 -▁penn -11.1243 -▁provinces -11.1244 -▁endemic -11.1245 -▁volunteers -11.1247 -▁vo -11.1247 -▁frowned -11.1251 -piece -11.1252 -▁framework -11.1252 -▁1888 -11.1253 -▁rocket -11.1253 -▁virtual -11.1254 -▁knights -11.1255 -ments -11.1255 -▁requested -11.1257 -agh -11.1258 -▁stops -11.126 -▁paying -11.126 -awa -11.1262 -▁illustrated -11.1263 -:10 -11.1264 -▁terminus -11.1268 -▁videos -11.1268 -▁runners -11.1269 -▁ultimate -11.1273 -▁submarine -11.1275 -▁angels -11.1279 -▁chat -11.1283 -▁surrender -11.1285 -▁interchange -11.1286 -▁owen -11.1289 -▁insisted -11.1289 -march -11.1291 -▁ste -11.1293 -adi -11.1293 -▁rai -11.1294 -▁hadnt -11.1295 -▁conductor -11.1295 -▁furniture -11.1296 -▁1891 -11.1296 -▁cloth -11.1298 -▁reportedly -11.13 -▁caribbean -11.1301 -▁dispute -11.1301 -nai -11.1305 -▁mul -11.131 -▁whenever -11.1312 -cul -11.1312 -▁1865 -11.1314 -▁1894 -11.1315 -▁armenian -11.1316 -rik -11.1317 -▁realm -11.1317 -ose -11.1317 -▁derek -11.1319 -▁bitch -11.132 -▁rubbed -11.132 -vent -11.132 -▁activist -11.1321 -▁fairly -11.1321 -card -11.1323 -sz -11.1326 -▁brook -11.1326 -ome -11.1329 -▁touching -11.133 -▁sentenced -11.1333 -▁prefecture -11.1335 -▁zoo -11.1338 -1984 -11.134 -▁toured -11.134 -▁excuse -11.1344 -▁suburb -11.1344 -fel -11.1348 -▁dec -11.1353 -▁kilometers -11.1355 -▁arabic -11.1356 -▁$4 -11.1358 -▁serbia -11.1361 -1983 -11.1366 -▁switched -11.1367 -tc -11.1368 -▁celebration -11.137 -▁reporting -11.137 -▁recalled -11.1371 -▁sprint -11.1373 -▁pleasant -11.1376 -▁decides -11.1377 -▁preparation -11.1377 -▁warned -11.1378 -▁gla -11.1378 -▁spun -11.1383 -▁noah -11.1388 -▁locally -11.1391 -▁rid -11.1392 -nen -11.1392 -▁characterized -11.1392 -ologist -11.1394 -▁householder -11.1396 -pel -11.1398 -▁hitting -11.14 -▁swear -11.1401 -▁cannon -11.1401 -▁advisory -11.1402 -▁emotion -11.1402 -▁manuel -11.1403 -▁10,000 -11.1404 -▁madison -11.1405 -▁ec -11.1409 -lle -11.1411 -▁1861 -11.1414 -▁deployed -11.1416 -▁missile -11.1416 -▁produces -11.1419 -▁swept -11.1419 -gri -11.142 -▁flames -11.1426 -▁rag -11.1426 -▁innings -11.1426 -borg -11.1428 -▁tanks -11.1431 -speed -11.1435 -▁answers -11.1437 -▁adventures -11.1437 -cr -11.1439 -▁pitcher -11.144 -▁publicly -11.1441 -▁wise -11.1441 -▁automatic -11.1446 -▁canton -11.1446 -▁kissing -11.1447 -▁fighters -11.1448 -▁treasure -11.1452 -pal -11.1454 -▁advisor -11.1454 -▁sufficient -11.1455 -▁retreat -11.1456 -▁tourist -11.1458 -glo -11.1467 -▁funded -11.1467 -leg -11.1469 -▁cy -11.1471 -▁clinic -11.1473 -▁rang -11.1475 -▁regard -11.1476 -matic -11.1476 -▁creatures -11.148 -▁spike -11.148 -▁lightning -11.148 -▁pm -11.1482 -▁sailed -11.1482 -▁log -11.1482 -1982 -11.1489 -▁fourteen -11.1491 -▁oscar -11.1491 -six -11.1492 -▁spine -11.1502 -please -11.1504 -▁linear -11.1505 -▁stolen -11.1511 -▁supports -11.1513 -▁ongoing -11.1517 -▁vale -11.1521 -▁anglo -11.1522 -▁affiliated -11.1523 -aff -11.1523 -▁exclusive -11.1524 -▁cliff -11.1525 -▁winds -11.1525 -▁generated -11.1526 -▁tel -11.1531 -▁1850 -11.1535 -▁lp -11.1535 -▁connections -11.1536 -▁illness -11.1538 -▁statistical -11.1541 -une -11.1541 -▁kir -11.1542 -▁qualify -11.1544 -kal -11.1544 -ert -11.1545 -▁tune -11.1546 -▁punk -11.1546 -▁organised -11.1549 -▁pur -11.1551 -▁affiliate -11.156 -kins -11.1564 -▁250 -11.1565 -hat -11.1566 -▁solutions -11.1567 -▁flu -11.1568 -hor -11.1576 -▁shaw -11.1579 -▁dropping -11.158 -▁intervention -11.1582 -▁volleyball -11.1582 -▁ibn -11.1586 -▁61 -11.159 -udi -11.1591 -▁nephew -11.1595 -▁eighteen -11.1596 -stadt -11.1596 -▁1862 -11.1598 -nagar -11.1604 -xa -11.1606 -▁lamp -11.1607 -▁abu -11.1607 -▁1989, -11.1608 -▁rosa -11.161 -▁leonard -11.1611 -▁tent -11.1616 -els -11.1621 -▁garrison -11.1621 -oriented -11.1622 -▁boot -11.1623 -▁vocalist -11.1623 -▁cra -11.1625 -▁das -11.1627 -▁eva -11.1628 -▁pupils -11.163 -▁implemented -11.1631 -▁beetle -11.1631 -▁artificial -11.1631 -▁pistol -11.1631 -▁jefferson -11.1632 -▁bullet -11.1633 -bot -11.1638 -▁establishing -11.164 -▁bud -11.1643 -▁serbian -11.1647 -mad -11.1652 -▁rope -11.1653 -▁client -11.1654 -▁reveal -11.1655 -▁spotted -11.1659 -▁relocated -11.166 -▁liz -11.1661 -cs -11.1661 -▁lance -11.1662 -organ -11.1663 -ison -11.167 -lag -11.1671 -▁1863 -11.1671 -▁repeat -11.168 -▁romanized -11.1681 -▁pointing -11.1682 -▁sporting -11.1684 -▁holland -11.1684 -▁raja -11.1685 -here -11.1686 -▁shoved -11.1686 -▁oxygen -11.1689 -▁glow -11.1689 -mini -11.1691 -▁jesse -11.1692 -▁dia -11.1692 -▁platforms -11.1693 -▁spur -11.1693 -▁phrase -11.1697 -▁beck -11.1697 -▁raid -11.1698 -▁militia -11.1699 -stead -11.1702 -▁immigration -11.1706 -▁adelaide -11.1709 -green -11.1711 -▁diet -11.1711 -▁slammed -11.1712 -▁celebrate -11.1713 -▁devoted -11.1713 -woman -11.1714 -sea -11.1718 -▁interstate -11.1718 -▁graduation -11.1719 -▁demonstrated -11.172 -▁bastard -11.1722 -owned -11.1723 -lit -11.1729 -nam -11.1731 -ffer -11.1733 -▁maps -11.1735 -▁dal -11.1735 -▁completing -11.1737 -▁subsidiary -11.1737 -▁dominant -11.1738 -igh -11.1738 -▁raymond -11.1742 -▁iranian -11.1742 -▁monk -11.1743 -▁themes -11.1743 -▁snap -11.1744 -▁assisted -11.1745 -gre -11.1746 -llo -11.1748 -aj -11.1749 -▁hatch -11.175 -▁physician -11.175 -▁lets -11.1755 -▁ultra -11.1756 -▁guild -11.1758 -aa -11.1758 -▁simultaneously -11.1759 -▁intermediate -11.1759 -ain -11.1762 -▁amendment -11.1764 -▁nigeria -11.1764 -mac -11.1765 -great -11.1766 -▁sees -11.1767 -▁mysterious -11.1769 -nc -11.177 -▁cuba -11.177 -exp -11.1777 -▁initiated -11.178 -about -11.1782 -▁kur -11.1785 -:// -11.1788 -▁roberts -11.179 -hon -11.179 -yi -11.1791 -▁reflect -11.1791 -▁fortress -11.1791 -cca -11.1791 -▁yelled -11.1792 -▁pause -11.1792 -▁enforcement -11.1792 -▁sail -11.1795 -▁76 -11.1797 -▁goddess -11.1797 -▁absolutely -11.1801 -ef -11.1801 -▁designation -11.1804 -national -11.1804 -▁pier -11.1807 -dio -11.1807 -tas -11.181 -elo -11.1812 -▁rogers -11.1813 -▁immigrants -11.1817 -▁# -11.182 -gas -11.1821 -▁mines -11.1821 -handed -11.1822 -ester -11.1827 -zon -11.1827 -▁tyler -11.1828 -▁decorated -11.1831 -▁sandy -11.1833 -▁certified -11.1835 -▁intent -11.1837 -rov -11.1838 -vr -11.184 -▁believes -11.184 -▁stem -11.1841 -oa -11.1844 -league -11.1844 -▁bust -11.1844 -pri -11.1845 -▁crosses -11.1848 -▁congregation -11.185 -rous -11.185 -ual -11.1852 -▁literally -11.1853 -▁rally -11.1857 -▁diverse -11.186 -rp -11.1861 -▁relay -11.1864 -▁spa -11.1866 -▁municipalities -11.1867 -▁archaeological -11.1868 -▁hybrid -11.1868 -▁bombing -11.1874 -▁belly -11.1876 -▁construct -11.1881 -▁reception -11.1883 -post -11.1886 -▁mosque -11.1888 -▁honest -11.1888 -kawa -11.1893 -bol -11.1895 -▁difficulty -11.1897 -▁biology -11.1897 -1979 -11.1898 -▁destination -11.1898 -▁pul -11.1899 -▁1990, -11.1899 -▁interpretation -11.19 -▁hamlet -11.1901 -▁tossed -11.1902 -▁organic -11.1903 -gus -11.1904 -▁transformation -11.1906 -gor -11.1908 -▁persian -11.1908 -tac -11.191 -▁farming -11.191 -▁philippine -11.1913 -▁improvement -11.1915 -▁dome -11.1915 -wel -11.1916 -▁drafted -11.1917 -▁spy -11.1918 -▁harsh -11.1919 -member -11.1921 -▁colombia -11.1922 -▁playoffs -11.1923 -▁closest -11.1927 -jack -11.1928 -▁doctors -11.1931 -▁jeremy -11.1932 -blue -11.1934 -▁sequel -11.1935 -▁torn -11.1937 -families -11.1937 -▁origins -11.1939 -▁ker -11.1941 -▁hed -11.1941 -▁procedure -11.1945 -rk -11.1945 -▁reverse -11.1947 -▁encounter -11.1948 -▁exclusively -11.1949 -▁abilities -11.195 -hot -11.1952 -bay -11.1953 -▁buddhist -11.1956 -▁munich -11.1956 -▁shops -11.1958 -hm -11.1961 -▁farmer -11.1962 -smith -11.1963 -▁tara -11.1964 -▁error -11.1964 -language -11.1965 -▁motorcycle -11.1976 -▁ji -11.1979 -1981 -11.1979 -▁dare -11.1979 -▁flame -11.198 -▁duck -11.198 -▁sid -11.1981 -trans -11.1981 -▁garcia -11.199 -ick -11.1992 -▁fake -11.1992 -▁pradesh -11.1994 -▁1887 -11.1995 -▁belongs -11.1997 -▁vertical -11.1999 -▁calendar -11.1999 -▁reflected -11.2 -▁objective -11.2 -▁voyage -11.2001 -▁5: -11.2003 -▁comprehensive -11.2005 -▁arnold -11.2005 -▁edwards -11.2007 -▁skirt -11.2008 -▁attitude -11.2008 -▁mathematical -11.201 -▁pedro -11.201 -▁stopping -11.201 -▁capita -11.2011 -▁kenya -11.2012 -▁alt -11.2012 -▁neu -11.2012 -▁relieved -11.2017 -iri -11.2017 -1960 -11.2018 -▁trent -11.2019 -human -11.2019 -▁cruz -11.2019 -▁impressed -11.202 -ota -11.202 -fc -11.2022 -▁plenty -11.2025 -▁prototype -11.2025 -▁photos -11.2028 -hang -11.203 -▁amsterdam -11.2033 -eva -11.2035 -▁visa -11.2036 -▁divine -11.2039 -▁absolute -11.204 -▁welfare -11.2041 -▁dakota -11.2041 -▁releases -11.2047 -vid -11.2047 -▁filming -11.2048 -mos -11.2049 -▁ruler -11.205 -▁blu -11.205 -▁restricted -11.2051 -▁stroke -11.2052 -pea -11.2052 -▁reveals -11.2054 -▁maj -11.2055 -▁heroes -11.2056 -▁logic -11.2057 -▁swung -11.2059 -▁riley -11.206 -▁julie -11.2064 -▁cottage -11.2067 -▁stakes -11.2068 -blo -11.2069 -▁airlines -11.2069 -▁screaming -11.2073 -▁manufacturer -11.2074 -▁trump -11.2074 -▁og -11.2075 -▁mil -11.2076 -▁declaration -11.2077 -▁microsoft -11.2077 -uta -11.2079 -▁curve -11.2079 -▁rein -11.2081 -▁py -11.2085 -▁increases -11.2086 -▁internationally -11.2088 -▁arrangements -11.2088 -▁traditions -11.209 -▁survival -11.209 -▁stake -11.2093 -▁burns -11.2097 -▁recall -11.2097 -▁housed -11.2099 -▁bart -11.2102 -400 -11.2103 -▁spots -11.2104 -▁undergraduate -11.2104 -tone -11.2106 -▁chocolate -11.2106 -▁specialized -11.2106 -▁grows -11.2107 -▁download -11.2108 -▁crow -11.2114 -▁carr -11.2116 -▁yesterday -11.2116 -▁vest -11.2117 -▁sensation -11.2121 -wr -11.2124 -▁altitude -11.2125 -▁manufactured -11.2126 -▁pleased -11.2126 -▁qua -11.2127 -▁slept -11.2128 -rol -11.2129 -▁lighting -11.213 -▁enormous -11.2135 -▁vas -11.2135 -▁lt -11.2136 -elected -11.2137 -▁firing -11.2138 -ovich -11.2139 -lton -11.2139 -arian -11.214 -▁1881 -11.2142 -▁curse -11.2143 -▁incumbent -11.2145 -▁coins -11.2148 -ux -11.2149 -▁regardless -11.2149 -uga -11.2158 -aud -11.2158 -▁buses -11.2159 -▁balls -11.2162 -▁describing -11.2164 -1976 -11.2166 -▁focuses -11.2166 -▁inaugural -11.2166 -▁nickname -11.2166 -▁assume -11.2168 -ory -11.217 -▁measured -11.2173 -▁heights -11.2174 -▁accommodate -11.2177 -▁recognised -11.218 -▁lau -11.2182 -uncredited -11.2183 -▁railways -11.2184 -▁cas -11.2184 -▁tigers -11.2186 -▁outbreak -11.2187 -▁underneath -11.2187 -ther -11.2191 -▁ras -11.2193 -▁denver -11.2194 -▁ignore -11.2195 -▁gig -11.2196 -▁sol -11.2196 -court -11.2198 -▁excited -11.2198 -▁inherited -11.2202 -▁harvey -11.2206 -▁mixture -11.2206 -▁observation -11.2208 -▁rider -11.221 -▁1886 -11.2211 -▁ski -11.222 -▁nationalist -11.2221 -screen -11.2221 -▁dylan -11.2223 -▁thor -11.2225 -pha -11.2225 -▁listened -11.2225 -ching -11.2227 -sley -11.2228 -▁keen -11.2231 -▁michel -11.2233 -▁pressing -11.2236 -▁tier -11.2237 -▁athletes -11.2237 -lea -11.2238 -▁personally -11.2239 -dc -11.2241 -ses -11.2242 -▁frozen -11.2242 -▁mario -11.2242 -▁abraham -11.2243 -▁extend -11.2243 -▁grammar -11.2245 -▁structural -11.2246 -▁drake -11.2248 -▁graph -11.225 -▁aboard -11.2251 -▁pursuit -11.2251 -▁chancellor -11.2251 -▁praise -11.2251 -gui -11.2255 -▁58 -11.2258 -1978 -11.2261 -kes -11.2266 -week -11.227 -▁judgment -11.2272 -aceae -11.2272 -▁gesture -11.2274 -▁cult -11.2277 -▁facade -11.2281 -▁unsuccessful -11.2285 -▁mod -11.2291 -▁lists -11.2294 -▁norfolk -11.2296 -bc -11.2296 -than -11.23 -▁references -11.2303 -cla -11.2304 -▁playoff -11.2306 -▁qa -11.2306 -▁sierra -11.2306 -▁servant -11.2311 -▁kay -11.2314 -▁bulk -11.2314 -▁squeezed -11.2314 -▁belle -11.2315 -▁bearing -11.2315 -▁meal -11.2316 -▁florence -11.2317 -▁shaft -11.2318 -▁alberta -11.2319 -▁brow -11.2324 -▁departed -11.2325 -▁promoting -11.2325 -▁trapped -11.2326 -▁failing -11.2327 -▁deaths -11.2329 -kai -11.233 -gam -11.2332 -▁blinked -11.2335 -▁delay -11.2336 -rel -11.2337 -cade -11.2339 -▁shallow -11.234 -name -11.234 -1975 -11.234 -sym -11.2341 -▁plates -11.2345 -▁mcc -11.2348 -▁editorial -11.2348 -▁corresponding -11.235 -▁sacrifice -11.235 -▁brushed -11.2351 -▁touchdown -11.2358 -▁epic -11.2367 -strom -11.2367 -▁temperatures -11.2368 -▁coaching -11.2368 -▁brisbane -11.2368 -▁carriage -11.2369 -▁canyon -11.237 -person -11.2372 -▁stefan -11.2372 -▁halt -11.2372 -▁guilt -11.2372 -▁shots -11.2373 -▁helicopter -11.2376 -founded -11.2378 -▁laser -11.238 -▁partial -11.238 -hana -11.2387 -▁trigger -11.2388 -▁ven -11.239 -▁hungry -11.239 -▁aspect -11.2391 -▁wont -11.2392 -▁jennifer -11.2392 -miss -11.2393 -makers -11.2394 -▁significance -11.2395 -▁travelled -11.2395 -▁distinctive -11.2396 -▁shakespeare -11.2398 -gie -11.2402 -▁rent -11.2404 -▁athens -11.2404 -rail -11.2405 -▁periods -11.2406 -▁olivia -11.2408 -▁instruction -11.2409 -▁demons -11.2409 -▁speakers -11.2412 -meter -11.2413 -▁territorial -11.2414 -▁dub -11.2421 -pra -11.2423 -▁demands -11.2424 -▁printing -11.2425 -▁gauge -11.2428 -▁kane -11.2428 -▁unincorporated -11.243 -▁600 -11.2432 -mura -11.2433 -stop -11.2433 -anne -11.2436 -▁diesel -11.2439 -▁alley -11.2442 -▁1884 -11.2443 -▁67 -11.2446 -▁negotiations -11.2448 -hua -11.2448 -▁characteristic -11.2449 -▁mob -11.245 -pit -11.245 -▁carries -11.2451 -▁youtube -11.2456 -▁patch -11.2456 -pol -11.2459 -▁cox -11.2459 -▁prices -11.2461 -▁examination -11.2461 -▁coup -11.2465 -vie -11.2466 -kon -11.2467 -▁evolved -11.2469 -▁recipient -11.2469 -▁northwestern -11.247 -▁accessible -11.2472 -thi -11.2474 -▁tomb -11.2474 -▁escort -11.2474 -▁explains -11.2477 -▁maritime -11.2477 -▁dining -11.2477 -▁kas -11.2479 -spect -11.248 -zar -11.2481 -▁wallace -11.2483 -▁inch -11.2484 -▁grid -11.2484 -▁collapsed -11.2485 -finals -11.2486 -▁colleges -11.2488 -▁steep -11.2489 -hin -11.249 -▁nevada -11.2492 -▁mae -11.2498 -▁employee -11.2498 -its -11.2499 -▁tenth -11.2499 -▁1882 -11.25 -▁divorce -11.25 -race -11.2502 -▁submitted -11.2506 -▁scores -11.2508 -yon -11.2508 -▁eligible -11.2508 -▁cheese -11.2509 -john -11.2509 -▁59 -11.251 -▁investigate -11.252 -tron -11.252 -uv -11.252 -▁referring -11.2523 -▁resumed -11.2523 -▁taxi -11.2525 -▁consultant -11.2525 -▁depot -11.2526 -▁clo -11.2527 -▁wheels -11.2527 -▁chill -11.2528 -lor -11.253 -▁permitted -11.2531 -▁rama -11.2531 -▁ivy -11.2532 -▁respective -11.2532 -chet -11.2533 -▁vary -11.2534 -berry -11.2536 -▁valid -11.2537 -▁66 -11.2539 -1,0 -11.2541 -▁bol -11.2545 -▁essentially -11.2546 -shed -11.2546 -▁grades -11.2549 -bell -11.2552 -▁cork -11.2553 -▁congressional -11.2555 -▁cancelled -11.2555 -▁shipping -11.2555 -▁otto -11.2556 -▁locomotives -11.2557 -▁impressive -11.2558 -▁arrow -11.256 -bound -11.2562 -emi -11.2563 -since -11.2566 -▁watson -11.2569 -▁magazines -11.257 -▁vel -11.2571 -▁armor -11.2571 -▁booth -11.2574 -▁mau -11.2581 -▁patron -11.2583 -▁brass -11.2584 -▁clients -11.2585 -▁liga -11.2586 -▁walks -11.2587 -ded -11.2589 -▁diplomatic -11.2591 -aging -11.2592 -iko -11.2594 -▁properly -11.2595 -▁trumpet -11.2597 -illo -11.26 -dp -11.2602 -rated -11.2604 -▁prey -11.2605 -▁settlements -11.2606 -▁announcement -11.2608 -iata -11.2613 -lane -11.2614 -▁hebrew -11.2615 -cp -11.2615 -nel -11.2616 -▁veteran -11.2616 -▁gather -11.2617 -boat -11.2617 -▁worker -11.2619 -▁muslims -11.2621 -▁jun -11.2621 -▁taxes -11.2622 -▁bitter -11.2622 -▁originated -11.2627 -▁interviews -11.263 -ular -11.2633 -oy -11.2635 -▁petition -11.2636 -▁exhibit -11.2636 -ech -11.2637 -▁hollow -11.2638 -enburg -11.2639 -▁pastor -11.264 -▁lind -11.264 -▁cluster -11.264 -▁exile -11.2642 -▁powered -11.2644 -▁mortal -11.2649 -▁yale -11.265 -▁dragged -11.2654 -mara -11.2655 -real -11.2655 -▁humor -11.2658 -▁mainstream -11.2658 -▁invitation -11.2658 -▁scattered -11.2658 -▁brilliant -11.2659 -▁pairs -11.2661 -▁simpson -11.2662 -hra -11.2663 -▁fail -11.2663 -▁nancy -11.2663 -ito -11.2665 -▁engage -11.2665 -▁relevant -11.2667 -▁beaten -11.2668 -▁liu -11.2669 -amba -11.267 -▁tables -11.2671 -▁banned -11.2674 -▁fog -11.2676 -▁export -11.2676 -▁kos -11.2678 -▁historians -11.268 -pers -11.2681 -fan -11.2684 -▁banner -11.2688 -▁bridges -11.2691 -gna -11.2697 -▁wilhelm -11.2698 -atory -11.2698 -▁vector -11.2699 -▁columns -11.2699 -▁automatically -11.2702 -een -11.2704 -▁approaches -11.2705 -ili -11.2706 -▁lots -11.2706 -ations -11.2708 -▁convicted -11.2709 -▁ox -11.2709 -▁locomotive -11.2712 -▁sap -11.2712 -fine -11.2712 -ander -11.2713 -▁rational -11.2714 -▁karen -11.2716 -▁regulation -11.2719 -▁usage -11.2721 -▁burial -11.2721 -▁yang -11.2726 -▁opponents -11.2726 -▁fastest -11.2727 -cra -11.2727 -▁venice -11.2729 -▁doctrine -11.2731 -ax -11.2732 -ello -11.2733 -▁attacking -11.2733 -▁chip -11.2733 -sche -11.2734 -▁coaches -11.2736 -▁chen -11.2741 -▁deer -11.2742 -▁horizon -11.2742 -▁harper -11.2744 -ls -11.2745 -▁charm -11.2747 -▁comments -11.2748 -school -11.2749 -▁nad -11.2751 -nica -11.2752 -tine -11.2754 -▁christianity -11.2756 -▁celtic -11.2757 -▁elaborate -11.2759 -▁raven -11.2761 -▁scandal -11.2763 -▁nord -11.2765 -▁constantly -11.2766 -▁shade -11.2767 -▁cincinnati -11.2767 -▁contributing -11.2767 -rb -11.2768 -▁sits -11.2768 -▁suspect -11.2769 -ising -11.2771 -▁mala -11.2772 -▁carved -11.2772 -▁leeds -11.2778 -▁purse -11.2778 -▁towers -11.2779 -▁qualification -11.2789 -▁frontier -11.2789 -▁commanding -11.2789 -▁messages -11.279 -▁hank -11.2792 -sub -11.2793 -▁rim -11.2793 -itz -11.2793 -▁stack -11.2793 -▁mouse -11.2794 -▁fury -11.2794 -▁topics -11.2798 -▁mol -11.2799 -▁72 -11.28 -ket -11.2801 -▁verse -11.2804 -▁glasses -11.2805 -▁preparing -11.2807 -stock -11.2807 -kill -11.2807 -▁instructor -11.2809 -▁crashed -11.281 -▁festivals -11.2812 -▁liberation -11.2813 -▁payment -11.2814 -▁marshal -11.2815 -▁defended -11.2817 -▁bennett -11.2818 -8,000 -11.2819 -▁struggling -11.2821 -▁brush -11.2821 -▁plaza -11.2825 -▁1988, -11.2825 -▁ottawa -11.2827 -roy -11.2828 -▁inducted -11.2829 -▁gram -11.2832 -▁challenges -11.2833 -▁narrowed -11.2834 -got -11.2835 -▁rub -11.2835 -▁saving -11.2836 -▁doug -11.2838 -ending -11.2843 -▁acc -11.2845 -▁rings -11.2846 -▁civic -11.2846 -▁massacre -11.2847 -▁mara -11.2848 -▁barcelona -11.2849 -▁surely -11.285 -▁sliding -11.2853 -▁hardware -11.2863 -▁bolt -11.2863 -▁variable -11.2869 -▁sm -11.2869 -hurst -11.2871 -▁queens -11.2871 -▁signals -11.2876 -▁peer -11.2881 -▁meta -11.2881 -anga -11.2883 -▁brings -11.2885 -▁resignation -11.2886 -▁shorter -11.2887 -zia -11.2889 -▁barrel -11.2893 -▁fond -11.2895 -▁monitor -11.2895 -▁bern -11.2901 -founder -11.2902 -aro -11.2905 -▁flights -11.2906 -▁tested -11.2906 -gard -11.2908 -▁pillow -11.2909 -▁equally -11.2912 -▁recover -11.2912 -▁firmly -11.2914 -▁attract -11.2914 -cro -11.2916 -▁phillips -11.2918 -mine -11.2924 -▁mos -11.2927 -▁pipe -11.2927 -▁mutual -11.2928 -▁spaces -11.293 -▁advocate -11.2931 -▁panama -11.2933 -half -11.2934 -1973 -11.2935 -▁1987, -11.2939 -▁instructions -11.2939 -▁nowhere -11.2941 -▁functional -11.2942 -▁bunch -11.2942 -cis -11.2945 -▁dai -11.2945 -▁mentor -11.2949 -▁ranging -11.295 -nov -11.2952 -▁visits -11.2952 -ike -11.2952 -▁fever -11.2954 -mot -11.2959 -dou -11.2959 -600 -11.296 -eb -11.2961 -▁innovation -11.2962 -▁guitars -11.2963 -▁hughes -11.2963 -beat -11.2964 -▁levi -11.2965 -raj -11.2969 -1972 -11.2969 -eck -11.297 -▁riders -11.297 -▁rated -11.2971 -▁succession -11.2972 -▁obama -11.2974 -▁heir -11.2974 -▁yi -11.2975 -▁pig -11.2979 -▁rode -11.2979 -▁frost -11.298 -▁1883 -11.298 -works -11.298 -gent -11.2981 -▁curious -11.2983 -▁marco -11.2984 -▁germans -11.2986 -▁idol -11.2986 -headed -11.2989 -grad -11.2989 -music -11.2991 -hof -11.2991 -▁rebel -11.2992 -▁exhibited -11.2995 -6,000 -11.2995 -▁diseases -11.2997 -▁101 -11.2998 -▁palmer -11.2999 -▁saudi -11.2999 -▁saxophone -11.2999 -▁filling -11.2999 -cross -11.2999 -▁stranger -11.3001 -▁customer -11.3003 -▁governments -11.3004 -wyn -11.3007 -▁restaurants -11.3007 -phone -11.3008 -▁symptoms -11.3008 -▁gr -11.301 -lies -11.301 -▁occasional -11.3014 -▁healthy -11.3019 -▁experiments -11.302 -oda -11.3025 -▁boulevard -11.3025 -▁array -11.3027 -1977 -11.3027 -▁reconstruction -11.3028 -pf -11.3035 -▁slam -11.3035 -▁participating -11.3036 -▁philosopher -11.3037 -borough -11.3038 -▁caroline -11.3038 -▁behaviour -11.3039 -▁freight -11.304 -▁renaissance -11.3041 -▁eagles -11.3041 -▁quartet -11.3042 -april -11.3044 -▁anton -11.3045 -▁hus -11.3047 -ire -11.3051 -tun -11.3053 -▁tissue -11.3054 -apa -11.3054 -▁phd -11.3055 -▁favourite -11.3056 -▁syria -11.3056 -▁clouds -11.3061 -▁excitement -11.3062 -▁roland -11.3065 -▁depicted -11.3066 -▁flute -11.3066 -▁jacques -11.3066 -eight -11.307 -▁react -11.3071 -▁1945, -11.3073 -▁basement -11.3074 -▁expecting -11.3077 -app -11.3079 -▁interaction -11.3079 -▁henri -11.308 -▁punch -11.3081 -lian -11.3081 -▁installation -11.3081 -ates -11.3082 -ios -11.3083 -▁theories -11.3083 -▁profession -11.3084 -pic -11.3084 -▁jerked -11.3087 -▁reader -11.3087 -▁sau -11.3087 -▁targets -11.3089 -▁marsh -11.309 -▁quest -11.309 -▁pont -11.3093 -col -11.3094 -▁shrine -11.3095 -▁urge -11.3095 -▁computers -11.3098 -▁http -11.3101 -ico -11.3106 -▁bis -11.3107 -▁helps -11.3108 -▁sor -11.3108 -▁legacy -11.3109 -▁gym -11.3113 -▁dynamic -11.3113 -▁breed -11.3113 -▁doubles -11.3114 -yang -11.3114 -tl -11.3114 -▁99 -11.3114 -▁martial -11.3115 -1974 -11.3116 -▁closure -11.3117 -▁1986, -11.3117 -▁camps -11.312 -▁warsaw -11.312 -owski -11.3124 -ois -11.3125 -▁focusing -11.3126 -▁removal -11.3128 -itis -11.313 -▁dancer -11.3131 -odi -11.3136 -▁baronet -11.3136 -▁extensively -11.3137 -▁bulgarian -11.3138 -▁thai -11.3139 -phi -11.314 -▁democrats -11.3144 -▁readers -11.3147 -▁1878 -11.3148 -wind -11.3148 -▁signature -11.3149 -▁honors -11.3151 -▁excellence -11.3154 -1971 -11.3157 -▁proportion -11.3159 -▁songwriter -11.316 -▁ernest -11.3161 -august -11.3163 -▁secrets -11.3165 -▁sexy -11.3165 -sic -11.3165 -▁beau -11.3166 -▁moor -11.317 -▁franco -11.3173 -lene -11.3174 -mid -11.3174 -▁protests -11.3178 -▁imagined -11.3181 -▁mainland -11.3187 -▁afford -11.3188 -▁sensitive -11.3191 -▁olive -11.3191 -▁addressed -11.3194 -▁picking -11.3194 -▁notion -11.3196 -▁alter -11.3197 -▁efficiency -11.3199 -▁talks -11.3199 -shu -11.3202 -▁practically -11.3204 -▁edges -11.3204 -▁lar -11.3206 -eastern -11.3206 -sun -11.3209 -▁twist -11.3209 -▁circles -11.321 -▁enrolled -11.3211 -▁manga -11.3212 -▁psychological -11.3213 -jur -11.3215 -rine -11.3215 -▁curled -11.322 -ivo -11.322 -▁suspension -11.3221 -june -11.3222 -▁samples -11.323 -craft -11.3233 -▁journalism -11.3237 -▁corruption -11.3237 -▁ted -11.3237 -zh -11.3238 -order -11.3238 -▁radiation -11.3239 -▁alert -11.3241 -very -11.3241 -dimensional -11.3241 -▁temporarily -11.3245 -▁64, -11.3247 -shot -11.3253 -▁fairy -11.3253 -▁lessons -11.3253 -▁intensity -11.3254 -▁curtis -11.3255 -▁workshop -11.3257 -rant -11.3258 -▁wei -11.3258 -▁directions -11.3258 -▁magnetic -11.3263 -▁ace -11.3266 -▁reward -11.3269 -▁byzantine -11.3274 -▁ties -11.3279 -ering -11.3279 -▁hut -11.328 -▁argentine -11.3283 -▁judicial -11.3285 -▁revised -11.3287 -▁strings -11.3287 -▁liam -11.3291 -active -11.3292 -▁gan -11.3294 -▁wiped -11.3299 -▁newcastle -11.3299 -▁variation -11.33 -▁manuscript -11.33 -▁dissolved -11.3301 -▁110 -11.3301 -▁torture -11.3303 -▁theatrical -11.3306 -▁hitler -11.3309 -▁grandson -11.3311 -▁gothic -11.3311 -shaw -11.3313 -mut -11.3314 -▁heels -11.3315 -▁ford -11.3316 -released -11.3316 -▁roth -11.3316 -▁brave -11.3317 -▁tub -11.3318 -▁concentrated -11.3323 -eer -11.3325 -▁shame -11.3328 -wy -11.3328 -nation -11.3328 -700 -11.333 -▁glory -11.333 -july -11.3331 -▁preston -11.3333 -▁seized -11.3337 -▁generate -11.3337 -▁#2 -11.3338 -▁1875 -11.334 -▁defender -11.3342 -▁awake -11.3343 -▁decree -11.3343 -▁veterans -11.3344 -▁discipline -11.3344 -ingham -11.3345 -▁consist -11.3345 -dorf -11.3346 -▁montana -11.3346 -▁trailer -11.3348 -▁battles -11.3348 -▁woke -11.3348 -▁sk -11.3348 -▁68 -11.335 -▁rushing -11.335 -▁nas -11.335 -lines -11.335 -looking -11.3352 -▁sophie -11.3354 -▁disorder -11.3355 -▁herald -11.3356 -gro -11.3357 -▁seeds -11.3359 -north -11.3361 -▁breaks -11.3362 -▁vladimir -11.3363 -▁supplied -11.3364 -▁indicating -11.3366 -▁improvements -11.3367 -▁succeed -11.3369 -▁reg -11.3372 -▁convoy -11.3372 -▁chang -11.3373 -▁electronics -11.3373 -▁tra -11.3374 -▁slot -11.3378 -▁rookie -11.3384 -▁cuts -11.3387 -▁flashed -11.3388 -tai -11.3389 -▁travels -11.3392 -rup -11.3394 -▁jen -11.3398 -▁challenged -11.34 -▁zi -11.34 -▁quarterback -11.34 -▁95 -11.3404 -▁myth -11.3405 -▁theology -11.3405 -haus -11.3407 -▁thinks -11.3409 -▁reducing -11.341 -▁striking -11.341 -▁franz -11.3413 -dha -11.3413 -▁montgomery -11.3413 -▁petersburg -11.3415 -▁accent -11.3415 -▁colonies -11.3417 -▁attractive -11.3417 -▁resist -11.3417 -▁warmth -11.3417 -▁croatia -11.3426 -tter -11.3428 -▁warfare -11.3428 -▁handling -11.3429 -ente -11.3429 -▁connor -11.343 -speaking -11.3435 -▁presents -11.3437 -▁800 -11.344 -▁physically -11.3442 -▁emerging -11.3443 -▁blanket -11.3445 -▁deemed -11.3449 -▁tense -11.345 -▁customs -11.3451 -▁naturally -11.3452 -▁spare -11.3453 -mani -11.3454 -▁1985, -11.3455 -▁loyal -11.3456 -til -11.3456 -▁bother -11.3457 -▁transform -11.3459 -uka -11.346 -▁lid -11.346 -▁pitt -11.3461 -rite -11.3462 -▁kre -11.3464 -▁blond -11.3465 -▁runway -11.3465 -▁nepal -11.3466 -das -11.347 -▁footage -11.3471 -oe -11.3471 -▁pretend -11.3471 -▁equation -11.3473 -▁biography -11.3476 -▁lawsuit -11.3477 -yar -11.3478 -group -11.3478 -▁miguel -11.3479 -▁wellington -11.348 -arch -11.3481 -▁kom -11.3483 -▁airfield -11.3486 -aged -11.349 -grade -11.349 -pus -11.3492 -kk -11.3493 -▁bride -11.3496 -▁palestinian -11.3497 -▁marathon -11.3497 -▁jessica -11.35 -▁pirates -11.3502 -▁berkeley -11.3503 -yr -11.3503 -1969 -11.3504 -▁francois -11.3505 -▁architects -11.3505 -▁1871 -11.3507 -▁1879 -11.3507 -alis -11.3509 -french -11.3509 -▁1876 -11.351 -▁revolt -11.351 -▁admission -11.3512 -▁lesser -11.3513 -▁elevated -11.3515 -▁kurt -11.3515 -▁releasing -11.3515 -▁sue -11.3515 -▁faded -11.3517 -▁auction -11.3517 -▁handsome -11.3518 -▁amazon -11.3522 -▁swift -11.3522 -aux -11.3524 -▁molecular -11.3525 -▁moderate -11.3526 -▁bloom -11.3527 -▁hind -11.3527 -▁raced -11.3528 -▁lightly -11.3531 -front -11.3531 -▁dialect -11.3532 -▁heath -11.3535 -▁pulls -11.3536 -▁wheat -11.3537 -still -11.3542 -▁ritual -11.3543 -▁difficulties -11.3545 -osis -11.3547 -wide -11.3548 -▁integration -11.3548 -mail -11.3548 -▁societies -11.3554 -▁repeatedly -11.3555 -▁conquest -11.3558 -▁grateful -11.3559 -▁specialist -11.3559 -▁loving -11.3561 -cum -11.3562 -▁autonomous -11.3563 -▁elbow -11.3569 -▁maurice -11.3569 -▁magical -11.3571 -▁configuration -11.3572 -▁fen -11.3573 -▁cc -11.3574 -▁carpet -11.3576 -bourne -11.3577 -dd -11.358 -▁fountain -11.3581 -▁ministers -11.3583 -▁ei -11.3583 -ald -11.3584 -tree -11.3586 -▁attraction -11.3587 -▁powder -11.3588 -▁enters -11.3588 -▁fisher -11.3589 -▁della -11.3589 -▁vulnerable -11.359 -october -11.3591 -etti -11.3591 -both -11.3596 -▁archives -11.3596 -vat -11.3596 -▁proteins -11.3597 -▁pilots -11.3597 -▁erik -11.3599 -▁ronald -11.3601 -▁echo -11.3601 -▁wrap -11.3601 -▁amanda -11.3602 -▁boxes -11.3602 -▁preservation -11.3602 -vert -11.3602 -▁athlete -11.3603 -▁newton -11.3604 -▁violet -11.3606 -▁southeastern -11.3607 -1968 -11.3608 -▁server -11.361 -▁sto -11.361 -▁clearing -11.361 -▁boxing -11.361 -▁sake -11.3611 -▁commenced -11.3612 -▁clarke -11.3612 -berger -11.3612 -bing -11.3612 -▁accurate -11.3613 -▁md -11.3613 -▁heavyweight -11.3615 -▁mist -11.3617 -▁1840 -11.3617 -▁serie -11.362 -▁lecture -11.3621 -▁google -11.3621 -vir -11.3621 -▁blog -11.3622 -poli -11.3623 -▁mack -11.3624 -song -11.3625 -tta -11.3627 -▁monarch -11.3627 -▁bryan -11.363 -ides -11.363 -oto -11.3631 -▁circular -11.3633 -▁assists -11.3635 -np -11.3636 -▁porter -11.3638 -▁damp -11.3638 -▁altar -11.3639 -▁eli -11.3639 -▁miracle -11.3639 -▁generations -11.3641 -isa -11.3641 -▁sailing -11.3647 -▁polar -11.3647 -home -11.3649 -▁azerbaijan -11.365 -turn -11.3651 -▁strict -11.3652 -▁qu -11.3654 -cen -11.3655 -ying -11.3656 -phy -11.3659 -too -11.366 -▁extending -11.366 -▁courage -11.3662 -lai -11.3662 -▁annie -11.3662 -▁writings -11.3666 -▁nursing -11.3666 -seven -11.3667 -▁breeding -11.3668 -ml -11.3674 -▁bran -11.3676 -▁joke -11.3676 -▁matrix -11.3677 -▁moss -11.3678 -▁oz -11.3682 -quer -11.3682 -▁bha -11.3683 -▁dee -11.3685 -▁guidance -11.3685 -▁variations -11.3685 -wait -11.3686 -▁bulgaria -11.3687 -1/ -11.3687 -asi -11.3687 -▁automobile -11.3688 -▁influences -11.3694 -▁retain -11.3696 -▁doctorate -11.3698 -▁collar -11.37 -▁1868 -11.37 -▁chaos -11.3701 -▁counsel -11.3705 -▁1866 -11.3707 -▁encountered -11.3709 -date -11.371 -▁sting -11.3711 -▁kisses -11.3711 -zin -11.3712 -▁lac -11.3713 -▁stored -11.3715 -▁maintaining -11.3717 -▁humanity -11.3719 -▁felix -11.3719 -▁renowned -11.372 -▁louise -11.3721 -vari -11.3723 -▁reich -11.3723 -oi -11.3724 -▁relaxed -11.3726 -▁consistent -11.3726 -▁flank -11.373 -hoe -11.3732 -enko -11.3733 -▁1867 -11.3733 -wheel -11.3734 -▁methodist -11.3735 -series -11.3736 -etta -11.3736 -▁cooking -11.3737 -ssa -11.3739 -750 -11.374 -▁mak -11.3741 -▁venezuela -11.3741 -▁1984, -11.3741 -▁gur -11.3744 -pad -11.3745 -▁delayed -11.3745 -▁spite -11.3752 -▁efficient -11.3754 -▁bout -11.3755 -nda -11.3756 -▁1872 -11.376 -▁java -11.376 -▁populations -11.3761 -jin -11.3762 -▁brooks -11.3764 -▁tide -11.3765 -▁sen -11.3765 -▁rape -11.3767 -▁hunger -11.377 -▁bark -11.3772 -▁fal -11.3773 -▁hannah -11.3774 -dian -11.3776 -▁cure -11.3778 -media -11.3779 -iana -11.3779 -▁jungle -11.378 -▁prospect -11.378 -would -11.3781 -escu -11.3782 -sal -11.3783 -▁blew -11.3785 -▁neighboring -11.3788 -▁shanghai -11.3789 -▁butter -11.379 -dle -11.3793 -▁planted -11.3794 -jer -11.3795 -▁nam -11.3795 -▁routine -11.38 -▁eyebrows -11.3802 -2018 -11.3804 -rad -11.3805 -lived -11.3807 -vik -11.3809 -▁portal -11.3811 -▁johann -11.3812 -▁sony -11.3813 -▁exploration -11.3814 -▁compact -11.3814 -▁casino -11.3815 -▁twins -11.3815 -▁robot -11.3816 -▁tours -11.3819 -september -11.3822 -rf -11.3822 -▁embassy -11.3823 -tracks -11.3823 -load -11.3826 -pes -11.3829 -▁savage -11.3832 -nothing -11.3833 -▁consciousness -11.3834 -▁gaining -11.3835 -▁sanctuary -11.3836 -▁elect -11.3838 -▁strain -11.3838 -▁topic -11.3842 -max -11.3842 -▁airline -11.3845 -▁stiff -11.3846 -▁jared -11.3847 -▁warehouse -11.3848 -lou -11.385 -▁happiness -11.3851 -uck -11.3854 -▁separation -11.3854 -▁scan -11.3854 -▁imprisoned -11.3856 -▁satisfied -11.3858 -▁sullivan -11.3859 -▁resting -11.3864 -eli -11.3866 -▁floating -11.3867 -▁variant -11.3868 -▁collaborated -11.3868 -▁commons -11.387 -▁maid -11.3871 -seat -11.3871 -▁linda -11.3872 -lib -11.3873 -▁shy -11.3873 -sco -11.3875 -▁situations -11.3875 -▁consumption -11.3876 -ulu -11.3876 -▁manufacture -11.3877 -▁encourage -11.3878 -▁pala -11.3878 -▁rabbit -11.3878 -▁poured -11.3879 -erie -11.388 -▁delaware -11.3883 -▁lynn -11.3884 -▁grande -11.3885 -▁rou -11.3888 -hart -11.3892 -▁complicated -11.3894 -▁bald -11.3895 -▁fra -11.3897 -▁prevented -11.39 -▁bach -11.39 -songwriter -11.3901 -▁hai -11.3901 -▁banking -11.3901 -▁graphics -11.3905 -rit -11.3905 -path -11.3907 -ics -11.3908 -ode -11.3912 -▁christians -11.3913 -ame -11.3914 -▁exterior -11.3917 -▁receives -11.3917 -▁consequences -11.3922 -frame -11.3927 -▁luc -11.3929 -▁recreation -11.3929 -▁literacy -11.3929 -▁experts -11.393 -range -11.393 -▁$5 -11.3931 -▁navigation -11.3933 -▁jenny -11.3933 -▁administered -11.3936 -▁approaching -11.3937 -▁78 -11.3938 -▁uncertain -11.3941 -▁lad -11.3942 -step -11.3943 -▁demo -11.3943 -▁sheffield -11.3945 -cz -11.3946 -▁maggie -11.3949 -chu -11.3949 -▁cher -11.3949 -▁stanford -11.395 -ath -11.395 -▁permanently -11.395 -▁unity -11.3953 -▁mere -11.3954 -▁neutral -11.3954 -▁blocked -11.3956 -ude -11.3959 -▁cake -11.3961 -▁armies -11.3962 -▁testament -11.3965 -▁chester -11.3966 -▁arrives -11.3967 -▁holly -11.3969 -▁amber -11.3971 -ving -11.3972 -▁copyright -11.3974 -▁lecturer -11.3976 -▁fucking -11.3978 -▁hamburg -11.3979 -▁solve -11.398 -▁gasped -11.3982 -▁syndrome -11.3983 -▁dash -11.3984 -▁convert -11.3986 -tig -11.3988 -1966 -11.3989 -▁hey -11.399 -▁hopes -11.3991 -self -11.3995 -iro -11.3998 -▁screenplay -11.4 -▁eugene -11.4001 -▁landmark -11.4002 -oke -11.4002 -▁sai -11.4006 -▁tactical -11.4008 -▁outfit -11.4008 -▁1874 -11.4012 -▁rom -11.4017 -▁quarters -11.402 -▁halfway -11.4022 -▁mtv -11.4022 -▁hurry -11.4024 -▁bases -11.4025 -▁assignment -11.4025 -▁commentary -11.4031 -▁1877 -11.4031 -gl -11.4032 -▁ellis -11.4033 -door -11.4035 -▁campaigns -11.4037 -▁beta -11.4039 -▁ruins -11.4039 -base -11.404 -▁1982, -11.404 -ically -11.4041 -1950 -11.4041 -▁roosevelt -11.4043 -▁isnt -11.4043 -▁ap -11.4044 -▁migration -11.4046 -▁shane -11.4046 -▁transformed -11.4047 -▁tightened -11.4048 -▁kumar -11.4049 -give -11.4051 -▁flee -11.4051 -▁mercy -11.4051 -▁evan -11.4052 -▁pseudo -11.4053 -▁edmund -11.4054 -▁restore -11.4054 -▁climbing -11.4055 -▁relating -11.4056 -▁rubber -11.4058 -leigh -11.4059 -▁1944, -11.406 -▁croatian -11.4061 -eller -11.4061 -dog -11.4067 -▁casualties -11.4068 -800 -11.4069 -▁fierce -11.407 -▁suck -11.407 -▁fro -11.4071 -▁emi -11.4072 -▁tram -11.4072 -▁infant -11.4073 -vas -11.4075 -▁rounded -11.4075 -▁clement -11.4078 -▁essay -11.4079 -▁lebanon -11.4081 -▁revealing -11.4085 -▁fewer -11.4088 -▁contents -11.409 -▁graphic -11.409 -▁reserves -11.4093 -▁dame -11.4095 -▁exhibitions -11.4097 -▁pil -11.4099 -duc -11.41 -▁rebels -11.4101 -▁holes -11.4102 -iel -11.4108 -▁recruited -11.4111 -sound -11.4111 -bird -11.4113 -▁auckland -11.4116 -▁friedrich -11.412 -▁colleagues -11.4122 -▁protocol -11.4122 -▁whistle -11.4126 -▁dragons -11.4126 -▁unconscious -11.4127 -▁pepper -11.4127 -akh -11.413 -▁introduce -11.4137 -▁clenched -11.4138 -▁abstract -11.4139 -nian -11.4141 -▁lords -11.4142 -▁stark -11.4143 -bee -11.4143 -▁kun -11.4145 -▁yugoslavia -11.4148 -▁absent -11.415 -▁ruin -11.4151 -▁quantum -11.4155 -▁1972, -11.4155 -▁screw -11.4161 -▁bab -11.4163 -1967 -11.4164 -▁bala -11.4165 -▁email -11.4166 -▁followers -11.4166 -ered -11.4168 -▁explorer -11.4169 -▁lobby -11.4174 -▁programmes -11.4175 -▁dive -11.4176 -▁feeding -11.4176 -▁namely -11.4177 -▁seminary -11.4178 -dine -11.4179 -▁priests -11.4181 -▁dull -11.4183 -▁sometime -11.4184 -oz -11.4184 -▁apollo -11.4184 -▁beard -11.4184 -▁connects -11.4185 -▁thereby -11.4188 -stad -11.4188 -▁tat -11.4188 -▁fbi -11.4194 -▁consent -11.4194 -▁backward -11.4198 -rom -11.42 -super -11.42 -▁mum -11.4201 -▁aggregate -11.4202 -▁amounts -11.4203 -▁sei -11.4205 -▁sixty -11.4206 -▁barrier -11.4206 -▁albanian -11.4209 -▁prestigious -11.4209 -▁gem -11.4211 -▁cricketer -11.4212 -▁1873 -11.4212 -▁sucked -11.4213 -▁silently -11.4221 -sil -11.4222 -▁crops -11.4223 -last -11.4223 -corn -11.4224 -omi -11.4225 -2,000 -11.4227 -▁abdul -11.4228 -▁idiot -11.4232 -▁andrea -11.4235 -▁quinn -11.4237 -keeper -11.4237 -▁iraqi -11.4237 -▁descendants -11.4238 -▁disbanded -11.4239 -▁widened -11.4242 -▁manufacturers -11.4243 -▁loaded -11.4243 -pack -11.4244 -▁nebraska -11.4245 -▁identification -11.4245 -arra -11.4249 -▁axis -11.4249 -▁ober -11.4249 -▁crest -11.4251 -yam -11.4253 -▁thi -11.4256 -▁disk -11.4256 -▁profit -11.4257 -▁colt -11.4258 -lim -11.4261 -7,000 -11.4266 -▁registration -11.4266 -asa -11.4267 -▁perceived -11.4268 -▁hd -11.4268 -▁forgive -11.4268 -▁bishops -11.427 -tation -11.4272 -▁explore -11.4273 -▁comprises -11.4273 -▁hawk -11.4274 -▁zhang -11.4275 -hai -11.4279 -bling -11.428 -▁tru -11.428 -▁lovely -11.4281 -▁leslie -11.4285 -▁blonde -11.429 -▁episcopal -11.429 -▁farther -11.4294 -▁contribute -11.4295 -built -11.4297 -lla -11.4299 -dos -11.4299 -▁breathed -11.43 -▁chambers -11.4301 -ify -11.4302 -▁ps -11.431 -▁storyline -11.431 -▁mature -11.4312 -▁sip -11.4314 -▁northeastern -11.4314 -▁midfielder -11.4315 -▁nut -11.4319 -▁aria -11.4319 -november -11.432 -▁diversity -11.4326 -▁kinds -11.4328 -▁lamb -11.4328 -eno -11.4328 -▁organisations -11.4329 -▁departments -11.4329 -tag -11.433 -▁rot -11.4332 -hib -11.4334 -▁fl -11.4336 -bag -11.4336 -▁pianist -11.4336 -▁sofia -11.4336 -mir -11.4337 -ann -11.4338 -▁1979, -11.434 -▁nashville -11.4343 -anta -11.4343 -bone -11.4343 -kot -11.4346 -▁publishers -11.4346 -dl -11.4348 -▁presidency -11.4349 -action -11.4349 -▁coin -11.4349 -▁stockholm -11.4349 -▁plains -11.4352 -▁libraries -11.4352 -▁console -11.4352 -▁mt -11.4353 -▁psycho -11.4353 -▁anime -11.4353 -▁vault -11.4354 -although -11.4354 -zhi -11.4358 -▁spear -11.4358 -▁glacier -11.4362 -▁96 -11.4365 -▁tau -11.4366 -▁nate -11.4366 -▁1983, -11.4366 -▁minimal -11.4366 -rain -11.437 -▁vii -11.4373 -▁towel -11.4374 -▁69 -11.4374 -▁melody -11.4375 -▁lopez -11.4375 -▁evaluation -11.4377 -▁controls -11.4379 -sim -11.438 -▁questioned -11.4387 -▁tasks -11.4389 -▁uncomfortable -11.4391 -▁triangle -11.4395 -▁warrant -11.4397 -▁proceedings -11.4399 -▁trevor -11.4403 -▁steal -11.4405 -qa -11.4406 -tail -11.4408 -▁yan -11.4411 -▁1974, -11.4413 -▁preliminary -11.4414 -guer -11.4414 -▁predecessor -11.4416 -▁cameras -11.4417 -▁mineral -11.4417 -▁survivors -11.442 -fra -11.4425 -▁growled -11.4426 -▁85 -11.4427 -roll -11.443 -▁swamp -11.4434 -weight -11.4434 -▁stoke -11.4435 -▁pension -11.4439 -▁roster -11.4442 -▁concepts -11.4444 -▁vir -11.4449 -mill -11.4451 -▁trend -11.4455 -vey -11.4457 -▁eager -11.4457 -▁paulo -11.4458 -december -11.446 -▁chad -11.446 -▁communicate -11.4461 -tens -11.4461 -▁dale -11.4461 -▁contracts -11.4462 -▁implement -11.4462 -▁boxer -11.4464 -▁badge -11.4465 -▁tributary -11.4474 -▁vermont -11.4475 -▁protecting -11.4475 -▁bir -11.4476 -▁protective -11.4477 -▁prof -11.4478 -tres -11.4478 -▁estates -11.4478 -und -11.4479 -bet -11.4481 -▁sil -11.4481 -▁mast -11.4481 -▁binding -11.4483 -▁1869 -11.4484 -▁consequently -11.4485 -tric -11.4487 -▁wolves -11.449 -▁reservation -11.449 -▁exhausted -11.4492 -ack -11.4493 -df -11.4496 -▁98 -11.4496 -▁provision -11.4496 -▁colours -11.4496 -▁frustration -11.4497 -script -11.4497 -▁anglican -11.45 -▁stevens -11.4502 -▁honored -11.4507 -▁altered -11.4511 -▁88 -11.4512 -▁brandon -11.4512 -▁southwestern -11.4513 -▁offense -11.4514 -▁77 -11.4516 -▁1848 -11.4518 -uru -11.4521 -jun -11.4523 -▁actively -11.4524 -▁boards -11.4525 -ario -11.4527 -▁kenneth -11.4531 -▁feared -11.4533 -▁jumping -11.4533 -cam -11.4534 -▁holmes -11.454 -▁cad -11.4542 -pper -11.4547 -▁alma -11.4549 -moo -11.4549 -tern -11.4549 -▁ellen -11.455 -▁tribal -11.455 -▁lust -11.4551 -▁graves -11.4552 -orn -11.4554 -▁hypo -11.4554 -▁fatal -11.4555 -force -11.4555 -▁thursday -11.456 -iness -11.4561 -▁fork -11.4561 -gat -11.4565 -dice -11.4565 -▁mild -11.4565 -▁bicycle -11.4567 -pon -11.4568 -▁sw -11.457 -won -11.457 -▁breeze -11.4571 -▁ratings -11.4572 -▁cara -11.4573 -▁reid -11.4573 -camp -11.4576 -▁refugees -11.4581 -▁threats -11.4583 -▁eaten -11.4584 -iti -11.4584 -▁superintendent -11.4587 -used -11.4587 -atus -11.4588 -▁gel -11.459 -▁protagonist -11.459 -▁counted -11.4591 -▁santiago -11.4594 -▁sheets -11.46 -▁infection -11.4602 -▁wishes -11.4603 -dro -11.4603 -▁flip -11.4605 -▁wounds -11.4606 -gr -11.4607 -▁tal -11.4609 -▁tick -11.4609 -ground -11.461 -ego -11.4611 -▁accomplished -11.4611 -▁essex -11.4611 -fold -11.4613 -▁spectrum -11.4614 -heart -11.4614 -▁bowling -11.4616 -bly -11.4616 -▁2,000 -11.4618 -nate -11.462 -rou -11.4621 -fur -11.4623 -▁citizenship -11.4625 -▁slim -11.4625 -▁1830 -11.4628 -▁gul -11.4629 -▁dish -11.4629 -▁liv -11.463 -▁proven -11.4631 -aid -11.4633 -▁appreciate -11.4633 -▁sustained -11.4634 -▁vinyl -11.4635 -▁abolished -11.4637 -▁helmet -11.4637 -▁73 -11.4639 -▁stall -11.4639 -▁mama -11.4641 -▁missionary -11.4641 -edge -11.4642 -lik -11.4642 -brand -11.4643 -uni -11.4645 -mato -11.4648 -▁wr -11.465 -1964 -11.4651 -▁involve -11.4652 -▁pod -11.4654 -▁gravity -11.4655 -odo -11.4656 -▁1968, -11.4656 -▁costume -11.4658 -▁whip -11.4661 -▁invented -11.4661 -▁lifting -11.4662 -chel -11.4663 -▁solomon -11.4664 -▁sig -11.4666 -▁terrace -11.4668 -▁overhead -11.4669 -▁somebody -11.4671 -nice -11.4671 -▁stationed -11.4673 -▁chains -11.4673 -▁tobacco -11.4674 -uber -11.4676 -▁proceeded -11.4677 -▁inscription -11.4677 -▁napoleon -11.4679 -▁extinct -11.468 -▁74 -11.468 -gian -11.468 -▁joel -11.4681 -▁invisible -11.4681 -▁feast -11.4682 -▁procedures -11.4682 -▁grammy -11.4683 -▁rested -11.4684 -▁provisions -11.4689 -▁curriculum -11.4691 -▁supplement -11.4692 -▁prague -11.4692 -ency -11.4692 -hoo -11.4694 -▁wednesday -11.4695 -▁grants -11.4695 -▁nico -11.4696 -180 -11.4698 -igan -11.47 -▁administrator -11.4705 -▁upstairs -11.4705 -▁vic -11.4705 -▁handful -11.4708 -▁corners -11.4709 -▁chant -11.471 -▁keyboard -11.4712 -quin -11.4713 -▁enzyme -11.4718 -▁hospitals -11.4724 -▁bypass -11.4724 -vit -11.4726 -▁strait -11.4726 -▁everybody -11.4728 -▁modest -11.4733 -▁troy -11.4733 -▁clue -11.4734 -▁guided -11.4734 -▁kerala -11.4736 -▁oval -11.4737 -▁journalists -11.4739 -rg -11.4741 -▁sn -11.4742 -▁malcolm -11.4742 -▁aero -11.4744 -▁chef -11.4752 -lv -11.4752 -▁delicate -11.4756 -▁divide -11.4757 -▁mia -11.4759 -▁citing -11.4764 -▁discontinued -11.4765 -▁possessed -11.4767 -▁bailey -11.4768 -vu -11.4769 -▁coached -11.477 -▁documented -11.477 -lat -11.4771 -▁washed -11.4773 -kara -11.4774 -lining -11.4774 -▁griffin -11.4774 -third -11.4775 -▁acknowledged -11.4776 -▁freak -11.4776 -▁nasa -11.4777 -▁perth -11.4777 -▁lifestyle -11.4778 -▁fol -11.4779 -▁qualifier -11.478 -cf -11.478 -▁diploma -11.4783 -▁acquire -11.4784 -▁dense -11.4785 -yen -11.4787 -lich -11.4788 -▁suggesting -11.4789 -▁lectures -11.4791 -1965 -11.4793 -▁diana -11.4794 -▁columbus -11.4794 -▁parked -11.4796 -▁syrian -11.48 -▁severely -11.4801 -pis -11.4802 -▁refuge -11.4802 -▁healing -11.4803 -▁cassie -11.4806 -▁bills -11.4807 -sorry -11.4809 -kie -11.4811 -▁gru -11.4812 -xx -11.4813 -▁martha -11.4818 -▁flowing -11.4824 -▁opens -11.4825 -▁71 -11.4828 -▁honours -11.4829 -▁keeps -11.4834 -▁fre -11.4834 -quo -11.4835 -▁trim -11.4837 -▁dies -11.484 -▁aims -11.484 -▁batman -11.4845 -▁indonesian -11.4848 -idi -11.485 -mates -11.4854 -▁1981, -11.4855 -▁holder -11.4856 -▁*** -11.4856 -▁requirement -11.4856 -▁cartoon -11.486 -imp -11.4861 -▁monitoring -11.4861 -▁believing -11.4862 -▁uganda -11.4862 -▁bosnia -11.4864 -▁conviction -11.4865 -tru -11.4869 -vc -11.4869 -▁mus -11.487 -▁permit -11.487 -rent -11.4872 -franc -11.4872 -mother -11.4877 -▁oakland -11.4877 -▁cared -11.4878 -▁sketch -11.4878 -▁kenny -11.4882 -▁arguing -11.4883 -produced -11.4886 -rbi -11.4889 -▁farms -11.489 -▁singers -11.489 -▁examined -11.4891 -▁handled -11.4892 -db -11.4892 -▁bradley -11.4892 -▁spirits -11.4893 -▁import -11.4895 -▁lined -11.4895 -▁mercury -11.4897 -▁governing -11.4897 -▁reforms -11.4897 -▁statements -11.4898 -tina -11.4898 -▁zo -11.4899 -never -11.49 -▁confident -11.4903 -ht -11.4907 -▁awful -11.4908 -▁pierce -11.4909 -▁glenn -11.4909 -▁travelling -11.4914 -▁somerset -11.4914 -▁spark -11.4915 -tow -11.4917 -▁ou -11.4921 -▁independently -11.4924 -▁palestine -11.4924 -▁reformed -11.4925 -▁mort -11.4926 -▁gerald -11.4927 -▁hectares -11.4929 -dir -11.4931 -▁searched -11.4932 -▁reconnaissance -11.4935 -iger -11.4938 -eff -11.494 -▁clause -11.4941 -▁telegraph -11.4942 -▁assured -11.4943 -mia -11.4943 -▁casey -11.4944 -phon -11.4944 -▁merc -11.4945 -▁sculptor -11.4945 -▁mare -11.4947 -▁pac -11.4947 -erson -11.4948 -film -11.4952 -▁requiring -11.4955 -alo -11.4956 -watch -11.4956 -▁congo -11.4957 -▁circulation -11.4959 -▁thorn -11.496 -ress -11.4961 -▁overcome -11.4962 -▁vis -11.4964 -▁segments -11.4965 -kor -11.4965 -▁dependent -11.4966 -▁cultures -11.4967 -▁buddy -11.4967 -▁predominantly -11.4968 -january -11.4968 -tana -11.4969 -▁macro -11.497 -nier -11.497 -▁chronicle -11.4973 -japanese -11.4976 -▁extends -11.4976 -▁woodland -11.4979 -hab -11.4979 -coming -11.498 -bul -11.498 -▁upcoming -11.4982 -▁spray -11.4983 -▁ridiculous -11.4983 -▁slope -11.4984 -▁legendary -11.4984 -▁algorithm -11.4989 -▁kylie -11.4991 -▁ballad -11.4991 -lab -11.4991 -▁casting -11.4994 -▁trainer -11.4994 -▁bags -11.4994 -▁facebook -11.4996 -▁lungs -11.4998 -▁detect -11.4998 -lk -11.5002 -▁180 -11.5003 -cm -11.5004 -▁removing -11.5006 -site -11.5006 -stage -11.5006 -something -11.5007 -pole -11.5007 -▁item -11.5012 -cine -11.5012 -▁monica -11.5016 -abi -11.5017 -aq -11.5018 -▁layout -11.5021 -thanks -11.5022 -▁cyber -11.5022 -lev -11.5022 -1962 -11.5023 -▁temples -11.5024 -▁limestone -11.5025 -little -11.5025 -▁genes -11.5026 -▁1800 -11.5026 -▁1975, -11.5029 -▁servants -11.503 -▁manages -11.5031 -iah -11.5035 -▁guarantee -11.5036 -▁practiced -11.5036 -▁buzz -11.5038 -▁seventeen -11.5038 -▁layers -11.5039 -▁portions -11.5041 -mobil -11.5043 -▁envelope -11.5044 -▁photograph -11.5044 -▁politicians -11.5046 -▁nerve -11.5048 -▁homo -11.505 -▁terrain -11.5052 -▁1859 -11.5052 -▁brunswick -11.5053 -gren -11.5055 -▁basket -11.5059 -▁chairs -11.5061 -▁reflection -11.5062 -▁1971, -11.5063 -▁lease -11.5064 -beck -11.5064 -qi -11.5068 -▁appeals -11.5071 -▁oral -11.5072 -▁torpedo -11.5073 -mere -11.5074 -▁1857 -11.5075 -▁cheap -11.5075 -▁virtually -11.5076 -ambi -11.5076 -▁retiring -11.5081 -▁rapper -11.5081 -▁qui -11.5083 -▁mona -11.5083 -▁mick -11.5084 -shin -11.5088 -▁criteria -11.5088 -▁armstrong -11.5089 -umi -11.509 -▁mug -11.5093 -sher -11.5095 -▁ribbon -11.5095 -▁gall -11.5098 -▁puzzle -11.5099 -fla -11.5103 -grand -11.5103 -▁theyre -11.5106 -bil -11.5107 -▁floors -11.5108 -▁edgar -11.5109 -▁twentieth -11.5109 -▁goalkeeper -11.511 -▁victories -11.5111 -▁1978, -11.5113 -▁papa -11.5113 -▁diplomat -11.5114 -▁princeton -11.5115 -ids -11.5116 -▁catalogue -11.5117 -hel -11.5119 -gene -11.5119 -▁scha -11.512 -▁lev -11.512 -▁bros -11.512 -▁swallow -11.5122 -▁dictionary -11.5124 -▁1976, -11.5124 -iere -11.5124 -▁til -11.5126 -▁kh -11.513 -▁intimate -11.5134 -▁crap -11.5134 -▁bail -11.5135 -▁interactive -11.5136 -▁terra -11.5138 -▁prophet -11.5138 -▁wingspan -11.5139 -ici -11.514 -▁sally -11.514 -call -11.5147 -▁manila -11.5148 -▁conducting -11.5151 -▁sharply -11.5151 -▁richardson -11.5151 -▁collegiate -11.5152 -▁sustainable -11.5153 -ania -11.5155 -▁essays -11.5156 -rna -11.5157 -▁mcdonald -11.5162 -phil -11.5163 -▁ugly -11.5164 -▁organize -11.5167 -▁intelligent -11.5168 -▁tourists -11.5169 -▁relatives -11.5171 -▁dagger -11.5172 -▁nationwide -11.5174 -specific -11.5174 -amo -11.5174 -▁swim -11.5176 -mol -11.5176 -▁lung -11.5176 -▁educator -11.5177 -▁geographic -11.518 -▁privacy -11.518 -▁enjoying -11.518 -▁sphere -11.518 -oxy -11.518 -▁ranges -11.5182 -▁maiden -11.5183 -▁triumph -11.5183 -▁sas -11.5183 -▁civilians -11.5184 -▁tr -11.5184 -▁crush -11.5188 -▁fraser -11.5191 -ische -11.5192 -▁insight -11.5194 -▁enable -11.5198 -▁investors -11.5201 -▁pir -11.5202 -▁allan -11.5203 -▁horrible -11.5209 -▁restrictions -11.5209 -▁hesitated -11.5209 -▁creator -11.5209 -▁supervisor -11.5212 -▁davies -11.5213 -▁archive -11.5213 -pd -11.5215 -▁entity -11.5216 -omo -11.5218 -▁tournaments -11.5219 -▁suburban -11.5221 -eyed -11.5221 -▁cherry -11.5222 -▁deny -11.5223 -▁brun -11.5224 -▁georgian -11.5224 -▁krishna -11.5225 -issa -11.5227 -▁ripped -11.5227 -▁desired -11.5227 -▁sec -11.5228 -oku -11.5229 -▁define -11.523 -quet -11.5231 -hum -11.5231 -▁rho -11.5232 -1963 -11.5232 -▁trek -11.5235 -▁improving -11.5241 -▁civilization -11.5242 -▁daddy -11.5243 -▁nc -11.5243 -▁nag -11.5244 -▁rodriguez -11.5248 -▁curved -11.5249 -3/ -11.5251 -▁kala -11.5258 -▁aggressive -11.5258 -▁aires -11.5258 -trop -11.5264 -▁jamaica -11.5264 -▁spit -11.5265 -▁abruptly -11.5269 -nine -11.527 -▁seated -11.5272 -▁cement -11.5273 -▁wol -11.5275 -▁freed -11.5276 -▁caps -11.5277 -ugh -11.5278 -▁beliefs -11.5279 -▁warn -11.5279 -▁lor -11.528 -2/ -11.528 -▁tucked -11.5281 -▁ferdinand -11.5284 -▁hydrogen -11.5289 -▁theological -11.5289 -show -11.5291 -tham -11.5291 -▁embrace -11.5292 -▁punjab -11.5292 -▁stability -11.5294 -▁realizing -11.5295 -▁awkward -11.5297 -sometimes -11.5298 -▁dollar -11.5299 -▁butterfly -11.5302 -▁1973, -11.5302 -▁eventual -11.5303 -▁integral -11.5303 -▁compiled -11.5303 -▁dumb -11.5305 -▁flags -11.5305 -▁flo -11.5307 -▁comedian -11.5308 -▁ignoring -11.5309 -▁thread -11.5309 -anda -11.5309 -▁necessarily -11.5313 -shing -11.5314 -▁privately -11.5316 -▁pic -11.5317 -▁renewed -11.5317 -etic -11.5317 -▁loves -11.5319 -▁giovanni -11.532 -▁perception -11.5323 -▁breach -11.5323 -▁absorbed -11.5324 -▁assassination -11.5325 -▁thighs -11.5326 -▁closet -11.5326 -▁enabled -11.533 -position -11.533 -▁kills -11.5332 -▁capitol -11.5332 -▁hearts -11.5333 -▁dubbed -11.5334 -▁synonym -11.5339 -▁aboriginal -11.5342 -▁suburbs -11.5347 -▁proto -11.5351 -▁consequence -11.5354 -▁hin -11.5358 -▁ammunition -11.5359 -duct -11.5361 -▁fernando -11.5362 -▁moreover -11.5362 -▁elena -11.5362 -mil -11.5364 -lina -11.5369 -▁cylinder -11.537 -▁galaxy -11.537 -▁lighter -11.5371 -▁gravel -11.5374 -▁referendum -11.5374 -uci -11.5375 -▁arsenal -11.5375 -▁witnesses -11.5378 -▁carlo -11.5379 -▁peri -11.5381 -▁statute -11.5381 -bru -11.5381 -▁tuesday -11.5385 -▁ashley -11.539 -though -11.5391 -cola -11.5391 -whi -11.5395 -eye -11.5397 -code -11.5399 -▁chloe -11.54 -nn -11.54 -bahn -11.5401 -▁160 -11.5402 -▁unexpected -11.5402 -▁speaks -11.5402 -▁scotia -11.5402 -▁painful -11.5403 -▁nm -11.5404 -▁arabia -11.5407 -▁que -11.5407 -▁doll -11.5408 -▁polo -11.5408 -▁deadly -11.5408 -hawk -11.5408 -▁presenter -11.5408 -▁edit -11.5409 -▁expanding -11.541 -dai -11.5411 -▁lei -11.5412 -lah -11.5414 -vier -11.5419 -▁monsters -11.5421 -▁dor -11.5421 -▁boarding -11.5423 -▁authorized -11.5423 -▁packed -11.5424 -▁duration -11.5425 -▁cardinals -11.5426 -▁insane -11.5428 -▁innovative -11.5428 -park -11.543 -mari -11.5431 -▁nicole -11.5433 -care -11.5434 -▁rep -11.5434 -▁displays -11.5435 -▁lawn -11.5435 -▁ordained -11.5436 -▁henderson -11.5436 -▁trustees -11.5437 -▁teenage -11.5437 -▁rivals -11.5437 -rox -11.5438 -▁flooding -11.5438 -▁pissed -11.5439 -▁mumbai -11.5439 -▁associates -11.5441 -▁tsu -11.5443 -▁44, -11.5443 -▁az -11.5444 -▁97 -11.5444 -astic -11.5446 -▁claude -11.5447 -▁reserved -11.5449 -▁rotation -11.545 -▁sunlight -11.545 -sty -11.5452 -▁lutheran -11.5455 -▁pour -11.5458 -▁catching -11.5459 -▁emerge -11.546 -ucci -11.5465 -lac -11.5468 -otic -11.5468 -▁dodge -11.5468 -▁substance -11.5469 -▁smiles -11.5469 -▁buenos -11.547 -▁optical -11.5471 -brown -11.5473 -▁1967, -11.5475 -▁invention -11.5476 -▁panels -11.5478 -▁aesthetic -11.5478 -▁stepping -11.5479 -lux -11.5479 -verse -11.5479 -▁cuban -11.5479 -▁cooperative -11.5483 -▁width -11.5483 -▁gui -11.5484 -▁drops -11.5484 -▁buying -11.5486 -▁avoided -11.5486 -▁broadcasts -11.5488 -▁allegedly -11.549 -▁compensation -11.5491 -▁streams -11.5491 -▁potentially -11.5496 -▁shuttle -11.5496 -▁gibson -11.5498 -sho -11.5498 -hc -11.5499 -▁coll -11.5499 -▁cats -11.5499 -ume -11.55 -mag -11.5504 -▁habit -11.5505 -▁operators -11.5507 -▁prop -11.5508 -oper -11.5508 -▁powell -11.5508 -▁andrews -11.5511 -burgh -11.5514 -▁blair -11.5515 -▁theoretical -11.5516 -▁upgrade -11.5516 -▁peaceful -11.5517 -▁siblings -11.5519 -▁thermal -11.552 -▁concentrate -11.5522 -▁med -11.5524 -▁130 -11.5526 -quarterfinals -11.5527 -▁prompted -11.5527 -▁tug -11.5528 -operative -11.5528 -▁plateau -11.5532 -ree -11.5538 -nath -11.5538 -▁particles -11.5539 -▁wagon -11.554 -guard -11.5541 -▁extraordinary -11.5542 -▁calvin -11.5543 -sai -11.5545 -▁teen -11.5548 -▁verb -11.5548 -▁burden -11.555 -▁miranda -11.555 -syn -11.555 -▁limp -11.5551 -▁gt -11.5552 -▁editing -11.5552 -▁headquartered -11.5553 -▁adopt -11.5555 -february -11.5557 -▁marina -11.5562 -▁brussels -11.5564 -▁flipped -11.5564 -▁geological -11.5566 -1945 -11.5567 -1958 -11.557 -▁frog -11.557 -▁excess -11.5571 -dec -11.5572 -▁6: -11.5572 -▁coral -11.5572 -▁argues -11.5574 -▁chelsea -11.5575 -▁sage -11.5575 -▁arched -11.5577 -▁assembled -11.5577 -cate -11.5577 -▁fraud -11.5577 -▁theorem -11.5578 -▁glared -11.5578 -mart -11.5579 -▁gavin -11.558 -▁targeted -11.5581 -▁goodbye -11.5582 -▁philosophical -11.5583 -other -11.5584 -▁milwaukee -11.5588 -▁celebrity -11.559 -▁divorced -11.559 -▁oct -11.5593 -zie -11.5594 -lash -11.5595 -cot -11.5596 -▁dimension -11.5597 -▁dominic -11.5598 -cock -11.5599 -▁faction -11.5599 -▁ports -11.56 -▁smelled -11.5601 -▁drinks -11.5601 -▁listing -11.5602 -▁michelle -11.5602 -tsu -11.5603 -sse -11.5604 -▁conjunction -11.5605 -▁mound -11.5607 -radi -11.5608 -▁surgeon -11.5611 -▁founders -11.5611 -▁bai -11.5613 -▁forgot -11.5615 -▁pyramid -11.5616 -▁jerk -11.5618 -▁rib -11.5618 -tec -11.5619 -▁sci -11.562 -▁durham -11.5621 -iga -11.5622 -▁1969, -11.5622 -▁trips -11.5622 -▁neg -11.5624 -▁secular -11.5624 -▁underwent -11.5627 -temp -11.5627 -dam -11.5627 -▁discovers -11.5629 -bill -11.563 -▁descended -11.5631 -sham -11.5631 -▁precious -11.5632 -▁predict -11.5634 -inus -11.5636 -▁playstation -11.5637 -word -11.5638 -1957 -11.5638 -mund -11.5642 -▁nineteenth -11.5643 -▁quoted -11.5647 -▁imagination -11.5653 -▁pavilion -11.5653 -▁toilet -11.5656 -▁sac -11.5656 -fy -11.5656 -▁depends -11.5658 -cour -11.566 -▁poison -11.5661 -▁100,000 -11.5661 -▁prosecutor -11.5668 -▁foul -11.5669 -ija -11.5673 -▁granite -11.5673 -eria -11.5675 -paul -11.5675 -▁alumni -11.5676 -▁uprising -11.5676 -▁spinning -11.5677 -dad -11.5678 -1959 -11.5678 -▁fran -11.5678 -▁pursued -11.5678 -graph -11.5679 -▁lied -11.5681 -ache -11.5681 -▁performer -11.5681 -rai -11.5682 -hom -11.5684 -▁1855 -11.5684 -▁eyebrow -11.5687 -▁92 -11.5689 -pg -11.5689 -▁sponsor -11.569 -▁enlisted -11.5693 -ista -11.5694 -uous -11.5696 -▁discrimination -11.57 -equi -11.57 -▁varied -11.57 -sko -11.5703 -ement -11.5703 -ivity -11.5704 -▁bod -11.5706 -party -11.5706 -▁archer -11.5706 -yev -11.5707 -vil -11.5709 -him -11.5713 -▁luxury -11.5717 -lf -11.5717 -▁wit -11.5718 -▁cdp -11.5718 -▁disappointed -11.5719 -▁kr -11.572 -▁drawings -11.5722 -▁ari -11.5724 -▁platinum -11.5726 -girl -11.5727 -▁dominican -11.5728 -▁delegation -11.5732 -egan -11.5733 -▁rhode -11.5734 -▁activated -11.5734 -riv -11.5734 -▁stein -11.5734 -writer -11.5736 -▁dil -11.5737 -▁mam -11.5738 -▁compositions -11.5739 -▁drain -11.574 -▁knots -11.574 -▁1854 -11.5745 -▁dev -11.5746 -▁dwell -11.5747 -▁youve -11.5749 -▁salon -11.5749 -ago -11.5749 -▁harp -11.575 -▁joshua -11.5755 -haven -11.5755 -▁lil -11.5761 -▁indies -11.5762 -iki -11.5763 -▁vent -11.5764 -rach -11.5764 -roman -11.5766 -▁crane -11.5766 -urs -11.5767 -▁sud -11.5767 -▁facilitate -11.5768 -▁withdrawn -11.5769 -▁presbyterian -11.5769 -▁spreading -11.5769 -shima -11.577 -▁commit -11.577 -lessly -11.5771 -▁seemingly -11.5773 -▁marion -11.5773 -▁neighbouring -11.5773 -▁examine -11.5774 -▁atomic -11.5775 -ign -11.5777 -▁dwarf -11.5777 -▁creates -11.5778 -▁canvas -11.5778 -▁amusement -11.5781 -▁infinite -11.5781 -grave -11.5782 -fly -11.5784 -▁mechanics -11.5784 -▁membrane -11.5785 -▁steering -11.5786 -▁feminist -11.5788 -▁distinguish -11.579 -▁dealt -11.579 -▁shepherd -11.5792 -ault -11.5793 -cata -11.5794 -▁nash -11.5796 -▁93 -11.5796 -orient -11.5799 -▁heather -11.5799 -1956 -11.58 -▁citation -11.5801 -▁luther -11.5804 -▁isle -11.5804 -talk -11.5808 -▁shoe -11.5809 -stown -11.581 -aca -11.5811 -▁lynch -11.5813 -▁tackle -11.5814 -▁cleaning -11.5814 -cell -11.5823 -▁westminster -11.5823 -▁katherine -11.5826 -▁mint -11.5826 -str -11.5827 -▁vin -11.5829 -▁filipino -11.5829 -▁betty -11.5832 -▁shaped -11.5832 -cop -11.5835 -▁yoshi -11.5835 -▁hurried -11.5837 -▁indianapolis -11.5837 -▁relax -11.5838 -eus -11.5841 -▁berth -11.5841 -▁alto -11.5842 -left -11.5842 -▁witnessed -11.5844 -tch -11.5844 -▁hometown -11.5846 -▁accidentally -11.5847 -iba -11.5847 -▁solely -11.5847 -▁nina -11.5849 -▁cp -11.5849 -brien -11.585 -disc -11.5851 -osi -11.5854 -aye -11.5854 -ass -11.5854 -dh -11.5855 -▁1941, -11.5858 -▁vietnamese -11.5861 -▁burton -11.5861 -body -11.5861 -▁sweep -11.5862 -▁inspection -11.5864 -hem -11.5866 -▁hardy -11.5866 -▁doc -11.5868 -▁82 -11.5869 -▁maintains -11.587 -zing -11.5871 -▁tucker -11.5871 -▁textile -11.5874 -▁venues -11.5876 -▁kap -11.5876 -▁dante -11.5876 -▁outcome -11.5878 -▁milton -11.5878 -gn -11.5879 -▁potter -11.5879 -▁1942, -11.5882 -bah -11.5887 -mount -11.5888 -▁bron -11.5889 -jon -11.5891 -▁circus -11.5891 -▁novelist -11.5891 -▁moh -11.5892 -▁pump -11.5895 -▁89 -11.5896 -▁bil -11.5896 -▁spiral -11.5898 -asse -11.5899 -▁1977, -11.5902 -▁batting -11.5904 -yuki -11.5904 -▁symbols -11.5908 -fen -11.5909 -▁larvae -11.5909 -▁bump -11.5912 -250 -11.5912 -▁confession -11.5916 -▁lauren -11.5917 -▁icon -11.5918 -tile -11.5919 -▁varies -11.5919 -scher -11.592 -ndi -11.5922 -▁feat -11.5923 -rif -11.5926 -▁preference -11.5926 -▁healthcare -11.5926 -▁1849 -11.5928 -▁threatening -11.5928 -arabic -11.5933 -ule -11.5937 -ias -11.5937 -▁anthology -11.594 -7/ -11.594 -▁safely -11.5943 -fusion -11.5943 -tori -11.5945 -▁observations -11.5945 -▁determination -11.5946 -▁slavery -11.5947 -▁burke -11.595 -▁numbered -11.5954 -holm -11.596 -▁decrease -11.596 -▁boo -11.5962 -▁startled -11.5962 -▁doi -11.5963 -▁aerial -11.5964 -▁1965, -11.5965 -▁desperately -11.5965 -▁crop -11.5966 -eater -11.5968 -ono -11.597 -▁quan -11.597 -▁diving -11.597 -▁phenomenon -11.5971 -150 -11.5971 -▁wicked -11.5972 -▁dy -11.5972 -▁hugo -11.5974 -▁lonely -11.5975 -powered -11.5979 -▁antenna -11.5979 -▁84 -11.598 -▁sox -11.5981 -▁magnus -11.5983 -▁blaze -11.5984 -▁trucks -11.5984 -▁regent -11.5985 -▁varying -11.599 -▁lighthouse -11.5991 -▁resolve -11.5997 -▁observer -11.6004 -▁tate -11.6005 -▁priority -11.6007 -cht -11.6009 -▁melissa -11.601 -▁courtyard -11.6012 -ition -11.6012 -▁taka -11.6015 -plan -11.6017 -▁ladder -11.602 -▁drift -11.6021 -▁newport -11.6023 -▁esp -11.6025 -▁posts -11.6026 -storey -11.6027 -neck -11.6028 -▁81 -11.6028 -ireland -11.6028 -▁rebecca -11.6029 -▁souls -11.6031 -▁emmy -11.6032 -▁neighbourhood -11.6033 -▁performers -11.6033 -▁peoples -11.6034 -▁groaned -11.6035 -▁strikes -11.6037 -cn -11.6037 -▁spe -11.6037 -▁tenor -11.6039 -▁afterward -11.6041 -▁cycling -11.6042 -▁checking -11.6043 -▁fry -11.6043 -▁consideration -11.6043 -▁cornwall -11.6045 -▁gripped -11.6045 -▁loser -11.6047 -▁paradise -11.6052 -▁maneuver -11.6052 -nea -11.6052 -▁rifles -11.6054 -▁traced -11.6054 -pla -11.6054 -▁lyon -11.6056 -1939 -11.6056 -▁jess -11.6056 -gawa -11.6057 -▁remarkable -11.6057 -pie -11.6058 -▁nominee -11.606 -▁gasp -11.606 -pho -11.6062 -xia -11.6064 -iq -11.6067 -por -11.6068 -▁grabbing -11.6068 -▁uni -11.6068 -▁eden -11.6069 -▁dimensions -11.6069 -▁scope -11.6069 -▁mandate -11.607 -▁darling -11.6071 -▁125 -11.6071 -▁ahmad -11.6074 -▁controller -11.6074 -1961 -11.6075 -wu -11.6079 -ators -11.6079 -▁diary -11.6081 -▁adapt -11.6083 -▁tactics -11.6083 -▁hiv -11.6084 -▁counts -11.6084 -▁pitched -11.6084 -▁roller -11.6087 -bund -11.6087 -▁specified -11.6087 -▁salvador -11.6087 -▁79 -11.6089 -▁broadcaster -11.6091 -▁cle -11.6091 -▁caesar -11.6092 -▁measuring -11.6095 -▁frankfurt -11.6095 -▁ludwig -11.6095 -▁rhe -11.6102 -▁harmony -11.6104 -▁journals -11.6105 -▁edwin -11.6111 -phan -11.6113 -▁screening -11.6113 -cic -11.6114 -▁sophia -11.6114 -▁veins -11.6117 -lang -11.6118 -▁carpenter -11.6118 -▁lancashire -11.6122 -▁relegation -11.6122 -▁economist -11.6122 -▁reasonable -11.6124 -▁accommodation -11.6126 -▁stunned -11.6126 -cious -11.6126 -▁upgraded -11.6128 -ister -11.6128 -▁ramp -11.6132 -vac -11.6133 -fest -11.6133 -▁candy -11.6133 -▁nonetheless -11.6134 -▁1851 -11.6138 -▁nationally -11.6139 -wang -11.6143 -▁trusted -11.6144 -▁carson -11.6146 -▁monroe -11.6147 -▁destroyer -11.615 -▁alec -11.6151 -▁damned -11.6151 -hui -11.6151 -hausen -11.6152 -oph -11.6152 -hou -11.6155 -▁font -11.6155 -▁hasn -11.6156 -▁crater -11.6158 -▁fossil -11.6158 -sir -11.616 -▁wash -11.616 -gla -11.6161 -▁beg -11.6163 -▁casa -11.6163 -▁naga -11.6164 -▁revelation -11.6166 -▁kingston -11.6167 -flow -11.6167 -▁professionals -11.6167 -▁audiences -11.6169 -▁lace -11.617 -rea -11.617 -▁1858 -11.617 -ushi -11.6173 -▁interim -11.6174 -▁ethics -11.6175 -ij -11.6176 -▁gab -11.6176 -▁interact -11.6177 -tim -11.6177 -▁saga -11.6178 -▁adoption -11.6178 -lant -11.6179 -lli -11.618 -author -11.6181 -▁140 -11.6181 -▁deserve -11.6182 -▁workshops -11.6183 -liga -11.6183 -▁terrorist -11.619 -▁devi -11.6191 -▁whoever -11.6192 -▁reynolds -11.6193 -ilo -11.6193 -▁advised -11.6196 -ural -11.6197 -▁transported -11.6197 -▁tract -11.62 -▁ourselves -11.62 -ej -11.6201 -▁rainfall -11.6205 -▁slowed -11.6206 -▁demanding -11.6208 -▁comprising -11.6208 -▁morocco -11.6209 -▁rovers -11.6209 -▁whitney -11.6209 -▁cruel -11.6213 -▁shan -11.6219 -▁urged -11.6219 -selling -11.6221 -▁1980, -11.6222 -bian -11.6223 -▁sussex -11.6224 -around -11.6226 -ulating -11.623 -▁hire -11.6232 -▁vacant -11.6232 -wor -11.6233 -▁pakistani -11.6234 -bass -11.6235 -sts -11.6238 -mbe -11.6243 -▁chau -11.6245 -▁patricia -11.6246 -▁gorgeous -11.6249 -▁deposits -11.6251 -▁subdivision -11.6256 -▁loyalty -11.6257 -1952 -11.6257 -▁cran -11.6257 -▁tit -11.6257 -pac -11.6259 -bis -11.626 -▁vacation -11.626 -▁developer -11.6261 -▁auxiliary -11.6264 -alia -11.6264 -▁playwright -11.6264 -▁enhanced -11.6265 -jak -11.6266 -▁molly -11.6267 -▁bleeding -11.6269 -except -11.627 -▁supporter -11.6272 -▁flora -11.6273 -tsch -11.6273 -jor -11.6274 -bir -11.6274 -▁reviewed -11.6276 -▁lawyers -11.6278 -▁footsteps -11.6279 -hari -11.6281 -hak -11.6281 -wl -11.6282 -▁meyer -11.6283 -▁collecting -11.6283 -▁rainbow -11.6284 -▁rolls -11.6284 -▁utility -11.6288 -▁specimens -11.6288 -▁cf -11.6291 -▁gale -11.6293 -▁brands -11.6295 -sport -11.6295 -▁copenhagen -11.6299 -▁legends -11.63 -▁accounting -11.63 -pil -11.6301 -ador -11.6301 -▁casual -11.6302 -▁cracked -11.6303 -▁horizontal -11.6304 -▁tristan -11.6305 -▁retire -11.6307 -▁sack -11.6308 -▁inhabited -11.6308 -phys -11.6309 -▁grief -11.6311 -ees -11.6313 -rani -11.6315 -▁mold -11.6315 -▁scales -11.6317 -▁controlling -11.6317 -ential -11.6318 -itt -11.6319 -▁falcon -11.6322 -▁kla -11.6322 -▁oslo -11.6322 -ography -11.6323 -▁kaz -11.6324 -▁2019 -11.6328 -▁barnes -11.633 -▁tattoo -11.633 -▁glimpse -11.6331 -nay -11.6332 -▁backup -11.6332 -▁matching -11.6334 -▁tray -11.6334 -▁memphis -11.6335 -▁declare -11.6335 -tek -11.6335 -▁concerto -11.6338 -▁105 -11.6339 -▁liver -11.6339 -▁virtue -11.634 -lick -11.6342 -▁surveillance -11.6343 -▁treasury -11.6343 -▁xavier -11.6343 -▁colored -11.6343 -wave -11.6345 -▁hid -11.6346 -▁palms -11.6347 -▁geneva -11.6349 -▁kei -11.6349 -dies -11.6349 -1951 -11.635 -▁shining -11.635 -▁brigadier -11.6351 -▁swa -11.6354 -while -11.6355 -stay -11.6357 -▁brady -11.6359 -▁convent -11.636 -▁1964, -11.636 -▁wireless -11.6362 -▁gum -11.6364 -▁stamp -11.6366 -▁governed -11.6369 -▁jealous -11.637 -▁disabled -11.6371 -▁deliberately -11.6371 -▁acceptance -11.6373 -open -11.6373 -amp -11.6373 -▁reef -11.6374 -▁bonds -11.6374 -sberg -11.6375 -▁vicinity -11.6375 -▁immortal -11.6378 -▁varieties -11.6379 -loo -11.638 -pv -11.6382 -lana -11.6382 -▁developers -11.6385 -tip -11.639 -▁bassist -11.6391 -people -11.6391 -▁findings -11.6392 -▁prevention -11.6392 -▁pam -11.6396 -▁brows -11.6398 -▁observatory -11.6399 -▁probability -11.6399 -▁abby -11.6399 -▁settling -11.6401 -ingen -11.6404 -▁bits -11.6405 -▁swords -11.6407 -mig -11.641 -▁kel -11.6411 -fre -11.6412 -kovic -11.6412 -▁insects -11.6416 -▁classroom -11.6417 -▁morrison -11.6417 -▁wade -11.6419 -▁troop -11.642 -▁webb -11.642 -▁bind -11.6422 -▁bundle -11.6422 -▁onwards -11.6422 -kas -11.6422 -director -11.6422 -▁refuse -11.6424 -▁1856 -11.6426 -▁canterbury -11.6427 -▁klein -11.643 -▁squeeze -11.6431 -▁tilted -11.6431 -comb -11.6432 -▁sooner -11.6432 -▁randy -11.6434 -plane -11.6434 -▁joey -11.6436 -▁capabilities -11.6439 -▁nun -11.6439 -▁garrett -11.644 -▁gin -11.6443 -▁ramon -11.6443 -▁elderly -11.6445 -igo -11.6445 -▁bomber -11.6446 -▁baha -11.6447 -▁inquiry -11.6448 -▁helm -11.6449 -cid -11.6452 -▁wreck -11.6453 -▁lens -11.6454 -1955 -11.6456 -▁gable -11.6458 -▁explaining -11.6462 -▁walt -11.6463 -▁tun -11.6464 -▁91 -11.6464 -fon -11.6466 -chlor -11.6467 -▁dh -11.6467 -▁mural -11.6468 -▁ibm -11.6468 -▁ahmed -11.6468 -▁ein -11.6469 -▁copa -11.647 -▁dried -11.6474 -▁smoking -11.6476 -▁enrollment -11.6476 -▁gentleman -11.6476 -▁scrap -11.6477 -hit -11.6478 -▁estimate -11.6479 -▁rex -11.6483 -▁orientation -11.6484 -▁furious -11.6485 -▁hopkins -11.6488 -▁anxiety -11.6492 -▁rab -11.6493 -▁kro -11.6493 -▁allegations -11.6494 -▁scho -11.6494 -▁1852 -11.6496 -▁nicolas -11.6496 -▁shifting -11.6499 -▁alexandria -11.6499 -▁rack -11.65 -▁jace -11.65 -▁considerably -11.6501 -▁saddle -11.6502 -▁jag -11.6503 -▁apartments -11.6507 -vene -11.6508 -▁heated -11.6509 -▁confirm -11.651 -▁din -11.6512 -▁pounding -11.6513 -ws -11.6513 -▁cloak -11.6514 -▁83 -11.6514 -▁87 -11.6515 -▁strategies -11.6516 -▁dozens -11.6517 -50,000 -11.652 -▁invite -11.6521 -▁wizard -11.6522 -stick -11.6523 -▁finale -11.6524 -gold -11.6524 -note -11.6528 -▁majesty -11.6528 -▁stumbled -11.653 -▁pinyin -11.6533 -▁cohen -11.6533 -▁mora -11.6534 -▁rises -11.6536 -▁incredible -11.6537 -rh -11.6538 -900 -11.6539 -kun -11.6541 -▁yacht -11.6541 -▁mentions -11.6543 -▁frown -11.6544 -▁staged -11.6544 -▁lone -11.6545 -▁pregnancy -11.6545 -lei -11.6545 -▁avoiding -11.6545 -print -11.6548 -▁fuji -11.6548 -clu -11.6548 -▁conspiracy -11.6549 -att -11.6549 -▁freestyle -11.6549 -3,000 -11.655 -▁gerard -11.655 -jet -11.655 -▁shiva -11.655 -▁tickets -11.6553 -▁cyprus -11.6553 -▁expelled -11.6553 -cet -11.6553 -lander -11.6554 -▁ballot -11.6556 -▁sy -11.6556 -▁ambulance -11.6557 -▁fried -11.6559 -lak -11.6562 -▁reunion -11.6563 -▁cyclone -11.6563 -serv -11.6565 -▁$6 -11.6568 -▁magnitude -11.6569 -▁monks -11.6569 -case -11.657 -1954 -11.657 -▁rescued -11.657 -▁malta -11.6572 -▁directing -11.6572 -▁blur -11.6573 -▁topped -11.6574 -▁sep -11.6574 -▁dove -11.6576 -▁guru -11.6576 -gol -11.6581 -▁leap -11.6581 -▁equality -11.6583 -▁passport -11.6583 -▁gifts -11.6585 -▁sunshine -11.6586 -▁sleeve -11.6587 -▁deals -11.6588 -▁au -11.659 -▁conflicts -11.659 -▁whale -11.659 -struct -11.659 -▁zoe -11.6593 -▁cruiser -11.6596 -bos -11.6597 -guin -11.6597 -quest -11.6597 -▁cali -11.6598 -▁tracking -11.6599 -▁portraits -11.6599 -▁3,000 -11.66 -▁fantastic -11.66 -▁loudly -11.6601 -▁theodore -11.6604 -rv -11.6604 -▁jets -11.6609 -▁inform -11.6609 -gc -11.661 -lm -11.6613 -▁anonymous -11.6614 -corp -11.6615 -▁tee -11.6615 -▁1943, -11.6617 -ult -11.6617 -▁strictly -11.6617 -rama -11.6617 -▁nano -11.6619 -▁planes -11.6619 -▁moses -11.6622 -178 -11.6624 -core -11.6625 -▁synthesis -11.6627 -▁plantation -11.6627 -▁coo -11.6627 -▁possess -11.6629 -▁gwen -11.663 -▁technological -11.6631 -icus -11.6632 -▁lithuania -11.6633 -▁juice -11.6636 -▁tampa -11.6637 -▁hunters -11.6637 -▁unlikely -11.664 -lem -11.6641 -▁clare -11.6642 -▁voltage -11.6644 -iu -11.6644 -130 -11.6645 -▁darker -11.6646 -▁interpreted -11.6646 -▁upright -11.6647 -▁drives -11.6648 -zio -11.6649 -▁axe -11.665 -▁trails -11.6651 -▁bradford -11.6653 -40,000 -11.6653 -ghan -11.6654 -▁downstairs -11.6655 -git -11.6656 -▁condemned -11.6657 -▁1963, -11.6659 -cup -11.6659 -▁reactions -11.666 -▁ghana -11.6661 -▁acclaimed -11.6662 -▁vicar -11.6664 -▁vegetation -11.6668 -▁hanna -11.6668 -▁arcade -11.6669 -ril -11.667 -▁abandon -11.667 -ote -11.667 -ush -11.6672 -▁boost -11.6672 -▁rigid -11.6673 -▁crucial -11.6673 -road -11.6674 -▁gage -11.6674 -cite -11.6675 -▁glancing -11.6676 -▁exploded -11.6677 -▁mistress -11.6677 -▁occurring -11.6677 -▁1966, -11.6678 -▁adviser -11.6678 -▁youll -11.6679 -▁custody -11.668 -▁dorothy -11.668 -▁lately -11.6683 -isch -11.6684 -▁katie -11.6685 -▁fees -11.6687 -▁jer -11.6687 -▁certification -11.6688 -▁rao -11.6689 -▁owe -11.6692 -▁cigarette -11.6692 -▁withdrawal -11.6692 -▁bella -11.6693 -▁detachment -11.6693 -▁achievements -11.6693 -pala -11.6696 -▁brit -11.6696 -▁enterprises -11.6696 -uring -11.6696 -rell -11.6697 -▁thesis -11.6697 -▁robertson -11.6704 -size -11.6705 -▁lancaster -11.6705 -▁instructed -11.6705 -▁pes -11.6707 -▁janet -11.6707 -▁facts -11.6707 -cos -11.6708 -greek -11.6708 -▁conferences -11.6708 -hap -11.6708 -▁regain -11.6709 -standing -11.671 -▁promising -11.6713 -▁dag -11.6714 -▁bombs -11.6716 -▁yuan -11.6717 -▁maple -11.6717 -▁julius -11.6717 -▁drifted -11.6719 -▁maya -11.6721 -wise -11.6722 -▁deployment -11.6722 -▁sneak -11.6723 -kari -11.6723 -odor -11.6724 -cote -11.6724 -▁abbot -11.6725 -tale -11.6725 -▁wisdom -11.6726 -▁travis -11.6727 -hya -11.6728 -▁1970, -11.6728 -cie -11.6729 -fair -11.6729 -▁opposing -11.673 -▁accordance -11.673 -▁geographical -11.673 -lier -11.6736 -titled -11.6738 -▁proximity -11.6738 -1953 -11.6739 -▁drill -11.6744 -▁50% -11.6747 -▁cheer -11.6747 -▁destroying -11.6749 -▁hotels -11.6749 -kers -11.675 -amine -11.675 -1940 -11.6752 -▁observe -11.6758 -▁mira -11.6761 -▁stole -11.6763 -▁mock -11.6763 -▁currency -11.6763 -▁ruined -11.6763 -▁1853 -11.6766 -▁plaque -11.6768 -▁investigations -11.6769 -▁coordinator -11.6771 -▁cau -11.6772 -azi -11.6773 -wei -11.6773 -▁rubbing -11.6776 -fuck -11.6779 -▁motors -11.6779 -▁stud -11.6779 -▁canoe -11.6779 -▁imprisonment -11.678 -▁evident -11.678 -▁1846 -11.6781 -▁legally -11.6781 -responsibilities -11.6784 -▁zen -11.6784 -▁estimates -11.6785 -▁elimination -11.6785 -▁activists -11.6787 -▁jill -11.6787 -▁suspicious -11.6788 -▁jorge -11.679 -nard -11.6795 -kash -11.6795 -▁chiefs -11.6797 -▁marcel -11.6798 -▁poets -11.6798 -▁gp -11.6799 -miya -11.6799 -▁pronounced -11.68 -lun -11.68 -luc -11.6802 -test -11.6804 -▁ark -11.6804 -▁disappointment -11.6805 -▁vanished -11.6805 -▁anthem -11.6806 -▁centres -11.6806 -▁94 -11.6809 -think -11.6809 -5/ -11.681 -▁skating -11.681 -▁arguments -11.681 -being -11.6812 -▁cia -11.6813 -▁elliott -11.6813 -▁moist -11.6813 -▁competitors -11.6815 -▁silva -11.6815 -▁illusion -11.6817 -saw -11.6821 -▁nintendo -11.6821 -pati -11.6821 -▁lesbian -11.6822 -▁tha -11.6822 -▁flies -11.6822 -▁albania -11.6825 -rill -11.6826 -▁lounge -11.6826 -▁zurich -11.6826 -▁hayes -11.6828 -▁intact -11.6828 -▁1939, -11.6829 -rier -11.6831 -177 -11.6832 -▁wilderness -11.6834 -latin -11.6836 -▁helena -11.6837 -section -11.6837 -aldo -11.6838 -▁clara -11.6841 -▁viii -11.6842 -▁centered -11.6842 -▁maxim -11.6843 -▁thigh -11.6843 -▁nightmare -11.6846 -▁juvenile -11.6847 -▁portfolio -11.6847 -▁chick -11.6847 -zed -11.6847 -▁chuckled -11.6849 -▁advances -11.6851 -▁arose -11.6852 -▁catalog -11.6859 -oba -11.6859 -▁headline -11.6861 -▁riot -11.6862 -▁saskatchewan -11.6863 -dina -11.6865 -▁indie -11.6865 -lite -11.6865 -▁harvest -11.6867 -rink -11.6867 -▁mach -11.6867 -▁marched -11.6867 -tani -11.6867 -▁crawford -11.6872 -▁marines -11.6872 -240 -11.6874 -▁cecil -11.6875 -▁cum -11.6878 -▁joins -11.6879 -▁demonstration -11.6883 -▁poorly -11.6883 -1930 -11.6885 -▁86 -11.6886 -▁istanbul -11.6889 -▁robe -11.6891 -▁sunset -11.6891 -bry -11.6895 -▁adds -11.6895 -▁valentine -11.6897 -▁twitter -11.6897 -▁idaho -11.6898 -▁shri -11.6898 -▁computing -11.6901 -▁gazette -11.6906 -▁eliminate -11.6907 -▁pon -11.6907 -playing -11.6907 -stat -11.6908 -hul -11.6908 -▁brock -11.691 -▁phillip -11.6911 -▁contrary -11.6911 -osh -11.6912 -▁hosting -11.6915 -▁oath -11.6915 -rose -11.6917 -coat -11.6918 -lg -11.6919 -▁associations -11.6921 -▁petr -11.6923 -▁marking -11.6924 -▁frustrated -11.6927 -▁barb -11.6929 -read -11.693 -▁mitch -11.693 -ott -11.6931 -▁rue -11.6932 -nl -11.6934 -ines -11.6935 -▁scouts -11.6937 -▁nominations -11.6937 -▁len -11.6937 -▁firms -11.6939 -▁raz -11.694 -▁gua -11.6941 -▁iceland -11.6943 -▁inclusion -11.6944 -▁wagner -11.6944 -zal -11.6944 -arg -11.6948 -▁withdraw -11.6949 -▁boeing -11.6952 -▁armenia -11.6953 -▁wage -11.6955 -▁kul -11.6956 -▁satisfaction -11.6956 -pod -11.6957 -jah -11.6959 -▁millennium -11.696 -▁trembling -11.6961 -▁cardiff -11.6961 -▁locality -11.6962 -▁brig -11.697 -▁grasp -11.697 -▁winston -11.6971 -▁sinking -11.6972 -▁kho -11.6972 -hh -11.6973 -▁surrey -11.6978 -▁qing -11.6979 -▁pizza -11.6979 -▁wan -11.698 -▁patriarch -11.6981 -▁irregular -11.6981 -▁pru -11.6982 -▁penny -11.6983 -▁hostile -11.6984 -▁bruno -11.6984 -▁archived -11.6986 -rz -11.6986 -▁correspondent -11.6987 -▁repairs -11.6988 -france -11.6989 -sworth -11.6989 -▁gir -11.6989 -▁bombardment -11.699 -▁velocity -11.699 -▁genuine -11.6991 -anza -11.6992 -▁surge -11.6993 -▁viola -11.6994 -owner -11.6994 -methyl -11.6995 -▁renovation -11.6995 -maz -11.6996 -▁glare -11.7 -▁caleb -11.7 -▁partition -11.7 -lach -11.7002 -▁biblical -11.7003 -▁separately -11.7005 -▁1940, -11.7008 -baum -11.7009 -ear -11.7012 -nish -11.7013 -▁res -11.7015 -▁zach -11.7018 -▁continent -11.7018 -▁chapters -11.7021 -som -11.7022 -system -11.7023 -▁gala -11.7023 -ended -11.7024 -iest -11.7025 -▁mcg -11.7026 -1949 -11.7026 -▁consolidated -11.7026 -stand -11.7028 -vision -11.7034 -hip -11.7034 -▁enhance -11.7035 -▁rosen -11.7035 -▁endangered -11.7036 -▁reverend -11.7038 -▁traces -11.7039 -does -11.704 -sei -11.7041 -country -11.7041 -▁bankruptcy -11.7042 -▁dread -11.7043 -▁trash -11.7044 -▁decay -11.7044 -▁promotional -11.7044 -▁pel -11.7045 -▁hindi -11.7046 -itch -11.7047 -▁jude -11.7047 -▁175 -11.7048 -▁silly -11.705 -spanish -11.705 -bla -11.7051 -▁willow -11.7052 -▁jackie -11.7055 -▁mw -11.7055 -mish -11.7056 -▁terrified -11.7059 -sian -11.706 -▁woo -11.7061 -▁holden -11.7063 -▁faithful -11.7066 -▁openly -11.7066 -▁plymouth -11.7067 -▁colon -11.707 -cycl -11.7071 -▁staircase -11.7071 -▁batteries -11.7072 -nne -11.7073 -▁predicted -11.7073 -▁hale -11.7074 -▁fiji -11.7075 -▁placement -11.7077 -▁1847 -11.7077 -▁calgary -11.708 -nna -11.7081 -tors -11.7082 -▁yell -11.7082 -▁premiership -11.7082 -▁pha -11.7083 -▁bias -11.7085 -▁transmitter -11.7086 -▁windsor -11.7086 -▁calculated -11.7087 -▁velvet -11.7089 -▁imposed -11.709 -▁zhu -11.7091 -▁everyday -11.7092 -clock -11.7092 -dah -11.7093 -lain -11.7093 -▁santo -11.7094 -▁lem -11.7096 -▁sofa -11.7097 -▁finite -11.7099 -▁plea -11.7099 -cephal -11.7102 -loc -11.7102 -▁captive -11.7103 -▁carroll -11.7105 -▁draws -11.7107 -eki -11.7107 -▁mk -11.7108 -lift -11.7109 -▁conscious -11.711 -cies -11.711 -▁supervision -11.7111 -▁cove -11.7115 -▁pose -11.7117 -▁ruby -11.7117 -fle -11.7117 -charge -11.7117 -▁lineup -11.7119 -▁blessed -11.7119 -▁masa -11.712 -rap -11.7122 -arn -11.7123 -lb -11.7124 -▁flooded -11.7126 -ancy -11.7127 -market -11.713 -▁spi -11.713 -▁publish -11.713 -▁frightened -11.713 -▁nato -11.7131 -▁gown -11.7134 -bang -11.7136 -▁nicknamed -11.7137 -▁disco -11.7138 -▁equity -11.7141 -lation -11.7141 -sat -11.7144 -lal -11.7145 -▁wax -11.7146 -▁collector -11.7147 -▁fragments -11.7148 -▁complement -11.7149 -station -11.7149 -▁click -11.715 -▁stripped -11.715 -▁cl -11.7152 -▁shar -11.7153 -▁roe -11.7157 -▁delegates -11.7159 -▁machinery -11.7159 -▁demonstrate -11.7159 -▁echoed -11.7159 -short -11.716 -elia -11.716 -hound -11.7161 -dur -11.7161 -▁fil -11.7164 -▁sealed -11.7166 -▁challenging -11.7166 -▁nacional -11.7166 -▁propaganda -11.7166 -boo -11.7167 -sted -11.7169 -▁negro -11.7169 -▁respected -11.7171 -▁brighton -11.7172 -▁uh -11.7173 -▁refuses -11.7173 -▁secretly -11.7174 -▁disappear -11.7174 -▁martinez -11.7174 -mouth -11.7175 -▁proposals -11.7176 -metre -11.7179 -▁orlando -11.718 -bai -11.718 -▁1962, -11.718 -ifying -11.718 -▁visitor -11.7183 -▁balloon -11.7185 -▁rendered -11.7187 -▁easter -11.7191 -▁sounding -11.7191 -▁exploit -11.7191 -▁cello -11.7194 -▁revived -11.7194 -▁choosing -11.7197 -colored -11.7199 -▁fraction -11.7199 -young -11.72 -▁finest -11.7201 -▁allmusic -11.7205 -▁translator -11.7205 -prop -11.7206 -▁wen -11.7206 -loy -11.7209 -▁hostage -11.7209 -▁accepting -11.721 -▁gonzalez -11.7214 -▁104 -11.7216 -▁conceived -11.7216 -version -11.7218 -▁licence -11.7219 -▁audition -11.7222 -▁cute -11.7226 -sweet -11.7227 -wash -11.7228 -lob -11.7228 -▁meg -11.7228 -▁bounded -11.723 -▁prosecution -11.7232 -▁assert -11.7232 -▁courthouse -11.7232 -▁suggestion -11.7234 -▁rector -11.7235 -▁wickets -11.7236 -▁102 -11.7237 -rium -11.7238 -walk -11.724 -▁holdings -11.7241 -▁bak -11.7241 -▁prairie -11.7245 -tered -11.7246 -▁embarrassed -11.7247 -dus -11.7248 -▁plug -11.7249 -▁submission -11.725 -vp -11.7251 -▁salary -11.7253 -▁simulation -11.7254 -phe -11.7254 -channel -11.7255 -▁naming -11.7256 -▁stance -11.7256 -erton -11.7256 -▁consumers -11.7259 -▁oblast -11.7259 -cion -11.7261 -▁hugged -11.7263 -▁consumed -11.7263 -▁bubble -11.7264 -▁recreational -11.7267 -▁isabella -11.7268 -▁yours -11.7268 -▁odds -11.7269 -▁xu -11.727 -▁touchdowns -11.7273 -inae -11.7274 -▁arctic -11.7275 -230 -11.7275 -▁1845 -11.7277 -jal -11.7277 -▁cops -11.7279 -▁rene -11.728 -▁belfast -11.728 -ern -11.7286 -179 -11.7286 -▁700 -11.7286 -▁bacteria -11.7287 -▁puppet -11.7289 -▁murders -11.729 -▁mori -11.729 -▁tackles -11.7291 -▁rig -11.7292 -▁liber -11.7292 -▁extract -11.7295 -▁cue -11.7295 -▁compounds -11.7296 -mul -11.7299 -▁kru -11.73 -iza -11.73 -▁gaming -11.7301 -wee -11.7301 -▁vera -11.7302 -▁honestly -11.7302 -boro -11.7302 -▁uss -11.7302 -▁underlying -11.7302 -▁hello -11.7303 -oko -11.7304 -▁willie -11.7304 -▁choices -11.7304 -▁politically -11.7306 -▁classics -11.7308 -▁inventor -11.731 -cri -11.731 -cun -11.7311 -▁daisy -11.7311 -nta -11.7312 -1946 -11.7313 -▁eternal -11.7315 -▁discussing -11.7315 -chal -11.7318 -bio -11.7318 -sbury -11.7319 -dun -11.7319 -▁syl -11.7319 -▁stereo -11.732 -▁noon -11.732 -▁artifacts -11.732 -aco -11.7322 -oro -11.7325 -▁algebra -11.7326 -ways -11.7326 -isse -11.7326 -▁puff -11.7328 -yana -11.7328 -▁digging -11.7329 -▁trademark -11.7333 -▁criticised -11.7334 -dhar -11.7337 -kind -11.7338 -▁rey -11.7338 -▁atop -11.7339 -▁genera -11.734 -▁bot -11.7341 -▁sworn -11.7346 -ced -11.7346 -▁stunt -11.7347 -▁macdonald -11.735 -neill -11.7351 -▁interviewed -11.7351 -$1 -11.7351 -▁laps -11.7354 -▁ribs -11.7354 -▁106 -11.7356 -▁astro -11.7356 -▁wanna -11.7356 -eme -11.7357 -▁striker -11.7359 -▁aisle -11.7361 -nant -11.7361 -▁noting -11.7363 -▁merchants -11.7363 -pid -11.7365 -storm -11.7367 -▁belgrade -11.7368 -▁tips -11.7371 -hun -11.7371 -▁roar -11.7371 -iso -11.7373 -vita -11.7374 -cav -11.7374 -cel -11.7376 -▁sunny -11.7377 -▁empress -11.7377 -▁agrees -11.7378 -nat -11.7379 -lets -11.7379 -etto -11.7379 -▁20,000 -11.738 -▁unions -11.738 -jiang -11.738 -▁nave -11.7381 -▁glowing -11.7382 -▁resolved -11.7382 -▁tumor -11.7382 -▁bos -11.7384 -155 -11.7384 -▁smallest -11.7385 -▁iris -11.7386 -▁torch -11.7386 -▁1500 -11.7387 -▁senses -11.7388 -played -11.739 -▁albany -11.7391 -▁slopes -11.7391 -dz -11.7392 -▁subtle -11.7393 -▁antarctic -11.7394 -▁punish -11.7394 -▁duchess -11.7394 -▁1812 -11.7395 -▁variants -11.7396 -▁boulder -11.7399 -▁nobel -11.7399 -▁froze -11.7401 -▁chronic -11.7402 -▁salmon -11.7404 -sio -11.7409 -165 -11.7409 -▁freeway -11.7412 -▁gastropod -11.7412 -▁jonas -11.7413 -croft -11.7413 -lake -11.7414 -▁cedar -11.7415 -▁fists -11.7415 -▁cone -11.7415 -▁dunn -11.7416 -established -11.7418 -riz -11.7419 -▁electron -11.742 -ruff -11.7422 -▁poles -11.7424 -▁knot -11.7425 -phor -11.7425 -▁manitoba -11.7425 -▁attain -11.7426 -▁teenager -11.7427 -▁eleanor -11.743 -onne -11.743 -▁bac -11.7433 -▁update -11.7434 -▁senators -11.7435 -▁researcher -11.7436 -comp -11.744 -rung -11.744 -182 -11.7441 -wil -11.7443 -▁lea -11.7446 -▁lam -11.7446 -▁tooth -11.7447 -▁strongest -11.7448 -▁populated -11.7448 -▁rhine -11.7448 -ographic -11.7448 -▁precise -11.7449 -make -11.7449 -▁entrepreneur -11.745 -▁fusion -11.745 -special -11.745 -holders -11.7452 -aru -11.7452 -1920 -11.7454 -rino -11.7458 -ulation -11.746 -pdf -11.7465 -▁boris -11.7466 -▁composers -11.7467 -▁upward -11.7467 -▁sup -11.7468 -radio -11.7469 -string -11.747 -▁sept -11.7472 -▁sudan -11.7473 -▁ussr -11.7473 -ump -11.7474 -▁remembering -11.7474 -▁lovers -11.7474 -▁reads -11.7479 -▁blend -11.7482 -▁discussions -11.7482 -▁highland -11.7483 -▁alexandra -11.7483 -▁reactor -11.7485 -▁renovated -11.7491 -▁sharon -11.7492 -▁councillor -11.7493 -▁consulting -11.7494 -gur -11.7494 -▁rum -11.7496 -mala -11.7497 -▁vor -11.7497 -onic -11.7497 -▁1961, -11.7497 -▁wh -11.7497 -▁perez -11.7501 -▁luxembourg -11.7501 -▁sensed -11.7502 -electric -11.7503 -▁proceed -11.7503 -▁nicola -11.7503 -▁outline -11.7507 -▁payments -11.7508 -▁1948, -11.751 -▁ankle -11.7512 -▁cai -11.7512 -1948 -11.7513 -▁infected -11.7515 -taking -11.7515 -▁pound -11.7516 -▁dem -11.7517 -▁owl -11.7518 -▁dol -11.7519 -clair -11.752 -▁sequences -11.752 -▁lumber -11.7521 -tuck -11.7522 -▁deutsche -11.7522 -▁homeland -11.7523 -▁airing -11.7524 -▁puts -11.7525 -▁nationality -11.7528 -▁anybody -11.7529 -▁manuscripts -11.7529 -▁bul -11.7529 -▁neighbors -11.753 -▁conrad -11.7531 -▁est -11.7531 -▁messenger -11.7533 -lio -11.7533 -▁aids -11.7534 -evo -11.7534 -▁nails -11.7536 -▁appoint -11.7538 -uit -11.7538 -▁acute -11.7539 -▁counting -11.7539 -zion -11.754 -rana -11.7544 -▁1947, -11.7544 -▁wrestler -11.7545 -▁paw -11.7547 -▁rhodes -11.7548 -▁spl -11.7549 -dul -11.7549 -▁teammate -11.7549 -▁consensus -11.7551 -▁altogether -11.7552 -kom -11.7553 -rag -11.7555 -▁sv -11.7555 -▁darwin -11.7556 -▁deciding -11.756 -▁tugged -11.756 -▁rankings -11.7562 -▁apprentice -11.7564 -▁supernatural -11.7565 -▁1820 -11.7566 -▁dishes -11.7567 -▁tapped -11.7567 -▁scorer -11.7569 -▁swimmer -11.7571 -▁sovereign -11.7572 -▁barracks -11.7573 -▁knocking -11.7574 -▁interactions -11.7576 -▁zones -11.7578 -▁edmonton -11.7578 -▁wishing -11.7578 -▁kicking -11.7578 -▁ernst -11.7579 -▁alpine -11.7581 -oso -11.7581 -▁subway -11.7584 -▁turk -11.7585 -kl -11.7587 -▁depicting -11.7588 -▁contestants -11.7592 -▁tetra -11.7593 -kova -11.7594 -hell -11.7594 -▁santos -11.7597 -▁provisional -11.7597 -▁gustav -11.7598 -▁sidewalk -11.76 -▁viewing -11.76 -▁richards -11.76 -▁environments -11.7602 -kow -11.7602 -sten -11.7602 -▁abd -11.7604 -▁nail -11.7606 -▁petro -11.7607 -▁explored -11.7607 -▁treasurer -11.7608 -▁sunk -11.7608 -sign -11.7609 -teen -11.7611 -listed -11.7611 -ete -11.7611 -▁ecuador -11.7612 -stream -11.7612 -▁flown -11.7613 -blood -11.7613 -▁halifax -11.7614 -▁hypothesis -11.7614 -▁matched -11.7615 -▁convey -11.7616 -uti -11.7619 -simplified -11.7623 -▁crushed -11.7626 -▁accuracy -11.7628 -▁destiny -11.7628 -▁meredith -11.7628 -1936 -11.763 -▁premises -11.7631 -▁funk -11.7633 -▁overwhelming -11.7635 -▁agenda -11.7636 -stre -11.7637 -▁slovenia -11.7637 -▁pip -11.7638 -▁asteroid -11.7639 -color -11.7639 -bid -11.7642 -▁jab -11.7643 -▁chances -11.7645 -▁prohibited -11.7646 -child -11.7647 -▁denis -11.7647 -▁rivalry -11.765 -▁indication -11.765 -▁valve -11.7653 -▁spelling -11.7655 -▁unclear -11.7655 -shore -11.7657 -▁rows -11.7658 -bes -11.7659 -▁freshman -11.7659 -▁freely -11.7662 -enne -11.7662 -▁delegate -11.7663 -aries -11.7663 -borne -11.7665 -▁sab -11.7665 -▁thy -11.7667 -▁corrupt -11.7667 -▁cubic -11.7668 -▁espn -11.767 -▁sala -11.767 -▁nadu -11.767 -▁rand -11.7672 -▁surname -11.7673 -large -11.7673 -aran -11.7675 -ops -11.7676 -▁skilled -11.7677 -▁hector -11.7679 -▁speedway -11.768 -▁spill -11.768 -▁collision -11.7682 -▁geography -11.7683 -hk -11.7684 -sell -11.7685 -▁revision -11.7686 -▁expense -11.7686 -running -11.7687 -plex -11.7689 -▁fires -11.7689 -▁103 -11.769 -▁strap -11.769 -▁stint -11.7691 -▁fitness -11.7693 -zong -11.7693 -▁wives -11.7696 -▁accompanying -11.7697 -khar -11.7697 -uan -11.77 -▁babe -11.77 -▁tracy -11.7701 -▁oriental -11.7702 -▁endless -11.7704 -▁raiders -11.7705 -▁ag -11.7705 -116 -11.7706 -▁recurring -11.7706 -▁claws -11.7709 -▁learns -11.7709 -▁advancing -11.771 -4,000 -11.7711 -esta -11.7711 -▁sends -11.7712 -▁battalions -11.7714 -▁sham -11.7715 -▁moan -11.7717 -▁rectangular -11.7719 -▁stained -11.7721 -gger -11.7724 -▁donna -11.7724 -▁codes -11.7727 -▁guatemala -11.7728 -▁sanchez -11.7728 -▁threshold -11.7728 -lop -11.7729 -▁surrendered -11.7729 -▁void -11.773 -dding -11.773 -▁bullets -11.773 -▁mentally -11.7732 -isi -11.7732 -▁forbidden -11.7733 -▁popped -11.7735 -dling -11.774 -▁aftermath -11.7741 -▁likewise -11.7742 -▁basically -11.7742 -▁ple -11.7744 -▁leisure -11.7746 -operation -11.7747 -ghi -11.7747 -▁menu -11.7747 -▁deposit -11.7751 -▁fade -11.7751 -▁decreased -11.7752 -▁committees -11.7755 -▁angela -11.7758 -▁springfield -11.7758 -production -11.776 -evich -11.7761 -▁gris -11.7762 -▁discharge -11.7764 -divi -11.7764 -▁rafael -11.7765 -▁ditch -11.7766 -▁hos -11.7767 -▁differ -11.7768 -▁armored -11.7768 -▁georg -11.7768 -▁blades -11.7769 -▁reliable -11.7769 -▁entries -11.7769 -gb -11.777 -210 -11.777 -▁munster -11.7771 -▁questioning -11.7771 -▁lesson -11.7776 -▁1946, -11.7776 -▁plum -11.7779 -flower -11.778 -nf -11.7781 -▁walsh -11.7781 -▁timothy -11.7783 -▁bce -11.7784 -haired -11.7784 -▁rude -11.7784 -▁horns -11.7785 -eira -11.779 -dong -11.779 -▁zimbabwe -11.7792 -▁abortion -11.7793 -▁crowned -11.7796 -▁jenkins -11.7797 -spire -11.7797 -▁flagship -11.78 -1935 -11.7801 -▁dump -11.7802 -▁rochester -11.7802 -1937 -11.7803 -▁noel -11.7803 -▁savannah -11.7803 -▁baltic -11.7803 -arte -11.7803 -▁allison -11.7805 -▁jeffrey -11.7807 -▁minds -11.7808 -kol -11.7809 -crypt -11.7809 -▁peered -11.781 -▁bau -11.781 -▁mikhail -11.7811 -▁instinct -11.7813 -utc -11.7814 -▁bates -11.7815 -▁introducing -11.7815 -▁prom -11.7822 -▁lacked -11.7823 -▁prussia -11.7825 -▁undertaken -11.7825 -▁tragedy -11.7825 -▁nerves -11.7825 -service -11.7826 -▁pill -11.7828 -▁investments -11.783 -▁mothers -11.783 -▁dip -11.783 -▁buc -11.7833 -cris -11.7833 -▁berry -11.7835 -▁exchanged -11.7835 -dock -11.7835 -▁exempt -11.7836 -▁fears -11.7836 -emia -11.7837 -▁benedict -11.7839 -▁shannon -11.7839 -assi -11.7841 -▁roh -11.7841 -rest -11.7842 -▁confederation -11.7843 -▁mercedes -11.7843 -▁invaded -11.7843 -▁feud -11.7847 -▁sten -11.7847 -110 -11.7851 -▁primitive -11.7852 -▁brooke -11.7853 -▁dancers -11.7854 -▁huh -11.7857 -▁cyclist -11.7858 -▁dana -11.7858 -118 -11.7861 -▁capability -11.7863 -▁$7 -11.7864 -named -11.7866 -▁pollution -11.7866 -▁sandwich -11.7867 -▁tonnes -11.7868 -▁marginal -11.7868 -▁vamp -11.7869 -▁lime -11.7874 -▁#3 -11.7877 -opa -11.7878 -▁ign -11.7878 -▁deserved -11.7879 -▁snail -11.7882 -▁tutor -11.7883 -orum -11.7883 -▁unified -11.7883 -▁crisp -11.7883 -▁cru -11.7885 -▁gloria -11.7885 -▁wipe -11.7885 -along -11.7886 -▁bert -11.7886 -▁elephant -11.7888 -▁sandstone -11.7888 -ryn -11.789 -▁synthesizer -11.7892 -rigg -11.7892 -▁chal -11.7892 -▁complained -11.7894 -▁float -11.7894 -avon -11.7895 -lord -11.7895 -▁excessive -11.7895 -▁laying -11.7897 -hello -11.7899 -▁incidents -11.7899 -▁tire -11.79 -pia -11.7901 -▁dre -11.7903 -▁preventing -11.7904 -▁foods -11.7904 -▁barr -11.7907 -▁analog -11.7907 -▁proceeds -11.7907 -▁volcanic -11.7908 -cip -11.7909 -▁maxwell -11.7911 -▁basil -11.7912 -▁chateau -11.7915 -▁sco -11.7918 -mmer -11.7918 -yat -11.7918 -▁acclaim -11.7919 -▁particle -11.7922 -▁baroque -11.7922 -lett -11.7924 -▁yield -11.7924 -▁fletcher -11.7927 -glass -11.7927 -▁blamed -11.7927 -pai -11.7929 -▁hue -11.793 -1947 -11.7931 -▁metric -11.7932 -▁logical -11.7935 -dem -11.7936 -▁nim -11.7937 -▁curves -11.7938 -▁exhibits -11.7943 -▁flowering -11.7943 -▁freeze -11.7943 -▁semifinals -11.7944 -▁sabha -11.7945 -▁soup -11.7946 -scope -11.7947 -▁roberto -11.7948 -ect -11.7949 -▁nr -11.795 -social -11.7951 -▁reflecting -11.7952 -▁limbs -11.7955 -▁kali -11.7958 -▁performs -11.7958 -▁jesuit -11.796 -▁charleston -11.7961 -▁stretching -11.7963 -▁rebounds -11.7964 -▁laurel -11.7966 -▁surfaces -11.7967 -thon -11.7968 -tik -11.7968 -eon -11.797 -▁rotten -11.7972 -▁sanders -11.7972 -▁ancestors -11.7972 -gee -11.7972 -▁wyoming -11.7974 -▁pockets -11.7974 -hil -11.7975 -160 -11.7978 -▁curiosity -11.7979 -▁pun -11.7979 -▁sca -11.798 -▁interpret -11.7982 -▁lantern -11.7984 -▁fiscal -11.7984 -▁bombers -11.7986 -▁contestant -11.7986 -▁saf -11.7986 -▁compare -11.7987 -▁autobiography -11.7988 -trust -11.7989 -▁consul -11.7989 -▁isabel -11.799 -127 -11.799 -▁kana -11.7991 -▁remarked -11.7993 -combe -11.7993 -▁ef -11.7993 -▁cornell -11.7993 -▁dial -11.7993 -stru -11.7994 -▁estonia -11.7998 -▁louder -11.8001 -▁trailed -11.8001 -▁compliment -11.8002 -▁projection -11.8003 -▁cons -11.8006 -▁ellie -11.8007 -▁cognitive -11.8007 -▁sings -11.8007 -fri -11.8008 -tane -11.8009 -▁elegant -11.8012 -▁bells -11.8013 -▁jung -11.8013 -▁temper -11.8015 -▁evangelical -11.8016 -▁keel -11.8019 -▁forbes -11.802 -▁caves -11.8021 -▁thames -11.8022 -,000,000 -11.8024 -▁cope -11.8026 -▁clergy -11.8026 -▁mechanisms -11.8027 -▁johnston -11.8028 -▁precisely -11.8029 -▁norton -11.803 -▁charitable -11.803 -thra -11.8031 -▁watts -11.8032 -176 -11.8037 -▁distracted -11.8039 -▁shark -11.8041 -▁duchy -11.8042 -spor -11.8044 -chee -11.8046 -through -11.8046 -▁suspicion -11.8046 -▁drawer -11.805 -▁cb -11.805 -▁detection -11.8051 -▁fringe -11.8053 -▁parted -11.8054 -▁5,000 -11.8055 -▁unofficial -11.8056 -tour -11.8057 -▁jai -11.8057 -bari -11.8057 -mma -11.8059 -▁eclipse -11.8059 -▁molecules -11.806 -▁dose -11.8061 -▁gag -11.8062 -▁superman -11.8062 -▁magnet -11.8063 -▁testimony -11.8064 -▁lgbt -11.8064 -▁candle -11.8067 -zone -11.8068 -▁shine -11.8068 -▁quint -11.807 -▁homer -11.8072 -▁airplane -11.8072 -▁telescope -11.8073 -▁afc -11.8078 -▁curtain -11.808 -▁dressing -11.808 -▁verbal -11.8082 -▁monuments -11.8082 -lough -11.8082 -▁preceding -11.8082 -▁baldwin -11.8083 -▁rau -11.8084 -▁knockout -11.8085 -tics -11.8087 -▁ceremonies -11.8087 -1938 -11.8088 -▁postal -11.8089 -▁tad -11.8089 -inger -11.8091 -▁inaugurated -11.8092 -▁fights -11.8093 -▁allocated -11.8093 -opus -11.8095 -isha -11.8097 -▁measurement -11.8097 -▁geometry -11.8098 -▁lacking -11.8099 -▁shrug -11.8101 -▁cel -11.8101 -▁buddha -11.8103 -host -11.8103 -▁gunner -11.8106 -▁commemorate -11.8106 -▁refusing -11.8106 -/1 -11.8108 -rot -11.8108 -▁sherman -11.8109 -▁surprisingly -11.8109 -▁remind -11.8109 -▁tribunal -11.8111 -▁assuming -11.8113 -▁habitats -11.8113 -▁finalist -11.8114 -▁complaints -11.8116 -▁heinrich -11.8116 -▁tribune -11.8116 -hoff -11.8116 -1942 -11.8117 -▁jax -11.8122 -▁jade -11.8124 -▁skeleton -11.8125 -▁hurling -11.8125 -▁foundations -11.8126 -▁spice -11.8126 -▁blink -11.8126 -▁roc -11.8128 -tf -11.8131 -▁1959, -11.8132 -pas -11.8132 -▁groan -11.8135 -▁leak -11.8136 -▁organizing -11.8136 -▁employer -11.814 -cuff -11.8141 -▁orphan -11.8141 -hau -11.8145 -▁hammond -11.815 -▁supposedly -11.8154 -lav -11.8154 -were -11.8158 -▁pent -11.8158 -▁saba -11.8158 -bei -11.8159 -▁naples -11.816 -▁continuously -11.8161 -▁growl -11.8164 -▁longtime -11.8165 -bj -11.8168 -pore -11.8168 -▁voluntary -11.8168 -▁starter -11.817 -alu -11.817 -▁cursed -11.817 -▁provider -11.8173 -▁exploring -11.8173 -mass -11.8175 -▁matsu -11.8175 -evi -11.8177 -▁summon -11.8177 -mik -11.8179 -fs -11.818 -▁boiler -11.8182 -perhaps -11.8182 -▁limb -11.8183 -▁flint -11.8185 -deep -11.8185 -▁360 -11.8189 -▁eco -11.819 -▁acknowledge -11.819 -▁countryside -11.8191 -▁encouraging -11.8192 -fit -11.8193 -▁airborne -11.8196 -▁maker -11.8196 -▁lasting -11.8197 -oides -11.8198 -▁specimen -11.8201 -▁phantom -11.8202 -▁cairo -11.8202 -kat -11.8203 -▁dealer -11.8204 -▁madame -11.8204 -▁agnes -11.8206 -▁answering -11.8207 -▁greene -11.8207 -▁stalin -11.8208 -uto -11.8209 -▁deceased -11.821 -thus -11.8213 -building -11.8216 -▁achieving -11.8216 -▁strand -11.8217 -▁owing -11.8218 -▁interference -11.8221 -▁correspondence -11.8221 -inn -11.8224 -▁investigated -11.8225 -▁mg -11.8225 -ounce -11.8228 -quarter -11.823 -▁caution -11.8231 -▁1956, -11.8232 -▁exam -11.8233 -nac -11.8234 -▁slender -11.8235 -▁elm -11.8235 -▁subspecies -11.8236 -▁wc -11.8237 -illy -11.824 -iron -11.824 -▁museums -11.824 -▁contra -11.8244 -blanc -11.8246 -▁armoured -11.8247 -▁imported -11.8249 -train -11.8249 -▁carnival -11.825 -▁prose -11.8251 -▁timing -11.8251 -▁scare -11.8252 -▁factories -11.8253 -▁auditorium -11.8255 -sdale -11.8256 -▁eb -11.8259 -▁seventy -11.826 -worthy -11.826 -fiction -11.8262 -kee -11.8264 -▁missiles -11.8265 -▁1837 -11.8265 -▁decoration -11.8267 -▁doyle -11.8268 -▁marty -11.827 -▁dong -11.8272 -▁blocking -11.8273 -suke -11.8275 -▁providence -11.8276 -▁genius -11.8276 -tering -11.8278 -uel -11.8279 -▁sculptures -11.8281 -▁hack -11.8281 -these -11.8281 -▁fest -11.8282 -▁churchill -11.8283 -▁kle -11.8286 -chor -11.8288 -▁pep -11.8288 -▁wie -11.8289 -▁scots -11.8289 -▁alphabet -11.8291 -▁commercially -11.8293 -lead -11.8294 -▁talented -11.8294 -▁christine -11.8295 -cb -11.8295 -▁170 -11.8296 -▁reluctantly -11.8296 -▁consistently -11.8297 -▁welcomed -11.8297 -lange -11.8297 -dance -11.8298 -▁disorders -11.8298 -▁fitting -11.8298 -▁yanked -11.8299 -▁dom -11.8299 -▁jointly -11.83 -▁monkey -11.8301 -▁straightened -11.8301 -▁griffith -11.8303 -rise -11.8304 -▁melt -11.8304 -▁bulb -11.8304 -ryu -11.8305 -▁1838 -11.8305 -▁ought -11.8308 -▁expectations -11.8308 -▁clyde -11.8308 -tb -11.8309 -lap -11.831 -nett -11.8311 -▁outlaw -11.8312 -brother -11.8312 -▁affection -11.8313 -▁drank -11.8314 -▁1841 -11.8315 -▁spat -11.8316 -% -11.8316 -1941 -11.8317 -▁portsmouth -11.8318 -▁developments -11.8319 -▁alright -11.8321 -▁availability -11.8323 -▁essence -11.8323 -▁lava -11.8323 -etz -11.8324 -▁bam -11.8324 -ride -11.8324 -▁thriller -11.8324 -▁herb -11.8325 -▁contacts -11.8327 -▁crab -11.8327 -gers -11.8328 -▁gains -11.8331 -▁depths -11.8332 -▁iso -11.8335 -▁opinions -11.8335 -▁mou -11.8336 -▁cain -11.8337 -▁speculation -11.8338 -▁notorious -11.8338 -▁shout -11.8341 -▁subfamily -11.8343 -izer -11.8344 -▁errors -11.8346 -lice -11.8346 -▁barber -11.8346 -▁emb -11.8346 -▁legitimate -11.8348 -▁babies -11.8348 -eto -11.8349 -▁shattered -11.835 -▁graduates -11.8352 -▁retrieve -11.8352 -▁licked -11.8353 -▁confrontation -11.8354 -▁streaming -11.8354 -▁regulatory -11.8358 -▁reinforced -11.8359 -ality -11.836 -fil -11.8361 -buck -11.8361 -▁brent -11.8361 -tho -11.8361 -▁shiver -11.8362 -▁janeiro -11.8363 -▁blessing -11.8363 -▁needle -11.8364 -▁expressway -11.8367 -▁motivation -11.8367 -▁maternal -11.8367 -▁thur -11.8368 -▁europa -11.8369 -aver -11.8371 -uca -11.8371 -▁clarinet -11.8373 -▁hatred -11.8374 -▁wad -11.8375 -ried -11.8376 -▁1958, -11.8376 -▁considers -11.8377 -▁filter -11.8378 -▁gameplay -11.8378 -imo -11.8379 -▁rem -11.8381 -▁sterling -11.8384 -natal -11.8384 -▁comm -11.8385 -▁eased -11.8385 -▁locker -11.8387 -bn -11.8388 -▁mighty -11.8388 -von -11.8389 -▁shakes -11.839 -▁showcase -11.839 -modern -11.8391 -▁anticipation -11.8391 -▁integrity -11.8391 -▁hissed -11.8394 -▁constituent -11.8396 -▁cologne -11.8396 -▁geoffrey -11.8396 -▁governance -11.8396 -▁reflects -11.8397 -▁detected -11.84 -text -11.84 -▁leagues -11.8401 -▁devotion -11.8401 -▁sutton -11.8402 -pres -11.8402 -▁flavor -11.8403 -▁beaver -11.8404 -▁exceed -11.8405 -▁crowded -11.8406 -▁burma -11.8406 -▁slovakia -11.841 -eda -11.8412 -▁miners -11.8412 -▁mole -11.8413 -▁explosive -11.8414 -mg -11.8415 -▁slap -11.8417 -▁atlas -11.8418 -▁stephan -11.8418 -▁erin -11.8418 -▁applying -11.8418 -▁pupil -11.842 -lings -11.8425 -▁jerome -11.8426 -▁screenwriter -11.8426 -▁clever -11.8427 -schen -11.8427 -psych -11.8428 -▁receptor -11.8429 -▁whispers -11.8432 -▁millions -11.8432 -▁vacuum -11.8435 -▁medication -11.8435 -▁successive -11.8435 -▁rust -11.8437 -▁battlefield -11.8437 -▁critically -11.8439 -▁mhz -11.844 -tty -11.8442 -break -11.8444 -▁carmen -11.8444 -▁leopold -11.8445 -▁seating -11.8446 -▁toxic -11.8448 -▁winnipeg -11.845 -ovo -11.845 -▁deco -11.845 -mah -11.8451 -▁107 -11.8452 -▁rogue -11.8452 -ogo -11.8452 -▁budapest -11.8455 -190 -11.8456 -▁mickey -11.8456 -1932 -11.846 -▁chor -11.846 -▁1835 -11.8461 -▁tunnels -11.8462 -▁assumption -11.8465 -▁exciting -11.8465 -▁toys -11.8466 -▁memoir -11.8467 -▁mata -11.8468 -▁tanzania -11.847 -▁lanes -11.8474 -▁seoul -11.8475 -▁nsw -11.8478 -▁turbo -11.848 -▁proclaimed -11.8482 -▁static -11.8482 -▁aquatic -11.8482 -▁ashes -11.8483 -jana -11.8483 -▁steadily -11.8485 -lek -11.8485 -▁correctly -11.8486 -▁hil -11.8487 -bou -11.849 -▁beds -11.849 -block -11.8493 -▁initiatives -11.8495 -▁gazed -11.8502 -former -11.8503 -▁metallic -11.8504 -▁350 -11.8505 -120 -11.8506 -1,000 -11.8506 -1934 -11.8509 -▁1839 -11.8509 -▁jules -11.8509 -▁apologize -11.851 -purpose -11.8512 -▁fern -11.8513 -▁108 -11.8513 -▁weakness -11.8514 -▁decorative -11.8515 -kul -11.8515 -▁burnt -11.8523 -▁hun -11.8523 -every -11.8523 -▁ming -11.8524 -▁slapped -11.8525 -chow -11.8527 -▁noun -11.8528 -▁morton -11.8529 -▁paths -11.853 -▁intentions -11.8531 -▁depicts -11.8532 -▁asylum -11.8534 -clar -11.8535 -▁bryn -11.8535 -▁1842 -11.8538 -183 -11.8539 -sund -11.8539 -▁valencia -11.854 -graphic -11.854 -▁favorable -11.854 -▁differential -11.8542 -fp -11.8543 -▁patriots -11.8546 -▁valle -11.8547 -▁feather -11.8548 -▁dawson -11.8549 -▁bee -11.8549 -▁peel -11.855 -▁pagan -11.8552 -▁1918, -11.8556 -▁junk -11.8558 -source -11.8558 -▁graz -11.8558 -inski -11.8559 -▁unaware -11.8559 -▁ginger -11.8559 -viv -11.8561 -▁schi -11.8562 -▁affiliation -11.8564 -▁narrator -11.8564 -▁gaelic -11.8565 -▁reel -11.8566 -gara -11.8568 -▁nh -11.8569 -▁ulster -11.857 -▁embarked -11.857 -▁dane -11.8572 -tang -11.8572 -▁obtaining -11.8573 -▁prussian -11.8574 -▁ole -11.8574 -▁turret -11.8575 -gil -11.8575 -maru -11.8581 -▁violation -11.8582 -▁recommendations -11.8585 -▁freeman -11.8588 -▁decisive -11.8589 -cons -11.859 -▁positioned -11.859 -▁ethiopia -11.8592 -▁sob -11.8592 -garde -11.8593 -▁shapes -11.8593 -▁mackenzie -11.8594 -▁castro -11.8594 -▁crews -11.8594 -▁zip -11.8594 -partisan -11.8595 -▁savings -11.8596 -▁1955, -11.8597 -▁khu -11.8598 -▁embedded -11.8599 -▁rely -11.8609 -▁ancestry -11.8609 -▁shirley -11.8609 -pyr -11.8609 -1933 -11.861 -▁tavern -11.861 -▁kad -11.8613 -▁asset -11.8614 -▁container -11.8615 -▁koch -11.8617 -▁editors -11.8619 -▁rug -11.8619 -▁danced -11.8619 -baby -11.8621 -▁spoon -11.8622 -zzo -11.8627 -▁adjusted -11.8627 -▁tir -11.8628 -▁variables -11.8628 -dig -11.8628 -▁scroll -11.8629 -▁stro -11.863 -▁anticipated -11.863 -nut -11.8633 -▁pirate -11.8633 -▁humanitarian -11.8634 -▁dental -11.8635 -▁afl -11.8636 -▁1836 -11.8637 -▁rumors -11.8637 -jay -11.8637 -▁reject -11.8639 -▁gateway -11.864 -▁ricky -11.8642 -▁buddhism -11.8644 -▁jacobs -11.8645 -▁nixon -11.8645 -▁risks -11.8645 -uchi -11.8645 -▁abs -11.8645 -▁exhaust -11.8645 -dri -11.8645 -▁pray -11.8646 -▁sauce -11.8646 -especially -11.8647 -cou -11.8647 -▁gotta -11.8648 -▁nottingham -11.8649 -▁surf -11.8649 -▁enclosed -11.865 -▁adolf -11.865 -▁lineage -11.8651 -▁challenger -11.8653 -gaz -11.8653 -▁concession -11.8654 -▁unsuccessfully -11.8654 -▁catches -11.8655 -▁spar -11.8655 -▁realizes -11.8657 -▁1844 -11.8659 -▁remnants -11.8659 -▁bothered -11.8659 -▁mythology -11.866 -▁prints -11.866 -gha -11.8661 -▁percy -11.8661 -▁jessie -11.8662 -▁emigrated -11.8663 -▁backwards -11.8664 -▁delicious -11.8665 -allah -11.8668 -▁needing -11.8669 -keep -11.8671 -▁johan -11.8671 -▁tubes -11.8673 -▁beats -11.8674 -▁surround -11.8675 -▁natalie -11.8675 -▁singular -11.8675 -▁1949, -11.8681 -▁kang -11.8684 -▁delight -11.8684 -▁newman -11.8686 -▁stealing -11.8689 -▁systematic -11.8691 -pay -11.8691 -▁rental -11.8694 -▁miniature -11.8695 -▁picnic -11.8696 -yp -11.8696 -▁clip -11.8698 -bow -11.8699 -▁yankees -11.8699 -▁marching -11.8699 -▁boh -11.8699 -▁carnegie -11.87 -found -11.87 -▁meadow -11.87 -▁cong -11.8701 -▁decent -11.8701 -unde -11.8702 -jen -11.8704 -▁constable -11.8705 -bey -11.8706 -1944 -11.8708 -▁nods -11.8709 -thorpe -11.8709 -▁gymnasium -11.871 -▁promises -11.8711 -▁bluff -11.8712 -▁pageant -11.8714 -▁pipeline -11.8714 -▁fancy -11.8716 -pierre -11.8716 -▁bavaria -11.8716 -▁roma -11.8716 -feng -11.8718 -heads -11.8718 -▁madonna -11.872 -▁rehabilitation -11.872 -public -11.8722 -▁stain -11.8725 -▁madras -11.8727 -rien -11.8727 -▁driveway -11.8728 -▁vernon -11.8733 -tea -11.8734 -▁ned -11.8738 -▁agreements -11.8738 -▁greeted -11.8738 -▁invested -11.874 -▁accord -11.8741 -mers -11.8742 -▁regiments -11.8743 -▁rica -11.8743 -▁shouting -11.8744 -▁1957, -11.8745 -▁framed -11.8745 -▁hyde -11.8745 -lith -11.8745 -▁requests -11.8746 -match -11.8746 -▁seeks -11.8748 -▁humanities -11.8751 -▁laurence -11.8752 -▁generous -11.8752 -▁wb -11.8753 -▁dairy -11.8754 -▁combine -11.8754 -▁gestured -11.8756 -▁dynamics -11.8756 -▁occupy -11.8757 -▁stride -11.876 -▁holocaust -11.876 -▁minneapolis -11.876 -▁laptop -11.8762 -9,000 -11.8762 -▁holt -11.8763 -▁phenomena -11.8766 -▁submit -11.8767 -friend -11.8767 -square -11.8768 -▁illustrations -11.8769 -▁crimson -11.8771 -▁expertise -11.8772 -opsis -11.8772 -▁russ -11.8772 -▁tornado -11.8776 -▁pry -11.8779 -▁francesco -11.8779 -▁protested -11.8782 -▁presenting -11.8784 -tner -11.8784 -ddle -11.8785 -rig -11.8785 -▁berg -11.8785 -▁missionaries -11.8787 -▁compromise -11.8787 -▁grinning -11.8787 -▁kerry -11.8788 -▁balcony -11.8791 -▁homeless -11.8791 -▁colleague -11.8792 -earth -11.8793 -▁anxious -11.8793 -▁metre -11.8794 -zak -11.8794 -▁pant -11.8794 -▁lithuanian -11.8797 -father -11.8798 -▁undergo -11.8799 -▁contracted -11.8799 -wrote -11.8801 -▁loans -11.8801 -▁pike -11.8803 -30% -11.8804 -▁stella -11.8804 -▁deaf -11.8807 -▁staple -11.8809 -▁plague -11.8809 -1918 -11.8811 -▁od -11.8811 -▁overnight -11.8811 -▁kidnapped -11.8811 -▁reluctant -11.8814 -▁daylight -11.8814 -▁technically -11.8814 -▁1832 -11.8815 -▁verses -11.8816 -▁nap -11.8816 -▁smash -11.8816 -▁aberdeen -11.8816 -▁eligibility -11.8816 -suit -11.8817 -▁villain -11.8817 -wc -11.8818 -flor -11.8819 -▁happily -11.8822 -▁accredited -11.8822 -tung -11.8824 -▁statues -11.8825 -▁recommend -11.8828 -drop -11.883 -forming -11.8831 -▁polite -11.8831 -▁debris -11.8833 -ashi -11.8835 -▁spelled -11.8836 -eni -11.8837 -▁kc -11.8837 -▁eg -11.8838 -integr -11.8839 -▁nautical -11.8842 -▁newer -11.8844 -tones -11.8844 -145 -11.8845 -▁wis -11.8846 -▁bacon -11.8851 -▁subordinate -11.8853 -united -11.8853 -▁assassin -11.8854 -▁momentum -11.8857 -▁hare -11.8859 -eter -11.886 -ulate -11.8861 -▁qatar -11.8864 -mission -11.8866 -▁terrorism -11.8867 -ovsky -11.8868 -▁mathematician -11.8868 -▁beatles -11.887 -sperm -11.8871 -producer -11.8872 -▁crawl -11.8873 -▁magistrate -11.8878 -▁pedestrian -11.8878 -▁scratch -11.8878 -ogen -11.8878 -chia -11.8879 -▁heating -11.8881 -▁livestock -11.8881 -▁arrange -11.8882 -▁rulers -11.8883 -320 -11.8884 -▁pottery -11.8885 -raw -11.8885 -▁piper -11.8887 -▁deb -11.889 -▁flick -11.889 -▁fare -11.8891 -▁herman -11.8891 -▁settings -11.8892 -▁presumably -11.8894 -rice -11.8895 -bourg -11.8897 -▁lombard -11.8899 -ulo -11.89 -▁corpse -11.8901 -rob -11.8901 -bok -11.8902 -▁stor -11.8904 -pound -11.8904 -▁preceded -11.8905 -▁venus -11.8905 -▁damon -11.8905 -▁shelf -11.8905 -bf -11.8906 -▁banker -11.8906 -holder -11.8906 -▁profound -11.8906 -▁rams -11.8906 -▁curling -11.8908 -bha -11.8909 -▁gandhi -11.891 -▁bucket -11.8911 -auer -11.8913 -amma -11.8914 -▁nobility -11.8914 -▁inland -11.8914 -liter -11.8915 -ubi -11.8915 -▁beloved -11.8919 -▁coleman -11.892 -▁synagogue -11.8924 -▁pl -11.8925 -▁pharmaceutical -11.8926 -wig -11.8926 -▁1954, -11.8927 -▁twelfth -11.893 -▁alignment -11.893 -placed -11.8932 -▁bour -11.8933 -▁suppress -11.8936 -▁llan -11.8938 -▁poker -11.8938 -▁projected -11.8939 -▁kazakhstan -11.894 -gloss -11.8943 -▁ferguson -11.8945 -▁immune -11.8945 -▁qualities -11.8945 -▁havent -11.8948 -graf -11.8948 -iii -11.895 -reg -11.8951 -▁tended -11.8951 -▁donations -11.8952 -▁drained -11.8952 -cycle -11.8955 -nach -11.8958 -gis -11.8959 -▁hampton -11.8959 -▁objectives -11.8962 -▁raids -11.8962 -doo -11.8962 -london -11.8964 -mati -11.8964 -▁10% -11.8964 -▁lucien -11.8965 -▁kerr -11.8966 -atic -11.8969 -▁mohammad -11.8971 -▁manning -11.8971 -▁thomson -11.8973 -vara -11.8973 -▁sailors -11.8974 -vall -11.8976 -▁ambition -11.8976 -dang -11.8976 -▁dubai -11.8978 -▁groove -11.8981 -▁investigating -11.8981 -hp -11.8981 -▁sorrow -11.8982 -▁averaged -11.8987 -▁mollusk -11.8987 -▁haunted -11.8987 -yle -11.899 -▁niece -11.8993 -morph -11.8994 -▁ranger -11.8994 -▁beef -11.8995 -hane -11.8997 -▁vince -11.9001 -▁conquered -11.9002 -▁tibetan -11.9002 -▁fruits -11.9005 -▁depiction -11.9005 -▁mage -11.9005 -▁sidney -11.9008 -logy -11.9009 -▁insect -11.901 -shoot -11.9011 -▁chapman -11.9012 -▁acceptable -11.9014 -▁realised -11.9016 -tah -11.9016 -▁leipzig -11.9018 -▁trinidad -11.9018 -culture -11.9019 -▁stu -11.9019 -▁wesley -11.9021 -▁gentlemen -11.9021 -▁1843 -11.9021 -italia -11.9022 -ckle -11.9022 -▁scarlet -11.9024 -▁retreated -11.9024 -dot -11.9027 -▁highlighted -11.9029 -▁shells -11.903 -8/ -11.9033 -foil -11.9033 -▁skip -11.9034 -hee -11.9034 -guitar -11.9035 -▁institutional -11.9035 -mbo -11.9036 -▁masses -11.9036 -recorded -11.9037 -▁shipyard -11.9038 -▁sponsorship -11.9039 -▁nigerian -11.9041 -check -11.9043 -scribe -11.9044 -▁slick -11.9045 -▁rats -11.9045 -generation -11.9047 -▁depend -11.9048 -▁jac -11.9048 -▁entities -11.9049 -▁encounters -11.905 -pos -11.905 -▁viscount -11.9051 -mian -11.9051 -bhu -11.9051 -▁stre -11.9052 -connor -11.9054 -▁leicester -11.9054 -▁fuller -11.9055 -▁bolivia -11.9055 -hwa -11.9058 -▁sentiment -11.9059 -▁unveiled -11.906 -1931 -11.906 -▁loft -11.9063 -issue -11.9066 -▁proposition -11.9066 -kam -11.9067 -▁keeper -11.9067 -▁surgical -11.907 -bob -11.907 -mobile -11.907 -▁tanner -11.907 -▁diagnosed -11.9071 -▁nurses -11.9071 -khan -11.9072 -ishi -11.9074 -▁underwater -11.9075 -dora -11.9075 -imper -11.9076 -▁1960, -11.9077 -▁luna -11.9077 -▁cosmo -11.9079 -chun -11.9079 -▁highways -11.908 -▁linking -11.9081 -121 -11.9083 -▁meter -11.9083 -▁liner -11.9084 -▁macedonia -11.9085 -▁weakened -11.9086 -saint -11.9086 -tank -11.9089 -▁southampton -11.9091 -▁uniforms -11.9091 -▁recruit -11.9091 -▁foolish -11.9093 -nde -11.9094 -▁chandra -11.9094 -▁hou -11.9097 -▁gm -11.9102 -▁ngo -11.9104 -▁chips -11.9105 -▁chilean -11.9106 -naya -11.9107 -▁mandatory -11.9107 -pens -11.9109 -izzy -11.911 -▁wai -11.9111 -formed -11.9111 -pec -11.9111 -dry -11.9111 -▁exercises -11.9112 -▁module -11.9112 -▁algeria -11.9113 -▁apostolic -11.9114 -▁nee -11.9116 -dum -11.9117 -ulus -11.9118 -▁bottles -11.912 -▁loch -11.9121 -▁tendency -11.9123 -hay -11.9123 -▁baba -11.9125 -▁advancement -11.9125 -▁murderer -11.9128 -6/ -11.9129 -▁fathers -11.9129 -▁xiao -11.9131 -▁guidelines -11.9134 -tica -11.9134 -▁resides -11.9137 -▁coffin -11.9138 -due -11.9138 -▁kosovo -11.9139 -▁orchard -11.9139 -▁addresses -11.9141 -▁passionate -11.9141 -outs -11.9144 -▁composite -11.9144 -▁expenses -11.9144 -center -11.9145 -▁sour -11.9146 -▁1917, -11.9148 -▁sag -11.9149 -▁dungeon -11.9149 -writing -11.915 -aught -11.9151 -▁dorm -11.9152 -▁brutal -11.9152 -▁comprised -11.9153 -▁duet -11.9156 -▁papua -11.9157 -▁sectors -11.9158 -▁sediment -11.9159 -using -11.9161 -▁immigrant -11.9161 -▁managers -11.9161 -oga -11.9161 -▁900 -11.9162 -]; -11.9162 -▁redesignated -11.9163 -▁downward -11.9165 -▁quarry -11.9165 -▁technician -11.9165 -buk -11.9167 -▁merge -11.9168 -▁lump -11.917 -▁interfere -11.9171 -▁uc -11.9172 -▁differently -11.9173 -▁jed -11.9173 -▁backpack -11.9174 -▁malay -11.9174 -▁shooter -11.9174 -▁joyce -11.9174 -▁morph -11.9176 -▁plasma -11.9176 -▁pablo -11.9177 -▁stephanie -11.9178 -▁wherever -11.9178 -▁bordered -11.9179 -▁kiev -11.918 -oj -11.9181 -▁countess -11.9182 -▁wong -11.9183 -▁thump -11.9183 -cultural -11.9184 -sak -11.9184 -pter -11.9185 -▁weve -11.9186 -aku -11.9187 -assa -11.9188 -minded -11.9189 -▁heartbeat -11.9189 -▁planets -11.9191 -▁dixon -11.9191 -▁disputed -11.9191 -▁conservatory -11.9194 -hong -11.9197 -▁neighbor -11.9198 -▁wir -11.9199 -▁suits -11.9202 -▁hawks -11.9203 -▁brett -11.9205 -▁scenario -11.9205 -rae -11.9208 -kus -11.9209 -vul -11.9212 -rahman -11.9212 -▁lunar -11.9213 -▁sharks -11.9213 -▁bombay -11.9214 -▁reopened -11.9215 -▁texture -11.9215 -ais -11.9216 -naut -11.9216 -▁locate -11.9216 -▁forecast -11.9218 -▁109 -11.9218 -▁sinclair -11.9218 -inated -11.9221 -▁curt -11.9222 -▁slipping -11.9224 -mata -11.9225 -este -11.9225 -▁fangs -11.9228 -▁drainage -11.923 -eel -11.9231 -▁armour -11.9231 -▁republicans -11.9231 -▁mali -11.9235 -cv -11.9235 -▁generic -11.9235 -▁jewel -11.9237 -held -11.9238 -▁gus -11.9238 -▁spec -11.9239 -▁regained -11.924 -60,000 -11.9241 -aligned -11.9241 -▁arn -11.9242 -controlled -11.9243 -▁carriers -11.9243 -▁commodore -11.9245 -▁complexity -11.9245 -dea -11.9245 -1929 -11.9246 -▁tran -11.9246 -▁amelia -11.9247 -before -11.9248 -▁carey -11.925 -▁scanned -11.925 -▁governors -11.9251 -▁mastering -11.9251 -jia -11.9252 -1943 -11.9254 -▁gardner -11.9256 -▁cease -11.9256 -▁fiddle -11.9256 -▁designers -11.9258 -▁resign -11.9259 -▁mortgage -11.9261 -550 -11.9261 -▁roo -11.9263 -ilia -11.9264 -9/ -11.9265 -▁gloves -11.9266 -fect -11.9268 -▁reagan -11.927 -▁modes -11.9273 -dham -11.9273 -until -11.9274 -▁watches -11.9275 -▁bowed -11.9277 -▁gou -11.9278 -▁measurements -11.928 -alam -11.9281 -▁cham -11.9281 -rada -11.9281 -▁lima -11.9283 -▁screams -11.9284 -▁troll -11.9284 -▁remake -11.9284 -▁ego -11.9286 -▁lever -11.9287 -▁realistic -11.9288 -▁qi -11.929 -▁bored -11.929 -▁shorts -11.9292 -▁mice -11.9292 -▁vu -11.9292 -▁leased -11.9292 -▁librarian -11.9293 -▁sacramento -11.9293 -▁packet -11.9295 -▁medalist -11.9296 -▁loading -11.9297 -▁stroked -11.9298 -▁transaction -11.9298 -▁genres -11.9298 -wat -11.93 -▁curator -11.9301 -▁combining -11.9303 -▁consort -11.9303 -colo -11.9304 -kur -11.9309 -▁modeling -11.9311 -▁benson -11.9312 -▁frames -11.9313 -▁syracuse -11.9314 -101 -11.9316 -▁lateral -11.9319 -dahl -11.9319 -▁diagnosis -11.932 -▁kri -11.9321 -▁ivory -11.9321 -▁dart -11.9321 -▁115 -11.9322 -▁stat -11.9323 -▁lambert -11.9323 -▁nipple -11.9325 -▁marketed -11.9329 -▁genome -11.9329 -▁amused -11.9329 -▁herzegovina -11.933 -kra -11.933 -words -11.9331 -lig -11.9333 -▁sem -11.9337 -▁josef -11.9339 -gues -11.9341 -▁optional -11.9342 -▁cyclo -11.9343 -bli -11.9343 -nr -11.9344 -▁reunited -11.9345 -cil -11.935 -▁default -11.935 -▁petty -11.9352 -▁galleries -11.9352 -▁trilogy -11.9352 -▁contacted -11.9356 -▁lara -11.9356 -▁spells -11.9357 -▁convenient -11.9357 -▁llc -11.9359 -▁shortage -11.9361 -flu -11.9362 -▁100% -11.9362 -▁fau -11.9362 -jp -11.9362 -acy -11.9363 -▁equations -11.9363 -▁frigate -11.9363 -▁ped -11.9364 -designated -11.9364 -▁hedge -11.9365 -▁useless -11.9366 -▁capturing -11.9368 -▁ecosystem -11.9368 -▁buttons -11.937 -▁hazel -11.9372 -▁salem -11.9372 -▁murmur -11.9372 -▁kemp -11.9374 -itu -11.9375 -▁cooling -11.9376 -pura -11.9376 -gau -11.9376 -▁adequate -11.9376 -▁augustus -11.9377 -▁pursuing -11.9379 -▁cartridge -11.9379 -▁jewelry -11.938 -▁numb -11.9381 -▁parishes -11.9385 -▁samantha -11.9385 -▁1938, -11.9386 -▁crust -11.9387 -▁prominence -11.939 -▁quantity -11.939 -▁symbolic -11.939 -▁persuaded -11.9391 -▁motto -11.9392 -▁clayton -11.9392 -▁betrayed -11.9394 -▁surroundings -11.9394 -riya -11.9394 -▁norm -11.9395 -▁realization -11.9396 -▁surprising -11.9397 -▁tas -11.9398 -▁ara -11.9399 -▁// -11.94 -▁gujarat -11.9401 -▁troubled -11.9401 -ein -11.9401 -control -11.9403 -jean -11.9404 -▁highlands -11.9406 -▁heavier -11.9406 -▁monarchy -11.9406 -jong -11.9406 -▁accessed -11.9407 -▁parameters -11.9407 -ege -11.9408 -▁webster -11.9409 -▁polymer -11.941 -america -11.9413 -▁laboratories -11.9417 -▁yemen -11.9418 -▁uruguay -11.9418 -▁nascar -11.9419 -▁wed -11.9419 -▁frances -11.942 -div -11.942 -▁bram -11.9421 -4/ -11.9424 -▁doubled -11.9427 -▁straw -11.9427 -▁filmmaker -11.9429 -▁contributor -11.943 -▁pt -11.9431 -▁teasing -11.9432 -▁printer -11.9434 -▁taller -11.9435 -▁waterfall -11.9435 -▁pos -11.9435 -▁lok -11.9436 -▁angus -11.9436 -erman -11.9436 -▁accordingly -11.9437 -▁occurrence -11.9439 -▁premium -11.9439 -▁1952, -11.9441 -▁rpm -11.9442 -▁collaborative -11.9444 -▁constituted -11.9445 -▁antique -11.9447 -▁grape -11.9447 -▁locks -11.9447 -▁subtropical -11.945 -▁endorsed -11.9451 -▁suv -11.9453 -tul -11.9455 -▁petroleum -11.9455 -▁choral -11.9456 -▁blowing -11.9457 -▁suited -11.9459 -filled -11.9461 -▁reversed -11.9462 -▁itunes -11.9463 -▁punched -11.9463 -dino -11.9467 -eman -11.9467 -▁amid -11.9471 -▁pinned -11.9473 -▁soprano -11.9474 -▁guessed -11.9476 -▁vegetables -11.9476 -▁exceptional -11.9478 -stroke -11.9479 -▁brewery -11.9479 -gic -11.948 -grant -11.9482 -▁sympathy -11.9482 -▁roses -11.9482 -bun -11.9486 -▁willis -11.9486 -ifies -11.9487 -▁malaysian -11.9487 -dall -11.9488 -▁papal -11.9488 -2,500 -11.9488 -▁lemon -11.9489 -jam -11.949 -▁lore -11.9491 -60% -11.9492 -▁czechoslovakia -11.9493 -soft -11.9493 -▁madagascar -11.9493 -▁slice -11.9494 -▁balkan -11.9495 -▁physicians -11.9496 -chrome -11.9496 -aircraft -11.9497 -▁sant -11.9498 -lr -11.9498 -▁teddy -11.9501 -▁poetic -11.9506 -▁shipped -11.9506 -▁cowboy -11.9508 -runner -11.9509 -▁comb -11.9509 -▁corp -11.951 -▁ecological -11.951 -european -11.951 -▁mumbled -11.9511 -▁mortar -11.9512 -lieu -11.9513 -▁1953, -11.9513 -enstein -11.9514 -▁incredibly -11.9515 -▁sympathetic -11.9515 -▁android -11.9516 -▁sulf -11.9517 -▁zombie -11.9518 -▁annoyed -11.9521 -▁pia -11.9521 -▁diamonds -11.9521 -▁stubborn -11.9522 -xe -11.9522 -▁ryder -11.9523 -▁heal -11.9524 -▁psychic -11.9525 -▁112 -11.9526 -kia -11.9526 -urdu -11.9528 -gang -11.9528 -▁nineteen -11.9529 -▁poster -11.9532 -▁teaches -11.9536 -clo -11.9537 -▁linux -11.9537 -▁itv -11.9538 -gress -11.9539 -▁switching -11.9541 -▁1815 -11.9541 -▁assess -11.9541 -▁bulletin -11.9541 -ppa -11.9542 -▁jug -11.9542 -▁toyota -11.9543 -nig -11.9543 -elin -11.9544 -▁summoned -11.9546 -damn -11.9546 -▁constantinople -11.9548 -▁organisms -11.9553 -70% -11.9553 -▁sociology -11.9553 -iser -11.9555 -▁advocated -11.9556 -▁probe -11.9557 -ulated -11.9557 -▁highlights -11.9558 -aunt -11.9559 -▁tomas -11.956 -▁derives -11.956 -▁ghosts -11.9563 -▁sailor -11.9564 -▁dragging -11.9565 -▁nak -11.9566 -uge -11.957 -insky -11.9571 -cian -11.9572 -cru -11.9573 -▁1814 -11.9573 -▁reviewer -11.9575 -▁watershed -11.9576 -▁caste -11.9577 -▁naka -11.9578 -fat -11.9578 -▁batch -11.9578 -rade -11.9578 -zhong -11.9579 -▁1831 -11.9581 -▁fitzgerald -11.9581 -▁bulls -11.9581 -▁hazard -11.9582 -▁outlets -11.9582 -fuse -11.9582 -bate -11.9584 -▁borrowed -11.9587 -usually -11.9587 -▁moonlight -11.9589 -▁nasty -11.959 -▁supplier -11.9592 -▁hail -11.9592 -▁cowboys -11.9595 -▁boring -11.9595 -zhen -11.9596 -▁compartment -11.9598 -▁encyclopedia -11.9598 -▁gibraltar -11.9598 -▁possibilities -11.9598 -▁profits -11.9599 -fast -11.96 -▁stuffed -11.96 -▁imaging -11.96 -▁shiny -11.9601 -▁pencil -11.9604 -▁strode -11.9606 -▁trauma -11.9607 -plate -11.9608 -▁spectacular -11.9609 -156 -11.9609 -witt -11.961 -▁1950, -11.9611 -abba -11.9611 -▁pastoral -11.9612 -▁appealed -11.9612 -▁wander -11.9618 -▁weaver -11.9618 -ctu -11.9618 -leh -11.9619 -▁mammals -11.962 -▁explicitly -11.9621 -scape -11.9621 -▁defines -11.9621 -▁feedback -11.9622 -▁gad -11.9623 -▁resume -11.9624 -▁enlarged -11.9625 -▁chaplain -11.9625 -▁engaging -11.9625 -▁narrowly -11.9626 -marie -11.9629 -rang -11.9629 -once -11.9629 -▁disputes -11.963 -▁patted -11.963 -▁procession -11.963 -▁broader -11.963 -▁employ -11.963 -166 -11.9631 -▁daemon -11.9631 -dhi -11.9633 -▁disability -11.9634 -▁lub -11.9634 -▁struggles -11.9635 -▁gamb -11.9635 -▁precision -11.9636 -▁elliot -11.9637 -rack -11.9638 -▁werent -11.9638 -▁hua -11.9639 -▁villagers -11.9641 -▁madness -11.9641 -▁informal -11.9644 -▁publicity -11.9645 -▁circa -11.9645 -▁cleaned -11.9645 -1928 -11.9647 -▁chassis -11.9647 -▁stil -11.9648 -▁transactions -11.9648 -▁confront -11.9648 -▁lori -11.965 -▁swinging -11.9651 -▁utilize -11.9651 -▁kashmir -11.9653 -▁varsity -11.9653 -▁kuwait -11.9654 -▁eleventh -11.9654 -▁dent -11.9654 -▁blown -11.9655 -▁bash -11.9655 -▁organs -11.9656 -▁manifest -11.9659 -glu -11.9662 -▁veil -11.9662 -▁rowing -11.9663 -▁handball -11.9663 -nya -11.9664 -▁loosely -11.9664 -▁fingertips -11.9664 -▁enabling -11.9664 -▁applies -11.9665 -▁complaint -11.9666 -▁linguistic -11.9667 -▁genesis -11.9667 -▁labels -11.9668 -institut -11.9669 -▁lew -11.9669 -▁afghan -11.967 -▁alberto -11.9673 -bm -11.9674 -▁stab -11.9675 -bye -11.9676 -▁unesco -11.9677 -▁doom -11.9682 -▁slit -11.9682 -bec -11.9683 -▁schemes -11.9685 -tant -11.9686 -157 -11.9688 -▁duran -11.9689 -▁lengths -11.9689 -christ -11.9689 -▁neal -11.9689 -fal -11.969 -▁peculiar -11.9692 -▁stur -11.9692 -▁paramount -11.9693 -▁wwe -11.9693 -▁fiber -11.9693 -▁purely -11.9695 -▁philippe -11.9697 -▁companions -11.9698 -▁pomp -11.9698 -tribu -11.9702 -ghe -11.9703 -tailed -11.9703 -▁consecrated -11.9704 -▁peterson -11.9704 -nny -11.9704 -▁ronnie -11.9705 -▁coordination -11.9705 -gai -11.9706 -▁bolton -11.9708 -▁fernandez -11.9709 -cao -11.971 -▁diane -11.9711 -▁claw -11.9712 -▁stir -11.9712 -▁clarence -11.9715 -▁128 -11.9715 -▁pang -11.9716 -▁sav -11.9716 -plo -11.9717 -▁spacecraft -11.9717 -▁louisville -11.9717 -everything -11.9721 -odes -11.9721 -▁3000 -11.9722 -vig -11.9722 -▁peck -11.9722 -kyo -11.9722 -▁champ -11.9726 -▁responses -11.9728 -167 -11.9728 -▁mongol -11.9732 -▁quarterly -11.9736 -mf -11.9737 -▁bonnie -11.9737 -▁bedford -11.9739 -▁survivor -11.9739 -china -11.9739 -▁rays -11.974 -▁dramatically -11.9744 -▁shotgun -11.9746 -▁smirk -11.9747 -▁estonian -11.9748 -▁punt -11.9748 -▁oclc -11.9748 -agon -11.9749 -lid -11.975 -▁beech -11.975 -▁1834 -11.9753 -▁ravi -11.9754 -▁marin -11.9758 -moor -11.9758 -▁eyed -11.9759 -▁enthusiasm -11.9759 -▁diaz -11.9759 -▁slate -11.9761 -▁chasing -11.9761 -bara -11.9762 -▁rouge -11.9762 -▁speeds -11.9765 -▁mull -11.9766 -▁rita -11.9766 -lund -11.9769 -grav -11.9769 -proof -11.977 -▁picks -11.9771 -▁doctoral -11.9771 -going -11.9772 -▁electorate -11.9772 -▁notre -11.9774 -▁bergen -11.9775 -▁deputies -11.9776 -utter -11.9776 -▁charming -11.9776 -▁sweetheart -11.9777 -▁arise -11.9779 -hora -11.978 -1927 -11.9782 -▁angles -11.9782 -chai -11.9783 -▁chronicles -11.9786 -jian -11.9787 -▁magnificent -11.9787 -▁slo -11.9789 -▁sadness -11.9789 -▁mlb -11.9789 -▁radius -11.9789 -▁marker -11.9792 -xxx -11.9792 -▁demolition -11.9793 -▁securities -11.9793 -▁motorway -11.9795 -oun -11.9796 -▁beaches -11.9797 -▁1914, -11.9797 -ake -11.9798 -▁appreciation -11.9798 -▁astronomer -11.9798 -▁isolation -11.9799 -1/2 -11.9802 -▁tak -11.9803 -lady -11.9803 -▁boyd -11.9803 -▁mapping -11.9803 -181 -11.9803 -vad -11.9804 -▁catholics -11.9804 -▁parachute -11.9804 -▁indicator -11.9804 -▁tipped -11.9804 -▁vein -11.9805 -▁bats -11.9805 -phra -11.9806 -▁conception -11.9808 -cke -11.9809 -▁sheikh -11.9809 -▁hawaiian -11.9811 -▁lisbon -11.9811 -129 -11.9812 -gp -11.9812 -▁lizard -11.9813 -▁gambling -11.9817 -uo -11.9817 -hira -11.9817 -▁utter -11.9817 -vio -11.9818 -offs -11.982 -1919 -11.982 -▁similarities -11.982 -ologie -11.9821 -phosphate -11.9821 -▁mash -11.9823 -anu -11.9823 -▁enacted -11.9826 -▁stamps -11.9826 -▁inception -11.9827 -▁tess -11.9827 -▁beacon -11.9828 -▁pity -11.9828 -▁ost -11.9831 -▁dissolution -11.9832 -▁blunt -11.9833 -bak -11.9835 -▁swiftly -11.9836 -italian -11.9837 -affirm -11.9837 -morphism -11.9838 -plus -11.9838 -hoy -11.984 -gov -11.9841 -onian -11.9842 -▁peaks -11.9842 -▁sued -11.9842 -▁thrill -11.9842 -▁yugoslav -11.9843 -distance -11.9846 -▁pee -11.9846 -▁benny -11.9847 -▁neighborhoods -11.9847 -imi -11.9847 -gina -11.9849 -1926 -11.985 -▁pleaded -11.9851 -144 -11.9855 -▁jos -11.9855 -▁volcano -11.9856 -bata -11.9858 -▁breakdown -11.9859 -▁dorsal -11.9859 -▁scrub -11.9861 -▁squadrons -11.9861 -▁zor -11.9862 -▁orchid -11.9862 -▁tighter -11.9862 -street -11.9864 -▁transmitted -11.9867 -pool -11.9869 -voice -11.987 -▁mystic -11.9874 -▁photographic -11.9874 -▁gao -11.9875 -▁explode -11.9876 -ident -11.9877 -▁caring -11.9877 -▁1951, -11.9877 -▁disadvantage -11.9878 -▁sophisticated -11.9878 -1925 -11.9878 -pb -11.9878 -contin -11.9879 -▁exceptions -11.988 -▁gabe -11.988 -▁fru -11.9881 -▁cuisine -11.9889 -▁insult -11.989 -episode -11.9891 -true -11.9892 -▁groom -11.9896 -▁kidney -11.9898 -editor -11.9899 -▁distress -11.99 -▁sizes -11.9901 -lost -11.9901 -hq -11.9901 -▁pretending -11.9903 -▁exotic -11.9903 -▁vicious -11.9904 -chat -11.9904 -▁chuckle -11.9904 -▁weekday -11.9904 -jee -11.9904 -nova -11.9907 -faced -11.9908 -▁weigh -11.9909 -▁hopefully -11.9913 -▁chand -11.9914 -▁midland -11.9916 -rca -11.9916 -▁coupled -11.9917 -▁assure -11.9917 -▁attributes -11.9918 -▁propeller -11.9918 -▁phi -11.9919 -▁talents -11.9921 -▁replica -11.9921 -▁1919, -11.9921 -▁confined -11.9923 -▁johannes -11.9924 -fjord -11.9924 -could -11.9925 -pani -11.9925 -cept -11.9925 -168 -11.9926 -▁sitcom -11.9926 -▁milli -11.9928 -▁wrapping -11.993 -agua -11.9931 -defined -11.9932 -▁panties -11.9932 -▁pratt -11.9933 -▁gol -11.9934 -▁expo -11.9936 -▁specially -11.9936 -▁shear -11.9936 -▁kris -11.9938 -▁umbrella -11.994 -arts -11.9943 -▁tem -11.9944 -▁shay -11.9944 -▁preacher -11.9945 -▁constitute -11.9945 -▁sentences -11.9948 -kop -11.9951 -▁yoga -11.9951 -▁erupted -11.9952 -▁newfoundland -11.9952 -▁emissions -11.9954 -polis -11.9955 -▁recon -11.9956 -▁omar -11.9957 -▁honda -11.9959 -▁celebrations -11.9959 -agan -11.9962 -lent -11.9962 -!' -11.9963 -▁ufc -11.9964 -▁yuri -11.9966 -▁portable -11.9968 -▁kindergarten -11.9968 -▁audit -11.9968 -signed -11.9969 -▁sicily -11.9969 -▁wears -11.9969 -▁chennai -11.9969 -▁breakthrough -11.997 -▁garion -11.997 -fb -11.9973 -▁mohammed -11.9975 -bron -11.9977 -▁romans -11.998 -wire -11.998 -rop -11.9983 -▁persuade -11.9985 -▁vatican -11.9986 -▁midway -11.9987 -ulf -11.9987 -▁providers -11.9989 -cad -11.9989 -kowski -11.9991 -gum -11.9991 -▁lex -11.9992 -▁wartime -11.9994 -▁dialects -11.9995 -stars -11.9997 -▁marian -11.9998 -▁disposal -11.9998 -▁securing -11.9998 -▁waving -11.9999 -▁generating -11.9999 -▁americas -12 -nb -12.0002 -uddin -12.0003 -uki -12.0004 -esse -12.0005 -▁gideon -12.0009 -▁ea -12.001 -▁kunst -12.0012 -330 -12.0014 -280 -12.0014 -kumar -12.0014 -▁hurting -12.0015 -▁wink -12.0015 -▁ecclesiastical -12.0018 -whatever -12.002 -147 -12.0021 -lom -12.0021 -▁viktor -12.0022 -▁resided -12.0023 -▁vista -12.0025 -▁determining -12.0027 -▁spectators -12.0027 -▁pau -12.0027 -▁tong -12.0029 -▁daytime -12.0031 -▁pardon -12.0031 -▁conversations -12.0034 -ede -12.0034 -jr -12.0035 -rena -12.0036 -pts -12.0036 -▁fossils -12.0037 -▁dude -12.0037 -▁retro -12.0037 -lein -12.0038 -▁crawled -12.0042 -iform -12.0042 -▁corona -12.0042 -angel -12.0044 -▁vibration -12.0044 -lix -12.0044 -▁cascade -12.0044 -▁disappearance -12.0045 -▁commuter -12.0047 -▁stray -12.0048 -dder -12.0048 -▁vos -12.0051 -▁corporations -12.0052 -figur -12.0052 -▁professionally -12.0052 -▁turtle -12.0053 -▁mvp -12.0053 -▁eliza -12.0054 -▁bren -12.0054 -crunch -12.0054 -1922 -12.0055 -▁patience -12.0056 -stal -12.0057 -▁quad -12.006 -▁archaeology -12.0061 -rata -12.0062 -pun -12.0062 -▁readily -12.0064 -▁shields -12.0065 -▁nora -12.0065 -▁throws -12.0066 -▁mimic -12.0067 -▁flexible -12.0067 -izes -12.0069 -▁curb -12.0071 -▁kv -12.0072 -▁guaranteed -12.0072 -▁lucia -12.0073 -▁mutant -12.0075 -agne -12.0075 -▁30,000 -12.0078 -those -12.0079 -▁lindsay -12.0079 -▁flav -12.0079 -strae -12.0081 -treat -12.0084 -wara -12.0084 -wich -12.0085 -rud -12.0089 -rab -12.0089 -▁cumberland -12.009 -▁avery -12.0091 -ope -12.0091 -▁jaya -12.0096 -▁atmospheric -12.0096 -▁1937, -12.0097 -medi -12.0098 -▁plo -12.0098 -eti -12.0099 -▁platoon -12.0099 -▁holidays -12.0101 -▁physicist -12.0102 -▁floyd -12.0102 -▁excluded -12.0103 -chon -12.0105 -litre -12.0106 -▁erect -12.0106 -thai -12.0108 -▁melted -12.0109 -▁darren -12.011 -▁classrooms -12.0111 -▁fritz -12.0111 -▁karnataka -12.0114 -▁offshore -12.0114 -▁translations -12.0115 -wife -12.0116 -dolph -12.0116 -▁lightweight -12.0117 -▁fails -12.012 -▁brake -12.012 -▁necklace -12.012 -▁gorge -12.012 -▁constantine -12.0122 -▁hiro -12.0123 -▁conform -12.0123 -▁hermann -12.0125 -▁emeritus -12.0125 -▁mistakes -12.0127 -ovi -12.0128 -▁finishes -12.0129 -endra -12.0129 -rok -12.0131 -▁substrate -12.0132 -▁1933, -12.0132 -ender -12.0133 -vale -12.0137 -▁thoroughly -12.0137 -▁intensive -12.0137 -▁tortured -12.0138 -▁banana -12.0138 -▁lent -12.0143 -▁randall -12.0146 -▁competitor -12.0146 -▁barrett -12.0148 -▁practicing -12.0148 -▁hag -12.0149 -▁1825 -12.0151 -shit -12.0154 -ambo -12.0155 -▁ore -12.0155 -▁injection -12.0156 -tid -12.0157 -1914 -12.0158 -▁seasonal -12.0159 -▁convincing -12.016 -metal -12.0161 -▁mascot -12.0161 -fight -12.0161 -▁disturbed -12.0166 -ques -12.0166 -▁ava -12.0167 -▁religions -12.0169 -▁disgust -12.0169 -▁oppose -12.0172 -▁islander -12.0172 -kr -12.0173 -▁1833 -12.0176 -▁jaguar -12.0178 -▁consortium -12.0178 -▁encoded -12.018 -▁feathers -12.018 -▁1,500 -12.0181 -chus -12.0182 -▁goose -12.0182 -mod -12.0183 -▁teresa -12.0184 -▁slack -12.0185 -▁addiction -12.0185 -▁cater -12.0186 -260 -12.0187 -▁rented -12.0188 -▁commanders -12.019 -▁waitress -12.019 -enter -12.0191 -start -12.0192 -ega -12.0192 -▁cube -12.0192 -linger -12.0193 -▁progressed -12.0194 -▁mormon -12.0194 -▁nit -12.0195 -▁lim -12.0195 -▁mister -12.0195 -▁jas -12.0196 -136 -12.0197 -wear -12.0198 -rog -12.0199 -having -12.0199 -1921 -12.0201 -▁detention -12.0201 -▁prolific -12.0201 -▁gossip -12.0201 -▁crescent -12.0201 -eger -12.0202 -164 -12.0202 -▁leone -12.0203 -nata -12.0205 -kit -12.0207 -▁dedication -12.0207 -▁abundant -12.0207 -▁awesome -12.0207 -oco -12.0209 -▁sermon -12.021 -▁dalton -12.021 -270 -12.021 -▁outward -12.0211 -brew -12.0212 -cylinder -12.0213 -▁coordinates -12.0215 -rica -12.0215 -▁hog -12.0216 -▁amor -12.0216 -▁sl -12.0218 -▁mccarthy -12.0219 -▁monetary -12.0219 -▁lig -12.0221 -/4 -12.0222 -▁biting -12.0224 -▁chap -12.0224 -▁crude -12.0224 -tp -12.0224 -full -12.0225 -▁tehran -12.0225 -▁psychologist -12.0225 -▁tragic -12.0227 -▁battleship -12.0228 -▁irrigation -12.0231 -▁commentator -12.0231 -peter -12.0234 -fus -12.0234 -assemble -12.0234 -eka -12.0234 -▁semester -12.0237 -cene -12.0237 -▁sanskrit -12.0238 -tol -12.0244 -▁witches -12.0246 -▁accompany -12.0247 -▁specialty -12.0248 -▁develops -12.0248 -▁appreciated -12.0249 -▁tricks -12.025 -▁trafficking -12.0253 -▁treating -12.0254 -▁tyre -12.0254 -▁reporters -12.0256 -▁uncertainty -12.0256 -▁inhabit -12.0258 -dark -12.0258 -▁collaborator -12.026 -▁regina -12.026 -▁favored -12.0261 -154 -12.0261 -serving -12.0262 -▁incorporates -12.0262 -▁nodding -12.0262 -▁launching -12.0262 -▁commando -12.0264 -▁warden -12.0265 -pul -12.0265 -▁mattress -12.0267 -▁formats -12.0267 -▁butcher -12.0268 -▁greeting -12.027 -▁brittany -12.0272 -▁nuts -12.0272 -▁strengthen -12.0273 -▁wards -12.0274 -▁passive -12.0275 -▁cavern -12.0276 -▁termed -12.0278 -▁sovereignty -12.0279 -▁substantially -12.0281 -▁laughs -12.0283 -▁terminated -12.0284 -▁unemployment -12.0284 -kka -12.0284 -▁descendant -12.0285 -bble -12.0285 -▁identifying -12.0286 -137 -12.0286 -▁quantities -12.029 -immer -12.0291 -▁tasmania -12.0292 -wp -12.0295 -▁ambitious -12.0296 -▁disbelief -12.0296 -▁maharashtra -12.0296 -▁penalties -12.0296 -▁watt -12.0299 -▁vet -12.0299 -▁pseudonym -12.0301 -650 -12.0302 -doc -12.0302 -▁xbox -12.0305 -▁lorenzo -12.0309 -▁angola -12.0311 -jit -12.0311 -▁elvis -12.0311 -▁illustrator -12.0313 -illon -12.0314 -▁partnered -12.0315 -▁affecting -12.0318 -university -12.0318 -▁irre -12.0319 -▁fireplace -12.0319 -▁advocacy -12.0319 -bbe -12.0319 -▁bengali -12.032 -▁unsure -12.0321 -garh -12.0322 -▁judy -12.0323 -▁coward -12.0328 -family -12.0329 -▁integer -12.0333 -▁imprint -12.0333 -▁proportional -12.0334 -▁prediction -12.0334 -▁muller -12.0335 -▁macedonian -12.0336 -oki -12.0336 -▁lowland -12.0336 -books -12.0337 -▁publishes -12.0338 -flat -12.0339 -▁synthetic -12.034 -▁expressions -12.0342 -▁expose -12.0343 -▁philharmonic -12.0343 -loe -12.0344 -158 -12.0345 -134 -12.0346 -▁kidding -12.0346 -▁burrow -12.0347 -▁chaired -12.0347 -▁stag -12.0347 -▁summers -12.0347 -▁201415 -12.0348 -▁submarines -12.0348 -▁4,000 -12.0349 -▁valued -12.035 -bud -12.035 -coe -12.0352 -▁duel -12.0353 -▁charted -12.0354 -▁extrem -12.0354 -▁inheritance -12.0355 -▁parody -12.0355 -159 -12.0358 -hiro -12.036 -▁adel -12.0363 -▁hastings -12.0365 -▁worm -12.0365 -gill -12.0366 -chev -12.0366 -▁irving -12.0368 -def -12.0368 -▁intend -12.0369 -tala -12.0369 -▁toast -12.037 -▁lend -12.0373 -▁telugu -12.0373 -▁peach -12.0375 -ando -12.0375 -▁clash -12.0376 -▁clone -12.0376 -▁aloud -12.0376 -▁splash -12.0379 -▁raphael -12.0379 -▁inventory -12.038 -▁latvia -12.0382 -▁vil -12.0383 -▁saxon -12.0385 -▁lebanese -12.0385 -nh -12.0385 -▁jockey -12.0386 -▁cries -12.0386 -▁piston -12.0388 -avo -12.0388 -▁lengthy -12.0389 -▁undertook -12.039 -▁slaughter -12.039 -▁201213 -12.0391 -▁prayers -12.0395 -benz -12.0395 -listen -12.0395 -▁dominion -12.0397 -▁gore -12.0399 -▁halted -12.0399 -▁twisting -12.04 -▁comeback -12.0401 -▁authored -12.0402 -illus -12.0407 -▁mace -12.0408 -kos -12.0409 -jour -12.0409 -▁quin -12.041 -▁valentin -12.041 -▁strained -12.0411 -▁rei -12.0412 -▁2020 -12.0412 -▁andreas -12.0412 -▁hob -12.0414 -▁moaned -12.0414 -▁gifted -12.0414 -acion -12.0414 -▁arrows -12.0415 -▁orgasm -12.0415 -▁riverside -12.0416 -▁matthews -12.0418 -▁shak -12.0419 -174 -12.042 -▁evolutionary -12.0422 -logging -12.0423 -▁opted -12.0423 -death -12.0425 -▁modifications -12.0427 -esa -12.0428 -▁sed -12.043 -▁bugs -12.0432 -▁financing -12.0433 -▁seam -12.0433 -▁pedal -12.0433 -▁shoots -12.0434 -▁personalities -12.0436 -▁websites -12.0437 -raz -12.0438 -▁regulate -12.0439 -▁freshwater -12.0441 -▁touches -12.0442 -hearted -12.0442 -▁celebrities -12.0445 -▁miserable -12.0445 -▁screened -12.0447 -▁aided -12.0447 -▁cameo -12.0447 -▁replay -12.0447 -▁analyst -12.0448 -esca -12.0449 -▁documentation -12.0449 -▁instances -12.0451 -sek -12.0451 -146 -12.0451 -▁1936, -12.0452 -▁davidson -12.0452 -mona -12.0455 -▁assign -12.0455 -▁fitz -12.0455 -▁meditation -12.0457 -xo -12.0458 -▁parkway -12.0458 -dee -12.0458 -▁geometric -12.0459 -▁sonata -12.0459 -▁capt -12.046 -▁overtime -12.0463 -▁georgetown -12.0463 -▁nigel -12.0463 -▁racer -12.0465 -▁trustee -12.0466 -▁balanced -12.0467 -▁shone -12.0468 -▁byron -12.0469 -▁aviv -12.047 -joy -12.047 -structure -12.047 -▁megan -12.0471 -▁synth -12.0471 -cog -12.0472 -▁gull -12.0472 -pir -12.0472 -andra -12.0475 -▁wholly -12.0476 -▁cassette -12.0477 -▁attendant -12.048 -▁plural -12.048 -▁rockets -12.0483 -▁rican -12.0484 -▁scholarly -12.0485 -ously -12.0485 -▁remarks -12.0486 -▁coma -12.0486 -▁zar -12.0486 -original -12.0487 -▁beverly -12.0487 -▁emerson -12.0488 -▁batted -12.0488 -138 -12.049 -131 -12.049 -▁paved -12.0491 -▁hormone -12.0493 -▁myanmar -12.0493 -model -12.0493 -▁cameroon -12.0494 -fascist -12.0494 -mei -12.0495 -mous -12.0495 -▁homestead -12.0496 -▁announcer -12.0497 -▁bodyguard -12.0497 -breaker -12.0498 -▁1934, -12.0499 -▁201314 -12.0499 -169 -12.0502 -▁pathway -12.0503 -▁incomplete -12.0505 -▁tex -12.0505 -▁wheelchair -12.0505 -▁hymn -12.0505 -▁canberra -12.0511 -onym -12.0512 -▁rud -12.0512 -▁sexually -12.0513 -▁deity -12.0513 -gm -12.0516 -▁tina -12.0517 -circ -12.0518 -▁mb -12.052 -cry -12.0522 -▁liquor -12.0523 -▁av -12.0523 -▁135 -12.0528 -▁employers -12.0528 -▁paired -12.053 -▁complications -12.053 -single -12.0532 -root -12.0532 -▁helsinki -12.0535 -▁suffolk -12.0535 -▁mercer -12.0536 -▁grun -12.0536 -▁utterly -12.0539 -nak -12.054 -▁cadet -12.0541 -▁dudley -12.0542 -featuring -12.0542 -▁predators -12.0543 -▁uncommon -12.0545 -▁nazis -12.0547 -chair -12.0548 -▁pak -12.055 -lute -12.0551 -▁#4 -12.0551 -player -12.0552 -government -12.0553 -jou -12.0553 -▁rae -12.0553 -▁distributor -12.0554 -▁guerrilla -12.0554 -▁autonomy -12.0554 -khi -12.0556 -ref -12.0556 -▁meantime -12.0556 -▁choked -12.0557 -▁levy -12.0557 -bane -12.0558 -▁brewer -12.0559 -▁oversee -12.0559 -nix -12.0559 -▁archdiocese -12.056 -▁recommendation -12.0561 -▁werewolf -12.0562 -▁nile -12.0563 -cover -12.0564 -▁limitations -12.0567 -major -12.0567 -vina -12.0571 -▁defenders -12.0572 -gall -12.0572 -aster -12.0572 -▁ferrari -12.0573 -horse -12.0573 -▁randolph -12.0573 -sphere -12.0576 -tsi -12.0577 -gata -12.0577 -▁knox -12.0578 -▁sikh -12.0578 -isbn -12.0579 -▁slower -12.0579 -product -12.058 -▁evelyn -12.0585 -▁weighed -12.0586 -▁basilica -12.0587 -▁kab -12.0588 -▁111 -12.0589 -▁selective -12.0589 -conf -12.059 -▁gw -12.059 -▁portrayal -12.0593 -▁shrub -12.0595 -probably -12.0596 -▁slash -12.0596 -▁congressman -12.0598 -▁damien -12.0599 -▁prizes -12.0599 -▁comparative -12.0601 -▁dow -12.0601 -▁pipes -12.0602 -▁innocence -12.0602 -▁frederic -12.0603 -nese -12.0603 -▁flicked -12.0605 -▁comparable -12.0609 -▁prohibition -12.0609 -▁romeo -12.0609 -▁rudolf -12.0609 -web -12.0609 -near -12.061 -▁effectiveness -12.061 -▁gai -12.0611 -▁scary -12.0611 -▁aliens -12.0611 -▁wrists -12.0613 -working -12.0614 -▁outskirts -12.0615 -▁knelt -12.0615 -▁dot -12.0615 -▁antarctica -12.0616 -▁apology -12.0616 -logical -12.0616 -▁barton -12.0618 -nts -12.0619 -▁ingredients -12.0621 -lur -12.0622 -▁zur -12.0622 -▁siren -12.0624 -▁skiing -12.0626 -tir -12.0627 -ether -12.0627 -hungarian -12.063 -▁vivian -12.0631 -eid -12.0633 -otti -12.0634 -▁20% -12.0634 -enbach -12.0635 -▁batter -12.0636 -▁fib -12.0637 -▁arent -12.064 -▁cousins -12.064 -▁1824 -12.0641 -directed -12.0642 -▁rover -12.0647 -▁behave -12.0647 -▁delivering -12.0647 -▁retaining -12.0647 -▁addressing -12.065 -▁pearson -12.0653 -▁hetero -12.0653 -▁tasted -12.0656 -▁leans -12.0657 -shift -12.0658 -political -12.0658 -▁tay -12.0658 -dim -12.0659 -▁diagram -12.0659 -▁shifts -12.0659 -▁ethno -12.0661 -▁1810 -12.0661 -▁bryant -12.0662 -▁shove -12.0663 -▁promoter -12.0664 -emer -12.0665 -▁yelling -12.0665 -▁carmel -12.0665 -▁binary -12.0666 -▁201516 -12.0667 -▁recorder -12.0667 -lung -12.0669 -▁functioning -12.0669 -▁eugen -12.0669 -▁specification -12.067 -ww -12.0672 -▁regards -12.0673 -▁jing -12.0673 -▁stems -12.0674 -▁painters -12.0674 -▁ensuring -12.0676 -▁skate -12.068 -▁disguise -12.0683 -▁thief -12.0683 -▁ache -12.0683 -bek -12.0685 -epa -12.0686 -bauer -12.0688 -▁regulated -12.0689 -▁whipped -12.069 -cea -12.0691 -▁robbie -12.0691 -▁samoa -12.0691 -▁absorb -12.0693 -▁ponder -12.0693 -▁worcester -12.0694 -▁trombone -12.0695 -▁tomatoes -12.0695 -▁emblem -12.0696 -▁refugee -12.0696 -▁eighty -12.0699 -▁migrated -12.07 -▁deficit -12.0701 -▁sophomore -12.0701 -▁trout -12.0701 -▁posthumously -12.0701 -▁wandering -12.0703 -alla -12.0703 -▁rna -12.0703 -▁erotic -12.0704 -▁subscription -12.0707 -▁dimitri -12.0707 -▁inserted -12.0707 -▁1920, -12.0708 -▁correspond -12.0709 -▁condo -12.0711 -▁pho -12.0713 -▁demographic -12.0713 -▁christina -12.0715 -▁obe -12.0715 -alaya -12.0715 -▁lyric -12.0716 -▁reyes -12.0717 -▁dispatch -12.0719 -▁cub -12.072 -empt -12.0721 -▁livingston -12.0724 -▁sore -12.0725 -▁salvation -12.0725 -▁commissioners -12.0727 -▁meals -12.0728 -▁milo -12.0729 -▁exclaimed -12.0729 -▁screens -12.0729 -▁overlooking -12.073 -arro -12.073 -▁cane -12.073 -▁precursor -12.0732 -▁mozart -12.0732 -eiro -12.0732 -▁1821 -12.0732 -▁auburn -12.0733 -asia -12.0733 -sided -12.0735 -148 -12.0736 -▁aidan -12.0737 -▁crept -12.0739 -▁strangers -12.0739 -bour -12.0741 -▁hassan -12.0743 -▁vowel -12.0744 -▁platt -12.0744 -util -12.0744 -▁armament -12.0744 -▁helicopters -12.0745 -river -12.0746 -▁sandra -12.0746 -dead -12.0746 -▁tends -12.0748 -▁midst -12.0749 -▁kip -12.0749 -ibility -12.075 -▁thom -12.075 -▁begging -12.0751 -▁rides -12.0752 -▁logistics -12.0752 -▁sweeping -12.0753 -▁jeep -12.0754 -rong -12.0756 -▁landowner -12.0759 -▁columnist -12.0761 -▁astronomy -12.0763 -▁marquis -12.0763 -▁headache -12.0765 -▁ceremonial -12.0769 -▁freezing -12.0772 -▁halls -12.0772 -dg -12.0773 -zawa -12.0773 -▁razor -12.0774 -▁feminine -12.0775 -leu -12.0776 -▁cambodia -12.0778 -▁agony -12.0779 -▁sideways -12.078 -gest -12.0781 -▁schw -12.0781 -prince -12.0782 -▁tibet -12.0783 -▁elk -12.0783 -rado -12.0784 -▁commands -12.0785 -▁starr -12.0786 -▁sparks -12.0786 -wow -12.0787 -▁implies -12.0788 -▁aqua -12.079 -▁giggle -12.079 -▁1935, -12.079 -mania -12.0791 -▁lat -12.0791 -▁bonn -12.0792 -tele -12.0793 -▁pouring -12.0793 -▁alf -12.0795 -▁amp -12.0796 -aram -12.0797 -1923 -12.0797 -nium -12.0798 -▁viking -12.0799 -▁fulfill -12.08 -saki -12.08 -▁prefix -12.0801 -▁flashing -12.0804 -▁ethical -12.0804 -▁gregor -12.0804 -hei -12.0806 -▁curl -12.0807 -▁nervously -12.0812 -each -12.0813 -▁trailing -12.0813 -wild -12.0814 -▁unhappy -12.0814 -▁utilized -12.0814 -cili -12.0815 -▁adjust -12.0815 -uj -12.0815 -close -12.0816 -140 -12.0816 -sec -12.0818 -▁waking -12.0818 -▁dresden -12.0819 -200,000 -12.0819 -gma -12.0821 -▁teenagers -12.0821 -▁dix -12.0822 -▁vivid -12.0823 -album -12.0824 -▁tao -12.0825 -▁titular -12.0825 -pelle -12.0825 -▁extant -12.0826 -▁newcomer -12.0826 -▁charging -12.0826 -▁doubted -12.0826 -▁labeled -12.0827 -▁reflex -12.0827 -▁prick -12.0828 -▁authentic -12.0829 -▁garnered -12.0829 -▁clutch -12.083 -▁attained -12.0831 -▁slogan -12.0832 -ough -12.0835 -▁sorts -12.0835 -▁worthy -12.0836 -bois -12.0837 -▁transcription -12.084 -bana -12.0841 -▁merry -12.0842 -kilometre -12.0842 -fab -12.0843 -dj -12.0843 -▁wendy -12.0845 -ost -12.0847 -double -12.0847 -▁intra -12.0847 -▁judith -12.0851 -ardi -12.0852 -▁dismiss -12.0852 -▁highlight -12.0852 -bull -12.0855 -categor -12.0856 -iwa -12.0857 -▁cultivated -12.0857 -▁horace -12.0858 -▁dusty -12.0859 -▁1929, -12.0861 -▁resemble -12.0862 -mog -12.0863 -tris -12.0864 -▁giuseppe -12.0869 -▁patterson -12.0869 -ncy -12.0869 -▁pow -12.0871 -offici -12.0871 -▁teased -12.0874 -kou -12.0874 -▁gomez -12.0875 -▁wyatt -12.0875 -▁coronation -12.0876 -▁breasts -12.0876 -▁cod -12.0877 -yal -12.0878 -152 -12.0879 -obi -12.0881 -dore -12.0882 -▁fei -12.0882 -▁softball -12.0884 -cker -12.0885 -▁drowned -12.0886 -▁jacksonville -12.0888 -▁yank -12.0888 -▁porto -12.0888 -▁admired -12.089 -▁distraction -12.089 -▁flex -12.089 -▁pest -12.089 -▁lure -12.0891 -▁chalk -12.0892 -▁motivated -12.0893 -▁wicket -12.0894 -laden -12.0894 -leave -12.0895 -▁hierarchy -12.0899 -▁drone -12.09 -▁dances -12.09 -▁flushed -12.09 -skaya -12.0904 -▁interval -12.0905 -▁haiti -12.0906 -hov -12.0906 -▁conceptual -12.0908 -aldi -12.0908 -between -12.091 -million -12.091 -▁cnn -12.091 -▁criminals -12.0911 -▁presently -12.0911 -▁peters -12.0912 -▁bangkok -12.0913 -▁goat -12.0913 -tral -12.0913 -▁winchester -12.0914 -cooled -12.0914 -dev -12.0915 -lect -12.0916 -▁dav -12.0916 -▁ucla -12.0917 -▁blossom -12.0919 -▁prostitute -12.0919 -▁grenade -12.0919 -▁fischer -12.0919 -▁deserted -12.0919 -▁201112 -12.092 -▁scot -12.092 -bonne -12.0921 -▁pinch -12.0921 -▁mortality -12.0922 -▁1829 -12.0922 -▁lobe -12.0923 -▁lethal -12.0924 -▁despair -12.0925 -▁inferior -12.0925 -▁swore -12.0926 -▁costumes -12.0927 -▁irene -12.0927 -▁kum -12.0929 -ales -12.0929 -hav -12.0931 -▁burger -12.0931 -▁forearm -12.0932 -ages -12.0932 -meaning -12.0933 -▁maori -12.0934 -cti -12.0937 -▁disciplines -12.0938 -▁examining -12.0938 -▁borrow -12.0938 -▁spatial -12.0939 -▁preparations -12.0939 -resistant -12.094 -originally -12.094 -▁sufficiently -12.094 -▁calmly -12.0941 -▁creep -12.0944 -▁hyderabad -12.0944 -▁fragile -12.0944 -▁nj -12.0946 -agi -12.0947 -▁torres -12.0947 -▁basque -12.0948 -▁barker -12.0948 -igne -12.095 -▁anima -12.0951 -▁weston -12.0953 -driven -12.0954 -▁surveys -12.0955 -▁peers -12.0956 -▁uttar -12.0958 -▁toledo -12.0958 -mila -12.0959 -▁kata -12.096 -▁shifter -12.0961 -▁clusters -12.0962 -▁fleming -12.0963 -▁nga -12.0963 -▁serra -12.0964 -▁inscriptions -12.0964 -▁winters -12.0965 -profile -12.0966 -▁offspring -12.0967 -▁cheng -12.0969 -without -12.0969 -kir -12.097 -▁naomi -12.0971 -▁libya -12.0971 -▁cort -12.0972 -153 -12.0975 -qual -12.0975 -▁beverage -12.0976 -▁folklore -12.0976 -▁alison -12.0978 -▁folding -12.098 -▁bard -12.098 -ulla -12.0981 -▁ibrahim -12.0982 -▁eurovision -12.0983 -▁dominate -12.0984 -▁50,000 -12.0984 -taro -12.0985 -uw -12.0986 -▁christie -12.0987 -▁snakes -12.0988 -▁relieve -12.099 -▁councillors -12.0993 -▁demise -12.0993 -▁playground -12.0993 -▁cir -12.0994 -▁frei -12.0994 -▁chartered -12.0994 -▁austro -12.0995 -▁applicable -12.0995 -▁norwich -12.0996 -▁edith -12.0996 -kla -12.0997 -▁motioned -12.0998 -champion -12.0998 -ango -12.0999 -▁prima -12.0999 -ink -12.0999 -340 -12.0999 -hero -12.0999 -1924 -12.1 -▁constituencies -12.1001 -▁eternity -12.1001 -akka -12.1004 -▁unnamed -12.1005 -▁thermo -12.1005 -▁satan -12.1005 -▁escorted -12.1006 -iner -12.1007 -▁cerambycidae -12.1008 -▁teachings -12.101 -▁trench -12.101 -▁protesters -12.101 -▁leigh -12.101 -dub -12.1011 -▁begged -12.1012 -▁brotherhood -12.1012 -▁folks -12.1014 -eux -12.1014 -anger -12.1015 -▁haz -12.1015 -▁peasant -12.1016 -▁confronted -12.1016 -▁nikola -12.1017 -▁accomplish -12.1019 -▁atom -12.102 -pong -12.102 -drive -12.1021 -apo -12.1022 -▁attachment -12.1022 -▁maze -12.1023 -dol -12.1024 -▁conservatives -12.103 -▁barge -12.103 -▁tessa -12.103 -▁planting -12.1031 -olin -12.1032 -▁champagne -12.1033 -▁discourse -12.1034 -staff -12.1037 -▁confess -12.1037 -rev -12.1038 -ako -12.1038 -mai -12.1039 -rrell -12.1039 -▁wheeler -12.1041 -▁treatise -12.1041 -help -12.1045 -▁marx -12.1045 -arri -12.1045 -▁millimetres -12.1046 -▁panthers -12.1047 -▁gamma -12.1047 -tory -12.105 -▁winding -12.1051 -▁shortened -12.1051 -luk -12.1051 -▁polished -12.1054 -▁crashing -12.1054 -▁tasked -12.1055 -▁blackburn -12.1058 -▁socio -12.1059 -▁correction -12.1059 -wag -12.106 -▁aurora -12.106 -seeded -12.106 -▁coefficient -12.106 -▁exposition -12.106 -▁sven -12.106 -▁resisted -12.1061 -teacher -12.1061 -economic -12.1062 -▁unfair -12.1063 -▁zhao -12.1063 -drums -12.1063 -▁nw -12.1063 -▁tremendous -12.1065 -▁$8 -12.1065 -▁anthropology -12.1065 -▁scenic -12.1065 -cats -12.1066 -▁theaters -12.1067 -▁ancestor -12.1068 -▁fold -12.1068 -▁notebook -12.1068 -▁detached -12.1069 -▁shawn -12.1069 -▁surveyed -12.107 -▁slovak -12.1073 -▁intel -12.1074 -dak -12.1076 -▁standings -12.1079 -▁heel -12.1081 -published -12.1082 -▁advise -12.1083 -rion -12.1084 -ggio -12.1084 -oir -12.1085 -nev -12.1086 -▁enables -12.1087 -rek -12.1088 -▁montenegro -12.1091 -▁antagonist -12.1091 -▁saturn -12.1093 -▁normandy -12.1093 -▁weber -12.1093 -itic -12.1093 -▁15,000 -12.1094 -▁saxony -12.1095 -zai -12.1096 -▁zagreb -12.1097 -▁exeter -12.1098 -▁downstream -12.1099 -effective -12.11 -cere -12.1102 -▁counterpart -12.1103 -▁zan -12.1105 -149 -12.1107 -▁inclined -12.1107 -▁comply -12.1107 -inen -12.1107 -▁torment -12.1107 -▁disrupt -12.1107 -verlag -12.1107 -▁reside -12.1108 -▁brushing -12.1109 -▁elisabeth -12.111 -rec -12.1111 -▁wedge -12.1113 -ranking -12.1114 -▁helpless -12.1115 -▁omni -12.1116 -▁cultivation -12.1116 -▁chemicals -12.1119 -▁payne -12.1119 -holding -12.1122 -▁bowler -12.1122 -▁advantages -12.1122 -▁defining -12.1123 -▁beans -12.1123 -boys -12.1126 -authored -12.1128 -aris -12.1128 -▁stool -12.113 -▁dab -12.1131 -▁discount -12.1132 -▁insert -12.1133 -eaux -12.1134 -▁sheer -12.1134 -▁campuses -12.1134 -▁1928, -12.1136 -▁steele -12.1139 -▁arches -12.1142 -▁automotive -12.1142 -▁escaping -12.1142 -▁alta -12.1143 -▁forewings -12.1144 -▁hari -12.1145 -▁hodge -12.1145 -▁owed -12.115 -direct -12.115 -▁advent -12.115 -▁baden -12.1153 -▁witt -12.1154 -▁incorporate -12.1155 -▁satisfy -12.1155 -flo -12.1156 -▁titan -12.1156 -▁sketches -12.1158 -▁camden -12.116 -▁selfish -12.116 -posing -12.1161 -▁stressed -12.1161 -▁implied -12.1162 -▁pigeon -12.1162 -▁clary -12.1164 -▁theft -12.1167 -▁tolerate -12.1168 -▁evacuation -12.1168 -▁jupiter -12.1168 -▁sylvia -12.1168 -▁ninja -12.117 -▁turks -12.117 -▁frankie -12.117 -▁disagreement -12.1171 -▁riots -12.1173 -▁chased -12.1173 -wd -12.1173 -▁celebrating -12.1175 -▁omaha -12.1175 -▁flour -12.1178 -▁$10 -12.118 -science -12.1181 -▁terrestrial -12.1181 -▁summary -12.1182 -▁approve -12.1183 -▁hanover -12.1184 -▁117 -12.1184 -eric -12.1184 -▁loses -12.1185 -▁thrash -12.1185 -▁implications -12.1186 -▁insufficient -12.1187 -▁dexter -12.1188 -flight -12.1188 -▁distribute -12.119 -▁forrest -12.119 -▁lud -12.1193 -▁salad -12.1193 -tribute -12.1195 -▁traits -12.1195 -▁anita -12.1196 -▁sonic -12.1197 -▁coil -12.1198 -▁airways -12.1199 -▁differs -12.12 -▁processor -12.1201 -▁cycles -12.1201 -tara -12.1202 -▁rav -12.1202 -▁visions -12.1205 -▁yearly -12.1206 -▁chromosome -12.1207 -▁bmw -12.1207 -▁cubs -12.1207 -▁rash -12.1208 -▁pap -12.1208 -▁superhero -12.1208 -church -12.1209 -▁deacon -12.1209 -▁reproduction -12.1212 -jang -12.1215 -▁albion -12.1216 -▁digest -12.1217 -▁reno -12.122 -traditional -12.122 -eminent -12.122 -▁parsons -12.122 -▁displaced -12.1221 -video -12.1222 -rim -12.1223 -▁113 -12.1224 -▁tearing -12.1224 -district -12.1225 -▁elector -12.1226 -▁critique -12.1226 -virus -12.1227 -woo -12.1231 -▁carlton -12.1232 -▁phases -12.1232 -▁canceled -12.1233 -▁disturbance -12.1233 -▁frequencies -12.1233 -▁concord -12.1234 -▁vague -12.1234 -▁catalan -12.1234 -voy -12.1238 -▁participant -12.1239 -▁knob -12.124 -▁catcher -12.124 -▁mobility -12.124 -▁barrow -12.124 -▁thu -12.1241 -▁wages -12.1242 -▁chit -12.1242 -▁archie -12.1243 -enza -12.1245 -liner -12.1245 -▁grocery -12.1246 -▁cancel -12.1246 -▁brood -12.1246 -▁ragged -12.1247 -▁dreaming -12.1247 -▁hiking -12.125 -chak -12.125 -310 -12.125 -▁overthrow -12.1252 -▁organizational -12.1252 -▁perimeter -12.1253 -math -12.1257 -tino -12.1257 -▁smug -12.1258 -▁purchasing -12.1259 -▁emerald -12.1259 -▁phones -12.1259 -▁forestry -12.126 -▁outcomes -12.126 -▁clown -12.1261 -fuel -12.1262 -▁eighteenth -12.1263 -▁tiles -12.1263 -▁sober -12.1265 -▁guides -12.1266 -▁administer -12.1266 -▁angelo -12.1267 -▁wandered -12.1268 -many -12.1268 -▁succeeding -12.1268 -▁cellular -12.1271 -1915 -12.1271 -tonic -12.1272 -▁fragment -12.1272 -▁assam -12.1273 -▁evacuated -12.1276 -▁ringing -12.1277 -covered -12.1278 -▁wimbledon -12.1279 -▁attic -12.128 -add -12.1281 -often -12.1282 -yoshi -12.1282 -▁gb -12.1283 -1917 -12.1283 -▁ostr -12.1283 -▁teamed -12.1284 -▁silicon -12.1285 -▁transparent -12.1285 -iidae -12.1285 -▁compression -12.1286 -▁sensor -12.1286 -rance -12.1287 -thal -12.1287 -ulator -12.1289 -commun -12.1289 -▁statewide -12.129 -▁tsar -12.1291 -▁calcutta -12.1292 -▁botanical -12.1292 -▁fiona -12.1293 -▁nolan -12.1293 -want -12.1295 -▁washing -12.1296 -▁nana -12.1297 -▁abel -12.1297 -▁lifelong -12.1299 -oud -12.1299 -posi -12.13 -▁emphasized -12.13 -▁colombian -12.13 -oshi -12.1301 -pana -12.1303 -militar -12.1303 -▁pasture -12.1306 -birds -12.1309 -139 -12.131 -lion -12.131 -ager -12.1311 -▁flynn -12.1311 -▁adjoining -12.1311 -istan -12.1313 -▁midlands -12.1316 -▁volk -12.1316 -▁descend -12.1317 -▁landscapes -12.1318 -▁yong -12.1319 -▁rejection -12.132 -▁rath -12.1323 -▁dys -12.1323 -▁automated -12.1324 -▁unwilling -12.1325 -▁harriet -12.1325 -▁feb -12.1325 -▁rapids -12.1326 -▁antwerp -12.1331 -▁jubilee -12.1331 -▁submerged -12.1331 -▁tires -12.1331 -giri -12.1332 -vard -12.1333 -▁peaking -12.1334 -▁gha -12.1334 -hani -12.1334 -▁peek -12.1336 -141 -12.1336 -▁resembles -12.1339 -▁revenues -12.1341 -amir -12.1341 -▁halo -12.1342 -1,4 -12.1342 -connell -12.1343 -▁flap -12.1343 -kid -12.1344 -▁stabbed -12.1345 -owitz -12.1345 -▁broker -12.1345 -▁chandler -12.1345 -wg -12.1346 -sov -12.1347 -▁forge -12.1347 -▁tempo -12.1349 -▁garment -12.135 -▁gloucester -12.1351 -excluding -12.1351 -▁fiba -12.1352 -xen -12.1352 -should -12.1352 -▁1826 -12.1353 -▁dye -12.1354 -▁verde -12.1354 -another -12.1355 -crea -12.1355 -▁trends -12.1355 -▁nonprofit -12.1356 -▁carrie -12.1357 -▁vintage -12.1357 -▁facial -12.1358 -▁conscience -12.1358 -record -12.1361 -143 -12.1362 -▁podium -12.1365 -▁soloist -12.1365 -dae -12.1366 -▁aura -12.1366 -▁bray -12.1367 -▁builder -12.1368 -▁compatible -12.1368 -news -12.137 -▁tho -12.137 -▁casually -12.1371 -▁chord -12.1372 -▁fang -12.1372 -▁facto -12.1376 -eros -12.1376 -▁compliance -12.1377 -▁seymour -12.1377 -urban -12.1377 -agu -12.1378 -▁reminder -12.1378 -sac -12.1379 -▁traders -12.1381 -nch -12.1381 -oca -12.1382 -▁tensions -12.1383 -▁princes -12.1383 -▁displacement -12.1384 -▁necessity -12.1384 -▁leah -12.1384 -xon -12.1385 -▁jew -12.1385 -▁orbital -12.1386 -atta -12.1387 -▁viral -12.1387 -▁hooked -12.1388 -▁accusations -12.1388 -▁explicit -12.1389 -▁elders -12.1389 -grass -12.1389 -▁suspects -12.139 -▁anatomy -12.139 -mori -12.1391 -▁nur -12.1394 -1913 -12.1395 -▁bunker -12.1396 -▁bliss -12.1396 -toria -12.1396 -▁7: -12.1398 -▁cellar -12.1399 -louis -12.1401 -strong -12.1402 -▁persecution -12.1404 -▁rehearsal -12.1404 -▁dodgers -12.1405 -mira -12.1406 -▁chunk -12.1408 -▁loaned -12.1409 -rar -12.1409 -▁fig -12.141 -▁knives -12.141 -▁belarus -12.1413 -collect -12.1414 -fashioned -12.1415 -▁flush -12.1416 -esti -12.1418 -▁1932, -12.1419 -▁sigma -12.142 -▁201617 -12.1421 -map -12.1423 -▁cockpit -12.1424 -▁garbage -12.1424 -▁sf -12.1426 -▁designing -12.1427 -▁motorsport -12.1427 -tropic -12.1427 -zier -12.1428 -lette -12.1431 -▁bred -12.1431 -▁invest -12.1432 -▁squat -12.1433 -william -12.1434 -▁bounced -12.1434 -▁pioneering -12.1436 -▁aluminum -12.1437 -▁licensing -12.1437 -▁polynomial -12.1437 -▁impulse -12.1437 -vfl -12.1437 -nio -12.1438 -▁lund -12.1438 -▁osaka -12.1438 -▁minerals -12.1441 -▁hernandez -12.1443 -▁comparing -12.1443 -▁coined -12.1444 -▁muscular -12.1444 -▁directorate -12.1444 -▁imagery -12.1445 -mea -12.1445 -▁nightclub -12.1446 -▁clap -12.145 -▁flock -12.1451 -cold -12.1455 -▁amended -12.1455 -▁westward -12.1456 -▁swollen -12.1457 -▁sheridan -12.1457 -▁ideology -12.1457 -oria -12.1459 -nich -12.1459 -enia -12.1461 -▁peasants -12.1462 -▁freaking -12.1462 -vill -12.1464 -▁solemn -12.1464 -▁newscast -12.1467 -▁claudia -12.147 -▁incentive -12.147 -▁1828 -12.1471 -rating -12.1471 -▁vocational -12.1472 -▁warming -12.1473 -▁overwhelmed -12.1473 -score -12.1474 -▁lexi -12.1474 -▁bali -12.1474 -▁albeit -12.1477 -▁incarnation -12.1477 -▁outright -12.1477 -▁sexuality -12.1478 -▁scripture -12.1478 -▁alps -12.1478 -▁liability -12.1479 -▁1818 -12.148 -▁mistaken -12.1481 -▁scrambled -12.1482 -1911 -12.1483 -▁solved -12.1483 -▁201011 -12.1483 -▁laurent -12.1483 -▁stevenson -12.1483 -▁caucus -12.1484 -▁orchestral -12.1486 -mead -12.1486 -▁sawyer -12.1486 -otta -12.1487 -▁cao -12.1488 -tler -12.149 -▁bully -12.149 -▁mps -12.1491 -▁cesar -12.1491 -▁kira -12.1496 -▁climax -12.1497 -▁mao -12.1497 -▁lep -12.1497 -▁donovan -12.1499 -reci -12.1501 -▁northward -12.1502 -▁financially -12.1502 -▁inevitable -12.1503 -▁sever -12.1505 -tique -12.1507 -1916 -12.1507 -▁conventions -12.1509 -▁humphrey -12.151 -▁hesitation -12.151 -▁acquiring -12.151 -▁aerospace -12.151 -▁114 -12.1511 -cg -12.1512 -▁podcast -12.1513 -grat -12.1514 -▁slab -12.1514 -lok -12.1514 -▁precipitation -12.1517 -▁melanie -12.1517 -▁cody -12.1519 -▁ecole -12.152 -▁lydia -12.1521 -phr -12.1522 -▁kut -12.1524 -▁recovering -12.1528 -▁contractor -12.153 -1912 -12.153 -▁experiencing -12.153 -▁cunningham -12.1531 -▁palo -12.1532 -indian -12.1533 -▁howe -12.1534 -vl -12.1535 -hala -12.1535 -▁rhys -12.1535 -mov -12.1535 -▁vikings -12.1535 -▁nursery -12.1535 -▁repertoire -12.1537 -▁squirrel -12.1537 -ugu -12.1537 -▁1813 -12.1538 -▁gould -12.1538 -▁coordinate -12.1539 -cost -12.1543 -▁punished -12.1543 -tak -12.1544 -▁mosaic -12.1544 -women -12.1544 -loom -12.1545 -xy -12.1546 -▁grill -12.1549 -▁1915, -12.1549 -▁triggered -12.1549 -value -12.1549 -▁wildly -12.1549 -▁thal -12.1549 -▁fuselage -12.155 -▁pamphlet -12.155 -inho -12.1551 -▁advocates -12.1552 -▁negotiate -12.1553 -tula -12.1554 -ographer -12.1557 -▁lotus -12.1557 -▁granddaughter -12.1558 -▁warwick -12.156 -▁gust -12.1563 -▁jain -12.1564 -▁cooperate -12.1564 -▁pickup -12.1565 -▁inhibit -12.1566 -lino -12.1567 -▁damages -12.1568 -pipe -12.1569 -gged -12.1569 -layer -12.157 -▁miniseries -12.1571 -▁defendant -12.1571 -▁deter -12.1571 -iber -12.1572 -▁fisheries -12.1572 -ready -12.1573 -▁spartan -12.1573 -▁conceal -12.1573 -ologists -12.1574 -▁pis -12.1574 -▁sodium -12.1578 -▁calder -12.1578 -▁unusually -12.158 -▁conn -12.1582 -release -12.1582 -▁giro -12.1582 -▁aug -12.1583 -kura -12.1583 -▁glorious -12.1584 -▁mushroom -12.1584 -▁acids -12.1585 -quar -12.1587 -male -12.1588 -▁amino -12.1589 -▁galli -12.159 -▁ravens -12.159 -hunter -12.1592 -▁ambush -12.1593 -▁alike -12.1594 -▁schmidt -12.1597 -▁forensic -12.1598 -▁robotic -12.1599 -▁tolerance -12.1604 -▁verdict -12.1605 -▁chem -12.1606 -avan -12.1608 -▁sega -12.1608 -161 -12.1608 -▁astronaut -12.1611 -▁veronica -12.1611 -pacific -12.1611 -yuan -12.1613 -▁pools -12.1613 -▁pup -12.1614 -▁dizzy -12.1614 -▁rituals -12.1615 -dren -12.1615 -chill -12.1616 -jel -12.1616 -▁centimetres -12.1618 -▁confluence -12.1618 -▁incorporating -12.1618 -▁pall -12.1619 -akov -12.162 -▁pawn -12.1622 -▁promptly -12.1625 -gru -12.1626 -▁inmates -12.1626 -▁kaiser -12.1627 -▁extinction -12.1628 -▁hauled -12.1631 -▁pavement -12.1631 -▁owns -12.1634 -▁kb -12.1635 -mmel -12.1635 -▁intake -12.1636 -▁80% -12.1636 -▁vanessa -12.1639 -pher -12.1639 -really -12.164 -gua -12.1642 -ppe -12.1642 -today -12.1643 -fic -12.1644 -▁homosexual -12.1644 -wf -12.1644 -15% -12.1645 -paced -12.1646 -▁200910 -12.1647 -ridden -12.1649 -▁saul -12.1649 -icia -12.165 -▁waterloo -12.1651 -▁muk -12.1652 -▁stirred -12.1652 -▁sus -12.1653 -▁branded -12.1653 -▁nikolai -12.1653 -▁sponsors -12.1655 -▁disabilities -12.1658 -▁stuttgart -12.1658 -eisen -12.166 -▁geology -12.1661 -▁spilled -12.1664 -▁dignity -12.1665 -eco -12.1666 -sara -12.1666 -naj -12.1666 -▁generator -12.1666 -egi -12.167 -▁lao -12.167 -owa -12.1671 -▁announcing -12.1672 -▁sucking -12.1673 -▁tama -12.1674 -▁wow -12.1676 -trick -12.1677 -▁sticks -12.1677 -▁ensuing -12.1679 -▁burnett -12.168 -hri -12.1681 -tard -12.1682 -▁turin -12.1684 -kah -12.1684 -kamp -12.1684 -▁raises -12.1687 -▁1916, -12.1688 -▁glove -12.1688 -iano -12.1689 -▁rendering -12.1691 -▁underworld -12.1691 -▁apo -12.1692 -▁complain -12.1692 -▁archipelago -12.1692 -▁sniff -12.1694 -▁robust -12.1695 -▁fortified -12.1695 -▁employs -12.1695 -▁juliet -12.1696 -▁newark -12.1697 -▁sali -12.1697 -▁unanimous -12.1698 -▁stamped -12.1698 -metric -12.1699 -▁bean -12.1699 -dick -12.1703 -▁bucks -12.1704 -▁twilight -12.1706 -▁javier -12.1707 -▁supermarket -12.1708 -uva -12.1708 -▁1793 -12.1708 -▁squ -12.1708 -hro -12.1708 -▁cupped -12.1709 -▁proving -12.171 -▁annexed -12.171 -atu -12.1712 -gow -12.1712 -▁productive -12.1712 -▁paperback -12.1713 -▁combines -12.1713 -▁clutched -12.1713 -tini -12.1713 -cken -12.1714 -▁huang -12.1717 -▁voter -12.1717 -▁1790 -12.1718 -▁1822 -12.1719 -▁kau -12.1719 -▁persistent -12.172 -mpton -12.172 -▁marrying -12.172 -▁ek -12.1725 -▁loot -12.1726 -bao -12.1726 -▁teammates -12.1726 -▁chimney -12.1727 -mpa -12.1727 -india -12.1728 -▁railing -12.1728 -litz -12.1728 -▁hansen -12.173 -optic -12.173 -kp -12.1733 -spira -12.1733 -oti -12.1733 -▁1819 -12.1734 -▁2009: -12.1735 -▁yun -12.1735 -otto -12.1735 -▁daniels -12.1736 -▁nobles -12.1736 -berk -12.1737 -lava -12.1737 -mino -12.1739 -▁tractor -12.174 -▁whispering -12.174 -▁zack -12.174 -▁abdomen -12.174 -▁theologian -12.1741 -winner -12.1741 -▁camping -12.1742 -▁dolphins -12.1744 -reilly -12.1745 -▁strips -12.1746 -gler -12.1746 -▁perkins -12.1747 -▁camel -12.1747 -▁nordic -12.1748 -▁1922, -12.1748 -▁metals -12.1749 -▁donation -12.175 -▁ely -12.175 -▁devils -12.1752 -ook -12.1754 -▁ducked -12.1754 -▁rusty -12.1755 -grove -12.1757 -▁harmon -12.1758 -▁kendra -12.1759 -▁outlet -12.1759 -▁floated -12.176 -▁refusal -12.1761 -▁450 -12.1761 -▁microphone -12.1762 -▁info -12.1762 -chloro -12.1764 -▁overlap -12.1764 -▁cay -12.1764 -▁negotiated -12.1765 -mak -12.1765 -▁obey -12.1766 -▁nicaragua -12.1768 -shir -12.177 -lights -12.1771 -▁heap -12.1771 -took -12.1772 -umba -12.1772 -▁asserted -12.1774 -rish -12.1774 -omer -12.1774 -▁moisture -12.1775 -▁node -12.178 -▁carlisle -12.1781 -drama -12.1782 -nite -12.1784 -▁hartford -12.1785 -▁stove -12.1786 -angle -12.1786 -rita -12.1787 -▁hemisphere -12.1789 -ehr -12.1789 -▁augustine -12.179 -▁pioneers -12.179 -▁collectively -12.1791 -▁clearance -12.1795 -wolf -12.1795 -▁restrict -12.1796 -▁trin -12.1798 -graphy -12.1798 -▁pec -12.1798 -▁wolfe -12.18 -emo -12.1801 -▁aiming -12.1801 -▁reorganized -12.1801 -arth -12.1802 -▁rca -12.1802 -▁leopard -12.1802 -▁suffix -12.1802 -▁retrospective -12.1802 -▁torre -12.1803 -lied -12.1805 -▁broadly -12.1805 -▁apex -12.1805 -▁broncos -12.1805 -▁middlesex -12.1806 -kei -12.1808 -ejo -12.1809 -▁nucleus -12.1809 -coding -12.1809 -▁guarded -12.1809 -▁nielsen -12.181 -jol -12.1811 -▁flori -12.1811 -dil -12.1812 -unit -12.1812 -▁jokes -12.1815 -david -12.1816 -▁dominance -12.1816 -▁knuckles -12.1816 -rash -12.1817 -▁ecology -12.1817 -▁afro -12.1818 -▁obscure -12.1819 -yah -12.182 -ots -12.182 -▁carving -12.1822 -▁affects -12.1822 -hick -12.1823 -▁depart -12.1825 -▁gong -12.1826 -▁1816 -12.1827 -▁vine -12.1827 -▁corpus -12.1828 -▁safer -12.1829 -▁allegiance -12.183 -▁senegal -12.183 -▁posterior -12.183 -▁restless -12.1832 -▁hulk -12.1833 -▁sharma -12.1833 -▁sticking -12.1833 -▁exceeding -12.1834 -▁brac -12.1835 -▁memorable -12.1837 -▁erosion -12.1837 -minus -12.1838 -holy -12.1839 -▁shuddered -12.1839 -▁abbott -12.1839 -▁gee -12.184 -zil -12.1841 -▁glide -12.1842 -frank -12.1843 -▁continuation -12.1843 -▁judging -12.1843 -▁hancock -12.1844 -80,000 -12.1845 -▁grunt -12.1849 -▁proponent -12.185 -▁simmons -12.185 -▁drought -12.1851 -▁erection -12.1852 -▁periodical -12.1852 -▁tramway -12.1854 -tax -12.1854 -▁judged -12.1857 -arium -12.1857 -▁handing -12.1857 -▁emmanuel -12.1857 -▁activation -12.1857 -▁sweater -12.1857 -▁robots -12.1858 -leaf -12.1866 -ouche -12.1867 -▁expired -12.1867 -▁glances -12.1868 -▁synod -12.1871 -▁tertiary -12.1871 -▁adverse -12.1872 -▁sensors -12.1875 -hmm -12.1876 -rito -12.1877 -▁lagoon -12.1879 -151 -12.1879 -▁sustain -12.188 -▁tracked -12.188 -▁winked -12.188 -bala -12.188 -hama -12.188 -▁paraguay -12.1881 -pli -12.1881 -essen -12.1883 -▁crusade -12.1886 -▁reasoning -12.1887 -▁domains -12.1891 -▁finch -12.1891 -tov -12.1892 -▁scars -12.1892 -▁ricardo -12.1892 -cloth -12.1893 -eron -12.1894 -▁encompasses -12.1894 -▁repaired -12.1895 -▁wat -12.1895 -▁campo -12.1896 -▁grabs -12.1896 -▁diner -12.1897 -▁harley -12.1899 -▁resemblance -12.1899 -▁inflation -12.1899 -▁attractions -12.1902 -toxin -12.1902 -dome -12.1902 -▁snails -12.1903 -▁lena -12.1905 -▁candles -12.1905 -standard -12.1906 -▁hydraulic -12.1906 -▁tunes -12.1906 -▁judaism -12.1907 -mode -12.1907 -mack -12.1907 -▁rodney -12.1908 -▁2008: -12.191 -▁verge -12.1911 -▁hayden -12.1912 -▁alfonso -12.1913 -▁antoine -12.1914 -175 -12.1914 -yk -12.1915 -local -12.1915 -▁supervised -12.1916 -▁positively -12.1916 -quality -12.1916 -dana -12.1917 -▁humorous -12.1917 -▁tack -12.1918 -▁brakes -12.1918 -▁ordinance -12.192 -▁coventry -12.192 -▁transplant -12.192 -▁notation -12.1922 -▁snatched -12.1924 -mitsu -12.1925 -▁declaring -12.1927 -gou -12.1929 -▁td -12.1929 -uku -12.1929 -▁minorities -12.193 -evaluate -12.1931 -▁helpful -12.1931 -▁relied -12.1932 -voiced -12.1933 -▁cassidy -12.1934 -▁baghdad -12.1934 -▁rasp -12.1935 -▁2011: -12.1939 -▁swarm -12.1939 -▁cory -12.1941 -▁solicitor -12.1941 -▁perfume -12.1941 -▁digit -12.1941 -▁moro -12.1941 -▁elias -12.1942 -▁sib -12.1945 -ppel -12.1946 -opo -12.1947 -proc -12.1948 -▁elbows -12.1951 -▁kok -12.1952 -▁illustrate -12.1952 -▁haul -12.1953 -linda -12.1954 -▁storms -12.1955 -▁fleeing -12.1956 -▁comet -12.1956 -▁directive -12.1957 -▁psi -12.1957 -gul -12.1957 -▁argent -12.1957 -▁whereby -12.1961 -▁reddish -12.1962 -▁eccentric -12.1962 -wie -12.1963 -chol -12.1964 -▁kama -12.1964 -mare -12.1967 -▁continuity -12.1969 -▁fraternity -12.1969 -▁urgent -12.1969 -shut -12.1971 -▁barriers -12.1971 -▁corrected -12.1972 -hali -12.1972 -▁execute -12.1973 -▁narc -12.1973 -▁brace -12.1973 -▁birch -12.1974 -▁crowds -12.1975 -▁destroyers -12.1977 -zine -12.1978 -▁flowed -12.198 -▁darkened -12.198 -icle -12.198 -▁drunken -12.1981 -▁mongolia -12.1982 -hammer -12.1982 -▁upstream -12.1982 -▁seminar -12.1982 -nius -12.1983 -aza -12.1983 -actually -12.1985 -living -12.1985 -450 -12.1986 -lj -12.1986 -▁honorable -12.1986 -380 -12.1987 -▁devastated -12.199 -▁jenna -12.199 -▁posting -12.199 -▁alloy -12.1992 -▁saka -12.1992 -▁listeners -12.1994 -▁dreamed -12.1995 -▁unreleased -12.1996 -▁cliffs -12.1996 -▁definitive -12.1997 -▁entertaining -12.1997 -▁dipped -12.1997 -▁pilgrimage -12.1997 -slow -12.1997 -▁camb -12.1998 -roch -12.1998 -anni -12.2 -▁chemist -12.2001 -▁speeches -12.2002 -▁1927, -12.2002 -uba -12.2003 -▁piss -12.2003 -leader -12.2003 -pose -12.2004 -sexual -12.2004 -▁corporal -12.2004 -▁endowment -12.2004 -▁nowadays -12.2004 -▁lacrosse -12.2004 -▁mater -12.2005 -▁meadows -12.2005 -▁crafts -12.2009 -ups -12.201 -▁macau -12.2011 -▁bizarre -12.2011 -▁eruption -12.2013 -▁paolo -12.2013 -▁elf -12.2014 -▁demonstrations -12.2014 -▁brasil -12.2015 -▁grandma -12.2015 -▁dru -12.2018 -▁hawkins -12.2018 -▁farewell -12.202 -▁walton -12.202 -▁zombies -12.2021 -▁factions -12.2021 -▁alexis -12.2023 -▁astronomical -12.2025 -▁pounded -12.2026 -▁rhythmic -12.2026 -/2 -12.2028 -▁lowe -12.203 -▁koo -12.203 -▁assisting -12.2031 -▁spears -12.2032 -▁calcium -12.2032 -▁beams -12.2034 -touch -12.2034 -ardo -12.2035 -▁midwest -12.2035 -▁dm -12.2039 -▁pact -12.2039 -▁gaza -12.204 -▁distances -12.2041 -tari -12.2041 -▁1930, -12.2041 -cac -12.2044 -▁ip -12.2044 -▁muse -12.2044 -▁cups -12.2045 -▁covenant -12.2048 -▁cw -12.2048 -▁descriptions -12.2048 -dron -12.2048 -▁2010: -12.2048 -mix -12.2049 -▁klu -12.2049 -motion -12.2049 -none -12.2051 -▁compensate -12.2053 -▁kidnapping -12.2053 -▁sergio -12.2054 -▁investigator -12.2055 -wak -12.2055 -tio -12.2057 -▁violations -12.2058 -▁dumped -12.2059 -▁ruben -12.2059 -lessness -12.2059 -▁constellation -12.206 -▁abdullah -12.2061 -▁oracle -12.2061 -▁posed -12.2063 -▁ripple -12.2063 -uno -12.2063 -▁shores -12.2064 -▁numer -12.2065 -lysis -12.2067 -anov -12.2067 -floor -12.2068 -▁weiss -12.2068 -▁lowering -12.2069 -rush -12.2071 -▁titans -12.2071 -▁tunisia -12.2071 -nj -12.2072 -▁augusta -12.2074 -▁ordering -12.2074 -▁derivative -12.2075 -▁turbine -12.2076 -▁tapes -12.2079 -cula -12.208 -▁raft -12.208 -▁stump -12.2081 -different -12.2081 -tab -12.2082 -▁flanders -12.2082 -▁pharmacy -12.2082 -▁clam -12.2083 -▁1806 -12.2084 -▁clad -12.2084 -▁moy -12.2084 -▁1921, -12.2085 -▁arabian -12.2087 -therapeutic -12.2089 -1,2 -12.2089 -▁alias -12.209 -▁fk -12.209 -ipa -12.209 -crim -12.2091 -▁transferring -12.2092 -▁discovering -12.2094 -▁shun -12.2094 -▁marvin -12.2094 -▁clicked -12.2095 -▁mohan -12.2096 -▁sparhawk -12.2096 -▁renewable -12.2097 -puri -12.2097 -gator -12.2099 -tooth -12.21 -odont -12.21 -▁traverse -12.2101 -▁interrupt -12.2101 -singer -12.2102 -burmese -12.2103 -▁betray -12.2103 -▁reprinted -12.2103 -gaon -12.2104 -fid -12.2104 -▁sonny -12.2104 -▁consultation -12.2104 -▁luca -12.2106 -elles -12.2111 -xian -12.2115 -▁teens -12.2117 -▁40% -12.2117 -▁whiskey -12.2117 -wit -12.2118 -spring -12.2118 -▁ventures -12.212 -▁flashlight -12.212 -▁patrons -12.2122 -rul -12.2123 -▁perennial -12.2124 -▁kolkata -12.2124 -▁frey -12.2125 -dara -12.2125 -▁baton -12.2125 -▁bara -12.2126 -▁moldova -12.2126 -pris -12.2127 -▁blockade -12.2127 -▁arranger -12.2128 -▁plaster -12.2129 -▁embraced -12.2129 -▁subjected -12.2129 -▁vain -12.2131 -▁batsman -12.2133 -gama -12.2134 -▁suppressed -12.2135 -▁barack -12.2135 -▁slug -12.2137 -▁higgins -12.2138 -▁preparatory -12.2138 -▁cooked -12.214 -▁1801 -12.2141 -▁coupe -12.2141 -irish -12.2142 -fighter -12.2143 -▁cocked -12.2144 -yaz -12.2145 -▁skater -12.2145 -▁vaccine -12.2145 -▁salvage -12.2146 -▁scanning -12.2146 -jc -12.2146 -▁infamous -12.2148 -uria -12.2149 -vine -12.2149 -▁leapt -12.2149 -cera -12.2151 -▁lester -12.2152 -▁gunn -12.2152 -▁laundry -12.2153 -▁venetian -12.2153 -chie -12.2154 -lined -12.2154 -▁humid -12.2156 -vern -12.2157 -▁stripes -12.2158 -▁scr -12.2159 -keeping -12.2159 -▁pius -12.216 -iate -12.216 -▁mattered -12.216 -▁prep -12.216 -▁jasmine -12.216 -▁memoirs -12.216 -▁responding -12.2161 -cyclic -12.2161 -bella -12.2162 -▁recruiting -12.2163 -frac -12.2164 -▁baku -12.2164 -christian -12.2165 -▁barrels -12.2165 -html -12.2167 -bic -12.2167 -▁darted -12.2168 -▁triangular -12.2169 -▁intervals -12.2169 -▁tilt -12.217 -▁sparked -12.2172 -▁abbreviated -12.2174 -▁psychiatric -12.2174 -▁broom -12.2174 -▁malik -12.2175 -▁robbery -12.2176 -▁molecule -12.2176 -▁strengthened -12.2177 -▁bermuda -12.2181 -▁distract -12.2182 -▁lyrical -12.2182 -foss -12.2182 -▁toby -12.2183 -▁councils -12.2183 -witch -12.2183 -▁aaa -12.2184 -▁poe -12.2184 -mind -12.2187 -▁jolt -12.2187 -esper -12.2187 -▁tallest -12.2188 -▁ninety -12.2188 -ark -12.2188 -▁syndicated -12.2189 -▁werner -12.2189 -▁cheshire -12.2189 -sanctioned -12.219 -0/ -12.2192 -mom -12.2193 -prestige -12.2196 -▁braid -12.2196 -adam -12.2197 -▁icelandic -12.2198 -▁basel -12.2198 -▁algorithms -12.2199 -▁1823 -12.22 -saxon -12.2205 -zero -12.2205 -▁confirmation -12.2205 -▁soils -12.2208 -▁expenditure -12.221 -▁okinawa -12.221 -▁substances -12.221 -▁brennan -12.221 -lani -12.221 -▁underway -12.2211 -▁risen -12.2211 -▁lick -12.2212 -volume -12.2214 -friendly -12.2215 -figure -12.2216 -▁dw -12.2216 -▁plank -12.2217 -▁exams -12.2217 -▁polytechnic -12.2217 -▁neat -12.2218 -▁prone -12.2219 -mite -12.222 -▁veer -12.2221 -▁1827 -12.2221 -▁medley -12.2222 -essa -12.2224 -maur -12.2224 -forth -12.2226 -▁1803 -12.2226 -▁abram -12.2228 -▁dover -12.2228 -▁deadline -12.2229 -▁shades -12.2229 -▁talbot -12.2232 -mination -12.2234 -▁targeting -12.2238 -blade -12.2238 -111 -12.2238 -▁bahrain -12.2239 -▁luka -12.2239 -▁privileges -12.224 -350 -12.2244 -poor -12.2245 -▁cutter -12.2245 -▁contingent -12.2246 -▁absurd -12.2246 -▁icy -12.2247 -shell -12.2247 -▁victorious -12.2249 -▁paz -12.225 -▁fauna -12.2251 -small -12.2252 -hok -12.2253 -complete -12.2254 -▁assessed -12.2255 -▁impress -12.2256 -cree -12.2257 -▁unlocked -12.2258 -▁interred -12.226 -▁georges -12.2261 -▁traitor -12.2263 -angi -12.2264 -▁rhyme -12.2264 -kil -12.2264 -enti -12.2265 -▁kis -12.2265 -wana -12.2265 -▁gis -12.2265 -▁developmental -12.2267 -▁anterior -12.2267 -▁breathless -12.2268 -▁thickness -12.2272 -▁elise -12.2272 -▁numerical -12.2273 -▁counselor -12.2275 -phen -12.2275 -ignan -12.2276 -▁inhibitor -12.2277 -▁shab -12.2277 -▁wanderers -12.2277 -neh -12.228 -▁contend -12.228 -▁pork -12.2281 -▁clifford -12.2282 -▁estadio -12.2282 -▁cherokee -12.2282 -synchron -12.2282 -▁5000 -12.2283 -▁2007: -12.2283 -▁imam -12.2284 -yaku -12.2289 -▁audrey -12.2289 -lace -12.229 -▁greenwich -12.2291 -▁jeanne -12.2291 -▁kub -12.2293 -psy -12.2295 -▁dissertation -12.2296 -▁taipei -12.2296 -▁1912, -12.2297 -1910 -12.2298 -breaking -12.2299 -▁gland -12.2301 -▁adjustment -12.2301 -duce -12.2301 -▁firearms -12.2304 -▁freelance -12.2305 -▁unexpectedly -12.2305 -▁1924, -12.2306 -▁motel -12.2307 -▁melting -12.2307 -▁nav -12.2307 -▁songwriting -12.2307 -▁sasha -12.2308 -▁analyze -12.2309 -lore -12.2311 -▁solitary -12.2311 -▁discharged -12.2313 -▁priory -12.2313 -▁cartoons -12.2313 -▁litter -12.2313 -▁pays -12.2314 -tero -12.2317 -raja -12.2319 -▁unc -12.2324 -laine -12.2324 -crit -12.2325 -▁televised -12.2325 -▁mafia -12.2325 -▁angrily -12.2325 -▁arlington -12.2326 -▁rupert -12.2326 -▁nitrogen -12.2326 -▁sax -12.2327 -▁mba -12.2328 -cheng -12.2332 -▁seize -12.2332 -▁abe -12.2333 -▁heroic -12.2334 -▁spokesman -12.2334 -▁stretches -12.2334 -▁deva -12.2334 -▁sedan -12.2334 -▁isabelle -12.2336 -county -12.234 -▁urging -12.2341 -▁chamberlain -12.2342 -osaur -12.2343 -▁braves -12.2344 -▁pga -12.2344 -hung -12.2345 -▁occupies -12.2347 -punk -12.2347 -▁lexington -12.2347 -▁recess -12.2348 -▁spanning -12.2348 -▁implant -12.2349 -▁excavations -12.2349 -▁hike -12.2349 -leb -12.2352 -▁basal -12.2352 -kick -12.2353 -▁fading -12.2353 -▁martyr -12.2355 -▁steward -12.2356 -▁indo -12.2358 -▁dillon -12.2358 -▁wrestlers -12.2359 -▁choke -12.236 -xiang -12.2363 -▁possessions -12.2364 -▁sunrise -12.2364 -▁alba -12.2365 -▁admiralty -12.2366 -goo -12.2367 -▁nov -12.2367 -▁fir -12.2367 -▁deposited -12.2367 -▁joking -12.2368 -ettes -12.2369 -▁abundance -12.2369 -▁accountant -12.237 -walker -12.237 -▁xii -12.2371 -▁preview -12.2371 -▁emil -12.2372 -▁eastward -12.2372 -▁nutrition -12.2376 -▁malayalam -12.2377 -▁tenants -12.2378 -▁pasha -12.2378 -▁rebuild -12.2379 -▁scowl -12.2379 -▁shivered -12.2381 -370 -12.2382 -▁communists -12.2383 -▁demonstrating -12.2384 -▁horrified -12.2384 -▁modification -12.2384 -▁colorful -12.2387 -▁roast -12.2389 -▁seizure -12.2391 -▁passages -12.2393 -ienne -12.2395 -sef -12.2396 -▁nab -12.2397 -captain -12.2398 -▁emirates -12.2398 -▁nathaniel -12.2399 -▁install -12.2399 -nock -12.2401 -▁merri -12.2402 -▁crouched -12.2402 -pina -12.2403 -▁neighbours -12.2404 -▁hui -12.2404 -▁nara -12.2404 -rule -12.2404 -▁slumped -12.2405 -▁friction -12.2406 -kala -12.2406 -worm -12.2406 -▁woody -12.2408 -▁1923, -12.2408 -▁decommissioned -12.241 -george -12.2411 -oran -12.2413 -▁rotating -12.2414 -▁gripping -12.2414 -csi -12.2415 -▁ashton -12.2415 -official -12.2416 -▁partnerships -12.2419 -▁atoms -12.2419 -▁201718 -12.242 -▁endo -12.242 -▁stunning -12.242 -tali -12.242 -▁aragon -12.2422 -▁wig -12.2422 -▁eh -12.2423 -▁markings -12.2424 -lobo -12.2424 -chang -12.2425 -▁magician -12.2426 -▁brightly -12.2427 -▁dwight -12.2427 -ogenic -12.2428 -▁crosby -12.2428 -▁collectors -12.2429 -▁namibia -12.2429 -▁salute -12.243 -▁investor -12.2431 -meyer -12.2432 -▁vega -12.2432 -▁stays -12.2432 -▁warlord -12.2434 -▁genocide -12.2435 -▁halloween -12.2435 -oids -12.2435 -▁penal -12.2435 -▁bast -12.2437 -belt -12.2438 -▁arbor -12.2439 -alter -12.2439 -▁surreal -12.2439 -▁null -12.244 -▁reaper -12.2441 -▁pulp -12.2441 -dream -12.2441 -▁soda -12.2442 -interest -12.2442 -▁suffrage -12.2442 -▁linebacker -12.2442 -▁oaks -12.2443 -▁kendall -12.2443 -▁engel -12.2443 -▁pom -12.2445 -171 -12.2447 -▁ira -12.2447 -muir -12.2447 -magi -12.2447 -▁vlad -12.245 -▁boast -12.245 -zek -12.245 -▁kingdoms -12.245 -▁poo -12.2451 -rav -12.2452 -▁1811 -12.2453 -▁volunteered -12.2453 -▁siding -12.2454 -▁occupying -12.2454 -change -12.2454 -▁networking -12.2455 -▁1931, -12.2456 -▁exclusion -12.2457 -▁roche -12.2457 -▁unionist -12.2458 -▁spiders -12.2458 -▁ads -12.2458 -▁treason -12.2459 -oise -12.246 -command -12.2461 -▁oversaw -12.2461 -▁thirteenth -12.2463 -105 -12.2464 -▁reconcile -12.2464 -▁suitcase -12.2465 -beau -12.2465 -▁coloured -12.2467 -▁sewer -12.2469 -▁immense -12.2471 -▁residue -12.2472 -▁defunct -12.2472 -someone -12.2473 -better -12.2474 -gated -12.2475 -bug -12.2477 -▁detector -12.2479 -▁pbs -12.248 -▁cobb -12.248 -paris -12.2481 -▁novo -12.2482 -arc -12.2482 -volu -12.2482 -evil -12.2484 -▁lamps -12.2486 -▁iconic -12.2486 -protect -12.2486 -170 -12.2486 -▁panchayat -12.2486 -▁huff -12.2487 -▁shrink -12.2487 -haya -12.2488 -▁pushes -12.2489 -▁nodes -12.2491 -acting -12.2491 -▁hague -12.2492 -▁perfection -12.2492 -▁behavioral -12.2492 -▁crypto -12.2493 -nham -12.2493 -▁sheath -12.2494 -▁enrique -12.2494 -▁malone -12.2496 -▁pillars -12.2497 -▁progression -12.2498 -102 -12.2498 -lone -12.2499 -▁crook -12.2501 -▁replies -12.2501 -▁naive -12.2501 -1900 -12.2502 -▁jealousy -12.2504 -▁laude -12.2504 -ifier -12.2507 -▁dela -12.2507 -▁coke -12.2508 -▁serena -12.2508 -▁inadequate -12.2508 -▁lorraine -12.2508 -▁residency -12.2509 -number -12.2511 -kola -12.2511 -▁rejoined -12.2513 -▁1910, -12.2513 -▁weekends -12.2515 -calc -12.252 -▁dismissal -12.2521 -▁radial -12.2521 -▁deliberate -12.2523 -▁rumble -12.2525 -▁survives -12.2526 -early -12.2527 -▁lawson -12.2527 -lecommunications -12.253 -▁doubts -12.253 -▁ornament -12.253 -dict -12.253 -▁liaison -12.2531 -▁vase -12.2531 -480 -12.2532 -rda -12.2533 -▁brom -12.2534 -▁220 -12.2535 -▁2012: -12.2535 -▁jul -12.2537 -▁denial -12.2541 -oci -12.2541 -▁amos -12.2542 -▁kita -12.2543 -▁plaintiff -12.2546 -▁wolfgang -12.2546 -▁somali -12.2547 -▁paula -12.2548 -▁monaco -12.2549 -▁hogan -12.255 -▁bees -12.2551 -▁reduces -12.2552 -▁fatigue -12.2553 -▁latitude -12.2553 -▁dundee -12.2553 -▁clutching -12.2554 -▁spoil -12.2555 -anya -12.2556 -yna -12.2557 -▁reinforcements -12.2557 -ifer -12.2558 -▁flung -12.2558 -▁wah -12.2558 -grown -12.2559 -▁byrne -12.2559 -▁stimulate -12.256 -▁chung -12.2565 -lena -12.2565 -british -12.2565 -▁accurately -12.2565 -▁pledge -12.2567 -workers -12.2567 -bk -12.2567 -▁mutations -12.2568 -ibi -12.2568 -▁patches -12.2568 -▁alcoholic -12.2571 -▁cbc -12.2572 -▁fracture -12.2572 -▁scouting -12.2575 -patti -12.2576 -aven -12.2578 -▁escapes -12.2579 -symmetric -12.258 -gf -12.2581 -lita -12.2582 -▁90% -12.2584 -▁quote -12.2585 -fund -12.2586 -▁quaker -12.2587 -swami -12.2587 -grid -12.2588 -▁bae -12.259 -glacial -12.2591 -▁moran -12.2591 -▁myers -12.2592 -▁ceramic -12.2594 -endorf -12.2596 -▁sadly -12.2597 -▁jakarta -12.2598 -▁reminiscent -12.2598 -▁snack -12.2598 -international -12.2599 -taka -12.2599 -akis -12.26 -▁specializing -12.26 -▁smashed -12.2601 -zell -12.2603 -▁1808 -12.2603 -rand -12.2603 -▁tablet -12.2604 -▁1926, -12.2605 -▁uranium -12.2605 -▁metacritic -12.2605 -▁disqualified -12.2606 -▁piercing -12.2606 -▁williamson -12.2606 -▁parasite -12.2607 -▁accidents -12.2608 -440 -12.2608 -▁curls -12.261 -▁serpent -12.2611 -▁bucharest -12.2613 -▁bloc -12.2613 -▁blows -12.2613 -▁darius -12.2613 -▁reformation -12.2613 -▁burr -12.2614 -▁dissent -12.2614 -▁sabre -12.2614 -▁seals -12.2617 -▁como -12.2617 -▁balan -12.2618 -chemical -12.262 -chenko -12.2621 -▁violently -12.2621 -▁1925, -12.2622 -▁boone -12.2624 -dzi -12.2625 -ifolia -12.2626 -navi -12.2626 -▁mohamed -12.2628 -royal -12.2629 -▁sacked -12.263 -▁ballroom -12.2631 -▁relates -12.2631 -▁igor -12.2631 -▁rowan -12.2634 -▁strangely -12.2635 -▁apparatus -12.2635 -▁diabetes -12.2635 -▁unnecessary -12.2635 -▁hiatus -12.2636 -stress -12.2637 -lova -12.2637 -▁computational -12.2638 -▁pending -12.2638 -opp -12.2639 -tius -12.2639 -girls -12.264 -▁semifinal -12.264 -▁harness -12.2641 -▁humble -12.2641 -▁consume -12.2642 -▁gasoline -12.2642 -▁privy -12.2643 -▁simone -12.2645 -▁avant -12.2647 -▁robber -12.2647 -▁emp -12.2649 -▁concealed -12.2649 -jk -12.265 -▁screwed -12.265 -▁investigative -12.265 -▁diagnostic -12.265 -psi -12.2652 -▁polls -12.2652 -urge -12.2654 -▁rc -12.2656 -duk -12.2656 -▁relate -12.2657 -▁underwear -12.2657 -vish -12.2659 -▁slavic -12.2661 -gens -12.2662 -cano -12.2662 -▁pillar -12.2663 -▁roared -12.2664 -▁buchanan -12.2665 -▁assurance -12.2665 -tempo -12.2665 -▁salisbury -12.2665 -▁embarrassment -12.2665 -rip -12.2668 -▁contender -12.267 -▁successes -12.2671 -yet -12.2671 -rava -12.2673 -▁socially -12.2674 -cyto -12.2675 -vag -12.2676 -20,000 -12.2677 -encia -12.2677 -▁taunt -12.2678 -fx -12.2681 -▁amar -12.2682 -▁heck -12.2683 -folk -12.2683 -feat -12.2684 -▁buckle -12.2685 -▁accounted -12.2687 -▁browser -12.2687 -sik -12.2688 -▁unlock -12.2688 -werk -12.2689 -adri -12.2691 -▁kou -12.2691 -▁ding -12.2691 -adh -12.2692 -▁thud -12.2693 -rij -12.2693 -athi -12.2693 -▁exo -12.2694 -kell -12.2694 -▁renewal -12.2698 -▁coastline -12.27 -▁attitudes -12.27 -clad -12.2701 -deca -12.2701 -▁elijah -12.2703 -trap -12.2706 -▁tangled -12.2706 -▁acquaintance -12.271 -▁convenience -12.271 -▁endurance -12.271 -▁dripping -12.271 -▁dispatched -12.2711 -▁1792 -12.2712 -▁cache -12.2714 -ullah -12.2714 -easing -12.2715 -▁enforce -12.2715 -▁descending -12.2718 -▁presses -12.2719 -otte -12.272 -▁glee -12.272 -nette -12.2721 -▁cooler -12.2723 -▁clung -12.2723 -riot -12.2724 -▁declining -12.2726 -▁render -12.2726 -▁introduces -12.2726 -▁krakow -12.2727 -▁geoff -12.2727 -▁niche -12.2727 -▁deed -12.2728 -▁denny -12.2731 -▁giles -12.2732 -▁atp -12.2732 -▁friar -12.2732 -▁emergence -12.2733 -▁inscribed -12.2733 -lef -12.2734 -▁accepts -12.2734 -count -12.2734 -▁natives -12.2734 -▁riddle -12.2735 -▁induced -12.2737 -▁caravan -12.2738 -▁parcel -12.2739 -▁furnace -12.274 -▁advertisements -12.2741 -▁fertile -12.2741 -fore -12.2742 -iyah -12.2743 -atha -12.2743 -▁troupe -12.2744 -▁chatter -12.2747 -haj -12.2747 -▁fixture -12.2747 -chuk -12.2749 -illi -12.2752 -ucker -12.2752 -asco -12.2753 -▁approximate -12.2755 -▁gymnastics -12.2756 -▁unstable -12.2756 -fee -12.2756 -lack -12.2758 -guil -12.276 -▁privilege -12.2761 -▁communal -12.2762 -▁crushing -12.2762 -vn -12.2765 -▁individually -12.2767 -hair -12.2769 -hae -12.277 -▁handbook -12.277 -▁epidemic -12.2771 -▁bangalore -12.2771 -soul -12.2771 -▁cannes -12.2773 -205 -12.2773 -▁mcca -12.2773 -▁governmental -12.2774 -michael -12.2774 -▁dresses -12.2774 -▁marilyn -12.2774 -▁cath -12.2774 -zig -12.2775 -▁prominently -12.2776 -▁engineered -12.2779 -109 -12.2779 -move -12.278 -▁cooke -12.2781 -ln -12.2782 -▁valerie -12.2782 -▁checks -12.2784 -▁keller -12.2786 -▁squeak -12.2786 -▁cough -12.2786 -gni -12.2786 -leton -12.2787 -share -12.2787 -▁continually -12.2789 -▁richie -12.2792 -▁sami -12.2792 -▁paternal -12.2794 -hagen -12.2794 -▁gerry -12.2794 -▁troubles -12.2795 -▁rewarded -12.2796 -▁boycott -12.2797 -▁galicia -12.2797 -▁pear -12.2798 -own -12.2799 -▁expressing -12.2799 -▁subset -12.2801 -▁jennings -12.2801 -▁greet -12.2802 -▁violated -12.2803 -▁hardcore -12.2804 -▁bait -12.2805 -+1 -12.2806 -▁mla -12.2807 -▁grandparents -12.2809 -▁1913, -12.2809 -uy -12.2812 -▁rebuilding -12.2813 -▁protector -12.2815 -▁observers -12.2816 -▁olivier -12.2816 -▁vaughan -12.2816 -fun -12.2817 -▁turf -12.2817 -▁plc -12.2818 -▁hamm -12.2818 -▁mayo -12.2819 -▁concentrations -12.282 -▁bronx -12.2821 -▁sui -12.2821 -▁siva -12.2825 -cliffe -12.2825 -games -12.2825 -125 -12.2826 -tou -12.2829 -witz -12.2829 -▁prophecy -12.2832 -▁ashamed -12.2833 -▁obligations -12.2833 -▁pumping -12.2835 -▁scrapped -12.284 -▁governorate -12.2841 -hydro -12.2843 -▁ethiopian -12.2843 -pane -12.2846 -▁policeman -12.2847 -lakshmi -12.2847 -▁spouse -12.2847 -apped -12.2847 -▁announce -12.2848 -▁sensing -12.2848 -▁residences -12.2848 -▁rivera -12.285 -▁galway -12.285 -ordination -12.2852 -▁invalid -12.2852 -▁brat -12.2854 -▁dolls -12.2854 -▁staggered -12.2855 -▁lifts -12.2855 -▁patents -12.2855 -▁wrath -12.2856 -▁1805 -12.2856 -▁neville -12.2857 -▁landlord -12.2858 -▁coordinated -12.2859 -▁torso -12.286 -▁packing -12.2861 -nonsense -12.2863 -▁lennon -12.2863 -▁upwards -12.2864 -▁exploitation -12.2864 -latch -12.2867 -glyph -12.2868 -▁praying -12.2868 -chroma -12.2869 -▁flared -12.2871 -▁defenses -12.2872 -quen -12.2874 -eren -12.2875 -▁suzuki -12.2878 -▁processed -12.288 -ritz -12.2881 -▁peg -12.2882 -hopper -12.2882 -▁thorne -12.2884 -▁rut -12.2884 -▁oxide -12.2884 -user -12.2885 -▁trey -12.2886 -nder -12.2886 -▁bihar -12.2886 -▁countless -12.2887 -▁zambia -12.2888 -▁hippo -12.289 -▁typhoon -12.2893 -▁confessed -12.2893 -▁minimize -12.2893 -▁nem -12.2894 -▁divers -12.2894 -▁exports -12.2897 -royce -12.2899 -▁2013: -12.2899 -▁hesitate -12.29 -bern -12.2902 -▁jaime -12.2904 -▁kirby -12.2905 -▁sava -12.2905 -fred -12.2906 -nitz -12.2906 -▁200809 -12.2907 -▁unpleasant -12.2908 -▁canopy -12.2908 -▁retract -12.2911 -▁delays -12.2912 -itude -12.2912 -▁flare -12.2913 -▁surveyor -12.2914 -▁valleys -12.2915 -▁financed -12.2916 -castle -12.2916 -▁devastating -12.2916 -▁dioxide -12.2917 -▁grandchildren -12.2917 -▁wiping -12.2918 -rix -12.2918 -▁sect -12.2919 -▁potatoes -12.292 -▁exiled -12.2922 -▁honduras -12.2924 -▁philanthropist -12.2924 -▁constraints -12.2925 -▁extraction -12.2926 -▁treatments -12.2927 -▁jasper -12.2927 -▁takeover -12.2929 -▁bundesliga -12.2931 -▁baxter -12.2932 -▁creed -12.2933 -▁directory -12.2933 -quis -12.2933 -104 -12.2936 -▁kitty -12.2936 -▁lilly -12.2936 -▁habits -12.2937 -▁haf -12.2938 -cab -12.2938 -kwa -12.2939 -▁creativity -12.2939 -▁prostitution -12.2939 -▁vengeance -12.2939 -wain -12.294 -▁blanche -12.294 -unga -12.294 -jesus -12.2941 -▁garner -12.2942 -osaurus -12.2943 -▁norse -12.2943 -hebrew -12.2944 -▁remark -12.2944 -enda -12.2944 -fed -12.2945 -tee -12.2948 -▁updates -12.2948 -▁debts -12.2949 -▁sah -12.295 -silver -12.295 -▁rift -12.2952 -▁xvi -12.2952 -▁alternatively -12.2952 -▁lament -12.2953 -▁cama -12.2954 -beth -12.2955 -▁rubi -12.2957 -▁workforce -12.2957 -gir -12.2958 -▁lazy -12.2959 -▁retains -12.296 -▁realise -12.2961 -▁ordnance -12.2962 -▁reproductive -12.2962 -▁disappearing -12.2962 -▁formations -12.2963 -clin -12.2963 -boul -12.2964 -▁hubert -12.2965 -kle -12.2967 -mita -12.2967 -▁disturbing -12.297 -oste -12.297 -▁coconut -12.297 -▁diagonal -12.297 -▁inability -12.2971 -▁induce -12.2971 -▁goddamn -12.2972 -▁illustration -12.2973 -▁viewer -12.2973 -▁andhra -12.2973 -▁concludes -12.2975 -▁saves -12.2975 -▁grassland -12.2975 -▁strokes -12.2978 -▁haze -12.2978 -affe -12.2979 -▁possesses -12.298 -▁destinations -12.298 -▁modeled -12.298 -▁foe -12.298 -▁staging -12.2981 -▁earnest -12.2981 -▁patri -12.2982 -▁recount -12.2984 -store -12.2986 -▁lionel -12.2986 -▁prosperity -12.2986 -▁frowning -12.2987 -▁drowning -12.2987 -bile -12.2989 -▁leonardo -12.2991 -process -12.2993 -▁bologna -12.2993 -▁legislator -12.2993 -▁universidad -12.2993 -fact -12.2994 -▁allocation -12.2995 -▁sixteenth -12.2997 -/3 -12.2998 -▁enthusiastic -12.2998 -▁stade -12.2998 -▁decorations -12.2998 -1909 -12.2998 -engine -12.2999 -▁onset -12.2999 -rha -12.3001 -▁packaging -12.3002 -▁receptors -12.3004 -ffy -12.3004 -history -12.3007 -club -12.3008 -pick -12.3008 -▁turnout -12.3008 -▁fungi -12.3009 -▁unfinished -12.3009 -▁shelby -12.3009 -▁potent -12.3011 -▁oven -12.3011 -▁parole -12.3012 -▁undergoing -12.3014 -▁competes -12.3014 -▁esther -12.3015 -loading -12.3017 -▁hiring -12.3018 -▁kristin -12.3018 -▁nikki -12.3019 -▁snarled -12.302 -wish -12.3021 -▁citadel -12.3024 -welcome -12.3025 -alco -12.3026 -▁packages -12.3029 -▁prayed -12.303 -file -12.3031 -▁accelerated -12.3031 -▁bending -12.3032 -▁separating -12.3032 -▁correlation -12.3032 -▁hose -12.3035 -bring -12.3035 -▁200708 -12.3035 -▁installations -12.3036 -puram -12.3036 -robin -12.3037 -▁$9 -12.3038 -jung -12.3039 -▁stabilize -12.304 -▁temptation -12.304 -dini -12.304 -cation -12.3041 -pods -12.3042 -▁strands -12.3045 -▁colts -12.3045 -esco -12.3045 -▁assignments -12.3046 -▁pronunciation -12.3048 -▁holl -12.3049 -kg -12.305 -▁rory -12.3051 -▁maris -12.3052 -lica -12.3052 -kinetic -12.3053 -▁addict -12.3054 -▁venezuelan -12.3055 -▁commercials -12.3055 -▁wagons -12.3057 -256 -12.3058 -roc -12.3058 -▁meaningful -12.3061 -▁grind -12.3061 -▁philipp -12.3062 -▁judiciary -12.3063 -buch -12.3064 -▁stroking -12.3064 -▁trembled -12.3065 -▁capsule -12.3065 -▁pretended -12.3066 -▁stol -12.3067 -▁importantly -12.3067 -▁filing -12.3067 -▁gaul -12.3069 -▁shatter -12.3069 -▁vijay -12.307 -lici -12.307 -▁lafayette -12.3071 -▁handicap -12.3071 -bib -12.3072 -▁guardians -12.3074 -▁workplace -12.3075 -bili -12.3075 -▁shaky -12.3075 -▁panzer -12.3075 -perfect -12.3076 -▁vila -12.3077 -nsa -12.3078 -▁chevrolet -12.3079 -▁obliged -12.3079 -▁confidential -12.3081 -lope -12.3081 -marxist -12.3082 -▁divisional -12.3085 -▁recognise -12.3086 -▁bona -12.3088 -cow -12.3089 -▁goa -12.309 -103 -12.3091 -▁norris -12.3091 -arab -12.3092 -▁edmond -12.3094 -▁badminton -12.3095 -▁homage -12.3095 -illard -12.3095 -▁lama -12.3096 -gyn -12.3097 -▁lars -12.3099 -▁tissues -12.31 -▁undertake -12.31 -kyu -12.3103 -▁hitch -12.3103 -feel -12.3106 -elect -12.3106 -▁accumulated -12.3106 -belarusian -12.311 -▁spans -12.3111 -rta -12.3112 -▁brink -12.3113 -▁rocked -12.3113 -▁mating -12.3116 -▁kannada -12.3118 -▁fowler -12.3119 -▁exited -12.3122 -▁maud -12.3123 -▁regal -12.3124 -▁practitioners -12.3126 -▁outlined -12.3129 -▁courtney -12.313 -▁thornton -12.3131 -▁counterparts -12.3132 -▁panda -12.3132 -▁trades -12.3133 -loma -12.3133 -▁hunted -12.3134 -▁kell -12.3134 -▁observing -12.3134 -▁moody -12.3134 -▁liar -12.3134 -▁dorset -12.3135 -▁liberals -12.3137 -rini -12.3138 -▁obligation -12.314 -▁reconstructed -12.314 -▁penguin -12.3141 -▁capped -12.3141 -▁eponymous -12.3142 -▁bamboo -12.3142 -▁racism -12.3142 -roth -12.3143 -▁masterpiece -12.3145 -▁justified -12.3145 -▁creak -12.3146 -robert -12.3147 -▁clive -12.3147 -▁kathy -12.3147 -▁kernel -12.3149 -▁kathleen -12.315 -▁merlin -12.3155 -▁aching -12.3156 -ngo -12.3156 -iste -12.3157 -▁syndicate -12.3157 -▁initiate -12.3157 -▁floods -12.3158 -▁corresponds -12.316 -▁harding -12.3161 -▁sensitivity -12.3162 -▁predator -12.3163 -▁labs -12.3163 -▁bally -12.3163 -▁mounting -12.3164 -▁needles -12.3164 -▁coyote -12.3165 -throp -12.3166 -▁postponed -12.3166 -aar -12.3167 -▁illuminated -12.3167 -esque -12.3168 -unda -12.3168 -bber -12.3168 -▁discarded -12.3171 -▁puzzled -12.3172 -▁opt -12.3172 -▁postgraduate -12.3174 -gno -12.3174 -▁2006: -12.3175 -▁paleo -12.3176 -▁noir -12.3177 -gins -12.318 -▁presumed -12.3182 -elling -12.3182 -850 -12.3183 -▁somalia -12.3183 -▁birthplace -12.3183 -▁testified -12.3185 -office -12.3186 -trem -12.3187 -gut -12.3187 -ento -12.3188 -▁adolescent -12.3189 -▁roz -12.3191 -▁ix -12.3192 -moon -12.3192 -gupta -12.3192 -professional -12.3194 -lapse -12.3194 -▁feeds -12.3196 -uwa -12.3196 -▁mankind -12.3198 -▁wail -12.3199 -khov -12.3199 -lateral -12.3199 -▁pits -12.32 -nies -12.32 -anka -12.32 -martin -12.3201 -▁schneider -12.3202 -bright -12.3202 -▁1794 -12.3203 -▁aluminium -12.3205 -▁catalyst -12.3205 -▁spokesperson -12.3205 -▁bartender -12.3205 -riel -12.3205 -▁inviting -12.3206 -▁centro -12.3207 -▁glint -12.3207 -▁bowie -12.3207 -▁grange -12.3207 -unk -12.3209 -▁uncovered -12.3209 -gener -12.321 -thos -12.321 -▁niagara -12.3213 -peptide -12.3213 -▁saunders -12.3213 -▁12,000 -12.3214 -▁nude -12.3214 -▁multimedia -12.3214 -glyc -12.3215 -bene -12.3216 -▁kiel -12.3216 -winged -12.3218 -alan -12.3218 -▁inquire -12.3218 -▁curtains -12.3219 -▁ransom -12.322 -▁ancestral -12.3221 -▁cit -12.3221 -arius -12.3224 -aji -12.3224 -▁executives -12.3226 -dao -12.3226 -▁sergei -12.3228 -▁tiffany -12.3229 -460 -12.3232 -poly -12.3233 -▁tort -12.3234 -obo -12.3234 -nobu -12.3235 -▁shaun -12.3235 -▁modules -12.3235 -▁1798 -12.3236 -▁surpassed -12.3237 -largest -12.3237 -▁sentinel -12.3237 -▁careers -12.3238 -▁beatrice -12.3238 -tyr -12.3238 -bush -12.3239 -chell -12.324 -▁prehistoric -12.324 -thirds -12.324 -▁denotes -12.3242 -▁incoming -12.3243 -▁patriotic -12.3244 -▁advertisement -12.3245 -ppy -12.3245 -common -12.3245 -▁panther -12.3245 -▁indirect -12.3246 -▁stirling -12.3247 -hta -12.3247 -▁monta -12.3249 -▁vai -12.3252 -▁detained -12.3253 -▁dharma -12.3253 -▁primera -12.3254 -▁apache -12.3255 -kuma -12.3256 -▁ascent -12.3256 -beg -12.3258 -▁chop -12.3259 -caliber -12.3259 -▁commissions -12.326 -▁vitamin -12.3261 -▁renault -12.3261 -▁devised -12.3262 -▁swap -12.3263 -▁bum -12.3263 -▁agri -12.3263 -▁cora -12.3267 -▁bharat -12.3267 -▁enclosure -12.3269 -nir -12.3269 -oil -12.327 -▁finalists -12.327 -▁vowels -12.3273 -▁farmland -12.3274 -135 -12.3274 -union -12.3276 -▁accreditation -12.3277 -▁contempt -12.3277 -▁identifies -12.3277 -▁baptism -12.3277 -▁professors -12.3277 -tok -12.3277 -▁drifting -12.328 -173 -12.3282 -▁usc -12.3282 -▁theresa -12.3283 -▁proclamation -12.3285 -▁surplus -12.3285 -▁newest -12.3285 -▁inappropriate -12.3285 -acci -12.3285 -▁goodman -12.3286 -▁seduce -12.3286 -▁forested -12.3287 -lington -12.3288 -▁lame -12.3289 -tower -12.3289 -raf -12.329 -luck -12.329 -wah -12.329 -fried -12.329 -▁socks -12.3292 -▁tidal -12.3292 -▁secretariat -12.3293 -▁symmetry -12.3293 -▁mord -12.3293 -▁socialism -12.3295 -ecu -12.3295 -▁misery -12.3295 -rez -12.3296 -rida -12.3297 -▁wallet -12.3298 -▁fortifications -12.3298 -▁mang -12.33 -occupied -12.3302 -▁alder -12.3305 -▁talon -12.3305 -▁similarity -12.3306 -1904 -12.3308 -▁recognizing -12.3309 -▁mantle -12.331 -▁vapor -12.3312 -▁schu -12.3313 -▁1776 -12.3314 -▁marcos -12.3314 -pilot -12.3317 -cord -12.3319 -▁signaling -12.332 -bearer -12.332 -pee -12.3322 -▁becky -12.3324 -▁marseille -12.3325 -▁peripheral -12.3325 -▁semantic -12.3325 -cole -12.3326 -▁unlimited -12.3326 -▁abolition -12.3327 -trix -12.333 -▁roadway -12.3331 -▁nostrils -12.3333 -▁infrared -12.3333 -michi -12.3333 -phal -12.3334 -pw -12.3335 -facing -12.3338 -natural -12.3338 -▁eduardo -12.3339 -▁debates -12.334 -▁regulator -12.334 -pto -12.334 -▁arbitrary -12.3341 -▁tossing -12.3341 -▁mano -12.3341 -hydroxy -12.3343 -▁ortho -12.3345 -shen -12.3346 -▁pitching -12.3346 -pk -12.3346 -▁buch -12.3348 -▁kami -12.3349 -▁rwanda -12.3349 -shake -12.335 -▁persona -12.3351 -▁fae -12.3351 -▁sindh -12.3356 -▁soothing -12.3357 -▁courtesy -12.3357 -▁reginald -12.3357 -▁peggy -12.3357 -▁explosives -12.3359 -▁stares -12.3359 -▁reggae -12.3365 -▁sacks -12.3368 -▁donor -12.3368 -musik -12.337 -▁castel -12.337 -▁bandage -12.337 -ende -12.3371 -gana -12.3371 -▁crystals -12.3371 -▁1804 -12.3371 -▁puck -12.3372 -▁reassure -12.3373 -▁clips -12.3373 -meister -12.3373 -▁psalm -12.3373 -▁guiding -12.3374 -▁draped -12.3377 -wine -12.3377 -▁latvian -12.3377 -▁anchored -12.3378 -azar -12.3378 -▁shim -12.3379 -▁anarchist -12.3381 -▁accusing -12.3382 -▁splitting -12.3383 -▁organist -12.3384 -▁laurie -12.3385 -▁bricks -12.3385 -▁famine -12.3388 -▁prejudice -12.3389 -▁equilibrium -12.3389 -▁educate -12.3389 -215 -12.3389 -▁invade -12.3392 -▁originating -12.3393 -▁haute -12.3393 -marc -12.3393 -▁haa -12.3394 -ukrainian -12.3394 -eche -12.3395 -▁mirrors -12.3396 -▁nickel -12.3396 -▁thanksgiving -12.3397 -▁xv -12.3397 -▁exposing -12.3398 -▁lush -12.34 -▁waiter -12.34 -mh -12.3402 -▁muddy -12.3402 -▁recruits -12.3404 -▁bp -12.3404 -dep -12.3404 -▁batt -12.3405 -▁stafford -12.3405 -ood -12.3406 -▁russians -12.3408 -▁supper -12.3409 -colonel -12.3412 -jima -12.3415 -chain -12.3415 -▁commandant -12.3416 -buri -12.3416 -▁reacted -12.3417 -▁healed -12.3419 -watt -12.3419 -▁nationalism -12.3419 -caro -12.3421 -ometer -12.3421 -▁moll -12.3422 -▁unite -12.3423 -▁everett -12.3423 -▁greenhouse -12.3425 -610 -12.3425 -▁taxation -12.3425 -▁musk -12.3428 -▁implementing -12.3429 -cheon -12.343 -▁cosmic -12.3431 -▁pigs -12.3432 -1908 -12.3434 -▁betrayal -12.3434 -▁aden -12.3434 -▁investigators -12.3436 -▁jett -12.3437 -▁paradox -12.3438 -▁exhaustion -12.3439 -▁instituted -12.344 -plant -12.3441 -ahan -12.3442 -▁viable -12.3443 -▁crouch -12.3443 -▁thug -12.3444 -▁compelled -12.3446 -▁solidarity -12.3446 -▁converge -12.3446 -▁ropes -12.3447 -▁buff -12.3448 -▁cale -12.3448 -▁yawn -12.3448 -▁tapping -12.3449 -fighting -12.3449 -punct -12.3453 -▁offence -12.3453 -▁censor -12.3453 -▁unfortunate -12.3454 -▁shad -12.3454 -moral -12.3456 -▁exceeded -12.3459 -▁faust -12.346 -bien -12.346 -▁appointments -12.346 -▁depressed -12.3462 -▁becker -12.3463 -▁neural -12.3465 -nita -12.3466 -▁theodor -12.3467 -▁crooked -12.3468 -wiki -12.347 -▁averaging -12.347 -meyrick -12.3471 -▁amazed -12.3471 -▁unrelated -12.3471 -▁avengers -12.3471 -▁havana -12.3471 -slovene -12.3472 -▁judo -12.3473 -vant -12.3474 -▁falcons -12.3476 -▁intro -12.3477 -▁ernie -12.3478 -▁tramp -12.3479 -▁repeating -12.348 -independent -12.3482 -okie -12.3484 -wala -12.3484 -▁fellows -12.3484 -antha -12.3485 -▁langdon -12.3486 -mary -12.3486 -▁compulsory -12.3486 -▁masculine -12.3486 -▁sands -12.3487 -▁rocking -12.3487 -▁sleeves -12.3487 -attack -12.3487 -▁bland -12.3487 -▁desktop -12.3489 -lude -12.3491 -▁clit -12.3494 -▁grunted -12.3494 -▁condom -12.3494 -▁peruvian -12.3495 -▁bulldogs -12.3498 -aker -12.35 -▁unrest -12.3501 -▁conway -12.3503 -▁annex -12.3504 -▁capri -12.3505 -▁institutes -12.3507 -▁smack -12.3508 -▁displaying -12.3508 -jj -12.3509 -▁trev -12.3509 -▁vacancy -12.3511 -▁berkshire -12.3511 -▁locals -12.3511 -governmental -12.3512 -iche -12.3513 -serbian -12.3514 -▁satellites -12.3514 -▁torque -12.3514 -▁monumental -12.3515 -▁xiii -12.3517 -▁swar -12.3517 -▁mourn -12.3517 -▁adrenaline -12.3519 -▁biographer -12.352 -▁julio -12.3521 -▁elaine -12.3521 -report -12.3522 -▁mould -12.3524 -▁upside -12.3525 -117 -12.3527 -carbon -12.3527 -▁gradient -12.3527 -▁domingo -12.3527 -▁grasped -12.3527 -▁cardiac -12.3528 -▁permits -12.3528 -▁tread -12.3529 -▁robb -12.3529 -▁mesa -12.353 -▁bullshit -12.3531 -kiss -12.3532 -▁fascinated -12.3535 -▁reckon -12.3536 -enz -12.3537 -factor -12.3537 -▁cigar -12.3538 -▁bushes -12.3538 -▁steelers -12.3538 -▁oddly -12.354 -▁overhaul -12.3541 -▁fia -12.3541 -normal -12.3541 -▁bavarian -12.3542 -▁taj -12.3543 -▁spr -12.3545 -▁xin -12.3545 -reprise -12.3546 -▁weighing -12.3546 -▁patronage -12.3546 -izz -12.3546 -conscious -12.3547 -▁sera -12.3547 -▁travelers -12.3548 -▁sway -12.355 -bau -12.3551 -▁excavated -12.3552 -rage -12.3552 -▁reliability -12.3552 -pn -12.3552 -▁histories -12.3552 -▁carly -12.3553 -fir -12.3555 -zaki -12.3556 -▁kitten -12.3556 -▁dared -12.3557 -▁rotor -12.3557 -▁waltz -12.3559 -▁blankets -12.356 -▁foreigners -12.356 -▁trousers -12.356 -▁sustainability -12.356 -▁rfc -12.356 -▁offset -12.3561 -pathy -12.3561 -rhy -12.3562 -▁greenland -12.3564 -▁buffer -12.3564 -fourth -12.3565 -arna -12.3567 -drum -12.3567 -iku -12.3568 -▁issuing -12.3569 -pino -12.357 -▁wires -12.3571 -▁scripts -12.3571 -▁profitable -12.3573 -▁zap -12.3573 -▁patriot -12.3576 -▁thorough -12.3577 -▁jem -12.3577 -rati -12.3578 -legged -12.3578 -degree -12.3579 -▁owens -12.3584 -enna -12.3584 -▁fearing -12.3584 -▁statutory -12.3585 -▁lottery -12.3585 -▁oman -12.3586 -▁vaguely -12.3587 -neu -12.3589 -▁meteor -12.359 -mort -12.3592 -▁definite -12.3593 -▁resurrection -12.3593 -▁harlem -12.3595 -eba -12.3597 -▁notices -12.3597 -▁extensions -12.3599 -▁sire -12.3601 -▁tributaries -12.3601 -▁smoothly -12.3601 -▁solving -12.3602 -nek -12.3602 -▁taluk -12.3602 -▁bargain -12.3605 -bab -12.3605 -▁locking -12.3606 -▁attracting -12.3606 -▁famed -12.3609 -▁screech -12.361 -▁superstar -12.361 -tria -12.3611 -oidea -12.3613 -▁grandpa -12.3613 -▁promotes -12.3615 -rone -12.3616 -▁sprang -12.3617 -cracker -12.3618 -valent -12.362 -▁nishi -12.3621 -▁paddle -12.3621 -ophi -12.3621 -raga -12.3621 -rano -12.3621 -course -12.3622 -division -12.3624 -▁viper -12.3624 -zha -12.3625 -cause -12.3625 -▁manipulation -12.3626 -leon -12.3627 -▁unanimously -12.3627 -▁bribe -12.3628 -greg -12.3629 -ych -12.363 -▁limiting -12.3631 -cake -12.3631 -▁inherit -12.3631 -▁sammy -12.3632 -▁referenced -12.3633 -▁alternating -12.3634 -▁nassau -12.3634 -kim -12.3636 -laz -12.3637 -asta -12.3638 -▁adopting -12.3639 -▁cpu -12.3639 -▁modify -12.364 -cert -12.364 -heinz -12.3643 -▁derbyshire -12.3643 -▁damaging -12.3644 -▁prevalent -12.3644 -▁wren -12.3644 -▁optimal -12.3645 -▁dispersed -12.3645 -prote -12.3646 -yellow -12.3648 -▁coincide -12.3649 -lower -12.3651 -▁dans -12.3652 -▁truman -12.3654 -akin -12.3654 -▁servers -12.3657 -kula -12.3657 -▁cautiously -12.3657 -▁nominal -12.3658 -guide -12.3659 -eph -12.3659 -consuming -12.3659 -▁crossover -12.3661 -previously -12.3661 -stadion -12.3662 -▁stronghold -12.3663 -▁liang -12.3664 -▁fibre -12.3665 -216 -12.3665 -▁steamer -12.3667 -▁annoying -12.3668 -ieri -12.3669 -▁aide -12.3669 -yong -12.3669 -▁fourteenth -12.3672 -▁nyc -12.3677 -▁dinosaur -12.3677 -▁deploy -12.3678 -▁tudor -12.3679 -▁ramsey -12.3679 -bp -12.3681 -▁moe -12.3682 -▁1789 -12.3684 -▁beneficial -12.3684 -▁schwartz -12.3684 -▁bounce -12.3685 -▁barney -12.3685 -sheet -12.3685 -▁beetles -12.3686 -edited -12.369 -▁litigation -12.3692 -pert -12.3693 -neil -12.3693 -chl -12.3693 -▁ruthless -12.3694 -esteem -12.3695 -icide -12.3695 -▁nadia -12.3699 -arrow -12.3699 -sports -12.37 -▁subdivided -12.3701 -▁communion -12.3701 -▁brendan -12.3701 -▁sheila -12.3702 -▁shocking -12.3703 -▁evangel -12.3704 -▁arb -12.3704 -▁cobra -12.3704 -▁jensen -12.3705 -pav -12.3705 -▁decor -12.3707 -▁concurrently -12.3708 -▁compassion -12.3708 -▁eliminating -12.3709 -▁racecourse -12.371 -soviet -12.3711 -▁1795 -12.3711 -current -12.3712 -iec -12.3712 -▁jumps -12.3712 -chem -12.3713 -▁acceleration -12.3717 -▁lois -12.3718 -volt -12.3718 -▁chancel -12.3719 -▁chestnut -12.3719 -▁shipment -12.372 -▁quiz -12.372 -▁genetics -12.372 -eber -12.3721 -zol -12.3721 -ghat -12.3721 -▁potato -12.3722 -▁pietro -12.3724 -▁olga -12.3726 -▁vegetable -12.3726 -▁organism -12.3726 -▁mathew -12.3727 -▁garr -12.3727 -▁sparkle -12.3728 -mada -12.3731 -▁lille -12.3732 -▁circled -12.3732 -▁devour -12.3733 -winter -12.3733 -tran -12.3733 -▁identities -12.3734 -▁conferred -12.3734 -mena -12.3735 -▁esc -12.3735 -▁airplay -12.3735 -▁manned -12.3737 -uran -12.3737 -▁maw -12.3737 -reich -12.3737 -▁farmhouse -12.3741 -gami -12.3742 -▁centennial -12.3742 -▁endeavor -12.3742 -▁habsburg -12.3742 -sister -12.3742 -1907 -12.3743 -▁alban -12.3743 -▁pills -12.3744 -▁1600 -12.3745 -▁omega -12.3745 -▁shankar -12.3745 -▁explores -12.3745 -ranga -12.3746 -▁thanked -12.3746 -▁longing -12.3746 -▁circuits -12.3748 -▁sutherland -12.3751 -▁cynthia -12.3751 -▁butterflies -12.3751 -evic -12.3752 -▁abbas -12.3753 -▁lenses -12.3754 -▁marriages -12.3756 -▁leaked -12.3757 -kali -12.3758 -gae -12.3759 -▁arrogant -12.3759 -▁undefeated -12.3759 -▁bernie -12.3759 -▁examinations -12.376 -▁snatch -12.3764 -▁1802 -12.3764 -▁argo -12.3765 -esis -12.3766 -▁hoffman -12.3766 -▁worrying -12.3767 -▁squeezing -12.3768 -▁panting -12.3768 -tling -12.3768 -▁colonists -12.3768 -▁tuition -12.3769 -▁sickness -12.3769 -pond -12.377 -▁internally -12.3772 -▁#5 -12.3773 -70,000 -12.3774 -believe -12.3774 -cool -12.3775 -▁xeno -12.3775 -▁hangar -12.3776 -▁immunity -12.3776 -▁psychiatrist -12.3776 -▁olympia -12.3777 -security -12.3777 -augh -12.3779 -▁shareholders -12.378 -lod -12.3781 -▁headmaster -12.3784 -yep -12.3785 -▁splinter -12.3785 -1905 -12.3786 -▁flanked -12.3786 -▁someday -12.3787 -ject -12.3787 -area -12.3787 -▁pathogen -12.3787 -▁warships -12.3788 -scu -12.3788 -▁mountainous -12.379 -▁hbo -12.3791 -sonic -12.3791 -108 -12.3792 -antoni -12.3792 -▁premature -12.3793 -▁beirut -12.3793 -▁posters -12.3793 -▁tyne -12.3793 -▁ale -12.3793 -▁wavelength -12.3794 -▁patrols -12.3794 -▁bourbon -12.3795 -▁entirety -12.3796 -217 -12.3799 -dow -12.3801 -▁mccoy -12.3802 -▁slamming -12.3802 -▁newsletter -12.3802 -▁backyard -12.3804 -▁structured -12.3805 -▁neglect -12.3805 -▁pony -12.3807 -▁packers -12.3809 -▁probable -12.381 -▁bela -12.381 -▁electrons -12.3813 -rub -12.3814 -▁affordable -12.3814 -▁trance -12.3815 -themed -12.3815 -▁francesca -12.3818 -rene -12.382 -▁commenting -12.3823 -aves -12.3823 -▁propel -12.3824 -▁jonah -12.3825 -▁gdp -12.3825 -ener -12.3826 -▁25,000 -12.3826 -▁abnormal -12.3826 -:40 -12.3827 -know -12.3827 -voor -12.383 -opened -12.3831 -iac -12.3831 -tology -12.3831 -▁rosie -12.3833 -oder -12.3833 -▁ipswich -12.3835 -▁coaster -12.3835 -▁gav -12.3835 -▁wigan -12.3837 -▁botanist -12.3843 -▁schwarz -12.3843 -▁unfamiliar -12.3844 -▁threaten -12.3846 -▁enthusiast -12.3847 -▁intersect -12.3847 -billed -12.3848 -▁shal -12.3852 -▁cassandra -12.3852 -▁lola -12.3853 -▁pleading -12.3854 -▁kron -12.3854 -▁justify -12.3855 -290 -12.3857 -▁claus -12.3859 -▁swam -12.3859 -kli -12.386 -▁desperation -12.386 -▁wasted -12.386 -▁greeks -12.3861 -liev -12.3861 -joint -12.3862 -▁recognizes -12.3862 -▁petrol -12.3862 -▁disappointing -12.3865 -▁expeditions -12.3866 -▁1796 -12.3867 -summer -12.3868 -▁mysteries -12.3869 -▁tanker -12.387 -moving -12.3871 -pub -12.3872 -sick -12.3873 -▁delighted -12.3873 -trip -12.3876 -▁fundraising -12.3877 -children -12.3878 -aea -12.3878 -▁mansfield -12.3879 -coup -12.388 -▁mule -12.3882 -▁reissued -12.3883 -▁denying -12.3884 -▁plantations -12.3884 -berries -12.3885 -▁locke -12.3885 -▁merchandise -12.3886 -▁dessert -12.3886 -lithic -12.3886 -deck -12.3886 -▁jenks -12.3887 -▁dayton -12.3888 -beam -12.389 -▁mab -12.3891 -▁denise -12.3892 -▁judgement -12.3892 -▁propose -12.3893 -▁antioch -12.3893 -▁quasi -12.3893 -▁refined -12.3894 -▁temporal -12.3894 -▁avenge -12.3896 -▁zeus -12.3898 -▁seventeenth -12.3899 -▁debated -12.3899 -▁lila -12.39 -pak -12.39 -hardt -12.3902 -▁aiden -12.3902 -▁aggression -12.3903 -▁gratitude -12.3903 -▁posture -12.3903 -olf -12.3903 -▁snapping -12.3904 -▁saloon -12.3904 -▁yin -12.3904 -▁moths -12.3905 -giving -12.3906 -▁feder -12.3907 -▁tensed -12.3907 -ozo -12.3907 -▁angie -12.3908 -▁wrinkled -12.3908 -▁dots -12.3908 -106 -12.3909 -secret -12.3911 -▁intensified -12.3911 -▁worries -12.3911 -dv -12.3911 -▁hobart -12.3912 -▁neon -12.3912 -▁combinations -12.3918 -▁weaving -12.392 -▁rodgers -12.392 -▁stony -12.3921 -▁revel -12.3921 -▁dispose -12.3921 -ebel -12.3922 -▁lut -12.3923 -▁winger -12.3923 -▁bunny -12.3923 -▁glider -12.3925 -▁carolyn -12.3926 -jac -12.3926 -410 -12.3928 -▁mckay -12.3928 -▁rubin -12.3929 -▁wharf -12.3934 -imba -12.3935 -zah -12.3936 -middle -12.3936 -▁holo -12.3936 -▁macmillan -12.3937 -▁captivity -12.3937 -▁coincidence -12.3937 -▁snorted -12.3937 -▁asphalt -12.3937 -▁snarl -12.3938 -▁piers -12.3938 -▁preserving -12.3938 -▁docks -12.3939 -▁dup -12.394 -inate -12.3944 -▁veterinary -12.3945 -▁peanut -12.3945 -▁diminished -12.3946 -▁andres -12.3947 -▁ferro -12.3947 -paper -12.3948 -▁beasts -12.3948 -▁speculated -12.3948 -▁shutter -12.3953 -▁paralympics -12.3955 -▁lucius -12.3955 -▁flores -12.3956 -▁terminate -12.3956 -▁fein -12.3957 -▁doris -12.3959 -312 -12.396 -chari -12.3964 -abhi -12.3965 -▁inactivated -12.3965 -▁sino -12.3969 -▁bentley -12.3971 -discretion -12.3971 -strate -12.3971 -▁loyalist -12.3972 -queen -12.3973 -▁feudal -12.3973 -▁klo -12.3974 -▁mv -12.3975 -▁programmer -12.3978 -manship -12.3978 -▁brin -12.3978 -▁specifications -12.3979 -▁imaginary -12.3979 -▁burlington -12.398 -▁alain -12.3981 -▁folds -12.3982 -allow -12.3982 -defense -12.3983 -kri -12.3983 -alone -12.3984 -rib -12.3984 -turkish -12.3984 -▁adhere -12.3986 -tico -12.3987 -▁roommate -12.3987 -▁emotionally -12.3988 -yun -12.3988 -niki -12.399 -▁wholesale -12.399 -▁bracelet -12.399 -▁gloom -12.3991 -▁connector -12.3992 -▁1780 -12.3992 -anja -12.3993 -plac -12.3994 -▁ducks -12.3995 -icular -12.3997 -▁cancellation -12.3997 -▁squash -12.3997 -▁kant -12.3997 -▁therapist -12.3997 -▁seldom -12.3997 -▁tingle -12.3997 -▁kits -12.3998 -cella -12.3999 -inner -12.4 -canada -12.4 -▁outreach -12.4 -▁installment -12.4 -▁impose -12.4001 -iller -12.4001 -▁exported -12.4002 -▁michele -12.4002 -▁chew -12.4004 -gali -12.4004 -▁blinking -12.4004 -raman -12.4005 -▁turnpike -12.4005 -▁waived -12.4006 -quist -12.4006 -▁fiery -12.4007 -420 -12.4008 -▁expeditionary -12.4008 -▁magna -12.4008 -▁thou -12.401 -peace -12.401 -vana -12.4012 -enham -12.4014 -▁bree -12.4016 -▁lingering -12.4016 -▁honoured -12.4016 -eke -12.4016 -dip -12.4018 -▁irritated -12.4018 -▁dew -12.4019 -▁dion -12.4021 -▁enlist -12.4022 -▁conceded -12.4022 -▁ramirez -12.4022 -▁cromwell -12.4022 -▁intricate -12.4022 -▁regency -12.4023 -auto -12.4023 -▁lazar -12.4024 -toxic -12.4026 -loch -12.4029 -▁reviewing -12.4031 -▁economically -12.4032 -▁kyoto -12.4032 -cien -12.4033 -▁edo -12.4034 -nsky -12.4034 -▁reese -12.4036 -1902 -12.4037 -▁gibbs -12.4038 -▁deeds -12.4039 -▁prolonged -12.404 -moz -12.404 -▁restraint -12.4041 -ijn -12.4041 -ondo -12.4043 -zl -12.4043 -emon -12.4044 -▁shale -12.4044 -▁louisa -12.4044 -ules -12.4045 -▁slides -12.4045 -thia -12.4046 -▁raped -12.4047 -▁suzanne -12.4048 -▁baritone -12.4048 -▁sioux -12.4049 -mme -12.4049 -their -12.4049 -▁summa -12.405 -▁complexes -12.4051 -▁pauline -12.4051 -static -12.4051 -vla -12.4051 -propelled -12.4053 -▁bing -12.4054 -▁1200 -12.4056 -▁giggled -12.4056 -▁scalp -12.4056 -▁confusing -12.4057 -▁eliot -12.4058 -▁inhaled -12.4058 -▁redevelopment -12.4059 -▁unchanged -12.4065 -▁sunderland -12.4065 -▁cafeteria -12.4065 -▁hercules -12.4066 -▁objected -12.4066 -▁charities -12.4067 -hier -12.4067 -▁cyril -12.4068 -▁neutron -12.4068 -▁karachi -12.4069 -hb -12.4069 -breath -12.4071 -▁luigi -12.4074 -▁fable -12.4076 -▁admits -12.4078 -▁koz -12.4078 -wari -12.4078 -yum -12.4079 -eem -12.408 -▁rapp -12.408 -▁pew -12.408 -nelli -12.408 -▁hospitality -12.4084 -rajan -12.4084 -▁flickered -12.4086 -▁brewing -12.4087 -▁switches -12.4087 -opod -12.4088 -▁deborah -12.4091 -▁shelves -12.4091 -▁vacated -12.4092 -▁plato -12.4092 -▁dynamo -12.4094 -▁daring -12.4095 -▁manners -12.4095 -▁nichols -12.4096 -▁rog -12.4096 -ffen -12.4097 -:50 -12.4097 -▁pena -12.4097 -daughter -12.4099 -chester -12.41 -▁noticing -12.4101 -▁neurons -12.4102 -rius -12.4103 -/5 -12.4105 -▁axle -12.4106 -almost -12.4106 -muth -12.4107 -▁sniper -12.4109 -coli -12.411 -▁misty -12.4112 -▁intentionally -12.4112 -▁lankan -12.4113 -tical -12.4113 -▁polk -12.4114 -▁ached -12.4114 -▁alicia -12.4115 -▁pixel -12.4115 -lata -12.4116 -▁hastily -12.4118 -▁$30 -12.4118 -▁1799 -12.4118 -catholic -12.4119 -haru -12.412 -▁stew -12.4121 -▁garland -12.4121 -▁guan -12.4122 -olic -12.4122 -▁nightmares -12.4122 -▁grazing -12.4123 -▁mcgill -12.4124 -personal -12.4124 -▁setup -12.4126 -▁$100 -12.4128 -▁activate -12.4128 -barre -12.4131 -▁linguistics -12.4132 -safe -12.4132 -kb -12.4133 -▁shirts -12.4134 -▁unprecedented -12.4135 -▁hindwings -12.4135 -▁squirm -12.4135 -▁deluxe -12.4135 -▁hilton -12.4135 -▁2014: -12.4135 -idia -12.4136 -▁hutch -12.4139 -uko -12.4139 -syllable -12.414 -nope -12.414 -▁sacra -12.4141 -▁hardened -12.4141 -strum -12.4142 -▁blush -12.4143 -▁ideals -12.4144 -▁limerick -12.4144 -wha -12.4144 -hg -12.4144 -▁mutation -12.4145 -▁candid -12.4146 -iously -12.4146 -▁brenda -12.4147 -▁employing -12.4147 -ranked -12.4147 -▁saa -12.4151 -entry -12.4152 -▁bankrupt -12.4152 -▁hooker -12.4152 -▁panicked -12.4153 -▁cairn -12.4154 -ody -12.4154 -▁presided -12.4154 -▁copp -12.4154 -▁techno -12.4154 -▁browne -12.4154 -▁plots -12.4156 -marine -12.4157 -▁bulge -12.4159 -catch -12.416 -▁einstein -12.4162 -▁monopoly -12.4162 -▁productivity -12.4162 -▁momentarily -12.4162 -▁fcc -12.4165 -▁townsend -12.4165 -located -12.4166 -▁metaphor -12.4166 -▁compose -12.4166 -▁underside -12.4166 -fox -12.4167 -▁winced -12.4167 -▁resembled -12.4168 -xing -12.4169 -▁rotterdam -12.417 -▁comforting -12.417 -▁copied -12.417 -▁inherent -12.4171 -▁cadets -12.4171 -▁2005: -12.4171 -▁hobby -12.4171 -▁laos -12.4173 -▁fielding -12.4173 -▁picket -12.4173 -▁scratched -12.4174 -▁overly -12.4174 -▁instrumentation -12.4175 -▁katy -12.4175 -lga -12.4177 -▁wii -12.4177 -▁curry -12.4178 -▁gim -12.4178 -▁oversight -12.4178 -▁crank -12.4181 -bani -12.4182 -zim -12.4183 -1906 -12.4184 -$2 -12.4186 -arco -12.419 -▁isles -12.419 -▁shouldnt -12.4191 -▁zinc -12.4192 -235 -12.4193 -▁mustang -12.4193 -▁petals -12.4194 -▁cables -12.4197 -▁motif -12.4197 -▁savor -12.4198 -▁ankles -12.4199 -▁antony -12.4199 -▁embry -12.4199 -amble -12.42 -▁kappa -12.4203 -mbr -12.4204 -▁encouragement -12.4207 -cco -12.4208 -▁flirt -12.4209 -375 -12.421 -▁reissue -12.4213 -▁beethoven -12.4213 -▁registry -12.4214 -▁angular -12.4214 -▁glaring -12.4215 -▁discusses -12.4216 -ungen -12.4219 -tura -12.4219 -▁shriek -12.4219 -▁disagree -12.422 -▁waterfront -12.4221 -tano -12.4222 -▁swat -12.4222 -▁lahore -12.4222 -▁burgess -12.4223 -▁poul -12.4224 -ddy -12.4225 -▁lashes -12.4225 -semitic -12.4226 -isto -12.4226 -lof -12.4227 -▁morality -12.4228 -▁ariel -12.423 -ventura -12.4231 -▁articulate -12.4231 -bula -12.4232 -▁nymph -12.4232 -▁interpretations -12.4238 -arne -12.424 -▁stereotype -12.424 -▁porsche -12.424 -▁gps -12.4244 -dust -12.4246 -▁photographed -12.4246 -▁weaker -12.4246 -▁accuse -12.4247 -appa -12.4248 -▁amnesty -12.4248 -▁smithsonian -12.4249 -donnell -12.4249 -utu -12.4249 -▁schooling -12.4249 -james -12.425 -arma -12.4251 -phae -12.4254 -▁fetch -12.4258 -▁stink -12.4258 -▁clarity -12.4258 -▁envoy -12.4259 -▁strut -12.4259 -ghar -12.4261 -▁neglected -12.4262 -▁marguerite -12.4266 -▁kicks -12.4266 -pix -12.4266 -▁oswald -12.4267 -▁rafe -12.4267 -▁intercept -12.4268 -idium -12.4269 -archi -12.427 -▁comprise -12.4271 -▁nwa -12.4272 -▁parrot -12.4273 -▁kt -12.4274 -▁motive -12.4274 -▁prompting -12.4275 -▁leinster -12.4275 -▁commentators -12.4276 -▁recruitment -12.4277 -▁conclusions -12.4278 -▁skinny -12.428 -▁ismail -12.4281 -▁sells -12.4282 -▁inequality -12.4284 -dean -12.4285 -remember -12.4287 -nav -12.4288 -▁shouts -12.4289 -▁belmont -12.4291 -▁algebraic -12.4293 -cuba -12.4294 -▁payload -12.4295 -▁stalked -12.4296 -▁periodic -12.4296 -▁medina -12.43 -▁hereditary -12.4301 -▁resembling -12.4301 -▁muffled -12.4302 -▁umpire -12.4302 -▁boiling -12.4302 -▁physiology -12.4302 -lissa -12.4304 -▁raul -12.4305 -▁vigil -12.4306 -nez -12.4307 -▁pronoun -12.4307 -▁baja -12.4308 -▁remixes -12.4309 -▁departing -12.4309 -▁resonance -12.431 -bong -12.4311 -▁obstacles -12.4311 -▁foremost -12.4311 -▁innovations -12.4311 -knit -12.4312 -▁freddie -12.4312 -▁joao -12.4312 -▁desires -12.4312 -▁$20 -12.4313 -▁stanton -12.4313 -▁donate -12.4315 -▁gangster -12.4315 -heat -12.4316 -▁flourish -12.4316 -▁callum -12.4316 -ahl -12.4317 -pour -12.4317 -▁conner -12.4318 -easy -12.4319 -caster -12.4319 -coff -12.4319 -▁interrogation -12.4319 -▁suggestions -12.4319 -▁arabs -12.4319 -▁documentaries -12.432 -▁aztec -12.432 -▁fungus -12.4321 -▁fries -12.4321 -▁lowell -12.4321 -shadow -12.4322 -mostly -12.4322 -▁timeline -12.4324 -▁integrate -12.4324 -disciplinary -12.4324 -▁fortunately -12.4325 -▁castile -12.4325 -▁josie -12.4325 -▁numbering -12.4326 -quan -12.4326 -aug -12.4328 -matsu -12.4329 -▁galle -12.4329 -▁sze -12.433 -▁strengthening -12.4332 -220 -12.4333 -▁stiffened -12.4334 -▁transcript -12.4335 -zir -12.4335 -compa -12.4336 -rett -12.4339 -▁bead -12.4339 -▁discoveries -12.434 -▁kramer -12.4342 -▁busch -12.4343 -201 -12.4344 -much -12.4346 -▁flotilla -12.4346 -▁hawke -12.4346 -▁infinity -12.4346 -▁mughal -12.4346 -▁ambrose -12.4347 -▁frantic -12.4348 -▁horde -12.4349 -champ -12.435 -▁enjoys -12.435 -▁limo -12.4352 -▁conclude -12.4352 -▁archibald -12.4355 -▁inning -12.4356 -▁focal -12.4357 -▁ensured -12.4357 -wai -12.4358 -hila -12.4359 -▁pacing -12.4359 -▁vibe -12.436 -▁gluco -12.4361 -▁realism -12.4362 -▁rajasthan -12.4364 -variant -12.4364 -▁mocking -12.4365 -▁niger -12.4366 -computer -12.4367 -▁coating -12.4368 -▁sliced -12.4371 -oji -12.4371 -▁perspectives -12.4372 -▁germanic -12.4373 -esch -12.4373 -russia -12.4375 -▁govern -12.4375 -bruck -12.4376 -▁kindness -12.4376 -hitter -12.4377 -▁infections -12.4378 -▁cracking -12.4378 -▁venom -12.4378 -inia -12.4379 -▁phu -12.438 -▁aft -12.4381 -▁banjo -12.4382 -awi -12.4384 -▁manipulate -12.4384 -▁calculate -12.4384 -▁jewels -12.4384 -▁reminding -12.4388 -▁compressed -12.4388 -▁dire -12.4389 -▁guo -12.4389 -created -12.4394 -▁wines -12.4397 -▁thankfully -12.4398 -honey -12.4398 -▁simulcast -12.4399 -▁caretaker -12.4399 -▁sensual -12.4399 -▁socket -12.4399 -▁foam -12.44 -▁russo -12.4401 -finger -12.4408 -▁harassment -12.4409 -gaard -12.4409 -izzle -12.4409 -▁ascend -12.441 -▁flam -12.4414 -lish -12.4415 -▁phrases -12.4415 -▁pere -12.4416 -launch -12.4416 -▁violinist -12.4416 -▁franciscan -12.4417 -▁revolver -12.4417 -▁mosquito -12.4417 -▁luckily -12.4418 -▁marino -12.4418 -▁enforced -12.4419 -bomb -12.4422 -▁hovering -12.4423 -quil -12.4423 -▁bowen -12.4424 -vali -12.4424 -vice -12.4425 -▁lattice -12.4426 -▁goodness -12.4426 -▁translates -12.4427 -▁footprint -12.4427 -▁pathetic -12.4427 -lien -12.4429 -▁treaties -12.4429 -▁luce -12.4431 -pio -12.4432 -▁seeming -12.4433 -▁appealing -12.4434 -▁stallion -12.4435 -▁drilling -12.4436 -▁monitors -12.4437 -▁vijaya -12.4438 -brian -12.4439 -roid -12.4439 -▁flaming -12.444 -hf -12.444 -plu -12.444 -▁bain -12.4441 -machi -12.4441 -ead -12.4441 -▁mca -12.4442 -▁scorpion -12.4444 -▁libre -12.4445 -ples -12.4446 -mum -12.4447 -▁tenant -12.4447 -▁trot -12.4448 -▁otter -12.4448 -▁fumble -12.4448 -▁walkway -12.4448 -▁clifton -12.4453 -▁dividing -12.4453 -▁1797 -12.4453 -▁definitions -12.4455 -▁praising -12.4456 -patient -12.4457 -▁scholarships -12.4457 -▁functionality -12.4458 -▁onward -12.4458 -eq -12.446 -▁bites -12.446 -▁shaken -12.4461 -▁awaiting -12.4462 -▁cindy -12.4462 -▁fencing -12.4462 -▁mandarin -12.4462 -chir -12.4463 -educational -12.4464 -▁slightest -12.4465 -▁recipients -12.4466 -▁exemption -12.4469 -▁obsolete -12.4471 -▁discrete -12.4471 -fei -12.4471 -107 -12.4471 -hiko -12.4472 -▁circum -12.4472 -mitte -12.4472 -▁offended -12.4472 -▁manifesto -12.4473 -nikov -12.4474 -▁reminds -12.4474 -icum -12.4475 -▁embarrassing -12.4476 -etienne -12.4477 -rne -12.448 -▁insignia -12.448 -▁shoving -12.4481 -▁brandy -12.4481 -▁cheaper -12.4481 -tyn -12.4484 -itta -12.4484 -▁pharma -12.4486 -▁tones -12.4487 -▁cheat -12.4488 -▁skies -12.4489 -▁empirical -12.4489 -mud -12.4489 -▁naturalist -12.4489 -▁taiwanese -12.449 -tomi -12.449 -▁certainty -12.449 -▁nike -12.4491 -fix -12.4493 -fleur -12.4494 -▁versa -12.4495 -▁wand -12.4495 -▁evidently -12.4497 -▁granting -12.4497 -clear -12.45 -udo -12.4502 -▁informs -12.4502 -barra -12.4503 -▁clasp -12.4504 -▁steer -12.4504 -▁undermine -12.4506 -▁extracted -12.4506 -▁bale -12.4506 -▁emission -12.4507 -▁abigail -12.4507 -▁induction -12.4507 -▁mourning -12.4512 -▁xiv -12.4513 -backed -12.4514 -▁sped -12.4514 -▁relentless -12.4516 -kaya -12.4516 -▁administrators -12.4517 -▁cyp -12.4517 -▁neatly -12.4517 -▁swell -12.4517 -vai -12.4518 -▁kuala -12.4519 -joseph -12.4519 -▁hesse -12.4519 -▁200607 -12.452 -▁captained -12.4521 -▁savi -12.4523 -igny -12.4525 -▁vocabulary -12.4525 -uncle -12.4528 -teri -12.453 -▁diver -12.453 -▁armand -12.4532 -▁amphibious -12.4534 -▁mccartney -12.4534 -germain -12.4535 -▁monastic -12.4535 -finder -12.4538 -▁dismay -12.4539 -dade -12.454 -▁rhino -12.454 -▁pioneered -12.4541 -issi -12.4541 -nou -12.4541 -▁liberia -12.4542 -▁aleksandr -12.4543 -▁thieves -12.4543 -▁corb -12.4543 -▁virgil -12.4543 -fw -12.4544 -▁idle -12.4544 -▁methodology -12.4546 -heimer -12.4547 -ocyte -12.4551 -▁superb -12.4551 -▁conan -12.4552 -nall -12.4552 -▁sinister -12.4553 -▁constructing -12.4553 -▁pascal -12.4554 -nur -12.4555 -▁kath -12.4555 -wh -12.4558 -218 -12.4559 -▁codex -12.456 -▁representations -12.4561 -▁spectacle -12.4561 -▁skirmish -12.4561 -▁guam -12.4561 -▁cyrillic -12.4562 -1903 -12.4562 -▁kand -12.4564 -▁lamar -12.4565 -▁capitalism -12.4565 -shiro -12.4569 -fifa -12.457 -▁disastrous -12.457 -▁royalist -12.4572 -ionic -12.4572 -liber -12.4573 -▁huntington -12.4574 -▁supportive -12.4575 -trained -12.4576 -▁salle -12.4577 -▁dislike -12.4578 -olu -12.4578 -▁maturity -12.4579 -▁uneasy -12.4582 -cino -12.4585 -belle -12.4588 -▁communism -12.4589 -▁bilingual -12.4589 -▁robes -12.4589 -tachi -12.459 -▁brandenburg -12.459 -▁subgroup -12.4592 -bold -12.4593 -▁xxi -12.4594 -reach -12.4594 -▁bohemia -12.4594 -▁1700 -12.4597 -▁harass -12.4598 -▁davenport -12.4598 -▁bordeaux -12.4598 -▁laureate -12.4598 -▁gloucestershire -12.4598 -▁dusk -12.4598 -▁flicker -12.4598 -▁activism -12.4599 -▁manny -12.46 -▁telecom -12.4601 -▁clem -12.4605 -▁joaquin -12.4607 -▁colombo -12.4607 -▁mastered -12.4611 -business -12.4611 -:05 -12.4611 -▁assumes -12.4611 -▁ashore -12.4611 -polish -12.4612 -pok -12.4616 -▁shard -12.4617 -▁briggs -12.4617 -▁bollywood -12.4617 -mosa -12.462 -1901 -12.4621 -▁texan -12.4623 -▁prosper -12.4623 -▁melodic -12.4625 -griff -12.4625 -▁restriction -12.4626 -▁yields -12.4626 -▁fulfilled -12.4626 -▁tariff -12.4627 -▁melodies -12.4627 -▁clasped -12.4629 -▁desmond -12.4629 -▁maroon -12.4629 -▁quota -12.463 -fell -12.463 -▁voi -12.463 -▁corre -12.4631 -atlantic -12.4631 -▁transmit -12.4631 -▁wakefield -12.4632 -▁noises -12.4632 -▁refrigerator -12.4634 -▁jelly -12.4636 -▁surfaced -12.4636 -▁exhaled -12.4637 -▁qualifications -12.4637 -alba -12.4637 -chairman -12.4639 -▁poisoning -12.4639 -▁linen -12.4639 -gne -12.464 -▁dau -12.4641 -▁slant -12.4642 -▁swirling -12.4643 -▁omitted -12.4643 -again -12.4644 -▁gradual -12.4645 -▁humour -12.4645 -hia -12.4647 -▁demi -12.4648 -inning -12.4648 -data -12.4649 -▁twitch -12.465 -▁southward -12.4654 -didn -12.4654 -▁genoa -12.4654 -recht -12.4654 -▁cyrus -12.4655 -▁wilkinson -12.4655 -▁thrilled -12.4655 -▁savoy -12.4656 -▁bohemian -12.4656 -ratt -12.4658 -▁grinding -12.4661 -▁revue -12.4662 -▁monasteries -12.4662 -▁unseen -12.4662 -▁banquet -12.4662 -ilde -12.4662 -loop -12.4663 -▁upheld -12.4666 -▁weld -12.4666 -▁breton -12.4668 -region -12.4669 -rao -12.467 -▁paso -12.467 -eshwar -12.4671 -stricken -12.4671 -▁cigarettes -12.4673 -▁cereal -12.4674 -560 -12.4675 -▁spinal -12.4676 -▁hume -12.4676 -honor -12.4678 -grossing -12.4678 -relli -12.4679 -opoulos -12.468 -▁wagg -12.468 -▁agreeing -12.4683 -trial -12.4685 -▁diversion -12.4685 -▁shelley -12.4686 -rrh -12.4687 -▁northampton -12.4687 -▁honolulu -12.4689 -katsu -12.4694 -▁portray -12.4696 -▁gibb -12.4697 -ananda -12.4697 -▁cocktail -12.4699 -▁flashback -12.4702 -blast -12.4702 -▁exert -12.4703 -▁healer -12.4703 -according -12.4704 -cw -12.4704 -neal -12.4704 -gone -12.4705 -kreis -12.4706 -▁genuinely -12.4707 -strike -12.4707 -cler -12.4708 -▁flemish -12.4708 -surface -12.4708 -▁imposing -12.471 -andre -12.471 -▁choi -12.4712 -▁intervene -12.4713 -▁pumps -12.4713 -▁steals -12.4713 -hedra -12.4713 -▁reigning -12.4715 -▁cinematography -12.4717 -either -12.4718 -▁quincy -12.4718 -▁merging -12.4718 -▁clues -12.4719 -▁grit -12.4719 -▁mgm -12.472 -▁hopeless -12.4722 -▁barred -12.4723 -▁koh -12.4723 -▁proton -12.4724 -▁karate -12.4724 -▁gases -12.4724 -▁zheng -12.4724 -▁algerian -12.4725 -▁renovations -12.4725 -▁instinctively -12.4726 -▁proprietary -12.4726 -▁quentin -12.4726 -▁cavalier -12.4726 -elek -12.4727 -mph -12.4728 -▁globally -12.4728 -lade -12.4729 -▁levin -12.4729 -▁reviewers -12.473 -▁tae -12.473 -▁weir -12.473 -▁incorrect -12.4731 -▁manu -12.4731 -▁pins -12.4732 -▁vassal -12.4734 -▁rockefeller -12.4735 -▁cosmetic -12.4735 -▁wembley -12.4735 -▁atletico -12.4735 -▁sneer -12.4736 -▁sparrow -12.4736 -bearing -12.4737 -▁skeptical -12.4738 -▁compass -12.4739 -urian -12.4742 -▁manifold -12.4745 -▁riga -12.4745 -▁swansea -12.4745 -▁lili -12.4746 -▁rugged -12.4746 -206 -12.4746 -nada -12.4747 -amu -12.4747 -pont -12.4748 -comte -12.4748 -▁assassinated -12.4749 -chino -12.475 -▁logs -12.475 -▁joanna -12.4752 -etat -12.4754 -bler -12.4756 -▁dorian -12.4757 -▁sins -12.4757 -▁klaus -12.4758 -▁predecessors -12.4759 -▁quotes -12.4759 -▁bravery -12.4759 -▁frightening -12.476 -▁offerings -12.4762 -▁reverted -12.4762 -▁parameter -12.4762 -▁500,000 -12.4763 -parent -12.4763 -▁flattened -12.4763 -japan -12.4764 -▁severed -12.4765 -▁stormed -12.4766 -▁kitt -12.4766 -▁softened -12.4767 -▁reckless -12.4768 -▁fireworks -12.4769 -▁cala -12.4772 -▁royalty -12.4772 -▁eisenhower -12.4772 -▁hubbard -12.4772 -sail -12.4773 -fulness -12.4774 -▁fender -12.4775 -weather -12.4777 -novic -12.4777 -mou -12.4779 -▁unused -12.4779 -wadi -12.4781 -▁defect -12.4782 -hope -12.4782 -▁homosexuality -12.4783 -▁declan -12.4784 -▁75% -12.4785 -▁rhodesia -12.4785 -▁osborne -12.479 -▁packs -12.4791 -▁destined -12.4791 -▁bremen -12.4791 -▁spies -12.4792 -▁erich -12.4792 -▁hydra -12.4792 -nico -12.4793 -▁horsepower -12.4794 -ometric -12.4795 -▁condemn -12.4795 -▁icc -12.4795 -fax -12.4796 -▁mow -12.4798 -cena -12.4798 -▁nasal -12.4799 -001 -12.4799 -▁concluding -12.48 -▁frantically -12.4801 -pounder -12.4803 -▁willem -12.4803 -▁hillside -12.4805 -▁scal -12.4805 -▁patented -12.4806 -upper -12.4806 -▁alterations -12.4806 -▁culminated -12.4808 -nominated -12.4808 -▁roam -12.4809 -▁appliance -12.4809 -▁leningrad -12.481 -arily -12.481 -▁fifteenth -12.4811 -▁bothering -12.4812 -gott -12.4812 -▁gail -12.4814 -vocals -12.4814 -390 -12.4816 -▁tease -12.4818 -▁precinct -12.4819 -▁intending -12.4823 -▁rossi -12.4823 -alina -12.4823 -mies -12.4825 -301 -12.4826 -wurttemberg -12.4828 -▁expulsion -12.4828 -▁exodus -12.4828 -▁transgender -12.4828 -invasive -12.4828 -▁1791 -12.4829 -113 -12.483 -▁foyer -12.483 -▁containers -12.4832 -▁wetlands -12.4832 -▁intercepted -12.4832 -▁shack -12.4833 -▁masks -12.4834 -▁evergreen -12.4835 -jones -12.4836 -▁katz -12.4836 -▁musket -12.4836 -▁samar -12.4837 -▁energetic -12.4838 -▁aquarium -12.4838 -▁johannesburg -12.4838 -germany -12.4838 -▁hicks -12.4839 -reli -12.4839 -▁quay -12.484 -▁loco -12.4841 -▁pag -12.4842 -▁liking -12.4842 -gies -12.4844 -▁standardized -12.4844 -▁clans -12.4846 -▁culminating -12.4847 -▁tempted -12.4847 -▁irvine -12.4849 -▁marquess -12.485 -!! -12.485 -▁snout -12.485 -evsky -12.485 -▁evaluated -12.485 -▁stroll -12.4851 -▁morse -12.4851 -▁awoke -12.4852 -▁formulation -12.4853 -happy -12.4855 -▁planner -12.4856 -▁pierced -12.4856 -▁absorption -12.4856 -▁phillies -12.4857 -▁pigment -12.4858 -214 -12.486 -▁sampling -12.4865 -mell -12.4866 -location -12.4868 -▁vines -12.4872 -cial -12.4873 -fn -12.4874 -▁caldwell -12.4875 -▁ghetto -12.4875 -depend -12.4876 -funk -12.4876 -▁coca -12.4877 -▁ranged -12.4877 -▁barba -12.4879 -dollar -12.4881 -semifinals -12.4882 -▁landmarks -12.4883 -▁artemis -12.4885 -▁cocaine -12.4885 -naga -12.4886 -▁customary -12.4887 -▁boon -12.4888 -emphasize -12.4889 -▁catholicism -12.4889 -▁harmonica -12.489 -▁marijuana -12.4894 -▁glowed -12.4895 -▁graveyard -12.4895 -enheim -12.4897 -▁validity -12.4897 -▁textbook -12.4901 -▁glob -12.4902 -guang -12.4903 -▁refrain -12.4903 -▁monmouth -12.4904 -growing -12.4904 -▁bower -12.4907 -ecker -12.4907 -ddington -12.4909 -koku -12.491 -▁loads -12.4912 -▁alvarez -12.4912 -▁christchurch -12.4913 -▁mott -12.4916 -lma -12.4918 -ograph -12.4918 -▁cull -12.4919 -▁digits -12.4921 -▁specify -12.4922 -phobia -12.4925 -▁gunfire -12.4925 -▁borneo -12.4926 -nathan -12.4926 -shah -12.4927 -▁freud -12.4927 -▁babylon -12.4929 -alva -12.4929 -ggi -12.4932 -▁sticky -12.4932 -horst -12.4933 -▁worms -12.4935 -▁terrorists -12.4935 -▁gaston -12.4936 -aids -12.4937 -sala -12.4938 -▁ezra -12.494 -▁forfeit -12.494 -▁likelihood -12.4941 -▁propulsion -12.4941 -▁nausea -12.4942 -112 -12.4944 -▁mutter -12.4944 -▁rites -12.4946 -▁warmer -12.4948 -▁infectious -12.495 -▁milestone -12.495 -▁jakob -12.495 -▁eddy -12.4954 -similar -12.4956 -▁crawling -12.4956 -fg -12.4957 -hann -12.4959 -▁damascus -12.4959 -▁heidelberg -12.4959 -▁goblin -12.4963 -▁rhetoric -12.4963 -▁bosnian -12.4964 -203 -12.4964 -spiel -12.4964 -ribe -12.4964 -325 -12.4966 -▁simpler -12.4968 -▁tuberculosis -12.4969 -▁rainforest -12.4969 -dov -12.4969 -▁conditioning -12.4971 -inous -12.4973 -▁annals -12.4974 -1,3 -12.4975 -ipp -12.4976 -strato -12.4977 -harmon -12.4978 -▁degradation -12.4978 -▁grumbled -12.4978 -▁luggage -12.4978 -▁pediatric -12.4978 -▁spotlight -12.4979 -▁1775 -12.4982 -dres -12.4983 -abu -12.4983 -▁fiercely -12.4983 -hman -12.4987 -▁respiratory -12.4988 -▁ceylon -12.4988 -urus -12.4988 -▁restoring -12.4988 -▁orb -12.4989 -▁inspire -12.499 -oya -12.4992 -▁rooted -12.4992 -▁teatro -12.4993 -vala -12.4994 -▁allowance -12.4995 -▁vows -12.4995 -engineer -12.4996 -▁blackmail -12.4997 -▁hoop -12.4997 -▁2015: -12.4997 -▁antiquity -12.4997 -▁extinguish -12.4997 -▁accessories -12.4997 -▁tying -12.4998 -▁namesake -12.4999 -mae -12.4999 -lotte -12.5 -▁mls -12.5001 -▁hairy -12.5004 -▁campaigned -12.5005 -▁pyro -12.5006 -▁constance -12.5007 -▁engraved -12.5007 -▁hash -12.5007 -▁unmarried -12.5008 -▁auditor -12.5008 -enthal -12.5009 -cloud -12.501 -hla -12.501 -▁cartoonist -12.5011 -▁kart -12.5011 -▁glitter -12.5013 -▁boer -12.5014 -jn -12.5014 -richard -12.5016 -▁catalonia -12.5016 -▁camille -12.5018 -follow -12.5018 -definitely -12.5019 -▁calculations -12.5022 -▁tobias -12.5022 -▁turtles -12.5022 -cae -12.5022 -▁excavation -12.5023 -dik -12.5026 -▁mozambique -12.5026 -▁composing -12.5026 -▁raleigh -12.5026 -▁divinity -12.5026 -▁kite -12.5027 -▁shoreline -12.5027 -▁fila -12.5029 -gade -12.5029 -▁exaggerated -12.5029 -▁perse -12.503 -zano -12.503 -vra -12.503 -ischen -12.5031 -▁lagos -12.5031 -▁paddy -12.5032 -▁brisk -12.5032 -▁enroll -12.5034 -▁dirk -12.5034 -▁moroccan -12.5035 -▁affinity -12.5035 -▁lizzie -12.5036 -▁fay -12.5038 -▁analyzed -12.5038 -▁ieee -12.5039 -▁schle -12.5039 -▁harmonic -12.5039 -evolution -12.5041 -strand -12.5041 -1895 -12.5041 -fio -12.5044 -▁engraving -12.5045 -▁northumberland -12.5045 -▁reorganization -12.5045 -▁vance -12.5045 -▁clon -12.5045 -▁dwellings -12.5045 -▁overturned -12.5046 -▁spook -12.5046 -365 -12.5046 -▁brighter -12.5046 -▁deities -12.5047 -chur -12.5047 -voca -12.5049 -▁ornate -12.505 -224 -12.5051 -reti -12.5051 -▁persia -12.5053 -▁serbs -12.5053 -▁reconciliation -12.5054 -▁discern -12.5056 -▁counseling -12.5057 -▁elephants -12.5057 -▁sleepy -12.506 -▁kneeling -12.506 -hika -12.5061 -▁amend -12.5063 -▁strauss -12.5064 -▁emilia -12.5065 -▁kem -12.5065 -maid -12.5066 -▁fluent -12.5066 -▁tuning -12.5066 -▁adler -12.5067 -▁flyers -12.5067 -organized -12.5067 -▁twitched -12.5068 -▁kamal -12.507 -▁optim -12.507 -▁undercover -12.5071 -▁paralympic -12.5072 -▁obsessed -12.5074 -▁silhouette -12.5074 -▁accession -12.5074 -▁lenin -12.5074 -owicz -12.5075 -billy -12.5076 -430 -12.5076 -▁unter -12.5076 -▁defendants -12.5076 -zow -12.5077 -▁relies -12.5077 -coach -12.5078 -demo -12.5078 -115 -12.5079 -erland -12.5079 -kw -12.5082 -cardi -12.5083 -▁immigrated -12.5083 -▁cypriot -12.5083 -▁bhutan -12.5083 -▁staffordshire -12.5083 -admiral -12.5084 -▁emir -12.5085 -lha -12.5086 -armed -12.5087 -logged -12.5088 -▁grouping -12.5089 -▁nuns -12.509 -ganj -12.509 -▁gruff -12.5091 -▁daphne -12.5093 -analytic -12.5093 -▁folder -12.5095 -▁renee -12.5095 -▁braced -12.5096 -▁intern -12.5097 -▁straighten -12.5098 -▁hornet -12.5099 -▁dodd -12.5099 -▁auf -12.5099 -tube -12.51 -wali -12.5101 -▁differing -12.5101 -▁islanders -12.5101 -▁grapes -12.5102 -▁outpost -12.5103 -▁golfer -12.5104 -▁2004: -12.5104 -▁kohl -12.5104 -fifth -12.5106 -▁wm -12.5106 -▁merrill -12.5107 -▁wilde -12.5107 -uen -12.5108 -275 -12.5108 -▁josephine -12.5109 -▁hinder -12.5109 -▁arguably -12.5112 -▁terrifying -12.5112 -▁quirk -12.5113 -▁beaumont -12.5113 -▁contractors -12.5113 -▁flashes -12.5114 -▁gazing -12.5116 -▁dresser -12.5116 -540 -12.5116 -▁sled -12.5117 -cey -12.5118 -▁shaman -12.512 -▁postseason -12.5122 -▁shipbuilding -12.5123 -linear -12.5124 -▁ethel -12.5124 -▁petra -12.5128 -▁interpreter -12.513 -bear -12.513 -▁hussein -12.5131 -▁unopposed -12.5131 -▁vibrant -12.5131 -▁gypsy -12.5131 -▁ideological -12.5131 -▁chatham -12.5131 -▁mixtape -12.5131 -hao -12.5134 -▁plow -12.5134 -211 -12.5135 -activity -12.5136 -dama -12.5136 -▁choreographer -12.5137 -female -12.5137 -▁suk -12.5138 -shock -12.5138 -▁prat -12.5139 -▁axel -12.5139 -▁trait -12.514 -▁hostel -12.5141 -▁censorship -12.5141 -▁flux -12.5143 -▁steak -12.5143 -fowl -12.5146 -▁tatar -12.5147 -▁verbs -12.5149 -▁stalk -12.515 -▁amplifier -12.515 -▁danube -12.515 -▁watkins -12.5151 -▁stigma -12.5152 -▁greenwood -12.5154 -agna -12.5154 -hull -12.5155 -▁chiefly -12.5156 -▁thoughtful -12.5156 -dependent -12.5156 -▁perpetual -12.516 -▁cracks -12.516 -▁forged -12.5161 -▁serb -12.5161 -▁portraying -12.5164 -510 -12.5167 -▁mackay -12.5167 -owice -12.5167 -▁gand -12.5167 -▁ahl -12.5168 -▁curiously -12.5168 -▁howell -12.5169 -bolshevik -12.517 -▁landslide -12.517 -▁odz -12.517 -operated -12.517 -▁cli -12.5171 -▁intently -12.5171 -directional -12.5172 -ghaz -12.5175 -▁favoured -12.5175 -▁cookies -12.5176 -▁bunk -12.5177 -schel -12.5179 -▁irritation -12.5179 -▁samurai -12.5179 -▁flexibility -12.5179 -▁miriam -12.5179 -▁thrive -12.518 -nol -12.5181 -idis -12.5182 -305 -12.5183 -▁uneven -12.5183 -▁marketplace -12.5184 -▁whig -12.5185 -maki -12.5185 -▁cbe -12.5188 -vani -12.5188 -▁killers -12.5188 -▁leverage -12.5188 -▁enhancement -12.5188 -▁wary -12.5189 -▁atlantis -12.5189 -▁courier -12.5189 -▁bethany -12.519 -10,000 -12.5191 -▁amendments -12.5192 -▁shudder -12.5192 -ceps -12.5196 -▁clari -12.5197 -▁herbs -12.5198 -▁aspiration -12.5199 -▁hanson -12.5199 -222 -12.5199 -▁duplicate -12.5199 -mali -12.52 -▁guerrero -12.52 -stem -12.5201 -cau -12.5202 -▁tango -12.5203 -sensitive -12.5203 -▁stumble -12.5205 -raptor -12.5206 -▁muzzle -12.5208 -▁destructive -12.5208 -▁occupational -12.5209 -▁naz -12.5209 -▁subtitle -12.5209 -▁fishermen -12.5212 -plasm -12.5215 -▁hailed -12.5216 -guchi -12.5217 -▁originates -12.5217 -▁alejandro -12.5218 -▁wolverine -12.5218 -▁academia -12.5218 -▁lincolnshire -12.5219 -allo -12.5219 -naw -12.5219 -360 -12.522 -▁rebound -12.5222 -northwest -12.5223 -▁amidst -12.5223 -▁villains -12.5226 -▁sunni -12.5227 -▁incorporation -12.5228 -▁desirable -12.5228 -▁debbie -12.5228 -▁$15 -12.5228 -▁massage -12.5228 -▁advertised -12.5229 -▁demonstrates -12.523 -520 -12.523 -▁traction -12.5231 -▁zoom -12.5233 -▁applicants -12.5233 -lode -12.5235 -escent -12.5235 -kata -12.5237 -▁theorist -12.5237 -1890 -12.5237 -▁visibility -12.5238 -▁oyster -12.5238 -▁puppy -12.5238 -vind -12.5238 -geon -12.5238 -▁contributes -12.5239 -▁markers -12.524 -▁undertaking -12.524 -1000 -12.524 -▁filmmakers -12.524 -▁karma -12.5241 -▁malaya -12.5243 -▁combustion -12.5247 -▁homicide -12.5247 -▁clint -12.5248 -▁lacey -12.5248 -▁orphanage -12.525 -▁relics -12.5253 -▁demos -12.5256 -▁thoroughbred -12.5257 -hail -12.5258 -▁fridge -12.5258 -▁pari -12.5259 -▁sparkling -12.526 -brahm -12.5262 -▁travers -12.5263 -▁viewpoint -12.5263 -hti -12.5265 -▁oss -12.5265 -▁expectation -12.5266 -▁signatures -12.5266 -▁contemporaries -12.5266 -▁prescribed -12.5266 -▁hoarse -12.5267 -▁tulsa -12.5267 -▁grouped -12.5269 -▁specializes -12.5269 -▁concurrent -12.5269 -▁attach -12.5272 -▁denominations -12.5274 -activ -12.5274 -▁moi -12.5274 -▁apocalypse -12.5276 -▁biographical -12.5276 -▁pueblo -12.5276 -vati -12.5277 -hide -12.5277 -▁guessing -12.5278 -▁committing -12.5279 -▁interception -12.528 -enga -12.528 -▁derivatives -12.5285 -▁admiration -12.5286 -▁blouse -12.5286 -▁microwave -12.5287 -▁reasonably -12.5291 -192 -12.5292 -▁paige -12.5293 -▁skit -12.5293 -letter -12.5293 -▁weary -12.5293 -cele -12.5295 -izo -12.5295 -quite -12.5296 -▁nissan -12.5296 -▁rubble -12.5297 -▁militant -12.5298 -▁bracket -12.5299 -▁barlow -12.5299 -painted -12.5303 -▁specialists -12.5305 -▁appropriation -12.5306 -▁obsession -12.5306 -▁subscribers -12.5306 -▁attackers -12.5308 -▁rattle -12.5309 -▁devote -12.531 -▁locus -12.531 -andro -12.5313 -jewish -12.5314 -vitt -12.5315 -bier -12.5315 -▁turmoil -12.5315 -▁wilmington -12.5315 -▁sabotage -12.5315 -▁vow -12.5316 -▁hopeful -12.532 -▁$25 -12.5321 -abel -12.5321 -▁filip -12.5322 -▁usher -12.5323 -ringer -12.5324 -▁imagining -12.5325 -▁kurdish -12.5325 -▁gamble -12.5326 -▁migrants -12.5326 -▁overlooked -12.5327 -aren -12.5328 -▁brawl -12.5328 -communist -12.5329 -▁revive -12.533 -▁wizards -12.533 -▁instincts -12.5331 -▁monograph -12.5332 -209 -12.5334 -▁decreasing -12.5335 -▁principally -12.5336 -▁converting -12.5336 -▁deleted -12.5338 -▁cleaner -12.5338 -▁alexandre -12.534 -cron -12.5343 -▁peering -12.5343 -ulia -12.5344 -▁mandolin -12.5345 -isn -12.5345 -▁plata -12.5345 -▁gritted -12.5345 -▁suppression -12.5347 -▁coul -12.5347 -kho -12.5347 -▁opener -12.5349 -turned -12.5349 -▁guarding -12.535 -annu -12.535 -▁sanctions -12.5351 -▁damian -12.5352 -ember -12.5352 -▁rainy -12.5353 -iyya -12.5353 -▁spade -12.5354 -▁uzbekistan -12.5355 -▁encoding -12.5356 -▁retailers -12.5356 -▁divert -12.5359 -▁scenarios -12.5359 -uu -12.5363 -▁avid -12.5363 -▁1783 -12.5364 -▁wiltshire -12.5364 -▁pilgrims -12.5364 -▁satisfying -12.5365 -▁siberia -12.5365 -hain -12.5366 -executive -12.5367 -doctor -12.5369 -jaz -12.537 -mour -12.537 -195 -12.5371 -copy -12.5372 -▁kost -12.5372 -emann -12.5372 -▁hardship -12.5374 -▁terribly -12.5374 -▁satirical -12.5374 -▁meridian -12.5374 -▁lucian -12.5375 -▁200506 -12.5375 -▁abyss -12.5377 -▁heroine -12.5377 -▁1777 -12.5379 -▁thru -12.538 -▁gardener -12.5381 -▁scarf -12.5382 -▁trickle -12.5384 -▁babu -12.5385 -chro -12.5385 -▁pathways -12.5388 -▁calculation -12.5388 -ulata -12.5389 -▁garb -12.5389 -chim -12.5389 -▁braun -12.539 -▁linguist -12.5391 -wol -12.5391 -▁congregations -12.5392 -▁jacqueline -12.5394 -▁ministries -12.5394 -▁proprietor -12.5394 -▁crocodile -12.5394 -▁mortimer -12.5394 -▁katrina -12.5395 -▁tighten -12.5395 -▁malawi -12.5396 -▁tombs -12.5397 -▁loops -12.5399 -▁accomplishments -12.5399 -▁meek -12.5399 -▁evolve -12.5399 -▁slur -12.5403 -▁consolidation -12.5404 -▁intermittent -12.5404 -▁transparency -12.5404 -▁snyder -12.5404 -▁cavity -12.5404 -▁enlightenment -12.5404 -▁alonso -12.5404 -modul -12.5404 -▁baz -12.5405 -▁sinn -12.5407 -axis -12.5407 -▁agro -12.5407 -▁jamaican -12.5408 -funded -12.5411 -▁earnings -12.5411 -▁militants -12.5411 -chip -12.5412 -▁qin -12.5413 -▁elves -12.5414 -▁cortex -12.5415 -▁transverse -12.5415 -1898 -12.5415 -▁fibers -12.5416 -▁sato -12.5416 -▁twig -12.5416 -▁conde -12.5417 -rane -12.5418 -▁undead -12.5418 -pomeranian -12.5418 -▁dhaka -12.542 -▁sainte -12.5421 -ferra -12.5422 -▁punches -12.5422 -▁benton -12.5423 -▁caucasus -12.5424 -▁symposium -12.5424 -▁whirled -12.5424 -▁hopped -12.5425 -affin -12.5425 -:55 -12.5427 -▁disciples -12.5427 -ologi -12.5428 -amour -12.5428 -▁derry -12.5431 -gay -12.5432 -▁anytime -12.5433 -trivial -12.5434 -▁sponge -12.5434 -▁shira -12.5434 -▁ambient -12.5435 -canadian -12.5435 -▁booker -12.5436 -▁infants -12.5438 -▁paperwork -12.5441 -inder -12.5441 -▁slade -12.5442 -▁endure -12.5443 -▁vishnu -12.5443 -▁nec -12.5445 -▁awakening -12.5445 -▁breeds -12.5447 -▁sill -12.5447 -▁mclean -12.5447 -▁dismantled -12.5449 -▁grossed -12.5452 -paid -12.5455 -▁buoy -12.5455 -▁prefect -12.5455 -▁musee -12.5456 -▁padma -12.5457 -arum -12.5457 -iver -12.5458 -▁bathing -12.5458 -▁carla -12.5458 -▁brim -12.5459 -▁bouncing -12.5463 -▁taxpayer -12.5463 -▁chrysler -12.5464 -obli -12.5464 -▁nava -12.5464 -program -12.5465 -▁cautious -12.5465 -660 -12.5465 -pian -12.5469 -▁thiru -12.5469 -▁redeem -12.5469 -flex -12.5471 -▁saar -12.5472 -▁popularly -12.5472 -▁launcher -12.5472 -▁taliban -12.5473 -haupt -12.5479 -▁analyses -12.5481 -▁artery -12.5481 -literally -12.5481 -▁plunged -12.5483 -▁inauguration -12.5483 -rath -12.5484 -▁impatient -12.5486 -income -12.5487 -nfl -12.5487 -occi -12.5488 -▁alvin -12.5488 -▁kahn -12.5489 -▁edison -12.5489 -▁tailor -12.5491 -▁slovenian -12.5491 -▁expresses -12.5492 -▁pictured -12.5492 -▁examiner -12.5493 -▁luftwaffe -12.5493 -▁monkeys -12.5493 -▁chavez -12.5493 -▁robbins -12.5493 -640 -12.5494 -▁squinted -12.5494 -114 -12.5494 -▁tugging -12.5494 -▁invaders -12.5494 -▁heirs -12.5494 -▁ripping -12.5495 -▁vendors -12.5496 -▁scenery -12.5498 -acher -12.5499 -▁coven -12.55 -▁ballots -12.5503 -▁campeonato -12.5503 -208 -12.5504 -caul -12.5504 -zor -12.5504 -▁shutting -12.5505 -▁prem -12.5507 -▁collier -12.551 -eagle -12.551 -helm -12.5512 -portuguese -12.5513 -past -12.5514 -▁mika -12.5514 -▁rotary -12.5515 -▁trojan -12.5515 -303 -12.5515 -▁redesigned -12.5516 -▁haley -12.5516 -▁coarse -12.5516 -▁echoing -12.5516 -find -12.5517 -pathi -12.5517 -fet -12.552 -▁backdrop -12.552 -1899 -12.5523 -▁sunglasses -12.5523 -▁utilities -12.5523 -▁epithet -12.5523 -▁propped -12.5524 -▁seminars -12.5524 -▁temperate -12.5525 -▁testify -12.5525 -▁alfa -12.5525 -classic -12.5526 -▁foley -12.5526 -▁bestowed -12.5526 -lub -12.5527 -▁frau -12.5528 -▁deserves -12.5528 -▁colli -12.5529 -setting -12.553 -▁diaspora -12.5533 -▁electromagnetic -12.5533 -hampton -12.5534 -▁fairfax -12.5534 -▁peril -12.5536 -▁outlook -12.5536 -joe -12.5537 -▁pune -12.5538 -▁painfully -12.5539 -vertebrate -12.554 -asso -12.5541 -▁spared -12.5541 -weg -12.5542 -▁gallagher -12.5543 -▁maximilian -12.5543 -▁laguna -12.5543 -▁kapoor -12.5544 -▁endorsement -12.5545 -▁timor -12.5545 -▁endured -12.5548 -▁yielded -12.555 -▁scowled -12.5551 -mental -12.5551 -▁athena -12.5552 -▁albi -12.5552 -▁mcmahon -12.5553 -olla -12.5553 -▁bilateral -12.5554 -aille -12.5554 -▁safeguard -12.5555 -design -12.5556 -save -12.5557 -▁receptions -12.5557 -▁necro -12.5557 -▁stomp -12.5558 -lippe -12.5558 -▁fulton -12.5559 -▁boyle -12.5559 -heavy -12.5559 -▁portrays -12.5562 -▁pouch -12.5562 -▁hutchinson -12.5563 -▁brethren -12.5563 -vino -12.5563 -▁sumatra -12.5563 -hydr -12.5565 -trade -12.5566 -rott -12.5566 -▁routing -12.5566 -▁businessmen -12.5567 -▁stellar -12.5568 -northeast -12.5569 -▁collaborate -12.5569 -▁highness -12.5569 -▁periodically -12.557 -▁motives -12.5571 -reviewed -12.5572 -zov -12.5572 -▁pell -12.5572 -▁fertility -12.5573 -▁probation -12.5573 -▁throbbing -12.5573 -▁utilizing -12.5573 -▁competent -12.5576 -approx -12.5577 -▁gunshot -12.5577 -▁branding -12.5579 -rough -12.558 -▁skipped -12.5584 -▁enzymes -12.5584 -▁gracie -12.5584 -231 -12.5585 -▁crate -12.5586 -▁geologist -12.5586 -▁darts -12.5588 -▁honesty -12.559 -▁cray -12.5591 -▁enduring -12.5593 -▁substitution -12.5593 -▁jericho -12.5593 -▁candidacy -12.5593 -etch -12.5595 -▁fixtures -12.5595 -tract -12.5595 -▁dealers -12.5596 -▁stitch -12.5597 -▁wiggle -12.5598 -▁oster -12.5602 -▁pavel -12.5602 -flake -12.5603 -▁peacock -12.5603 -▁assyrian -12.5603 -bg -12.5603 -▁skier -12.5604 -vascular -12.5604 -golden -12.5605 -dutch -12.5605 -▁budd -12.5608 -lichen -12.5608 -phin -12.5609 -ector -12.5609 -▁playhouse -12.561 -▁restrain -12.561 -▁cradle -12.5611 -▁bounty -12.5613 -▁discomfort -12.5613 -▁natasha -12.5613 -▁invading -12.5614 -rique -12.5614 -▁racist -12.5615 -▁disgusted -12.5615 -▁chiang -12.5616 -▁deepest -12.5616 -400,000 -12.5616 -▁sensory -12.5617 -▁confiscated -12.5617 -▁uae -12.5617 -▁collided -12.5618 -drawn -12.5618 -▁playable -12.5619 -▁kung -12.5622 -▁covert -12.5622 -▁crossroads -12.5624 -▁primate -12.5624 -▁cordoba -12.5624 -▁protocols -12.5625 -▁sonia -12.5625 -▁promo -12.5628 -▁reinforce -12.5629 -▁depended -12.563 -▁presley -12.563 -improv -12.5631 -▁detailing -12.5633 -elman -12.5633 -▁scrutiny -12.5634 -▁blazing -12.5634 -▁jae -12.5635 -acoustic -12.5638 -▁politely -12.5639 -fill -12.564 -▁barren -12.564 -chron -12.5642 -▁ramos -12.5643 -▁renew -12.5643 -▁rendition -12.5644 -▁evangelist -12.5644 -▁forthcoming -12.5644 -guy -12.5646 -▁cookie -12.5649 -▁scandinavian -12.5651 -cini -12.5651 -316 -12.5651 -▁kota -12.5653 -▁reputed -12.5654 -▁madeline -12.5654 -▁tavi -12.5655 -marsh -12.5656 -▁parlor -12.5656 -▁leaped -12.5656 -▁pledged -12.5656 -strip -12.5658 -▁munro -12.5659 -▁searches -12.566 -▁daly -12.566 -▁marg -12.5661 -▁entertainer -12.5662 -▁rejoin -12.5663 -▁thir -12.5663 -▁friedman -12.5663 -▁concentrating -12.5664 -▁kilkenny -12.5664 -▁reassuring -12.5664 -▁dartmouth -12.5664 -▁tracing -12.5665 -▁trenton -12.5666 -▁mandated -12.5666 -amino -12.5666 -▁regan -12.5667 -▁widen -12.5668 -▁rancho -12.5668 -▁ornamental -12.5674 -▁exquisite -12.5674 -▁hostilities -12.5674 -▁aperture -12.5674 -▁walnut -12.5674 -▁antibiotic -12.5675 -▁ivanov -12.5675 -▁poked -12.5677 -▁schon -12.5678 -next -12.5678 -▁henrik -12.5681 -▁contributors -12.5681 -▁moose -12.5681 -allen -12.5683 -erne -12.5683 -mono -12.5684 -▁biodiversity -12.5684 -▁centenary -12.5684 -▁cheyenne -12.5684 -▁commemorative -12.5684 -▁pulitzer -12.5684 -▁requesting -12.5685 -yuk -12.5687 -▁costly -12.5687 -▁cites -12.5687 -▁prank -12.5688 -255 -12.5689 -▁polly -12.5689 -▁disciple -12.5691 -221 -12.5691 -mounted -12.5691 -phase -12.5693 -iran -12.5694 -▁objections -12.5694 -▁encircle -12.5695 -▁fixing -12.5696 -tila -12.5698 -compatible -12.5698 -rial -12.5698 -▁pumped -12.5698 -▁darcy -12.5698 -▁fuss -12.5701 -▁stacked -12.5701 -▁abused -12.5702 -▁exceptionally -12.5703 -▁improvisation -12.5705 -▁anthropologist -12.5705 -▁python -12.5705 -▁prasad -12.5706 -▁insist -12.5709 -▁satire -12.5709 -gaku -12.5709 -▁contradict -12.571 -wright -12.5711 -nari -12.5711 -▁skye -12.5711 -▁imminent -12.5715 -▁receipt -12.5715 -▁reuben -12.5715 -3,500 -12.5715 -▁characterised -12.5717 -▁surgeons -12.5717 -oux -12.5717 -religious -12.5718 -▁admire -12.572 -▁veto -12.5723 -▁oblique -12.5725 -▁poznan -12.5725 -▁botany -12.5725 -aeus -12.5726 -▁choreography -12.5727 -▁2001: -12.5728 -evan -12.5728 -▁gaa -12.5728 -▁miner -12.5729 -▁forgiveness -12.5729 -▁nicholson -12.5729 -▁morales -12.573 -▁bidding -12.5731 -▁cheating -12.5733 -▁playboy -12.5733 -▁hanged -12.5734 -680 -12.5735 -▁voluntarily -12.5735 -▁diplomacy -12.5736 -▁bleed -12.5737 -▁insists -12.5738 -▁tobago -12.5738 -pier -12.574 -sboro -12.574 -developed -12.5742 -▁analytical -12.5743 -▁motifs -12.5745 -▁undoubtedly -12.5745 -▁annoyance -12.5745 -▁eaton -12.5745 -▁shovel -12.5746 -▁vida -12.5747 -elen -12.5748 -▁boz -12.5751 -▁sloane -12.5751 -▁hoover -12.5752 -igen -12.5752 -growth -12.5753 -▁embark -12.5753 -▁bravo -12.5755 -▁conspicuous -12.5756 -▁organise -12.5756 -▁allie -12.576 -▁reins -12.5763 -313 -12.5766 -▁entrusted -12.5766 -▁porcelain -12.5766 -▁cannabis -12.5766 -▁yankee -12.5768 -▁writ -12.5769 -brain -12.5769 -▁relocation -12.577 -teur -12.577 -thought -12.577 -starred -12.5771 -zeit -12.5772 -laid -12.5772 -▁belize -12.5772 -kau -12.5774 -destruct -12.5774 -phar -12.5775 -▁yeshiva -12.5776 -▁reelection -12.5777 -▁margo -12.5777 -military -12.5777 -▁sipped -12.5777 -▁romanesque -12.5777 -▁priesthood -12.5777 -▁norms -12.5778 -vm -12.5779 -total -12.5779 -▁chao -12.5779 -▁diva -12.578 -chrom -12.578 -▁springer -12.5781 -▁sniffed -12.5785 -▁complaining -12.5786 -▁besieged -12.5786 -▁deception -12.5786 -▁vanderbilt -12.5786 -gray -12.5787 -▁subcommittee -12.5787 -▁kamen -12.5787 -▁patton -12.579 -▁encourages -12.5792 -cular -12.5793 -▁duma -12.5793 -333 -12.5794 -imov -12.5794 -omic -12.5797 -▁fugitive -12.5797 -▁wikipedia -12.5797 -▁barbados -12.5797 -▁goldman -12.5799 -▁accountability -12.58 -▁defaulted -12.5801 -▁unfold -12.5802 -▁tablets -12.5802 -▁lyons -12.5803 -▁farrell -12.5803 -▁transitional -12.5803 -route -12.5804 -▁manfred -12.5804 -private -12.5804 -▁truss -12.5804 -▁forgetting -12.5804 -▁luz -12.5804 -▁redskins -12.5807 -▁stripe -12.5808 -▁barbarian -12.5808 -cina -12.5809 -▁martian -12.581 -lynn -12.581 -▁retreating -12.5811 -▁blackpool -12.5812 -naire -12.5812 -▁arising -12.5814 -▁specialised -12.5815 -▁booklet -12.5815 -▁fallon -12.5817 -▁joker -12.5817 -▁grigor -12.5817 -▁aforementioned -12.5817 -▁disregard -12.5817 -▁jig -12.5818 -rhiz -12.5818 -▁granada -12.5819 -▁startup -12.582 -▁noticeable -12.582 -▁intersects -12.582 -▁commute -12.5823 -mote -12.5825 -▁accidental -12.5827 -▁influx -12.5828 -ppi -12.5828 -leman -12.5828 -▁rosario -12.5829 -▁biologist -12.5834 -▁manifestation -12.5835 -▁giorgio -12.5836 -▁clashes -12.5836 -810 -12.5836 -▁toulouse -12.5838 -▁rudy -12.5838 -bourgeois -12.5838 -▁macarthur -12.5838 -▁tweet -12.5838 -▁tx -12.5839 -▁sakura -12.5839 -▁prospects -12.5839 -aban -12.5842 -▁gud -12.5844 -▁wield -12.5845 -gem -12.5845 -ovski -12.5846 -▁donors -12.5846 -▁paradigm -12.5848 -▁buckingham -12.5849 -▁premise -12.585 -▁buyers -12.585 -▁seine -12.585 -chik -12.5854 -213 -12.5854 -▁decreases -12.5854 -▁queer -12.5854 -upon -12.5854 -secretary -12.5857 -daniel -12.5858 -tight -12.5858 -▁amalgamated -12.5858 -lol -12.5859 -▁semiconductor -12.5859 -▁eccles -12.5859 -▁creepy -12.5863 -▁assaulted -12.5864 -▁fernand -12.5864 -clean -12.5867 -cta -12.5867 -▁gasping -12.5868 -▁cretaceous -12.5869 -▁rutherford -12.5869 -▁chronology -12.5869 -▁cruisers -12.587 -calo -12.587 -▁multiplayer -12.587 -▁regis -12.5871 -▁madhya -12.5873 -tetsu -12.5875 -▁threatens -12.5879 -▁matilda -12.5879 -cara -12.5879 -▁hydroelectric -12.5879 -negative -12.588 -226 -12.5881 -oxide -12.5882 -▁moul -12.5883 -▁pelo -12.5883 -prov -12.5884 -ugo -12.5885 -▁handy -12.5886 -nella -12.5886 -▁novi -12.589 -▁consulted -12.5892 -▁licking -12.5892 -▁wrench -12.5893 -▁celia -12.5894 -415 -12.5895 -▁overflow -12.5896 -▁mirza -12.5897 -▁walkover -12.5898 -▁kuro -12.5899 -▁approximation -12.59 -▁implicit -12.59 -▁libretto -12.59 -▁convex -12.59 -lamp -12.5901 -ossi -12.5902 -12% -12.5902 -▁quarrel -12.5903 -▁harmful -12.5904 -▁schwei -12.5905 -▁adobe -12.5906 -470 -12.5908 -▁undergone -12.591 -▁aristotle -12.591 -octa -12.5911 -207 -12.5912 -▁whisk -12.5913 -1897 -12.5914 -ochi -12.5915 -▁brod -12.5916 -▁penetrate -12.5917 -ask -12.5918 -▁pembroke -12.5921 -▁wilder -12.5922 -wort -12.5925 -iaceae -12.5926 -▁tuft -12.5927 -▁inject -12.5929 -enden -12.593 -dvd -12.593 -▁wynn -12.593 -▁stockton -12.593 -▁dickinson -12.5931 -▁vanguard -12.5934 -rika -12.5934 -204 -12.5939 -▁khz -12.5939 -arka -12.5941 -▁salvatore -12.5941 -maniac -12.5944 -nci -12.5947 -subscribe -12.5947 -inflicted -12.5948 -▁sufi -12.5948 -▁jeremiah -12.5952 -▁konstantin -12.5952 -▁eyelids -12.5952 -▁phoebe -12.5952 -inspiring -12.5952 -▁peyton -12.5952 -▁precedent -12.5952 -▁plunder -12.5953 -▁disappears -12.5953 -▁abrupt -12.5954 -thio -12.5956 -▁viet -12.5957 -▁breakup -12.5958 -yra -12.5958 -idio -12.5959 -▁remixed -12.5959 -▁greco -12.596 -neur -12.5962 -▁matthias -12.5962 -▁arbitration -12.5962 -▁distortion -12.5963 -▁masked -12.5965 -▁lingered -12.5965 -▁scoop -12.5966 -▁howl -12.5968 -havi -12.5968 -▁middleton -12.5968 -article -12.5969 -▁boa -12.597 -▁constitutes -12.5972 -▁psychedelic -12.5973 -apartheid -12.5973 -▁initiation -12.5973 -▁deported -12.5973 -▁intruder -12.5973 -▁greyhound -12.5974 -ologic -12.5974 -▁rodeo -12.5974 -95% -12.5976 -closed -12.5977 -▁cheerful -12.5977 -▁mili -12.5977 -pey -12.5978 -▁satin -12.5978 -▁burt -12.5978 -hook -12.5983 -▁barclay -12.5983 -▁drown -12.5983 -▁barbie -12.5984 -▁rump -12.5984 -▁goldberg -12.5985 -▁gregg -12.5987 -1880 -12.5987 -▁musa -12.5989 -▁trooper -12.599 -ikh -12.599 -uq -12.5991 -▁repay -12.5992 -▁tally -12.5992 -▁currie -12.5993 -rw -12.5994 -▁bahamas -12.5994 -▁hacker -12.5994 -▁threads -12.5996 -▁fined -12.5998 -▁napkin -12.5999 -▁kidnap -12.5999 -▁scattering -12.6001 -▁#6 -12.6001 -▁bragg -12.6001 -▁baseman -12.6002 -234 -12.6004 -▁wardrobe -12.6004 -▁injustice -12.6004 -▁pneumonia -12.6004 -cosa -12.6005 -▁jagged -12.6005 -coll -12.6006 -▁subunit -12.6006 -rigo -12.6007 -▁trader -12.6008 -quel -12.6008 -▁welt -12.6009 -▁irwin -12.601 -idine -12.601 -▁vineyard -12.601 -gala -12.6011 -▁bacterial -12.6012 -▁fret -12.6012 -holstein -12.6012 -sponsored -12.6013 -▁prescription -12.6015 -▁celestial -12.6015 -▁nominees -12.6016 -peg -12.6016 -▁battling -12.6017 -▁congregational -12.6018 -▁whitish -12.6018 -▁nair -12.6019 -▁regimental -12.6021 -dragon -12.6021 -niv -12.6022 -▁warmed -12.6023 -▁afb -12.6023 -▁virtu -12.6024 -▁kensington -12.6025 -▁rosemary -12.6026 -▁felipe -12.6027 -▁bowman -12.6027 -machine -12.6027 -mier -12.603 -▁depict -12.6032 -pah -12.6035 -▁disguised -12.6035 -▁romero -12.6035 -▁conjecture -12.6036 -▁nguyen -12.6036 -▁builders -12.6036 -energy -12.6036 -▁perched -12.6036 -▁boarded -12.6037 -▁miz -12.6038 -opter -12.6039 -kirk -12.6039 -motor -12.6039 -thala -12.604 -▁proceeding -12.604 -▁symbolize -12.6041 -▁radioactive -12.6041 -▁dolphin -12.6042 -southern -12.6045 -▁circulated -12.6045 -▁compelling -12.6046 -▁pebble -12.6047 -▁chariot -12.6047 -vb -12.6049 -▁statesman -12.605 -264 -12.605 -hawa -12.6051 -dap -12.6053 -▁taut -12.6054 -▁precaution -12.6057 -▁tipperary -12.6057 -ogram -12.6057 -▁stirring -12.6058 -▁considerations -12.606 -▁connie -12.6061 -▁vowed -12.6062 -▁centimeters -12.6064 -▁ligue -12.6064 -mukh -12.6064 -▁nhs -12.6066 -czy -12.6068 -▁jase -12.6069 -baptiste -12.607 -▁faye -12.6071 -▁ballistic -12.6073 -▁reeves -12.6073 -▁aj -12.6073 -vv -12.6074 -cliff -12.6074 -coast -12.6075 -▁generators -12.6077 -▁equestrian -12.6078 -▁domination -12.6079 -▁reflections -12.6079 -▁prospective -12.608 -▁mariners -12.6085 -▁chewing -12.6086 -▁honourable -12.6087 -mire -12.6088 -▁dusseldorf -12.6088 -▁metabolism -12.6088 -▁marlin -12.6089 -▁skinner -12.6092 -▁truce -12.6093 -▁stacy -12.6096 -▁recipe -12.6096 -olli -12.6096 -++ -12.6098 -▁terminology -12.6099 -▁heli -12.61 -righteous -12.6103 -▁hilde -12.6104 -▁raging -12.6105 -▁unification -12.6105 -▁efficiently -12.6106 -▁consonant -12.6107 -▁sabine -12.6108 -▁denounced -12.611 -▁encode -12.6111 -plast -12.6112 -petti -12.6113 -▁canary -12.6114 -▁hud -12.6114 -feu -12.6115 -beautiful -12.6116 -1894 -12.6117 -▁parma -12.6117 -▁stout -12.6118 -▁frogs -12.6118 -▁corri -12.6118 -▁adjective -12.612 -▁segregation -12.612 -▁tucson -12.612 -▁hoa -12.612 -leben -12.612 -▁buckley -12.6123 -▁2002: -12.6124 -▁wooded -12.6126 -▁niko -12.6129 -▁emile -12.6131 -▁reinstated -12.6131 -bola -12.6132 -▁drummond -12.6132 -giu -12.6133 -▁vogue -12.6134 -bagh -12.6135 -oza -12.6136 -yeong -12.614 -1,300 -12.6141 -▁impending -12.6142 -designed -12.6142 -battle -12.6142 -dhu -12.6142 -▁despise -12.6143 -nco -12.6144 -hyun -12.6144 -haut -12.6145 -▁mute -12.6146 -iscus -12.6147 -egg -12.6148 -limit -12.6149 -▁graffiti -12.6152 -▁micah -12.6153 -▁narrated -12.6153 -▁bott -12.6154 -▁woven -12.6154 -▁olaf -12.6155 -▁yoko -12.6156 -▁blitz -12.6157 -▁planetary -12.6158 -▁monitored -12.6159 -▁derive -12.616 -▁quilt -12.616 -paint -12.6162 -▁penis -12.6162 -rosa -12.6162 -▁mausoleum -12.6163 -▁barked -12.6163 -▁ignition -12.6163 -odon -12.6163 -demon -12.6164 -▁luton -12.6164 -▁magni -12.6166 -dari -12.6169 -rona -12.6171 -firm -12.6172 -▁adele -12.6173 -▁kj -12.6173 -intercontinental -12.6173 -▁appetite -12.6173 -▁simplicity -12.6173 -▁piedmont -12.6173 -▁strawberry -12.6174 -▁clapped -12.6174 -▁paragraph -12.6175 -▁livery -12.6175 -▁marius -12.6175 -30,000 -12.6175 -▁principality -12.6178 -access -12.6179 -▁swelling -12.6179 -simo -12.6179 -▁vulnerability -12.6184 -▁monsoon -12.6184 -nature -12.6185 -▁hostility -12.6185 -▁prosperous -12.6185 -▁contraction -12.6186 -unta -12.6186 -italy -12.6187 -ckel -12.6187 -▁narayan -12.6189 -▁imports -12.619 -loire -12.619 -▁urine -12.619 -▁vau -12.619 -▁proposes -12.6191 -▁cinematographer -12.6195 -▁longitudinal -12.6195 -▁ajax -12.6196 -1896 -12.6199 -cep -12.62 -▁attacker -12.6201 -▁translate -12.6203 -decker -12.6204 -▁dictator -12.6205 -▁fuzzy -12.6205 -brush -12.6206 -▁bingham -12.6206 -265 -12.6206 -▁speck -12.6207 -▁possessive -12.6207 -▁clamped -12.6208 -▁creators -12.621 -▁admitting -12.6211 -truck -12.6211 -steroid -12.6212 -sawa -12.6213 -gong -12.6213 -iye -12.6214 -liche -12.6215 -uze -12.6215 -holz -12.6215 -hava -12.6215 -▁acquitted -12.6216 -▁versailles -12.6216 -▁buyer -12.6218 -food -12.6219 -lucky -12.6222 -nami -12.6222 -▁sgt -12.6223 -museum -12.6224 -10% -12.6224 -401 -12.6225 -▁perpendicular -12.6227 -▁imitation -12.6227 -▁barrister -12.6227 -▁rudolph -12.6227 -▁humidity -12.6229 -zuma -12.623 -▁literal -12.6231 -▁gabrielle -12.6233 -inspired -12.6233 -▁kush -12.6233 -plication -12.6234 -▁pivot -12.6234 -▁shang -12.6235 -▁minh -12.6235 -▁coincided -12.6237 -oja -12.6237 -▁confederacy -12.6238 -▁hugging -12.6239 -▁outrage -12.6239 -▁nobleman -12.624 -▁supplying -12.6241 -▁hirsch -12.6242 -▁slated -12.6243 -▁alderman -12.6243 -rima -12.6245 -cerat -12.6245 -▁coro -12.6246 -▁gleaming -12.6246 -bora -12.6246 -▁ascension -12.6248 -▁excursion -12.6248 -▁retaliation -12.6248 -▁wight -12.6249 -▁linden -12.625 -eze -12.625 -heng -12.6251 -▁viceroy -12.6253 -▁entrepreneurs -12.6254 -served -12.6254 -▁playful -12.6256 -▁ensign -12.6256 -▁excel -12.6259 -hundred -12.6259 -▁squire -12.626 -▁spectral -12.626 -▁rave -12.626 -▁unpopular -12.626 -▁muj -12.6262 -▁lavish -12.6263 -▁maddie -12.6264 -▁echoes -12.6266 -▁suspicions -12.6266 -▁slayer -12.627 -▁fascinating -12.627 -▁indirectly -12.627 -▁goats -12.6271 -epp -12.6272 -▁francaise -12.6272 -▁stainless -12.6272 -lex -12.6272 -azione -12.6274 -ivan -12.6274 -▁stranded -12.6279 -▁purge -12.6279 -▁evoke -12.628 -koro -12.6283 -dammit -12.6283 -▁lublin -12.6283 -▁lookout -12.6284 -▁peerage -12.6285 -▁starving -12.6285 -232 -12.6286 -▁ceramics -12.6286 -▁jurist -12.6287 -▁hillary -12.6288 -▁polling -12.6288 -▁whales -12.6289 -▁apologized -12.629 -owed -12.6291 -▁daytona -12.6292 -▁exercised -12.6294 -▁valves -12.6295 -appointed -12.6296 -▁dogg -12.6297 -▁bubbles -12.6298 -brid -12.6299 -terdisciplinary -12.6299 -bran -12.63 -▁visually -12.63 -universal -12.6301 -▁roaring -12.6302 -▁brunei -12.6303 -▁assumptions -12.6303 -▁heavenly -12.6305 -▁accordion -12.6305 -▁horton -12.6307 -▁eagerly -12.6307 -modal -12.6307 -321 -12.6307 -lago -12.6307 -▁clamp -12.6309 -▁elongated -12.6309 -albert -12.631 -▁airlift -12.631 -nv -12.6311 -▁selecting -12.6311 -kine -12.6312 -▁hardest -12.6313 -▁[] -12.6318 -188 -12.6318 -▁vicente -12.6319 -710 -12.6319 -▁grayson -12.632 -amide -12.632 -▁moderately -12.632 -▁kry -12.6321 -▁continents -12.6322 -everyone -12.6323 -▁recycling -12.6324 -▁mendoza -12.6324 -▁vibrate -12.6324 -▁hymns -12.6324 -tsk -12.6325 -▁navigate -12.6325 -▁dali -12.6325 -▁grounded -12.6325 -jing -12.6325 -lston -12.6326 -▁rooftop -12.6327 -existent -12.6329 -▁scam -12.6329 -950 -12.6332 -▁cathy -12.6332 -▁humber -12.6333 -▁redemption -12.6335 -▁emanuel -12.6335 -▁substituted -12.6336 -▁tera -12.6337 -▁vhs -12.6338 -phospho -12.634 -tool -12.6341 -▁reddy -12.6346 -▁twirl -12.6346 -▁modular -12.6346 -▁ratified -12.6347 -morning -12.6347 -▁kern -12.6348 -▁soothe -12.6349 -▁vander -12.635 -▁illegally -12.635 -▁germ -12.6353 -770 -12.6354 -▁diff -12.6355 -▁nero -12.6355 -▁announces -12.6356 -▁clinging -12.6356 -▁appalachian -12.6356 -▁restructuring -12.6356 -▁guinness -12.6357 -health -12.6358 -▁yorker -12.6359 -▁teleport -12.636 -kane -12.6363 -▁settler -12.6367 -muff -12.6367 -▁lindsey -12.6368 -▁palma -12.6369 -bishop -12.637 -mera -12.6371 -▁cornish -12.6372 -centric -12.6372 -centre -12.6372 -▁confronts -12.6373 -tied -12.6373 -▁mystical -12.6374 -▁chili -12.6376 -▁mandy -12.6377 -223 -12.6377 -▁louie -12.6378 -autobiographical -12.6378 -▁formidable -12.6378 -cook -12.6378 -dactyl -12.638 -ection -12.638 -imus -12.6381 -▁wwf -12.6382 -pine -12.6384 -itsa -12.6386 -▁rematch -12.6386 -▁disagreed -12.6386 -196 -12.6387 -fuku -12.6387 -▁raa -12.6388 -bride -12.6388 -▁recoil -12.6389 -▁quiver -12.6389 -▁bruins -12.639 -phus -12.6391 -▁kazan -12.6391 -gah -12.6396 -usha -12.6397 -▁barangay -12.64 -▁salzburg -12.64 -simon -12.64 -▁honeymoon -12.64 -▁dinosaurs -12.64 -▁prelude -12.6402 -▁werewolves -12.6402 -▁chic -12.6402 -▁badger -12.6403 -▁galactic -12.6405 -arr -12.6405 -▁topographic -12.6406 -▁priorities -12.6406 -▁jumper -12.6406 -particularly -12.6407 -▁barrage -12.6407 -▁everton -12.6407 -▁mapped -12.6409 -▁assertion -12.6411 -▁cerebral -12.6411 -▁reassigned -12.6411 -▁shrewsbury -12.6411 -▁dictatorship -12.6411 -▁filthy -12.6411 -▁password -12.6411 -▁reggie -12.6412 -▁pamela -12.6412 -rode -12.6412 -▁valeri -12.6413 -▁punjabi -12.6418 -▁tremble -12.642 -▁yellowish -12.6421 -▁aka -12.6421 -visual -12.6421 -▁bret -12.6421 -▁mclaren -12.6422 -▁spanned -12.6423 -▁penguins -12.6425 -▁boiled -12.6425 -▁stri -12.6425 -▁mountaineer -12.6427 -ility -12.6427 -▁homolog -12.6429 -▁plagued -12.643 -builder -12.643 -chap -12.6431 -labor -12.6432 -terminal -12.6432 -actor -12.6432 -▁maharaja -12.6432 -▁preface -12.6432 -▁volkswagen -12.6433 -▁recital -12.6433 -▁quartz -12.6433 -▁liberties -12.6433 -▁montagu -12.6437 -▁poisoned -12.6438 -▁galerie -12.6438 -1,600 -12.6439 -▁piled -12.6439 -▁coupling -12.644 -▁lunged -12.6442 -equivalent -12.6443 -▁foothills -12.6444 -▁sprinter -12.6445 -▁stealth -12.6446 -hub -12.6446 -▁spontaneous -12.6447 -▁dough -12.6447 -▁marta -12.6449 -▁overlook -12.6451 -▁shootout -12.6451 -▁burgundy -12.6455 -▁illegitimate -12.6455 -▁talmud -12.6455 -▁palazzo -12.6455 -▁tyrone -12.6455 -▁reis -12.6455 -anything -12.6456 -▁bleak -12.6457 -szcz -12.6457 -kong -12.6457 -▁rowe -12.6458 -▁lively -12.6462 -rington -12.6463 -bery -12.6465 -▁accustomed -12.6466 -▁biscuit -12.6466 -▁godfrey -12.6466 -▁ignorance -12.6466 -▁dracula -12.6466 -▁remarkably -12.6466 -▁cabo -12.6467 -▁comfortably -12.6467 -feed -12.6468 -▁gord -12.6468 -▁syed -12.6468 -▁salesman -12.6469 -▁rolf -12.647 -720 -12.647 -▁dashed -12.647 -▁plead -12.6471 -ieux -12.6473 -cada -12.6474 -▁masonry -12.6474 -southeast -12.6475 -▁guido -12.6475 -yeon -12.6476 -atan -12.6477 -▁estuary -12.6477 -▁oblivious -12.6477 -fontaine -12.6477 -▁wrought -12.6477 -▁whine -12.6478 -▁vickers -12.6478 -guan -12.6479 -logist -12.6481 -significant -12.6481 -grady -12.6482 -▁maga -12.6483 -▁tull -12.6486 -nama -12.6487 -▁mccall -12.6488 -▁funnel -12.6488 -▁tonga -12.649 -dynamic -12.6491 -focused -12.6492 -enfeld -12.6493 -▁levine -12.6493 -risk -12.6493 -▁strasbourg -12.6498 -▁mckenzie -12.6499 -▁rebranded -12.6499 -▁gymnast -12.6499 -▁telecommunicati -12.6499 -▁addison -12.65 -ellen -12.6501 -▁reformer -12.6501 -▁foreman -12.6501 -saur -12.6501 -▁hiero -12.6502 -together -12.6503 -▁patty -12.6504 -▁chewed -12.6504 -▁weave -12.6505 -tropical -12.6506 -▁sut -12.6506 -▁pou -12.6508 -melo -12.6508 -▁rake -12.6509 -▁quintet -12.6511 -project -12.6511 -▁verify -12.6513 -ayan -12.6513 -▁choking -12.6515 -▁draper -12.6516 -owo -12.6517 -▁fanny -12.652 -label -12.652 -▁elemental -12.652 -▁sanitation -12.6521 -▁gael -12.6521 -▁tyson -12.6523 -▁tamp -12.6524 -▁iphone -12.6524 -▁streetcar -12.6525 -studio -12.6526 -187 -12.6526 -▁mong -12.6529 -hina -12.6529 -▁famously -12.653 -posthumous -12.6531 -▁rufus -12.6532 -▁hovered -12.6534 -▁processors -12.6536 -▁penned -12.654 -▁clinched -12.6541 -▁electrified -12.6543 -▁artisan -12.6543 -ritt -12.6544 -▁tere -12.6548 -▁clarkson -12.6548 -usta -12.6549 -▁shrimp -12.6549 -▁soften -12.655 -▁shred -12.655 -hangul -12.655 -lisa -12.6551 -▁proudly -12.6551 -mixed -12.6552 -▁maverick -12.6554 -shine -12.6554 -▁duffy -12.6555 -▁feral -12.6558 -lico -12.6558 -▁consulate -12.6558 -▁curly -12.6559 -▁solvent -12.6559 -▁conversely -12.656 -pure -12.6561 -▁cecilia -12.6562 -▁hoc -12.6562 -▁filters -12.6563 -ppo -12.6564 -▁silv -12.6564 -▁tumble -12.6565 -▁assemblies -12.6565 -▁undisclosed -12.6565 -among -12.6565 -▁aroused -12.6566 -▁problematic -12.6567 -1889 -12.6568 -hungary -12.6568 -lingen -12.6569 -▁diverted -12.6569 -▁ministerial -12.6569 -ozzi -12.6572 -▁exclude -12.6574 -▁gaga -12.6575 -▁crete -12.6575 -wehr -12.6575 -vivi -12.6575 -▁shrew -12.6576 -▁domenico -12.6576 -maro -12.6578 -▁pinched -12.6578 -▁refurbished -12.6579 -▁interconnect -12.6579 -▁shrubs -12.6579 -▁envisioned -12.6582 -▁pelt -12.6582 -bend -12.6583 -sleep -12.6585 -▁metz -12.6586 -▁joachim -12.6587 -▁unwanted -12.6587 -▁kinda -12.6592 -▁flourished -12.6592 -weiler -12.6593 -▁rushes -12.6597 -:59 -12.6598 -▁presiding -12.6598 -▁rigorous -12.6598 -▁practitioner -12.6599 -henry -12.6599 -▁tumbled -12.66 -▁usaf -12.66 -▁kettle -12.6601 -prime -12.6601 -hv -12.6602 -▁lumpur -12.6602 -▁judd -12.6603 -▁dunes -12.6604 -▁entail -12.6604 -malo -12.6605 -gret -12.6606 -▁tangle -12.6607 -▁vandal -12.6608 -gwa -12.6608 -▁recreate -12.6608 -hashi -12.6611 -uji -12.6612 -▁recession -12.6612 -bred -12.6613 -▁wired -12.6613 -▁unison -12.6613 -▁tattoos -12.6613 -http -12.6615 -phyll -12.6615 -▁galen -12.6617 -▁proclaim -12.662 -▁avalanche -12.6621 -▁societe -12.6621 -▁slater -12.6621 -▁bumper -12.6623 -▁lucan -12.6624 -▁deposition -12.6624 -▁falkland -12.6625 -▁brightness -12.6625 -▁marti -12.6626 -crest -12.6627 -rx -12.6628 -cult -12.6629 -grey -12.6631 -▁coherent -12.6632 -▁cornelius -12.6632 -▁tsunami -12.6632 -▁ebb -12.6632 -▁axiom -12.6632 -▁attire -12.6633 -▁capo -12.6634 -▁widening -12.6635 -judge -12.6635 -▁kenyan -12.6635 -▁qian -12.6636 -▁analysts -12.6636 -▁donkey -12.6638 -▁beads -12.6638 -ensen -12.664 -▁electrode -12.664 -▁jog -12.6642 -▁camouflage -12.6643 -▁corvette -12.6643 -▁immaculate -12.6643 -phage -12.6643 -kami -12.6643 -▁hazardous -12.6645 -▁grease -12.6646 -mash -12.6646 -▁scarce -12.6647 -1888 -12.6649 -escens -12.665 -▁juda -12.6652 -oor -12.6652 -▁diminish -12.6652 -roux -12.6653 -instrumental -12.6654 -bacterium -12.6654 -▁incidence -12.6654 -▁tottenham -12.6654 -kirch -12.6655 -hopping -12.6655 -northern -12.6656 -1892 -12.6657 -thomas -12.6658 -shev -12.6659 -:42 -12.6659 -ranger -12.666 -wur -12.666 -▁fiat -12.6663 -▁unicorn -12.6664 -mizu -12.6665 -▁peeked -12.6665 -▁vernacular -12.6665 -axial -12.6667 -▁welch -12.6668 -▁industrialist -12.6672 -▁disliked -12.6673 -▁preaching -12.6676 -▁fem -12.6677 -magic -12.6677 -▁charlton -12.6677 -▁beautifully -12.6678 -▁xuan -12.6678 -palli -12.6681 -▁liege -12.6682 -▁conditional -12.6683 -▁parental -12.6683 -▁rowland -12.6684 -acker -12.6684 -▁meri -12.6685 -▁arithmetic -12.6688 -▁rutgers -12.6688 -▁pentagon -12.6688 -▁assassins -12.6688 -▁mentioning -12.6689 -forward -12.669 -▁conti -12.6691 -▁rook -12.6694 -▁faintly -12.6695 -▁libyan -12.6697 -▁calf -12.6698 -▁runaway -12.6699 -▁potassium -12.6699 -▁tranquil -12.6699 -▁atkinson -12.6699 -▁shimmer -12.67 -▁aviator -12.6701 -▁unnatural -12.6702 -material -12.6705 -express -12.6705 -:43 -12.6707 -▁cartel -12.6707 -▁corpses -12.6708 -▁vaughn -12.671 -▁vertices -12.671 -▁economies -12.671 -▁hendrick -12.671 -▁blacksmith -12.6711 -highest -12.6711 -qaeda -12.6712 -▁rodent -12.6712 -▁mimi -12.6712 -▁battered -12.6712 -▁framing -12.6713 -rse -12.6713 -910 -12.6715 -▁apron -12.6717 -ady -12.6721 -ksha -12.6722 -▁weakly -12.6722 -▁vanish -12.6722 -▁tandem -12.6723 -▁digitally -12.6724 -▁#7 -12.6728 -bv -12.673 -▁dissolve -12.6731 -▁andrei -12.6732 -▁transylvania -12.6733 -▁bernstein -12.6734 -530 -12.6735 -▁annexation -12.6735 -minister -12.6735 -uction -12.6735 -▁algae -12.6737 -vive -12.674 -sheng -12.674 -▁interceptions -12.6742 -combatant -12.6742 -mica -12.6743 -aryan -12.6744 -maria -12.6744 -▁cougar -12.6744 -▁windshield -12.6744 -▁fearful -12.6746 -▁peterborough -12.6748 -▁xanth -12.6748 -▁stefano -12.6748 -▁fray -12.6749 -▁waterford -12.6749 -▁devin -12.6751 -▁occupants -12.6752 -omorphic -12.6753 -228 -12.6755 -always -12.6755 -▁unto -12.6755 -:44 -12.6755 -▁archdeacon -12.6755 -▁isotope -12.6755 -▁anguish -12.6756 -chamber -12.6757 -▁stevie -12.6757 -idge -12.6758 -uya -12.6758 -▁gallons -12.6759 -effect -12.676 -▁smoothed -12.6762 -▁poole -12.6764 -▁sears -12.6765 -positive -12.6765 -stall -12.6766 -▁husky -12.6766 -▁marches -12.6766 -▁fluttered -12.6767 -palla -12.6768 -▁spawned -12.6768 -▁playback -12.6768 -1870 -12.6769 -▁compton -12.677 -▁polygon -12.677 -▁furlong -12.6771 -▁disruption -12.6772 -mora -12.6773 -▁curran -12.6773 -▁envi -12.6774 -▁dunk -12.6774 -capital -12.6776 -▁azerbaijani -12.6776 -▁zeke -12.6777 -2:00 -12.6778 -▁deprived -12.6778 -630 -12.6778 -▁blurred -12.6779 -▁pieter -12.6779 -▁randomly -12.678 -▁syd -12.678 -▁caller -12.678 -▁gorilla -12.678 -▁gerhard -12.6781 -▁hurdles -12.6784 -▁vomit -12.6785 -southwest -12.6787 -▁tunic -12.6788 -▁ruiz -12.6788 -▁biennial -12.6789 -▁kangaroo -12.6789 -▁metropolis -12.679 -vald -12.6791 -▁blinding -12.6792 -246 -12.6793 -▁yao -12.6794 -existing -12.6795 -gho -12.6796 -▁termination -12.6801 -wulf -12.6803 -▁novella -12.6803 -▁harmless -12.6803 -▁guyana -12.6807 -grandfather -12.6808 -schule -12.6808 -▁hover -12.6808 -▁castillo -12.6809 -▁archaeologist -12.6811 -▁bruised -12.6811 -▁stub -12.6812 -▁diocesan -12.6812 -▁infiltrate -12.6812 -▁provost -12.6812 -▁deposed -12.6812 -▁bikini -12.6813 -▁medallion -12.6814 -troop -12.6815 -▁kilograms -12.6819 -▁birk -12.6819 -jie -12.6821 -▁mongolian -12.6821 -ffa -12.6822 -▁pare -12.6823 -▁dominique -12.6823 -▁faculties -12.6823 -▁perpetrator -12.6823 -▁susceptible -12.6823 -▁alessandro -12.6823 -▁lockheed -12.6823 -emper -12.6824 -▁commemorated -12.6824 -▁hierarch -12.6825 -▁arjun -12.6826 -▁titus -12.6827 -▁chargers -12.6829 -mec -12.6829 -kesh -12.6829 -▁transporting -12.6829 -13% -12.6831 -▁favourable -12.6831 -claude -12.6834 -▁otis -12.6834 -▁psychiatry -12.6835 -▁menace -12.6836 -cbs -12.6836 -▁variously -12.6837 -▁rattled -12.684 -logue -12.6843 -▁ryo -12.6844 -▁obstacle -12.6846 -▁guangzhou -12.6846 -▁stratford -12.6846 -▁cylindrical -12.6846 -▁reopen -12.685 -▁malaria -12.685 -kovsky -12.6852 -minster -12.6852 -▁khe -12.6853 -pov -12.6854 -▁patio -12.6855 -▁turbines -12.6856 -brick -12.6856 -ecki -12.6856 -forest -12.6856 -whose -12.6856 -▁humboldt -12.6858 -▁whereabouts -12.6858 -▁thankful -12.6859 -▁torpedoes -12.6862 -▁distorted -12.6863 -▁intrigued -12.6865 -▁schul -12.6866 -monte -12.6867 -▁remembrance -12.6869 -▁sarajevo -12.6869 -▁pussy -12.6869 -▁smartphone -12.687 -▁flipping -12.687 -▁1758 -12.6872 -killer -12.6873 -▁meng -12.6874 -▁kellan -12.6874 -ruk -12.6874 -nanda -12.6875 -▁offences -12.6876 -▁chords -12.688 -▁intimidate -12.688 -▁navigator -12.6881 -▁morphology -12.6881 -▁millie -12.6883 -254 -12.6883 -shita -12.6883 -issy -12.6884 -villa -12.6885 -▁countered -12.6887 -throw -12.6887 -vf -12.6888 -uil -12.6888 -▁samson -12.6888 -▁shuffled -12.6889 -gast -12.689 -▁swirled -12.6891 -20% -12.6892 -▁rotate -12.6892 -▁disclosure -12.6892 -▁libertarian -12.6892 -▁visibly -12.6892 -▁circling -12.6892 -▁strapped -12.6893 -▁unemployed -12.6893 -▁flinched -12.6893 -▁cruelty -12.6895 -▁glover -12.6897 -euter -12.6899 -nbc -12.6901 -veni -12.6902 -▁arises -12.6902 -liberal -12.6902 -▁1660 -12.6902 -▁sparta -12.6902 -▁apostles -12.6902 -▁eerie -12.6903 -commissioned -12.6905 -245 -12.6905 -▁smelt -12.6905 -▁webber -12.6905 -▁lakers -12.6905 -▁confirming -12.6906 -▁drying -12.6906 -▁angered -12.6907 -▁projectile -12.6907 -jim -12.6909 -▁corey -12.6909 -colonial -12.6911 -▁malt -12.6911 -▁collin -12.6911 -▁hod -12.6912 -▁atheist -12.6912 -▁danielle -12.6912 -▁quran -12.6914 -civil -12.6914 -▁compiler -12.6914 -▁sree -12.6914 -▁accumulation -12.6915 -▁negotiating -12.6915 -▁armistice -12.6915 -▁sinatra -12.6915 -rge -12.6915 -▁inclusive -12.6915 -▁oasis -12.6915 -▁remnant -12.6916 -▁physiological -12.6916 -steve -12.6916 -▁vanity -12.6917 -▁collage -12.6924 -▁clover -12.6925 -osta -12.6925 -▁rudd -12.6926 -▁messy -12.6926 -▁insanity -12.6927 -▁sardinia -12.6927 -▁crease -12.6929 -▁startling -12.693 -▁rower -12.693 -▁reproduce -12.693 -▁amounted -12.6931 -eared -12.6932 -ewski -12.6935 -▁cleric -12.6935 -submarine -12.6936 -▁spilling -12.6936 -strange -12.6939 -▁brag -12.6939 -koppen -12.6939 -1893 -12.6939 -▁reb -12.694 -▁viaduct -12.6941 -critical -12.6942 -▁nazar -12.6942 -:34 -12.6943 -native -12.6944 -▁intends -12.6944 -▁sabbath -12.6949 -▁prologue -12.6951 -▁ronan -12.6951 -▁caledonia -12.6952 -multi -12.6952 -▁capitalist -12.6953 -▁disband -12.6953 -▁martyrs -12.6954 -baker -12.6956 -▁sharif -12.6956 -▁messed -12.6958 -▁headlights -12.6958 -▁hilt -12.6959 -oche -12.6959 -▁curated -12.696 -pretty -12.6963 -ahn -12.6965 -astro -12.6966 -▁flore -12.6967 -bhaga -12.6971 -▁bernhard -12.6971 -▁purported -12.6972 -▁internship -12.6973 -xc -12.6975 -▁encore -12.6975 -▁attested -12.6976 -cee -12.6977 -ouch -12.6978 -▁carrot -12.6978 -▁browning -12.6983 -▁abort -12.6983 -misunderstanding -12.6984 -▁claudio -12.6984 -▁navarre -12.6984 -295 -12.6984 -▁ponytail -12.6985 -▁crashes -12.6985 -▁fingerprint -12.6985 -▁liao -12.6986 -▁energies -12.6987 -▁georgie -12.6988 -▁densely -12.6988 -▁bakery -12.699 -phos -12.6991 -▁kraus -12.6992 -▁saxophonist -12.6996 -▁sergey -12.6996 -▁analogue -12.6996 -▁monty -12.6999 -▁sheltered -12.7 -▁wiley -12.7001 -▁sling -12.7001 -▁evade -12.7001 -▁linn -12.7001 -▁taft -12.7002 -▁mateo -12.7003 -▁alamo -12.7004 -▁falk -12.7004 -▁shank -12.7005 -▁bruises -12.7006 -birth -12.7008 -▁billie -12.7009 -▁wrecked -12.7009 -▁dickens -12.7012 -▁willingly -12.7012 -▁boca -12.7012 -▁caress -12.7012 -▁hamas -12.7017 -▁miraculous -12.7019 -▁warwickshire -12.7019 -▁optimization -12.7019 -▁overview -12.7022 -▁spherical -12.7022 -▁uncover -12.7023 -▁bolted -12.7028 -▁200405 -12.7029 -▁karol -12.703 -▁spruce -12.703 -▁tehsil -12.703 -ugg -12.7031 -lender -12.7031 -▁archaeologists -12.7032 -▁noteworthy -12.7032 -▁nudged -12.7032 -hunt -12.7032 -186 -12.7033 -▁bedside -12.7036 -▁purity -12.7038 -journal -12.7039 -chancellor -12.7041 -homme -12.7041 -compatibility -12.7042 -▁fabulous -12.7042 -▁italics -12.7042 -▁gmbh -12.7043 -▁maka -12.7045 -▁sloan -12.7045 -▁denomination -12.7046 -▁barking -12.705 -▁cullen -12.7051 -▁gulp -12.7052 -possibly -12.7052 -travel -12.7052 -▁elton -12.7053 -238 -12.7053 -▁exploited -12.7053 -▁flinch -12.7054 -▁feeder -12.7055 -ilus -12.7055 -ophora -12.7055 -▁tasting -12.7056 -▁smirked -12.7057 -▁philo -12.7057 -charles -12.7058 -▁leach -12.7059 -▁goldsmith -12.7059 -lidae -12.706 -oiled -12.7061 -laf -12.7061 -▁philosophi -12.7063 -▁ethnicity -12.7063 -patria -12.7064 -▁ensued -12.7065 -▁kaufman -12.7066 -▁fda -12.7066 -▁richest -12.7066 -▁harrington -12.7066 -▁pandora -12.7067 -:58 -12.7068 -▁milne -12.7069 -ober -12.7071 -241 -12.7072 -enactment -12.7073 -:22 -12.7073 -▁topology -12.7073 -▁contention -12.7073 -rico -12.7074 -dyn -12.7077 -▁schooner -12.7077 -▁wichita -12.7077 -▁instability -12.7077 -▁thwart -12.7078 -▁apprenticeship -12.7078 -pj -12.7078 -▁severity -12.7079 -▁serge -12.7079 -▁entre -12.708 -▁raided -12.708 -▁cantata -12.708 -▁mecca -12.7085 -▁columb -12.7085 -▁historia -12.7091 -▁imply -12.7092 -▁regretted -12.7092 -194 -12.7093 -fang -12.7095 -▁computation -12.7096 -cub -12.7097 -▁refit -12.7099 -▁risky -12.7099 -▁primetime -12.7099 -▁enraged -12.71 -▁convergence -12.7101 -ogh -12.7101 -▁hijack -12.7102 -▁stifle -12.7103 -▁crore -12.7104 -▁oldham -12.7104 -▁fabian -12.7105 -▁nitro -12.7105 -▁glut -12.7107 -cona -12.7108 -▁betting -12.7108 -▁fife -12.711 -/8 -12.711 -analyse -12.7111 -50% -12.7112 -▁hussain -12.7112 -▁arousal -12.7112 -▁scorch -12.7114 -▁powerplant -12.7115 -iensis -12.7116 -oop -12.7116 -sullivan -12.712 -induced -12.712 -▁mabel -12.712 -▁coughed -12.712 -udu -12.712 -▁juno -12.7121 -traumatic -12.7121 -▁perceive -12.7123 -▁sabin -12.7123 -▁revolves -12.7124 -▁cripple -12.7124 -▁4:3 -12.7125 -minal -12.7125 -▁colby -12.7125 -▁aroma -12.7128 -▁skipper -12.7128 -1891 -12.713 -▁reprint -12.7133 -israeli -12.7135 -proliferation -12.7136 -▁albuquerque -12.7136 -▁arrondissement -12.7136 -▁segunda -12.7136 -▁cannibal -12.7136 -▁welcoming -12.7136 -625 -12.7136 -▁denote -12.7137 -▁churchyard -12.7138 -abha -12.7138 -▁barony -12.714 -credit -12.7141 -pta -12.7141 -▁matri -12.7141 -▁karin -12.7142 -▁croat -12.7144 -▁slowing -12.7144 -▁swallowing -12.7144 -▁defects -12.7145 -▁confer -12.7146 -▁bitten -12.7147 -▁lending -12.7147 -▁lark -12.7147 -driver -12.7148 -▁atari -12.7151 -▁buffet -12.7151 -▁graphical -12.7151 -▁$10,000 -12.7152 -▁doncaster -12.7152 -tronic -12.7156 -▁lillian -12.7156 -▁relying -12.7156 -▁relocate -12.7159 -▁shropshire -12.7159 -▁creeping -12.716 -▁capp -12.7161 -▁pali -12.7162 -▁levant -12.7163 -clockwise -12.7163 -chner -12.7165 -oglu -12.7165 -:57 -12.7168 -▁acquainted -12.7171 -▁listener -12.7171 -▁convened -12.7171 -▁maltese -12.7171 -▁lordship -12.7172 -ismo -12.7172 -swedish -12.7173 -cule -12.7173 -▁reclaim -12.7173 -arctic -12.7174 -▁squint -12.7174 -16% -12.7175 -campus -12.7176 -▁sme -12.7177 -amon -12.7177 -▁interruption -12.7177 -▁rumor -12.7178 -▁$100,000 -12.7179 -▁norte -12.718 -pud -12.7182 -▁slalom -12.7183 -▁suc -12.7183 -▁kristian -12.7184 -580 -12.7185 -▁fey -12.7187 -▁strath -12.7187 -▁croc -12.7188 -mmm -12.7188 -233 -12.7189 -▁cyn -12.7189 -▁chieftain -12.719 -▁lectured -12.7193 -▁adjunct -12.7194 -▁deficiency -12.7194 -▁skyscraper -12.7194 -palatinate -12.7194 -▁utrecht -12.7195 -▁eyeing -12.7195 -▁gdansk -12.7195 -▁sweating -12.7195 -227 -12.7197 -2+ -12.7197 -▁disgusting -12.7197 -▁kelley -12.7201 -▁haas -12.7201 -▁catering -12.7202 -405 -12.7203 -▁kale -12.7203 -tidae -12.7206 -huan -12.7206 -▁pharaoh -12.7206 -▁streamed -12.7209 -▁energ -12.7211 -genic -12.7211 -:02 -12.7211 -▁novak -12.7212 -awaited -12.7212 -taba -12.7212 -▁runoff -12.7212 -▁fili -12.7213 -▁amusing -12.7213 -▁fide -12.7214 -▁ecstasy -12.7218 -conspirator -12.7218 -▁kink -12.7218 -▁ortiz -12.722 -▁analogous -12.7221 -▁morale -12.7221 -acharya -12.7223 -▁brant -12.7226 -umu -12.7227 -▁localities -12.7228 -▁organizers -12.7229 -▁commence -12.723 -filtration -12.723 -▁nippon -12.723 -▁orioles -12.723 -wani -12.723 -▁dangling -12.723 -▁emilio -12.723 -▁mcbride -12.7231 -▁ligand -12.7231 -85% -12.7232 -▁labelled -12.7232 -▁protectorate -12.7232 -polar -12.7232 -heath -12.7233 -bello -12.7235 -bhai -12.7235 -▁comrades -12.7236 -▁prevailing -12.7239 -iken -12.7239 -▁rumours -12.7239 -etude -12.724 -▁pisa -12.7241 -▁slay -12.7242 -▁coliseum -12.7242 -▁eclectic -12.7242 -▁wolverhampton -12.7242 -▁biotechnology -12.7242 -vick -12.7242 -▁urgency -12.7242 -▁blurted -12.7244 -▁glyco -12.7244 -▁justification -12.7245 -kum -12.7246 -:37 -12.7246 -▁fairfield -12.7247 -193 -12.7247 -abc -12.7251 -▁woodward -12.7251 -rhin -12.7253 -189 -12.7253 -1,100 -12.7253 -▁liturgical -12.7254 -▁saliva -12.7255 -agno -12.726 -▁makeshift -12.726 -▁passer -12.7263 -▁akbar -12.7264 -▁amtrak -12.7266 -▁foliage -12.7266 -emba -12.7267 -vod -12.7268 -▁brevi -12.7268 -atum -12.7268 -provence -12.7268 -tsuki -12.7269 -▁bookstore -12.727 -▁grimaced -12.7271 -▁mandal -12.7272 -▁takeoff -12.7272 -0000 -12.7273 -243 -12.7273 -▁cami -12.7273 -▁dragoon -12.7274 -petal -12.7276 -▁bitterly -12.7277 -▁repeal -12.7277 -▁comprehend -12.7278 -▁potomac -12.7278 -▁retention -12.7278 -▁anastasia -12.7278 -unconstitutional -12.7278 -▁remedy -12.7278 -▁sherwood -12.7278 -285 -12.7279 -▁trolley -12.7279 -osus -12.7279 -lance -12.7279 -wack -12.7279 -▁slain -12.7282 -csa -12.7283 -▁stung -12.7283 -jump -12.7284 -▁textbooks -12.7285 -▁quicker -12.7285 -▁floral -12.7285 -▁bianca -12.7287 -▁leroy -12.7287 -font -12.729 -▁illumination -12.729 -▁rustic -12.7293 -▁oboe -12.7294 -▁muster -12.7295 -198 -12.7297 -▁helio -12.7297 -▁utopia -12.7297 -▁chico -12.7297 -cek -12.7298 -▁shareholder -12.7298 -▁crist -12.7299 -arche -12.7301 -gnostic -12.7302 -▁scarborough -12.7302 -▁$50 -12.7302 -▁bordering -12.7303 -▁awkwardly -12.7304 -▁shia -12.7304 -▁tame -12.7305 -▁strive -12.7307 -▁tightening -12.7307 -▁barnett -12.7308 -237 -12.7308 -▁fatty -12.7311 -:52 -12.7313 -▁violate -12.7313 -▁penelope -12.7313 -▁satya -12.7314 -▁giulia -12.7314 -▁brahma -12.7314 -vya -12.7315 -:46 -12.7315 -habit -12.7317 -matt -12.7317 -▁teg -12.7317 -▁musc -12.7317 -197 -12.7319 -▁venkat -12.732 -▁transformers -12.7322 -▁brackets -12.7322 -fired -12.7322 -▁layla -12.7323 -▁bombed -12.7324 -▁dhan -12.7325 -▁contamination -12.7325 -gula -12.7325 -▁shai -12.7326 -▁overseeing -12.7327 -cq -12.7328 -▁ferrer -12.7329 -opol -12.7331 -ease -12.7331 -▁steaming -12.7333 -▁prism -12.7334 -▁lair -12.7335 -▁duval -12.7335 -▁1760 -12.7335 -▁lega -12.7336 -azza -12.7336 -▁criterion -12.7337 -▁cabaret -12.7337 -▁sahara -12.7337 -▁seaside -12.7338 -▁ligament -12.734 -▁hustle -12.7342 -345 -12.7342 -▁pomerania -12.7344 -▁novice -12.7346 -population -12.7346 -590 -12.7349 -▁superseded -12.7349 -▁parkinson -12.7349 -1768 -12.7352 -▁ironically -12.7352 -alge -12.7356 -ogni -12.7357 -bole -12.7359 -▁bethel -12.7359 -cruci -12.7359 -▁endeavour -12.7361 -▁rendezvous -12.7361 -▁verdi -12.7363 -▁derrick -12.7365 -▁ferries -12.7365 -wake -12.7366 -utz -12.7367 -hma -12.7367 -micro -12.7367 -ussi -12.7367 -1885 -12.7369 -encompassing -12.737 -▁roach -12.7372 -ulin -12.7373 -▁charcoal -12.7373 -▁arranging -12.7374 -▁audible -12.7374 -▁whimper -12.7374 -▁kade -12.7376 -▁patel -12.7376 -phony -12.7376 -▁trough -12.7378 -lunk -12.7379 -vista -12.738 -▁napoleonic -12.7381 -▁patiently -12.7384 -quart -12.7384 -rsa -12.7384 -image -12.7385 -▁gaius -12.7385 -ogenesis -12.7385 -olle -12.7385 -▁hitchcock -12.7385 -▁clatter -12.7386 -35% -12.7386 -▁leno -12.7386 -culum -12.7387 -marked -12.7387 -▁pearce -12.7387 -▁fling -12.7389 -317 -12.739 -▁blanco -12.739 -▁dazed -12.739 -anthus -12.7391 -mene -12.7392 -edition -12.7393 -▁deflect -12.7393 -199 -12.7396 -ugi -12.7396 -▁christi -12.7398 -▁consistency -12.7398 -kita -12.7398 -▁julien -12.7399 -▁romney -12.7399 -▁trainee -12.74 -kada -12.7401 -producing -12.7401 -▁cud -12.7403 -▁harrow -12.7404 -▁rouse -12.7404 -▁ironic -12.7404 -▁muti -12.7405 -▁adorned -12.7407 -▁robbed -12.7407 -▁chronological -12.7409 -▁sausage -12.741 -▁gertrude -12.741 -▁triumphant -12.7411 -▁seville -12.7412 -▁buffy -12.7412 -▁dorn -12.7412 -▁oceanic -12.7412 -:54 -12.7415 -▁persist -12.7415 -phonic -12.7417 -▁bless -12.7417 -▁cheryl -12.7417 -▁pout -12.7418 -▁serum -12.7418 -▁melvin -12.7418 -▁benefited -12.7419 -entine -12.7421 -▁palermo -12.7421 -▁alumnus -12.7422 -▁mutiny -12.7422 -▁skateboard -12.7422 -▁geelong -12.7422 -▁mccain -12.7422 -israel -12.7423 -▁voc -12.7424 -hren -12.7426 -▁genetically -12.7426 -▁turnover -12.7426 -▁offenders -12.7427 -▁salam -12.7428 -flies -12.7428 -▁smacked -12.7428 -▁modernist -12.7429 -iyar -12.743 -▁wildcats -12.7431 -▁peep -12.7431 -▁formulated -12.7433 -inck -12.7433 -▁sprinkle -12.7434 -490 -12.7438 -▁caden -12.7439 -▁provoked -12.7439 -▁ssr -12.7439 -▁karim -12.744 -qualified -12.7441 -escence -12.7444 -▁quantitative -12.7446 -▁mauritius -12.7446 -▁amenities -12.7446 -▁persisted -12.7447 -▁willard -12.7447 -glia -12.7447 -▁wally -12.745 -▁blasted -12.7451 -oslav -12.7452 -gine -12.7453 -▁coop -12.7453 -frag -12.7454 -▁tripoli -12.7454 -kilometer -12.7454 -▁jock -12.7454 -▁langley -12.7458 -▁baggage -12.7458 -▁nuclei -12.7458 -▁bryce -12.7458 -condition -12.746 -▁adaptive -12.746 -▁eject -12.7462 -▁differentiate -12.7462 -▁lifeboat -12.7462 -▁norma -12.7463 -▁ascended -12.7463 -bov -12.7463 -baba -12.7466 -▁stoop -12.7466 -▁consult -12.7469 -1884 -12.7469 -responsive -12.747 -▁ambiguous -12.747 -▁towed -12.747 -▁replicate -12.7471 -▁disposition -12.7472 -onga -12.7473 -seeker -12.7476 -aaa -12.748 -▁carmine -12.7481 -▁conglomerate -12.7482 -▁baked -12.7482 -histoire -12.7482 -meet -12.7483 -▁pumpkin -12.7484 -▁restrained -12.7486 -mega -12.749 -:33 -12.749 -▁superiority -12.7491 -▁madden -12.7492 -▁marries -12.7492 -▁generalized -12.7493 -281 -12.7494 -artist -12.7494 -hoku -12.7494 -inflammatory -12.7494 -▁ominous -12.7494 -▁procure -12.7496 -ianus -12.7497 -▁draught -12.7497 -▁possessing -12.7498 -mean -12.7498 -1887 -12.7498 -ongo -12.7499 -▁grille -12.7499 -priya -12.7501 -▁softer -12.7502 -▁ponce -12.7502 -▁davy -12.7505 -▁guggenheim -12.7506 -▁vip -12.7507 -euse -12.7507 -shackle -12.7508 -▁courtroom -12.7509 -celli -12.751 -▁consonants -12.751 -▁travellers -12.751 -meric -12.751 -▁endowed -12.751 -▁contradiction -12.7512 -▁scratching -12.7513 -pmid -12.7513 -▁dax -12.7516 -brough -12.7517 -▁goaltender -12.7519 -▁whatsoever -12.7519 -▁resentment -12.752 -▁adjusting -12.752 -ornith -12.7521 -changing -12.7521 -▁plunge -12.7521 -determined -12.7522 -▁schn -12.7523 -▁kindly -12.7524 -▁pimp -12.7525 -uzzi -12.7527 -schau -12.7527 -zou -12.7528 -asser -12.753 -▁tav -12.7531 -▁crusaders -12.7531 -lox -12.7531 -▁liberated -12.7533 -▁mariana -12.7533 -raising -12.7533 -▁tiru -12.7533 -▁paterson -12.7534 -▁recipes -12.7534 -▁dung -12.7534 -koy -12.7536 -▁diaries -12.7536 -haka -12.7537 -▁avatar -12.7537 -title -12.7538 -▁memo -12.7539 -enge -12.7539 -▁keynes -12.754 -burger -12.7541 -▁angled -12.7541 -mediated -12.7542 -184 -12.7543 -▁improper -12.7543 -▁racket -12.7545 -▁neighbour -12.7545 -atsu -12.7546 -▁eduard -12.7546 -▁foundry -12.7546 -▁punching -12.7547 -protein -12.7548 -angelo -12.7549 -▁skid -12.755 -idad -12.755 -coded -12.755 -▁tentatively -12.755 -manager -12.7551 -322 -12.7551 -kuni -12.7553 -▁parv -12.7553 -binding -12.7554 -▁cheltenham -12.7555 -▁straightforward -12.7556 -zw -12.7557 -drome -12.7558 -▁harald -12.7558 -▁benedictine -12.7559 -krieg -12.7559 -▁morrow -12.7559 -▁greed -12.756 -▁granny -12.756 -▁vineyards -12.7561 -garden -12.7561 -▁marcia -12.7562 -zet -12.7563 -leary -12.7563 -tada -12.7564 -▁abdel -12.7565 -▁sighing -12.7565 -▁trenches -12.7565 -▁odyssey -12.7568 -▁ventilation -12.7568 -▁kinase -12.7569 -▁bishopric -12.7571 -:38 -12.7572 -▁carver -12.7572 -▁perch -12.7572 -▁nether -12.7573 -▁negatively -12.7573 -14% -12.7574 -orie -12.7574 -▁longitude -12.7575 -▁enjoyment -12.7575 -stedt -12.7575 -▁wesleyan -12.7577 -▁surged -12.7577 -zun -12.7578 -▁conflicting -12.7578 -▁ample -12.758 -▁gubernatorial -12.758 -▁remastered -12.758 -acco -12.758 -czechoslovak -12.7581 -▁creole -12.7581 -▁sellers -12.7581 -▁emphasizes -12.7582 -appe -12.7586 -technical -12.7587 -242 -12.7589 -things -12.7591 -▁andersen -12.7591 -▁impaired -12.7592 -▁odessa -12.7593 -229 -12.7593 -teh -12.7594 -▁bumped -12.7597 -illion -12.7597 -▁caliph -12.7597 -▁mitt -12.7599 -▁frontal -12.7599 -avian -12.7599 -irri -12.76 -ruz -12.76 -etter -12.7602 -▁fiance -12.7603 -▁deviation -12.7603 -anca -12.7604 -▁cultivar -12.7604 -▁truncat -12.7605 -▁reunite -12.7605 -▁centaur -12.7606 -krishnan -12.7606 -▁remarried -12.7606 -▁gallop -12.7609 -▁homework -12.761 -▁transforming -12.761 -:03 -12.7611 -▁relaxing -12.7611 -▁rpg -12.7611 -▁unreal -12.7612 -11% -12.7612 -▁savanna -12.7614 -▁$12 -12.7614 -17% -12.7615 -pitched -12.7615 -▁mercenaries -12.7617 -▁eileen -12.7617 -▁mauri -12.7617 -▁sharpe -12.7617 -▁sheldon -12.7617 -dori -12.7618 -▁tremor -12.7619 -▁mop -12.7619 -▁hove -12.762 -▁silky -12.7621 -▁olsen -12.7623 -besides -12.7624 -▁esk -12.7625 -appen -12.7625 -function -12.7627 -blatt -12.7627 -▁gemma -12.7628 -▁colliery -12.7628 -▁evolving -12.7629 -▁fascination -12.7629 -▁colonization -12.7631 -▁haunt -12.7632 -▁simi -12.7633 -▁hermit -12.7634 -▁hartman -12.7634 -roga -12.7635 -typical -12.7635 -tested -12.7636 -fresh -12.7637 -arre -12.7638 -▁tito -12.7638 -▁ankara -12.7639 -1,800 -12.7639 -▁deteriorated -12.764 -▁blackness -12.7641 -▁inconsistent -12.7641 -▁disdain -12.7641 -▁selena -12.7643 -▁multinational -12.7644 -evre -12.7645 -▁chairperson -12.7645 -▁campaigning -12.7647 -broadway -12.7648 -▁routinely -12.7649 -bottom -12.7649 -veld -12.765 -740 -12.7651 -▁augmented -12.7653 -▁bethlehem -12.7654 -fford -12.7654 -▁anatolia -12.7655 -▁avalon -12.7658 -▁quadri -12.7659 -jani -12.7659 -▁flickering -12.766 -meier -12.7661 -invest -12.7663 -ql -12.7664 -▁partisans -12.7666 -▁auspices -12.7666 -▁nuremberg -12.7666 -▁pasadena -12.7666 -▁isaiah -12.7667 -▁flavour -12.7667 -▁objection -12.7669 -gush -12.7671 -spasm -12.7672 -▁slum -12.7673 -▁hinduism -12.7674 -▁alarmed -12.7675 -▁prevailed -12.7676 -▁marshes -12.7676 -liv -12.7677 -rsk -12.7678 -▁preseason -12.7678 -nex -12.7678 -▁hertfordshire -12.7679 -▁euclid -12.7679 -▁unlawful -12.7679 -wale -12.7679 -▁renounce -12.7679 -▁lobbying -12.768 -▁caine -12.7681 -pti -12.7682 -▁awaken -12.7683 -▁pivotal -12.7683 -▁skyline -12.7683 -▁goodwin -12.7685 -▁deepened -12.7685 -▁symmetrical -12.7685 -1878 -12.7685 -▁garlic -12.7688 -1886 -12.7689 -entrepreneurship -12.7689 -▁embankment -12.7691 -stylized -12.7691 -▁quill -12.7691 -▁inverted -12.7692 -itate -12.7694 -▁trapping -12.7694 -kenne -12.7696 -▁fortunate -12.7697 -cte -12.7697 -:27 -12.7698 -▁surfing -12.7699 -▁ceded -12.7699 -bius -12.7701 -ifera -12.7702 -▁angelica -12.7702 -▁emigration -12.7703 -▁nutrients -12.7703 -▁citrus -12.7704 -nuclear -12.7705 -▁postwar -12.7705 -▁yates -12.7705 -760 -12.7706 -▁sprout -12.7706 -▁symphonic -12.7706 -417 -12.7707 -▁yukon -12.7708 -▁verona -12.7708 -veri -12.7708 -vak -12.7709 -▁bandits -12.7709 -▁gallo -12.7709 -▁coco -12.7714 -▁petite -12.7716 -▁guthrie -12.7716 -▁forcibly -12.7716 -▁maureen -12.7716 -zumi -12.7716 -▁magnum -12.7717 -▁cursing -12.7718 -bulgarian -12.7718 -▁negotiation -12.7719 -alpha -12.772 -▁lyricist -12.7722 -▁hewitt -12.7724 -▁tamara -12.7727 -▁euph -12.7728 -▁coordinating -12.7728 -▁necessitat -12.7728 -▁superficial -12.7728 -▁acronym -12.7728 -nucleotide -12.7728 -▁slat -12.7729 -▁valor -12.773 -verein -12.773 -▁macon -12.7732 -itia -12.7732 -▁accusation -12.7732 -▁chakra -12.7733 -▁chrys -12.7734 -▁fredrik -12.7735 -▁silas -12.7739 -▁blaine -12.774 -geschichte -12.7741 -▁bartholomew -12.7741 -▁neolithic -12.7741 -▁leicestershire -12.7741 -▁clipped -12.7741 -▁dependence -12.7742 -▁zachary -12.7742 -nazi -12.7744 -▁entertain -12.7744 -▁vagina -12.7746 -fellow -12.7747 -▁keyboardist -12.7747 -▁yue -12.7749 -311 -12.7751 -▁classmates -12.7751 -▁horseback -12.7751 -▁mitsubishi -12.7753 -▁secession -12.7753 -▁rooster -12.7755 -money -12.7755 -▁queue -12.7755 -▁glossy -12.7756 -▁chaotic -12.7756 -▁thicker -12.7757 -▁envy -12.7759 -▁senor -12.7759 -kke -12.7759 -performance -12.7759 -chter -12.7759 -odd -12.7761 -skinned -12.7764 -▁neb -12.7765 -▁madam -12.7765 -▁luxurious -12.7766 -▁deceive -12.7766 -ought -12.7766 -▁furiously -12.7766 -▁stephenson -12.7766 -undi -12.7767 -▁unix -12.7767 -vada -12.7769 -▁jenn -12.7769 -▁zipper -12.777 -▁charting -12.777 -128 -12.7773 -loaded -12.7773 -commercial -12.7773 -▁clade -12.7777 -247 -12.7777 -▁typo -12.7777 -▁penetration -12.7778 -▁fuscous -12.7779 -▁ulrich -12.7779 -▁sorted -12.7779 -▁organizer -12.778 -▁reflective -12.7782 -▁museo -12.7784 -▁stutter -12.7786 -▁handel -12.7789 -worker -12.7789 -▁pertaining -12.7791 -▁snoop -12.7791 -▁unavailable -12.7792 -▁sweaty -12.7793 -elson -12.7796 -▁countdown -12.7796 -1882 -12.7797 -▁doubtful -12.7799 -▁fumbled -12.7799 -haber -12.7801 -620 -12.7801 -▁stylistic -12.7801 -▁weeping -12.7802 -▁infringement -12.7803 -▁sapphire -12.7803 -▁flutter -12.7803 -▁bodily -12.7804 -▁bowled -12.7804 -▁fueled -12.7805 -acetyl -12.7805 -digger -12.7806 -▁octave -12.7806 -bord -12.7806 -▁brody -12.7806 -:28 -12.7807 -▁freddy -12.7808 -hypno -12.7809 -▁khalid -12.781 -▁shivering -12.7812 -▁sampled -12.7813 -261 -12.7814 -▁medici -12.7814 -▁ufo -12.7814 -▁authorised -12.7814 -diction -12.7814 -▁irrational -12.7816 -soluble -12.7816 -▁schultz -12.7816 -ncia -12.7817 -▁zem -12.7818 -▁rosenberg -12.782 -▁anchorage -12.7821 -▁flea -12.7821 -▁atoll -12.7822 -▁detonate -12.7823 -▁marianne -12.7824 -movie -12.7824 -▁fresco -12.7825 -▁graceful -12.7827 -▁willingness -12.7827 -vox -12.7828 -▁oilers -12.7828 -▁oppression -12.7828 -▁prevalence -12.7828 -▁secrecy -12.7828 -fuhrer -12.7828 -▁aubrey -12.7828 -ucl -12.7829 -▁snort -12.7831 -piano -12.7834 -▁combo -12.7835 -:26 -12.7837 -stav -12.7837 -rq -12.7837 -▁baj -12.7839 -nose -12.784 -▁implicated -12.7841 -▁stimulus -12.7841 -▁bose -12.7841 -▁sleek -12.7842 -▁mustafa -12.7842 -▁heaved -12.7842 -▁imperfect -12.7843 -▁lehman -12.7844 -▁shaping -12.7844 -▁eury -12.7846 -▁stalking -12.7846 -1879 -12.7846 -▁popularized -12.7846 -include -12.7846 -electronic -12.7847 -▁postmaster -12.7852 -rider -12.7853 -▁jurassic -12.7854 -▁labrador -12.7854 -▁thriving -12.7854 -▁moc -12.7854 -nobody -12.7854 -▁syntax -12.7854 -rota -12.7855 -335 -12.7857 -hna -12.7857 -▁ventured -12.7858 -▁kicker -12.7859 -▁indigo -12.7859 -▁blushed -12.786 -▁darlington -12.7861 -▁cavan -12.7864 -▁colchester -12.7867 -314 -12.7867 -claim -12.7871 -▁frankly -12.7871 -▁withstand -12.7873 -249 -12.7875 -▁downhill -12.7875 -limb -12.7875 -▁amphi -12.7878 -▁surfer -12.7879 -▁sylvester -12.7879 -▁mermaid -12.7879 -▁libby -12.788 -▁mersey -12.788 -▁muta -12.788 -:01 -12.788 -▁holloway -12.788 -▁impacted -12.7881 -▁authorization -12.7881 -▁comparatively -12.7883 -coloured -12.7883 -▁booster -12.7883 -▁guise -12.7885 -▁burying -12.7885 -ombre -12.7886 -00% -12.7889 -▁montane -12.789 -▁congestion -12.7892 -▁stairway -12.7892 -▁commissar -12.7892 -▁anglia -12.7892 -▁stacey -12.7892 -▁bisexual -12.7893 -▁telecast -12.7894 -▁wentworth -12.7894 -christophe -12.7894 -guest -12.7895 -▁bison -12.7896 -▁intercity -12.7896 -▁munch -12.7897 -425 -12.7898 -naud -12.7903 -▁trusting -12.7903 -▁bolivar -12.7904 -angan -12.7904 -▁autism -12.7905 -▁exponential -12.7905 -▁gearbox -12.7906 -muhl -12.7906 -ambro -12.7907 -▁marley -12.7907 -▁garry -12.7908 -▁cortes -12.7908 -▁pathology -12.7909 -251 -12.7911 -▁pitches -12.7912 -▁asshole -12.7912 -▁plotting -12.7913 -ulous -12.7913 -▁diffuse -12.7914 -▁respectful -12.7915 -zona -12.7915 -262 -12.7915 -icu -12.7915 -▁gait -12.7916 -▁marge -12.7917 -▁outfielder -12.7918 -▁comune -12.7918 -▁haunting -12.7918 -▁cyst -12.7918 -▁noisy -12.7918 -670 -12.7918 -unless -12.7918 -▁advertiser -12.7919 -▁mythical -12.792 -▁haji -12.792 -▁distinctly -12.7921 -▁richter -12.7922 -▁actresses -12.7922 -cream -12.7923 -▁respectable -12.7924 -▁nanny -12.7924 -▁sawmill -12.7925 -▁smyth -12.7927 -▁hunched -12.7928 -▁politic -12.7929 -▁charley -12.7929 -▁unbeaten -12.793 -▁ciudad -12.793 -▁corsica -12.793 -millimeter -12.7932 -▁sundance -12.7933 -▁lbf -12.7934 -▁fisherman -12.7936 -▁establishes -12.7936 -finalist -12.7937 -▁abducted -12.7937 -▁mcgee -12.794 -▁organiser -12.7942 -▁injunction -12.7942 -▁recognizable -12.7942 -▁defiant -12.7942 -▁tendencies -12.7943 -▁sacrificed -12.7943 -▁swoop -12.7943 -brazil -12.7946 -▁leiden -12.7947 -aksha -12.795 -▁restart -12.7955 -▁collaborating -12.7955 -▁pornography -12.7955 -▁subsidiaries -12.7955 -▁sorcerer -12.7955 -▁meteorological -12.7955 -parc -12.7956 -westphalia -12.7956 -jiro -12.7959 -▁corinthian -12.796 -1865 -12.7961 -▁groin -12.7962 -555 -12.7962 -nje -12.7962 -▁konig -12.7963 -▁spoiled -12.7965 -:32 -12.7965 -▁sarcasm -12.7968 -▁abusive -12.7968 -▁quotation -12.7968 -generally -12.7969 -▁yeast -12.797 -▁windmill -12.797 -239 -12.7971 -chuck -12.7972 -ridae -12.7973 -information -12.7974 -▁rye -12.7975 -▁impatiently -12.7978 -▁apologetic -12.7981 -▁archaic -12.7981 -▁paranormal -12.7981 -▁progressively -12.7982 -▁athenian -12.7982 -▁haitian -12.7983 -▁kraft -12.7983 -enic -12.7983 -▁susannah -12.7984 -▁beaux -12.7986 -▁outcrop -12.7986 -▁southbound -12.7988 -swiss -12.7989 -51% -12.7989 -▁twi -12.799 -haq -12.799 -570 -12.799 -▁modernization -12.7993 -▁baptized -12.7993 -▁sherlock -12.7994 -▁attendees -12.7994 -rahim -12.7995 -▁marathi -12.7997 -▁immortality -12.7997 -▁conserved -12.7997 -▁hesitant -12.7998 -▁assessing -12.7998 -▁imitate -12.8002 -▁sinai -12.8003 -▁plucked -12.8006 -wada -12.8006 -▁disrupted -12.8006 -▁seductive -12.8006 -▁delusion -12.8006 -:24 -12.8009 -▁broadband -12.8009 -▁saha -12.8009 -▁hayward -12.8009 -▁zeal -12.8011 -▁subjective -12.8011 -▁hipp -12.8012 -smelling -12.8014 -:48 -12.8015 -▁resin -12.8016 -frequent -12.8017 -:36 -12.8017 -establish -12.8018 -sort -12.8018 -thwaite -12.8018 -▁commodity -12.8019 -▁landfall -12.8019 -▁irony -12.8019 -▁mainline -12.8022 -▁crag -12.8024 -deh -12.8025 -encies -12.8025 -bread -12.8026 -▁commemoration -12.8032 -▁remorse -12.8032 -▁murdoch -12.8032 -▁deportation -12.8032 -▁rodrigo -12.8032 -▁professorship -12.8033 -▁craftsman -12.8035 -spawn -12.8035 -lima -12.8037 -▁simp -12.8037 -302 -12.8038 -▁optimize -12.8039 -▁wien -12.804 -▁tammy -12.804 -australian -12.8041 -flag -12.8041 -▁sanity -12.8042 -▁incorrectly -12.8043 -▁liturgy -12.8045 -▁amherst -12.8045 -▁surveying -12.8045 -▁blister -12.8045 -▁apostle -12.8046 -▁accelerate -12.8046 -▁phonetic -12.8047 -mitra -12.8048 -▁haynes -12.8049 -▁dysfunction -12.8049 -▁northbound -12.805 -416 -12.8052 -reading -12.8053 -▁compromised -12.8054 -▁bridg -12.8054 -1883 -12.8055 -omorph -12.8055 -▁adjutant -12.8058 -▁amplitude -12.8058 -▁feminism -12.8058 -▁yiddish -12.8058 -▁intrinsic -12.8058 -▁inclination -12.8058 -▁template -12.8058 -▁vertex -12.8058 -▁thistle -12.8059 -jl -12.8059 -advert -12.8059 -▁beep -12.806 -▁intensely -12.8061 -▁reconsider -12.8061 -▁ramsay -12.8061 -▁airbus -12.8062 -▁notified -12.8063 -▁benches -12.8069 -▁ravine -12.8069 -▁plume -12.8069 -▁fingernails -12.807 -▁emm -12.8072 -azzi -12.8072 -▁hiroshima -12.8073 -▁cinematic -12.8073 -▁casualty -12.8074 -▁thoughtfully -12.8074 -▁bayern -12.8074 -ophile -12.8076 -secure -12.8079 -▁putnam -12.8083 -▁defiance -12.8083 -▁incapable -12.8084 -deva -12.8084 -joined -12.8086 -▁affirmed -12.8087 -▁$40 -12.8089 -▁kob -12.809 -▁gemini -12.8093 -▁differed -12.8094 -▁policemen -12.8094 -▁artifact -12.8094 -▁dubious -12.8094 -▁purdue -12.8097 -▁fused -12.8099 -▁launches -12.81 -$3 -12.8102 -▁saber -12.8102 -cua -12.8108 -▁calculating -12.8109 -quito -12.811 -:53 -12.8111 -kashi -12.8112 -▁boil -12.8112 -▁oxfordshire -12.8112 -▁retailer -12.8114 -▁gunther -12.8114 -interpret -12.8114 -▁leonid -12.8115 -▁fiancee -12.8115 -▁cutler -12.8115 -estro -12.8116 -rocket -12.8116 -▁correctional -12.8117 -385 -12.8118 -▁manipulated -12.8118 -pata -12.8118 -vg -12.8119 -▁micha -12.812 -▁barnard -12.812 -▁ponte -12.812 -▁mathias -12.8123 -▁scaled -12.8125 -hazar -12.8125 -alexandr -12.8126 -elio -12.8126 -▁strolled -12.8127 -▁cardboard -12.8129 -▁barrio -12.813 -msa -12.813 -▁hailey -12.8131 -depth -12.8132 -michel -12.8132 -jaw -12.8132 -ulan -12.8132 -▁austral -12.8132 -050 -12.8133 -oscopic -12.8134 -asiatic -12.8135 -▁blizzard -12.8135 -▁exploding -12.8135 -▁huddled -12.8135 -▁multitude -12.8135 -▁samsung -12.8135 -▁baa -12.8137 -hack -12.8137 -▁gaspar -12.8137 -▁migrate -12.8137 -▁zionist -12.8137 -▁migrant -12.8138 -▁snug -12.8138 -▁jardin -12.8138 -axton -12.8141 -:08 -12.8143 -308 -12.8147 -▁metallurg -12.8148 -▁moniker -12.8148 -▁reliance -12.8148 -▁seahawks -12.8148 -▁sexes -12.8149 -▁santana -12.8149 -▁investing -12.8149 -▁mallory -12.815 -▁kish -12.815 -draft -12.815 -▁wildcard -12.8151 -▁edict -12.8151 -▁911 -12.8153 -▁fashionable -12.8154 -:41 -12.8154 -rj -12.8154 -associate -12.8156 -▁regeneration -12.8157 -equa -12.8159 -limited -12.816 -▁alexia -12.816 -branch -12.816 -barbar -12.8161 -▁discreet -12.8161 -▁sociologist -12.8161 -▁universite -12.8161 -▁sienna -12.8162 -▁styling -12.8162 -dame -12.8162 -▁implying -12.8163 -▁practised -12.8164 -318 -12.8164 -infini -12.8165 -▁dolly -12.8166 -▁sele -12.8166 -▁pairing -12.8167 -nui -12.8167 -▁delphi -12.817 -racial -12.8172 -blad -12.8173 -▁dreadful -12.8173 -▁stumbling -12.8174 -▁marga -12.8175 -▁monterey -12.8175 -▁sneaking -12.8176 -1881 -12.8177 -tolerant -12.8177 -▁bellow -12.8177 -▁forbid -12.8178 -dorff -12.8179 -▁unpublished -12.8179 -▁mildly -12.818 -▁xp -12.818 -▁eine -12.818 -▁nestor -12.8181 -45% -12.8183 -▁motionless -12.8184 -▁huddersfield -12.8187 -▁gigantic -12.8187 -▁dowager -12.8187 -▁boar -12.8188 -▁larson -12.819 -▁shutout -12.8191 -▁hysterical -12.8191 -▁glittering -12.8192 -▁taped -12.8193 -▁titanic -12.8195 -▁calmed -12.8196 -vot -12.8197 -madi -12.8197 -▁insurgents -12.8197 -▁muh -12.8198 -▁lacy -12.8198 -▁malaga -12.8199 -▁garfield -12.8199 -▁botswana -12.82 -▁accolade -12.82 -▁collingwood -12.82 -▁medicinal -12.8201 -▁sobbing -12.8201 -uzi -12.8202 -▁huron -12.8202 -▁salaries -12.8202 -phenyl -12.8203 -▁xh -12.8204 -▁torrent -12.8205 -▁neutrality -12.8205 -▁reelected -12.8205 -▁facilitated -12.8205 -▁traveler -12.8211 -rank -12.8212 -▁pilgrim -12.8212 -▁sewage -12.8213 -▁debating -12.8215 -franchi -12.8215 -kian -12.8216 -▁modelling -12.8216 -:51 -12.8218 -1874 -12.8219 -bish -12.8222 -poc -12.8224 -▁reptiles -12.8225 -zhan -12.8226 -▁scheduling -12.8226 -▁bartlett -12.8227 -▁dentist -12.8227 -▁pancake -12.8227 -goro -12.8227 -lept -12.8228 -▁highlighting -12.8228 -▁stature -12.8228 -myr -12.8229 -nnington -12.823 -▁liable -12.8234 -▁janice -12.8235 -▁tanya -12.8235 -anski -12.8237 -▁cupboard -12.8238 -schutz -12.8239 -▁foresee -12.824 -▁cossack -12.824 -287 -12.8244 -▁marr -12.8244 -▁clarify -12.8244 -▁inhibition -12.8245 -dour -12.8246 -eyn -12.8247 -▁faber -12.8247 -▁sultanate -12.8247 -1868 -12.8249 -▁styx -12.8252 -▁devo -12.8253 -▁distributing -12.8253 -▁gravitational -12.8253 -▁incredulous -12.8253 -▁memorandum -12.8253 -▁neptune -12.8253 -▁munitions -12.8253 -▁gliding -12.8253 -▁pokemon -12.8253 -▁straddle -12.8253 -▁madhu -12.8253 -▁narration -12.8254 -▁alfredo -12.8254 -▁heiress -12.8254 -▁beggar -12.8255 -cius -12.8255 -kani -12.8256 -49% -12.8257 -iggy -12.8257 -▁pavl -12.8258 -▁thirst -12.8261 -▁profess -12.8262 -▁radha -12.8263 -▁blended -12.8264 -rax -12.8265 -▁setback -12.8266 -▁disgrace -12.8266 -▁happier -12.8266 -▁ritchie -12.8266 -▁henrietta -12.8266 -▁sculpted -12.8267 -▁cfl -12.827 -236 -12.8271 -nse -12.8271 -▁scarlett -12.8272 -francois -12.8273 -▁swayed -12.8274 -opening -12.8276 -▁sparse -12.8277 -:06 -12.8278 -▁sleeper -12.8278 -▁refinery -12.8279 -▁occult -12.8279 -▁aerodynamic -12.8279 -244 -12.8282 -costa -12.8283 -999 -12.8283 -berlin -12.8284 -▁joked -12.8284 -▁freshly -12.8284 -▁inflict -12.8284 -autonom -12.8286 -during -12.8286 -▁silesian -12.8287 -effer -12.8287 -rhythm -12.8288 -▁mutually -12.829 -icola -12.8292 -▁yeo -12.8292 -▁cadillac -12.8292 -▁repetition -12.8292 -▁skeletal -12.8292 -▁banished -12.8292 -▁erratic -12.8292 -▁denoted -12.8293 -zag -12.8294 -▁croix -12.8294 -▁bertie -12.8294 -gran -12.8294 -▁readiness -12.8295 -▁morley -12.8296 -▁scanner -12.8296 -▁middleweight -12.8297 -▁lora -12.8297 -▁breech -12.8298 -▁jovi -12.8299 -▁causal -12.8299 -▁aristocratic -12.83 -▁spaniards -12.8303 -▁cardio -12.8304 -▁repertory -12.8305 -▁overheard -12.8305 -▁swivel -12.8305 -akshi -12.8306 -▁squeal -12.8306 -▁amulet -12.8307 -▁edible -12.8308 -▁minsk -12.831 -culus -12.8312 -▁gravi -12.8314 -▁hideous -12.8315 -zuka -12.8316 -▁verandah -12.8319 -▁automation -12.8319 -▁hendrix -12.8319 -▁vilnius -12.8319 -▁crumpled -12.8319 -▁hilda -12.832 -▁beren -12.8321 -▁henley -12.8322 -▁woodstock -12.8322 -▁syr -12.8324 -acanth -12.8324 -saurus -12.8328 -▁mainz -12.833 -▁clipper -12.833 -▁erupt -12.833 -kino -12.8332 -▁intimacy -12.8332 -▁netflix -12.8332 -▁peabody -12.8332 -:56 -12.8333 -▁volvo -12.8333 -foli -12.8334 -:29 -12.8335 -ordinate -12.8337 -▁mango -12.8337 -304 -12.8338 -▁licht -12.8339 -▁greenville -12.834 -grin -12.834 -▁parr -12.834 -byte -12.8341 -▁quell -12.8341 -▁koda -12.8341 -▁sahib -12.8342 -▁oligo -12.8343 -▁ripe -12.8344 -▁mesopotamia -12.8345 -▁myrtle -12.8345 -alex -12.8348 -▁violating -12.8348 -▁injected -12.8349 -characterization -12.8349 -rocco -12.8351 -▁bolster -12.8351 -▁nicky -12.8351 -▁knighted -12.8351 -▁janata -12.8353 -▁rashid -12.8357 -258 -12.8357 -mask -12.8358 -truth -12.8358 -enhancing -12.8358 -▁tabloid -12.8358 -▁biomedical -12.8359 -▁insistence -12.8359 -▁puddle -12.8359 -▁contour -12.8361 -arranged -12.8363 -physical -12.8363 -consider -12.8365 -rigan -12.8366 -▁mutt -12.8366 -▁lodged -12.8367 -acao -12.8367 -▁improvised -12.8367 -lw -12.8368 -crazy -12.8371 -▁brownish -12.8371 -▁communicating -12.8372 -▁subdued -12.8372 -▁sichuan -12.8372 -lorenz -12.8373 -▁remotely -12.8375 -pull -12.8378 -▁taw -12.8379 -▁spirituality -12.8381 -lito -12.8381 -257 -12.8385 -▁inadvertently -12.8385 -▁metabolic -12.8385 -▁reluctance -12.8385 -▁gladiator -12.8385 -40% -12.8385 -euil -12.8386 -▁vertically -12.8386 -▁abduction -12.8387 -zaka -12.8387 -▁abandoning -12.8387 -anyway -12.8389 -boom -12.8389 -▁checkpoint -12.839 -▁backstage -12.8391 -onica -12.8395 -▁tickle -12.8396 -▁kabul -12.8397 -contract -12.8398 -▁fremantle -12.8398 -▁carpathian -12.8398 -▁dilemma -12.8398 -▁worcestershire -12.8399 -▁hereford -12.8399 -kiewicz -12.8399 -▁awakened -12.84 -▁jarvis -12.84 -▁domino -12.8401 -kuh -12.8403 -▁rte -12.8404 -▁shiv -12.8407 -90,000 -12.8408 -▁cebu -12.841 -frid -12.8411 -▁hokkaido -12.8412 -▁loneliness -12.8412 -▁kathryn -12.8412 -▁dimple -12.8412 -▁humming -12.8412 -▁sima -12.8413 -▁erica -12.8414 -▁verified -12.8415 -▁scandinavia -12.8416 -▁interpol -12.8416 -▁slung -12.8417 -▁wilkes -12.8418 -utta -12.8419 -▁baroness -12.8419 -355 -12.842 -▁lucha -12.8423 -▁smuggling -12.8425 -▁storytelling -12.8425 -▁gardiner -12.8425 -▁categorized -12.8425 -▁vodka -12.8425 -▁colton -12.8426 -▁lymph -12.8427 -▁weighted -12.843 -▁wrestled -12.8431 -mony -12.8431 -clerical -12.8433 -▁crimean -12.8436 -7,500 -12.8436 -▁broaden -12.8436 -▁glyn -12.8438 -▁pajama -12.8438 -▁pendant -12.8438 -▁phelps -12.8438 -▁clump -12.8439 -▁pollen -12.8443 -▁gentry -12.8444 -▁lenny -12.8445 -▁flirting -12.8445 -▁tamar -12.8445 -▁zimmerman -12.8445 -▁spaceship -12.8446 -uco -12.8446 -ophy -12.8448 -focus -12.8449 -▁olympian -12.8451 -▁enclave -12.8452 -▁pitchfork -12.8452 -▁buzzing -12.8452 -▁abolish -12.8453 -▁procurement -12.8453 -blin -12.8455 -sentimental -12.8456 -▁raza -12.8457 -272 -12.8458 -▁zara -12.8458 -▁tentative -12.8459 -▁hawthorn -12.8459 -▁furnished -12.8459 -▁paramedic -12.846 -violent -12.846 -pada -12.8461 -▁align -12.8462 -▁supplemented -12.8462 -zuki -12.8463 -▁bandwidth -12.8465 -▁bubba -12.8465 -▁yokohama -12.8465 -dera -12.8465 -▁cj -12.8469 -404 -12.847 -▁sundar -12.8471 -bashi -12.8472 -278 -12.8472 -▁romano -12.8473 -hild -12.8475 -▁heartbreak -12.8475 -▁rui -12.8475 -spell -12.8476 -▁melano -12.8476 -credited -12.8476 -▁conveyed -12.8476 -ocean -12.8477 -▁davey -12.8478 -▁advocating -12.8478 -▁labyrinth -12.8478 -television -12.8479 -▁counterattack -12.8479 -umbo -12.848 -▁gera -12.848 -▁boll -12.848 -▁experimented -12.8482 -▁yarn -12.8482 -▁townland -12.8483 -ribo -12.8484 -▁reset -12.8485 -kuri -12.8488 -▁shaved -12.8488 -:39 -12.8489 -gale -12.849 -lingual -12.8491 -▁rivet -12.8491 -▁federico -12.8492 -▁frenzy -12.8492 -▁seneca -12.8493 -▁relish -12.8493 -▁nuevo -12.8493 -thorax -12.8496 -legal -12.8497 -▁questionable -12.8497 -▁papp -12.8497 -▁osman -12.8501 -▁restroom -12.8503 -▁backseat -12.8504 -▁croydon -12.8505 -▁rothschild -12.8505 -▁transistor -12.8505 -muslim -12.8505 -▁vulgar -12.8506 -354 -12.8506 -▁drastically -12.8506 -▁tweed -12.8506 -▁winkler -12.8508 -▁billionaire -12.8508 -▁keystone -12.8508 -▁maul -12.8509 -▁attache -12.851 -▁poppy -12.851 -doubt -12.851 -▁baird -12.851 -1,400 -12.8511 -athlete -12.8511 -hectare -12.8512 -pressure -12.8514 -▁careless -12.8514 -▁sicilian -12.8519 -▁frederik -12.8519 -▁populous -12.8519 -automatic -12.852 -rrie -12.8522 -▁syllables -12.8525 -▁plough -12.8527 -▁mush -12.8527 -▁sash -12.8528 -lumina -12.8528 -bender -12.8531 -▁penang -12.8532 -▁bismarck -12.8532 -▁smoky -12.8532 -▁clarified -12.8532 -▁differentiation -12.8533 -▁uplift -12.8533 -▁phyllis -12.8533 -▁briefcase -12.8534 -▁mohawk -12.8535 -▁laird -12.8537 -fitting -12.8537 -▁loren -12.8539 -lorn -12.8542 -jara -12.8544 -1876 -12.8544 -▁chesapeake -12.8546 -▁genevieve -12.8546 -▁relativity -12.8546 -▁sweeney -12.8546 -▁guillaume -12.8546 -▁reversal -12.8546 -yala -12.8546 -▁nottinghamshire -12.8546 -▁yunnan -12.8547 -hipped -12.8547 -engage -12.8548 -▁oricon -12.8548 -▁costello -12.8549 -18% -12.8549 -management -12.8551 -▁invitational -12.8552 -▁xml -12.8552 -▁lakh -12.8552 -▁draining -12.8552 -▁poke -12.8553 -▁striped -12.8557 -▁shao -12.8558 -▁vendor -12.8558 -▁becca -12.8559 -▁jaenelle -12.8559 -▁primal -12.856 -▁vulcan -12.856 -jevic -12.8561 -▁arcadia -12.8562 -kanda -12.8564 -▁etched -12.8565 -253 -12.8565 -connected -12.8566 -island -12.8568 -▁cim -12.857 -▁benin -12.8572 -▁fantasies -12.8574 -▁cipher -12.8574 -opolis -12.8574 -wiz -12.8574 -▁christy -12.8575 -▁knoxville -12.8575 -▁ferris -12.8575 -▁wreckage -12.8575 -▁bluegrass -12.8576 -▁glazed -12.8577 -▁iteration -12.8579 -▁blackwell -12.858 -▁cato -12.8581 -▁murdering -12.8582 -▁catchment -12.8582 -raid -12.8584 -eswara -12.8585 -▁calam -12.8585 -beard -12.8586 -▁analyzing -12.8586 -▁hygiene -12.8586 -▁lucrative -12.8586 -▁marjorie -12.8586 -▁mckenna -12.8586 -▁brothel -12.8587 -▁templar -12.8587 -▁strikeouts -12.8587 -▁unidentified -12.8588 -▁fulham -12.8589 -▁yahoo -12.8589 -515 -12.859 -▁doomed -12.8591 -eigen -12.8592 -▁schlo -12.8596 -▁breeders -12.8597 -▁horne -12.8598 -▁pluck -12.8598 -ayya -12.8598 -▁bony -12.8599 -▁fogg -12.86 -▁phylogenetic -12.86 -igno -12.86 -▁olimpi -12.86 -▁constrict -12.8601 -▁beckett -12.8602 -357 -12.8604 -▁150,000 -12.8605 -ovan -12.8606 -1860 -12.8607 -▁astrid -12.8607 -273 -12.8608 -▁intervened -12.8608 -▁shortest -12.8609 -▁furrowed -12.8609 -▁kolo -12.861 -▁womb -12.8611 -▁malin -12.8611 -regulation -12.8612 -thirty -12.8612 -▁bono -12.8613 -▁paranoid -12.8614 -▁intrusion -12.8614 -▁wanda -12.8615 -▁cleave -12.8615 -format -12.8617 -haku -12.8623 -▁olympiad -12.8625 -▁karel -12.8626 -cube -12.8626 -▁erase -12.8627 -▁allegheny -12.8627 -▁recollection -12.8627 -▁nouvelle -12.8627 -▁aqueduct -12.8627 -▁bahadur -12.8628 -privat -12.8628 -carboxy -12.8629 -▁adulthood -12.8629 -kazakh -12.863 -435 -12.863 -▁protesting -12.8631 -▁steamship -12.8631 -▁tripped -12.8632 -▁seminal -12.8633 -aglia -12.8633 -▁dune -12.8633 -▁loaf -12.8636 -▁festivities -12.8641 -stasis -12.8641 -▁crumble -12.8645 -▁augment -12.8645 -▁waiver -12.8646 -1875 -12.8648 -▁eton -12.8648 -▁crowley -12.8649 -▁coax -12.865 -▁scarcely -12.8651 -▁confinement -12.8655 -▁humiliation -12.8655 -▁vaudeville -12.8655 -▁vegetarian -12.8655 -▁stabbing -12.8655 -▁adamant -12.8655 -▁brahmin -12.8656 -▁competence -12.8656 -scoring -12.8659 -307 -12.8659 -extra -12.866 -▁dunbar -12.866 -▁steiner -12.8661 -▁viol -12.8662 -▁1300 -12.8664 -▁callie -12.8668 -▁inevitably -12.8668 -▁nickelodeon -12.8668 -▁fresno -12.8669 -▁bernardo -12.8669 -▁craven -12.8671 -▁napier -12.8671 -▁lull -12.8671 -udge -12.8671 -lieb -12.8672 -sharp -12.8675 -730 -12.8675 -:49 -12.8678 -▁wonderland -12.8678 -▁mysore -12.8678 -▁nairobi -12.8682 -▁morphological -12.8682 -▁hartley -12.8683 -▁reappear -12.8689 -▁maize -12.8689 -cherry -12.869 -▁jammu -12.869 -rather -12.8691 -:31 -12.8691 -:47 -12.8693 -patch -12.8693 -▁connolly -12.8696 -▁livelihood -12.8696 -▁propagation -12.8696 -▁heroin -12.8696 -solid -12.87 -remix -12.8701 -306 -12.8701 -:07 -12.8703 -conference -12.8703 -▁manually -12.8703 -haugh -12.8704 -hydrate -12.8707 -ographie -12.8709 -▁grimm -12.871 -graduate -12.871 -▁tempest -12.8711 -▁fairies -12.8711 -▁vial -12.8712 -enough -12.8712 -▁scooped -12.8713 -▁shuffle -12.8713 -▁alexei -12.8714 -▁larsen -12.8714 -▁criticize -12.8715 -▁qur -12.8715 -▁potion -12.8717 -55% -12.8718 -▁geologic -12.8719 -emma -12.872 -980 -12.8722 -▁agitated -12.8723 -▁prescott -12.8723 -▁calculus -12.8724 -▁heightened -12.8725 -▁dotted -12.8726 -▁slump -12.8728 -▁almond -12.873 -▁jamal -12.873 -▁disclosed -12.8731 -▁lepto -12.8732 -efficient -12.8732 -▁uniquely -12.8734 -▁vanilla -12.8735 -kate -12.8736 -ologia -12.8737 -feasible -12.8737 -▁melodrama -12.8737 -▁bertrand -12.8737 -▁equatorial -12.8737 -▁entertained -12.8737 -jazz -12.8737 -yaka -12.8738 -choice -12.8738 -pray -12.8739 -write -12.874 -▁comedic -12.874 -▁nrl -12.8744 -4:00 -12.8746 -▁rehab -12.8746 -fleet -12.8749 -▁fitch -12.8749 -787 -12.8749 -▁kaplan -12.8749 -▁scraped -12.8749 -▁applause -12.8751 -▁cemeteries -12.8751 -▁georgi -12.8752 -▁galley -12.8753 -▁hutton -12.8761 -▁pennant -12.8763 -▁weaknesses -12.8764 -▁abdominal -12.8765 -▁accompaniment -12.8765 -▁disapproval -12.8765 -▁expanse -12.8765 -▁lennox -12.8765 -▁ganga -12.8765 -vour -12.8765 -▁witchcraft -12.8765 -mountain -12.8765 -▁convertible -12.8766 -jaya -12.8766 -▁geographically -12.8767 -▁mistakenly -12.8767 -faith -12.8768 -▁iaaf -12.8769 -▁fantas -12.8769 -quier -12.8771 -ichiro -12.8772 -▁#8 -12.8773 -▁arturo -12.8773 -entered -12.8773 -▁snowy -12.8773 -▁tasmanian -12.8774 -▁banning -12.8774 -▁expel -12.8775 -▁vito -12.8777 -▁preached -12.8777 -▁200304 -12.8778 -▁eich -12.8778 -▁christoph -12.8778 -▁buckinghamshire -12.8779 -▁burglar -12.8779 -▁grasping -12.878 -▁jihad -12.878 -trude -12.8781 -marriage -12.8781 -kopf -12.8783 -▁sprawled -12.8784 -▁mellon -12.8784 -▁preschool -12.8785 -▁trav -12.8785 -▁ogden -12.8786 -cosm -12.8789 -▁npr -12.879 -grenadier -12.8792 -gesellschaft -12.8792 -▁bonaparte -12.8792 -▁welterweight -12.8792 -▁temperament -12.8793 -▁uploaded -12.8793 -ciones -12.8795 -▁purr -12.8796 -governor -12.8796 -▁filly -12.8796 -equipped -12.8797 -▁saxe -12.8798 -▁smashing -12.88 -▁topography -12.8801 -331 -12.8803 -jic -12.8804 -object -12.8804 -1871 -12.8805 -820 -12.8806 -▁conqueror -12.8806 -▁lavender -12.8806 -▁timetable -12.8807 -celi -12.8808 -▁dewey -12.8808 -▁scramble -12.881 -276 -12.8812 -▁incense -12.8813 -▁emulate -12.8814 -▁melville -12.8816 -vam -12.8816 -▁intercollegiate -12.882 -▁shipwreck -12.882 -▁dmitri -12.882 -328 -12.882 -▁policing -12.882 -▁vulture -12.882 -▁commentaries -12.882 -tatsu -12.8821 -▁cypress -12.8821 -▁basalt -12.8827 -252 -12.8828 -▁roundabout -12.8829 -▁bonded -12.8832 -▁speculative -12.8834 -▁lodging -12.8834 -▁menacing -12.8834 -▁jurgen -12.8834 -▁braz -12.8835 -▁anaheim -12.8835 -▁organising -12.8835 -▁ventral -12.8836 -▁housekeeper -12.8837 -▁bergman -12.8838 -▁triad -12.8838 -▁geek -12.8841 -▁experimentation -12.8843 -▁greedy -12.8844 -▁spectator -12.8847 -▁supra -12.8847 -▁caterpillar -12.8848 -▁stimulation -12.8848 -▁busiest -12.885 -▁gareth -12.885 -▁pausing -12.8851 -▁replication -12.8853 -1850 -12.8854 -haran -12.8854 -▁absently -12.8855 -▁maynard -12.8856 -▁wta -12.8857 -▁sachs -12.8859 -linus -12.8861 -1867 -12.8862 -▁capacities -12.8862 -▁ljubljana -12.8862 -▁obituary -12.8862 -▁dangerously -12.8862 -▁overlapping -12.8862 -▁scrape -12.8864 -▁harshly -12.8864 -▁bhatt -12.8864 -finish -12.8865 -▁elmer -12.8868 -▁deng -12.8869 -▁1400 -12.887 -▁milano -12.8871 -▁stalled -12.8874 -259 -12.8875 -▁gutierrez -12.8876 -▁parchment -12.8876 -▁libel -12.8876 -▁dialed -12.8878 -▁dryly -12.888 -mike -12.888 -▁rocker -12.888 -australia -12.8881 -▁muted -12.8884 -▁schema -12.8887 -▁dissident -12.889 -▁thunderstorm -12.889 -▁pim -12.889 -▁musically -12.889 -copa -12.8891 -▁vargas -12.8892 -erio -12.8892 -▁weaken -12.8892 -ferri -12.8894 -395 -12.8894 -▁taint -12.8894 -spirit -12.8894 -▁downloaded -12.8896 -▁celeste -12.8897 -▁bahia -12.8898 -▁humanist -12.8901 -521 -12.8903 -▁giggling -12.8904 -▁zeppelin -12.8904 -▁gillespie -12.8904 -▁jewellery -12.8904 -gv -12.8904 -▁edna -12.8905 -respect -12.8906 -▁havoc -12.8906 -▁criticizing -12.8906 -▁preferring -12.8907 -▁yves -12.8907 -▁redesign -12.8909 -digit -12.891 -▁directorial -12.8914 -industri -12.8915 -▁abstraction -12.8916 -▁hardwood -12.8916 -▁compute -12.8917 -▁residual -12.8918 -▁gesturing -12.8918 -▁ursula -12.8918 -▁spacious -12.8918 -▁burkina -12.8918 -▁carcass -12.8919 -▁steamboat -12.8919 -▁carthage -12.8919 -kirchen -12.8919 -▁swirl -12.892 -▁ballard -12.8922 -▁stomped -12.8922 -▁nebula -12.8922 -▁buena -12.8922 -▁aristo -12.8924 -khon -12.8925 -▁crass -12.8926 -▁lurched -12.8927 -▁mahal -12.8927 -narayana -12.8929 -fung -12.8929 -▁mandir -12.8929 -▁lulu -12.893 -▁ingredient -12.893 -▁zamb -12.8931 -▁commemorating -12.8932 -▁crambidae -12.8932 -▁inflammation -12.8932 -▁misleading -12.8932 -▁monstrous -12.8932 -▁guangdong -12.8932 -archive -12.8933 -▁racehorse -12.8935 -▁cec -12.8935 -hedron -12.8936 -274 -12.8936 -▁selector -12.8937 -▁peat -12.8937 -▁hostess -12.8939 -reck -12.8939 -▁nao -12.8939 -▁barley -12.894 -▁maximize -12.8942 -▁yielding -12.8943 -690 -12.8944 -cbn -12.8944 -litt -12.8945 -▁academies -12.8946 -▁belgarath -12.8946 -▁credibility -12.8946 -▁repression -12.8946 -▁doubling -12.8946 -▁renegade -12.8946 -▁forerunner -12.8946 -▁puritan -12.8947 -▁iberian -12.8947 -pora -12.8947 -▁blinded -12.8947 -▁fremont -12.8947 -▁mirage -12.8949 -▁twinkle -12.8949 -▁nieder -12.895 -▁gianni -12.895 -▁distinguishing -12.8952 -▁$500 -12.8953 -▁rejecting -12.8954 -1861 -12.8956 -umble -12.8957 -insurgency -12.896 -intro -12.896 -▁middlesbrough -12.896 -▁indictment -12.896 -▁neuroscience -12.896 -▁rudder -12.896 -▁bacca -12.8962 -▁empower -12.8963 -▁conte -12.8965 -▁culturally -12.8966 -1877 -12.8966 -▁buzzed -12.8969 -jeong -12.897 -prav -12.897 -▁vinci -12.897 -pronounced -12.8971 -268 -12.8974 -▁guillermo -12.8974 -▁subsidies -12.8974 -▁throttle -12.8974 -▁conce -12.8975 -▁whitman -12.8976 -▁bernardino -12.8976 -hura -12.8978 -▁penetrated -12.8979 -▁cunning -12.8982 -emme -12.8982 -▁parry -12.8983 -▁barak -12.8984 -▁molina -12.8987 -▁enslaved -12.8988 -▁dunedin -12.8989 -▁soaking -12.8989 -▁odisha -12.899 -▁coroner -12.899 -▁padded -12.899 -▁vicki -12.8991 -▁portico -12.8993 -▁coughing -12.8998 -▁rhineland -12.9 -▁berber -12.9001 -siberian -12.9001 -▁osteo -12.9002 -▁biennale -12.9002 -▁decomposition -12.9002 -▁dormitory -12.9002 -▁macintosh -12.9002 -▁9/11 -12.9003 -▁connectivity -12.9003 -▁faerie -12.9004 -lje -12.9004 -▁genie -12.9005 -▁preach -12.9007 -classical -12.901 -277 -12.901 -▁narra -12.9011 -rupp -12.9012 -▁dyer -12.9012 -▁backbone -12.9013 -▁flair -12.9015 -▁rabin -12.9015 -▁fluorescent -12.9017 -▁rebellious -12.9017 -▁fragrance -12.9017 -▁tumbling -12.9017 -▁picasso -12.9017 -▁prosecuted -12.9017 -vocal -12.9021 -286 -12.9023 -lika -12.9025 -▁straining -12.9025 -▁$16 -12.9026 -▁nicely -12.9027 -▁peeled -12.9027 -▁converse -12.9027 -▁primo -12.9027 -▁symbolism -12.9028 -hito -12.9028 -▁fidel -12.903 -▁nils -12.9031 -▁outstretched -12.9031 -▁untouched -12.9031 -▁mayoral -12.9031 -blind -12.9032 -wyl -12.9032 -jna -12.9032 -▁fatalities -12.9032 -▁enrico -12.9032 -▁inspected -12.9032 -▁acheron -12.9034 -yog -12.9035 -▁hamid -12.9036 -tomo -12.9037 -flying -12.9037 -▁uttered -12.9038 -▁cava -12.9039 -▁fright -12.9041 -dieu -12.9042 -▁grassy -12.9042 -▁oversized -12.9043 -▁characterize -12.9043 -▁souvenir -12.9045 -▁spokane -12.9045 -▁eureka -12.9045 -▁bestseller -12.9045 -▁gallantry -12.9046 -▁lansing -12.9048 -reau -12.905 -▁swelled -12.9052 -mayor -12.9052 -kran -12.9053 -▁believers -12.9053 -327 -12.9054 -▁sanford -12.9054 -▁naf -12.9056 -▁bij -12.9056 -▁suspiciously -12.9058 -▁breuning -12.9059 -▁ignorant -12.9059 -▁domesday -12.9059 -▁amalgamation -12.9059 -▁rumbled -12.906 -▁mythological -12.906 -▁fearless -12.906 -▁junta -12.906 -▁fitzroy -12.9061 -▁authenticity -12.9062 -vay -12.9062 -network -12.9063 -▁rotated -12.9064 -▁moat -12.9065 -▁predictable -12.9065 -exactly -12.9067 -therapy -12.9067 -▁bonnet -12.9071 -▁gabon -12.9072 -291 -12.9072 -▁amazement -12.9073 -▁weakening -12.9074 -▁gnome -12.9075 -▁reap -12.9076 -▁jez -12.9076 -▁aristocrat -12.9079 -genesis -12.9079 -▁nucleo -12.9081 -digital -12.9083 -▁designate -12.9084 -▁strata -12.9085 -▁ebert -12.9087 -▁bruise -12.9087 -▁stimuli -12.9088 -▁galileo -12.9088 -▁scholastic -12.9088 -▁syrup -12.909 -▁yusuf -12.909 -▁garth -12.9092 -jab -12.9093 -248 -12.9093 -▁jailed -12.9094 -price -12.9094 -randa -12.9095 -▁1640 -12.9095 -balance -12.9098 -terrorism -12.9098 -343 -12.91 -▁chevalier -12.9102 -▁relevance -12.9102 -▁downfall -12.9102 -▁dynamite -12.9102 -▁seismic -12.9102 -▁enamel -12.9103 -▁poking -12.9103 -▁ganesh -12.9105 -▁dyna -12.9105 -priced -12.9106 -5:00 -12.9108 -sitter -12.9109 -▁grasses -12.9112 -▁revert -12.9113 -▁popping -12.9114 -▁kuk -12.9115 -▁femme -12.9115 -husband -12.9115 -joo -12.9115 -broadcast -12.9116 -▁demonstrator -12.9116 -▁staunch -12.9116 -▁alleviate -12.9116 -bodied -12.9117 -leck -12.9117 -support -12.9117 -▁padres -12.9119 -▁originate -12.9119 -interceptor -12.912 -▁leaping -12.9121 -▁silesia -12.9122 -▁faso -12.9123 -bina -12.9125 -▁economical -12.9126 -279 -12.9126 -319 -12.9126 -▁niall -12.913 -▁cinnamon -12.9131 -▁commodities -12.9131 -▁grammatical -12.9131 -▁tokugawa -12.9131 -▁privateer -12.9134 -▁overseen -12.9136 -▁raoul -12.9137 -lambda -12.914 -bbc -12.9142 -▁guadalajara -12.9145 -▁yvonne -12.9145 -▁canadiens -12.9145 -▁nemesis -12.9145 -obscur -12.9145 -▁sarawak -12.9145 -circle -12.9146 -▁boutique -12.9146 -▁bled -12.9147 -▁oceania -12.9148 -▁joanne -12.9151 -binder -12.9152 -▁kiran -12.9152 -mago -12.9153 -▁ridley -12.9155 -▁lyle -12.9156 -velle -12.9157 -arthur -12.9158 -▁showcased -12.9158 -▁volatile -12.9159 -▁poultry -12.916 -▁vogel -12.9161 -▁dockyard -12.9161 -apple -12.9164 -▁sirius -12.9165 -adventure -12.9165 -▁muttering -12.9165 -▁khmer -12.9166 -▁kristen -12.9166 -▁predominant -12.9166 -essential -12.9167 -hout -12.9168 -▁fortification -12.9169 -alys -12.9171 -kram -12.9172 -▁1650 -12.9172 -ranging -12.9173 -▁mixes -12.9173 -orthodox -12.9173 -▁uhf -12.9173 -▁impairment -12.9174 -▁eritrea -12.9174 -▁malicious -12.9174 -gura -12.9174 -▁graeme -12.9174 -▁curving -12.9175 -▁lipstick -12.9175 -▁antigen -12.9175 -iggle -12.9175 -▁psyche -12.9175 -lst -12.9176 -▁avail -12.9176 -gruppe -12.9176 -northamptonshire -12.9176 -▁tallinn -12.9177 -cursive -12.9177 -▁insertion -12.9178 -possess -12.9179 -▁peacefully -12.9181 -▁outspoken -12.9181 -dele -12.9181 -▁laval -12.9181 -▁vigorously -12.9181 -▁jerking -12.9184 -▁mangrove -12.9184 -gher -12.9185 -illier -12.9187 -hauser -12.9187 -▁cornerstone -12.9187 -▁espionage -12.9188 -+2 -12.9188 -▁confide -12.9189 -▁borrowing -12.9189 -▁dreamer -12.919 -▁distrust -12.919 -▁cling -12.9191 -ectomy -12.9191 -▁nandi -12.9191 -▁magnate -12.9193 -logic -12.9193 -▁shortlisted -12.9194 -▁equip -12.9195 -motiv -12.9195 -▁gaping -12.9195 -girlfriend -12.9196 -constructive -12.9196 -▁usurp -12.9196 -affiliated -12.9196 -ghost -12.9198 -▁cochrane -12.9201 -▁mccar -12.9202 -oidal -12.9202 -▁culinary -12.9202 -▁demeanor -12.9202 -▁mckinley -12.9202 -▁dolores -12.9203 -▁ghoul -12.9203 -▁250,000 -12.9206 -steel -12.9207 -zinger -12.9208 -▁muni -12.9211 -guay -12.9212 -▁shingle -12.9213 -pula -12.9213 -pants -12.9214 -▁nokia -12.9215 -▁redundant -12.9217 -▁undrafted -12.9217 -▁mecklenburg -12.9217 -▁stairwell -12.9217 -▁octopus -12.9217 -▁shilling -12.9218 -▁novelty -12.9219 -fruit -12.9219 -▁admirer -12.922 -orange -12.9221 -▁hardcover -12.9221 -323 -12.9221 -tempered -12.9223 -glen -12.9223 -▁steamed -12.9224 -priest -12.9225 -266 -12.9225 -yng -12.9227 -▁mustered -12.9228 -▁impart -12.9229 -▁conor -12.9231 -▁iucn -12.9232 -▁sadie -12.9232 -▁pricing -12.9233 -vaz -12.9234 -▁scull -12.9236 -rourke -12.9236 -▁gladstone -12.9236 -▁vigor -12.9237 -▁stench -12.9239 -▁retina -12.9239 -▁silt -12.9241 -▁loosen -12.9243 -▁200203 -12.9243 -▁whisky -12.9244 -▁populace -12.9246 -▁sandwiches -12.9247 -appan -12.9248 -▁midday -12.9254 -▁archery -12.9254 -▁brest -12.9257 -▁klan -12.9259 -▁khorasan -12.926 -▁nesting -12.9261 -▁espanol -12.9261 -▁albin -12.9262 -▁topological -12.9262 -▁luzon -12.9262 -▁dhabi -12.9262 -▁palaeo -12.9264 -patrick -12.9265 -ikon -12.9265 -nunciat -12.9267 -baud -12.9268 -▁causeway -12.927 -▁blogger -12.9271 -cune -12.9273 -33% -12.9274 -▁interrogate -12.9275 -▁amassed -12.9276 -▁causa -12.9276 -▁repealed -12.9276 -▁kelsey -12.9276 -▁armada -12.9276 -▁kneel -12.9276 -▁proposing -12.9278 -▁johanna -12.928 -▁shrieked -12.9282 -271 -12.9283 -doesn -12.9285 -▁universally -12.9285 -309 -12.9285 -ivism -12.9286 -▁proverb -12.9286 -▁rancher -12.9286 -267 -12.9288 -525 -12.9289 -rhone -12.9289 -famous -12.9289 -▁alzheimer -12.929 -▁aristocracy -12.929 -▁lucivar -12.929 -arching -12.929 -▁compiling -12.929 -▁glimmer -12.929 -▁amphibian -12.929 -▁hepburn -12.929 -▁tilting -12.9291 -▁sherry -12.9292 -▁simplest -12.9294 -▁lego -12.9295 -▁masonic -12.9296 -▁hurdle -12.9297 -▁medial -12.9298 -border -12.93 -▁plastered -12.9301 -▁relic -12.9304 -intuitive -12.9304 -▁concussion -12.9304 -▁firefighters -12.9304 -▁thermodynamic -12.9304 -▁microscope -12.9305 -▁natalia -12.9305 -beta -12.9307 -▁hock -12.9307 -training -12.931 -▁massey -12.9311 -kuta -12.9313 -▁pursed -12.9315 -▁whel -12.9317 -▁emancipation -12.9319 -▁erroneous -12.9319 -▁rallies -12.9319 -▁optimistic -12.9319 -▁trillion -12.9321 -▁maddy -12.9321 -▁unitary -12.9322 -azur -12.9323 -metry -12.9325 -pink -12.9325 -▁holster -12.9326 -counter -12.9327 -bacteria -12.9327 -▁hahn -12.9328 -▁geh -12.9328 -▁encryption -12.9333 -▁unpredictable -12.9333 -▁jozef -12.9333 -▁supervising -12.9333 -▁majestic -12.9333 -▁mollusc -12.9333 -▁solitude -12.9334 -▁cristina -12.9335 -▁simeon -12.9335 -deutschland -12.9335 -▁watford -12.9335 -▁tanaka -12.9338 -▁clench -12.9338 -gaya -12.9341 -ilio -12.9341 -cyr -12.9342 -lage -12.9344 -gier -12.9344 -▁summarized -12.9346 -▁kayak -12.9346 -saharan -12.9347 -▁amiga -12.9348 -▁telenovela -12.9348 -▁refueling -12.9348 -▁cardiovascular -12.9348 -▁ernesto -12.9348 -▁homecoming -12.9348 -▁spitfire -12.9349 -maq -12.9349 -▁commencement -12.9349 -▁gibbons -12.935 -▁penthouse -12.935 -▁vicky -12.9351 -▁adventurer -12.9351 -▁adept -12.9351 -antino -12.9352 -▁hawker -12.9352 -▁quake -12.9353 -617 -12.9353 -▁synonymous -12.9358 -▁somme -12.9361 -▁antonin -12.9361 -▁naughty -12.9363 -▁agrarian -12.9363 -▁valiant -12.9363 -▁cicero -12.9363 -451 -12.9365 -▁jammed -12.9365 -▁stalker -12.9366 -▁espana -12.9366 -▁palais -12.9367 -▁clinch -12.9368 -▁banging -12.9368 -zana -12.9369 -341 -12.937 -288 -12.9374 -england -12.9375 -▁cliche -12.9375 -▁daryl -12.9375 -odia -12.9375 -▁additive -12.9377 -▁clandestine -12.9377 -▁mcgregor -12.9377 -▁tuscany -12.9377 -▁accelerator -12.9377 -linnaeus -12.9378 -▁qc -12.9378 -climat -12.9381 -▁tombstone -12.9382 -▁undress -12.9383 -1866 -12.9386 -▁bibli -12.9386 -600,000 -12.9388 -measure -12.9388 -▁frat -12.9391 -neau -12.9392 -▁acknowledging -12.9392 -▁paralyzed -12.9392 -▁pontifical -12.9392 -▁loyola -12.9392 -▁indicted -12.9393 -▁ejected -12.9393 -▁aspiring -12.9394 -rimmed -12.9394 -960 -12.9397 -▁slang -12.9399 -osoma -12.9401 -▁cocoa -12.9403 -▁sarcastic -12.9406 -▁pickle -12.9406 -356 -12.9406 -▁ineligible -12.9407 -▁cummings -12.9407 -▁bogota -12.9408 -▁billings -12.9409 -▁elicit -12.9409 -80% -12.941 -▁poisonous -12.941 -▁goethe -12.9411 -▁bonding -12.9412 -1859 -12.9412 -▁intrigue -12.9413 -▁pulpit -12.9413 -▁hurl -12.9414 -▁culver -12.9416 -▁maximus -12.9418 -▁hamburger -12.9419 -azzo -12.9419 -▁inflorescence -12.9421 -▁integrating -12.9422 -▁infancy -12.9422 -▁sukh -12.9422 -▁prost -12.9422 -▁inferno -12.9423 -ravan -12.9424 -adda -12.9425 -▁insulin -12.9427 -263 -12.9428 -▁fractured -12.9428 -▁opium -12.9429 -zhu -12.943 -▁sutra -12.943 -▁stash -12.9432 -jha -12.9433 -▁obstruct -12.9434 -▁deciduous -12.9436 -▁gretchen -12.9436 -▁emptied -12.9436 -▁nawab -12.9436 -▁bursting -12.9436 -▁suriname -12.9437 -▁helium -12.9439 -▁benign -12.944 -1872 -12.9441 -▁insisting -12.9441 -▁tiptoe -12.9441 -▁stoic -12.9443 -▁radiant -12.9446 -▁raceway -12.9447 -against -12.9447 -lx -12.9448 -▁frail -12.9449 -embo -12.9449 -capacitor -12.9451 -▁javelin -12.9451 -▁simulator -12.9452 -▁ordeal -12.9452 -▁paramilitary -12.9452 -▁enchanted -12.9452 -▁maclean -12.9453 -406 -12.9456 -▁resisting -12.9457 -▁chinatown -12.9458 -conduct -12.9458 -hagi -12.9459 -▁sewing -12.9462 -▁clubhouse -12.9463 -might -12.9465 -▁affluent -12.9466 -▁jimenez -12.9466 -▁supremacy -12.9466 -▁trophies -12.9466 -▁bournemouth -12.9466 -▁cappella -12.9467 -▁lyndon -12.9467 -▁shepard -12.9467 -▁thrusting -12.9471 -drug -12.9474 -whee -12.9474 -character -12.9474 -4,500 -12.9476 -▁felicia -12.9477 -ptych -12.9477 -▁ruc -12.9478 -▁galaxies -12.9481 -▁notoriety -12.9481 -▁fictitious -12.9481 -▁unravel -12.9481 -▁guzman -12.9481 -▁sensible -12.9481 -huh -12.9482 -▁archival -12.9482 -▁otago -12.9482 -▁kilda -12.9482 -▁reeve -12.9482 -▁shimmering -12.9483 -334 -12.9484 -▁suez -12.9484 -▁ellison -12.9486 -physiolog -12.9489 -▁bastion -12.949 -shiki -12.949 -▁epoch -12.9492 -▁misses -12.9494 -▁pba -12.9494 -retta -12.9495 -▁dmitry -12.9496 -▁suspense -12.9496 -▁propagate -12.9496 -▁variance -12.9496 -▁glamour -12.9496 -▁navajo -12.9497 -genital -12.9497 -igua -12.9498 -▁raked -12.9498 -▁abandonment -12.9499 -▁scarred -12.95 -▁haifa -12.9501 -52% -12.9502 -simple -12.9503 -pach -12.9506 -▁bhan -12.9507 -return -12.9507 -europe -12.9508 -▁winery -12.9508 -temporary -12.9508 -camera -12.9509 -▁crafted -12.951 -▁scissor -12.951 -▁recalling -12.9511 -▁konrad -12.9512 -▁handler -12.9513 -vella -12.9514 -22% -12.9515 -brecht -12.9517 -▁picturesque -12.9518 -▁newmarket -12.9521 -▁$14 -12.9521 -▁adventist -12.9524 -870 -12.9525 -aldehyde -12.9525 -numbered -12.9527 -question -12.9527 -hampson -12.9527 -▁complementary -12.9527 -▁rockies -12.9528 -african -12.9531 -▁sonora -12.9532 -778 -12.9532 -chandra -12.9533 -▁narrower -12.9533 -annual -12.9538 -▁clergyman -12.9539 -▁drip -12.954 -▁traveller -12.954 -▁macleod -12.954 -▁mercenary -12.954 -▁unacceptable -12.954 -▁dominating -12.954 -▁swindon -12.954 -▁fren -12.954 -▁befriended -12.954 -▁bazaar -12.954 -▁rupture -12.954 -▁aerodrome -12.954 -▁baw -12.9541 -chay -12.9543 -▁savior -12.9546 -▁devotees -12.9548 -▁helmut -12.9549 -▁elsa -12.9549 -▁hooded -12.9549 -▁maas -12.9549 -▁goodwill -12.955 -egh -12.9552 -▁southernmost -12.9552 -▁steppe -12.9553 -▁merk -12.9554 -▁pax -12.9554 -▁recycled -12.9555 -▁loosened -12.9556 -▁predatory -12.9557 -▁1100 -12.9559 -educated -12.956 -▁zev -12.956 -▁harlan -12.9561 -386 -12.9561 -agni -12.9562 -▁mullin -12.9563 -▁wetland -12.9564 -matter -12.9566 -▁kickoff -12.9566 -▁slut -12.9567 -▁wilkins -12.9568 -▁tendon -12.957 -▁apprehend -12.957 -▁kyrgyzstan -12.957 -▁lithium -12.957 -▁boogie -12.9571 -▁whipping -12.9572 -▁hz -12.9573 -▁cornice -12.9575 -▁akira -12.9575 -uzu -12.9577 -lada -12.9579 -abilis -12.9581 -▁faroe -12.9581 -▁biel -12.9582 -▁kato -12.9584 -▁schleswig -12.9585 -▁precedence -12.9585 -▁goddard -12.9585 -▁budge -12.9586 -▁palatine -12.9586 -▁pinning -12.9586 -waiting -12.9587 -bock -12.9589 -▁molten -12.959 -▁resent -12.959 -1873 -12.9591 -▁fishes -12.9592 -▁manpower -12.9593 -▁zum -12.9593 -▁warship -12.9595 -▁informant -12.9599 -▁benefactor -12.96 -▁agitation -12.96 -▁excelled -12.9601 -▁messiah -12.9601 -education -12.9601 -▁errand -12.9602 -sleeve -12.9602 -iglia -12.9602 -▁parisian -12.9604 -▁hoot -12.9604 -conditioned -12.9604 -▁guiana -12.9605 -▁interacting -12.9607 -ocarp -12.9607 -▁commended -12.9609 -▁fullback -12.961 -1869 -12.9613 -▁mixer -12.9613 -▁ambushed -12.9614 -▁mischievous -12.9615 -▁aggregator -12.9615 -▁macquarie -12.9615 -▁stakeholders -12.9616 -▁smackdown -12.9616 -▁horseshoe -12.9617 -▁splashed -12.9617 -▁bake -12.9619 -▁4000 -12.9623 -▁carbonate -12.9624 -269 -12.9624 -▁denton -12.9626 -▁erwin -12.9626 -▁spence -12.9626 -fah -12.9627 -adhi -12.9628 -cdp -12.9629 -engined -12.9629 -▁dortmund -12.963 -▁gunpowder -12.963 -▁jocelyn -12.963 -▁mussolini -12.963 -▁maccabi -12.963 -▁coincidental -12.963 -▁piazza -12.9631 -▁nectar -12.9631 -▁multiplex -12.9632 -▁gopal -12.9632 -▁veda -12.9632 -historical -12.9633 -▁geis -12.9633 -▁ritter -12.9634 -boli -12.9637 -▁dickson -12.9637 -▁discouraged -12.9637 -▁weimar -12.9638 -▁vigorous -12.9638 -▁voyager -12.9639 -▁sibling -12.9639 -reason -12.964 -▁tunisian -12.964 -nori -12.9641 -▁papi -12.9641 -▁blackish -12.9642 -▁skyla -12.9643 -urea -12.9644 -▁pem -12.9644 -norwegian -12.9644 -▁signify -12.9644 -/100 -12.9645 -▁handkerchief -12.9645 -▁panorama -12.9645 -▁biographies -12.9645 -congratulations -12.9645 -▁ignacio -12.9645 -▁beyonce -12.9645 -▁brum -12.9646 -▁nanjing -12.9646 -▁baking -12.9646 -▁pixie -12.9649 -▁larva -12.9649 -▁meiji -12.9651 -ethyl -12.9651 -rrington -12.9652 -▁nominate -12.9652 -▁villar -12.9654 -▁interrupting -12.9658 -▁localized -12.966 -student -12.966 -▁enjoyable -12.966 -▁juventus -12.966 -▁bafta -12.9661 -▁markus -12.9661 -▁delaney -12.9662 -▁withdrawing -12.9662 -707 -12.9662 -▁taf -12.9662 -ifica -12.9666 -▁telegram -12.9666 -▁hollis -12.9666 -▁wrinkle -12.9667 -odu -12.9668 -▁neue -12.9668 -grandson -12.9669 -▁retorted -12.9669 -▁shady -12.967 -galact -12.967 -▁gladys -12.967 -▁dissipated -12.9671 -▁kobe -12.9671 -346 -12.9675 -homogeneous -12.9676 -pyrenees -12.9676 -▁sampson -12.9676 -▁neoclassical -12.9676 -▁matrices -12.9676 -▁forefront -12.9676 -▁devoid -12.9677 -hunting -12.9678 -approximately -12.9678 -despite -12.9678 -▁stanza -12.9678 -▁sommer -12.968 -▁trish -12.9681 -▁chanting -12.9682 -▁ascending -12.9683 -stained -12.9683 -▁verne -12.9684 -▁ardent -12.9685 -▁weep -12.9685 -▁falsely -12.9685 -shik -12.9685 -▁bangor -12.9686 -283 -12.9688 -▁growling -12.9688 -▁repository -12.9691 -▁schumacher -12.9691 -1862 -12.9691 -▁sabrina -12.9691 -▁contrasted -12.9691 -▁aeronautic -12.9693 -▁nikolay -12.9695 -chryso -12.9695 -▁handgun -12.9695 -behind -12.9695 -▁unitarian -12.9695 -1854 -12.9696 -336 -12.9696 -▁biker -12.9696 -▁tensor -12.9697 -▁alerted -12.9697 -▁strangled -12.9697 -▁marissa -12.9697 -imir -12.9698 -▁celest -12.9699 -▁bosses -12.97 -▁overture -12.97 -▁wilk -12.9702 -ccc -12.9702 -▁grimly -12.9702 -venture -12.9703 -optera -12.9704 -▁plump -12.9704 -▁caucasian -12.9706 -▁collapsing -12.9706 -▁revoked -12.9706 -▁bristle -12.9706 -▁dinamo -12.9707 -▁realities -12.9707 -auld -12.9707 -▁absorbing -12.9708 -▁refresh -12.9708 -▁guerre -12.9708 -▁bloomberg -12.9709 -▁fanatic -12.9709 -supported -12.971 -fail -12.971 -registered -12.9713 -▁petri -12.9713 -▁milky -12.9714 -▁pluto -12.9714 -performed -12.9714 -crawl -12.9716 -▁kev -12.9719 -kaku -12.9719 -duke -12.9721 -▁starvation -12.9721 -▁ignited -12.9721 -▁nightingale -12.9721 -▁collateral -12.9722 -▁shoal -12.9722 -▁commendation -12.9723 -axe -12.9729 -kavi -12.9731 -▁pater -12.9731 -▁informally -12.9731 -351 -12.9731 -▁tipp -12.9733 -▁moron -12.9733 -gung -12.9735 -▁guantanamo -12.9736 -▁repetitive -12.9736 -▁circulating -12.9736 -▁sealing -12.9737 -▁slashed -12.9738 -▁autograph -12.9738 -▁akron -12.9741 -cier -12.9746 -egypt -12.9746 -▁limitation -12.9747 -quiet -12.9748 -293 -12.9749 -mose -12.9749 -currently -12.9749 -▁masovian -12.9752 -▁pinnacle -12.9752 -▁lausanne -12.9752 -▁siemens -12.9752 -▁margarita -12.9752 -▁bladder -12.9752 -▁catalina -12.9753 -601 -12.9753 -▁hoard -12.9753 -▁chaplin -12.9754 -▁boise -12.9754 -▁olson -12.9754 -▁caressed -12.9754 -▁ellington -12.9755 -▁zeta -12.9756 -▁dail -12.9756 -875 -12.9758 -holtz -12.9758 -▁dime -12.9758 -regional -12.9758 -299 -12.9758 -▁simulate -12.9759 -▁#9 -12.976 -▁boomer -12.9761 -▁carlson -12.9762 -mexico -12.9764 -▁mommy -12.9765 -▁servi -12.9766 -▁bhp -12.9766 -ochreous -12.9767 -tsev -12.9768 -secondary -12.9769 -▁fargo -12.9776 -mouthed -12.9778 -▁hinted -12.9778 -▁escorting -12.978 -kool -12.978 -▁ecumenical -12.9782 -▁algiers -12.9782 -▁brewster -12.9782 -▁bathurst -12.9784 -blu -12.9784 -▁worshipped -12.9785 -▁magneto -12.9785 -▁signalling -12.9786 -▁petrov -12.9786 -nacht -12.9788 -▁verity -12.9789 -▁bitterness -12.9789 -67% -12.9792 -cello -12.9792 -▁exiting -12.9793 -411 -12.9795 -addy -12.9796 -walking -12.9796 -▁inductee -12.9798 -▁galloway -12.9798 -ethylene -12.9799 -475 -12.9799 -▁brigham -12.98 -▁placid -12.9801 -▁yelp -12.9801 -▁contemplated -12.9802 -▁zebra -12.9802 -bazar -12.9803 -kaj -12.9807 -▁annette -12.9809 -ambu -12.9809 -▁astonished -12.9813 -▁edouard -12.9813 -▁tabitha -12.9813 -▁maddox -12.9813 -▁mazz -12.9813 -teria -12.9815 -garten -12.9815 -▁droop -12.9815 -▁barefoot -12.9815 -democratic -12.9816 -▁kalyan -12.9816 -▁hotter -12.9818 -▁flit -12.9819 -▁rotting -12.982 -338 -12.9821 -▁brem -12.9822 -▁herrera -12.9823 -uver -12.9823 -▁playfully -12.9825 -▁outnumbered -12.9826 -▁peninsular -12.9828 -▁legitimacy -12.9828 -▁malfunction -12.9829 -▁reclaimed -12.983 -▁postage -12.983 -▁vikram -12.9832 -▁smear -12.9833 -▁walden -12.9833 -univers -12.9833 -trophy -12.9836 -▁petitioned -12.9838 -qf -12.9839 -celle -12.9839 -regular -12.9841 -▁embroidered -12.9844 -▁penetrating -12.9844 -▁slippery -12.9844 -▁nmi -12.9845 -▁nehru -12.9845 -▁safari -12.9846 -▁verification -12.9848 -▁thro -12.9853 -394 -12.9853 -▁pronounce -12.9855 -▁mantra -12.9856 -▁sucker -12.9858 -▁obeyed -12.9858 -▁tornadoes -12.9858 -23% -12.9859 -▁bungalow -12.9859 -▁archeological -12.9859 -▁monologue -12.9859 -▁isolate -12.9861 -▁bullock -12.9862 -880 -12.9862 -▁darrell -12.9863 -▁airship -12.9866 -▁constantin -12.9866 -612 -12.987 -▁1620 -12.987 -sustaining -12.987 -▁cramped -12.9871 -daddy -12.9871 -▁brushes -12.9871 -▁miko -12.9873 -777 -12.9873 -▁suspend -12.9873 -▁calhoun -12.9874 -▁pedestal -12.9874 -▁donaldson -12.9874 -▁allotted -12.9875 -▁tatiana -12.9875 -▁canning -12.9877 -▁aromatic -12.9877 -▁filtered -12.9884 -trophic -12.9885 -▁unleashed -12.9885 -▁expressive -12.9886 -foy -12.9887 -jg -12.9887 -shape -12.9888 -▁antiquities -12.989 -▁evaporate -12.989 -▁intuition -12.989 -▁dauphin -12.989 -▁cohort -12.989 -saving -12.9891 -▁odin -12.9892 -▁bhar -12.9893 -▁stripping -12.9893 -universita -12.9894 -▁lynx -12.9895 -leuc -12.9896 -rival -12.9897 -284 -12.9899 -53% -12.9903 -455 -12.9903 -▁martel -12.9903 -preserved -12.9903 -▁basha -12.9904 -▁kaye -12.9905 -▁classify -12.9905 -▁antibodies -12.9905 -▁obedience -12.9905 -▁veracruz -12.9905 -▁bosch -12.9905 -▁stamford -12.9905 -wraith -12.9906 -▁snicker -12.9907 -▁stepfather -12.9907 -▁benoit -12.9909 -▁hottest -12.9909 -▁spying -12.9909 -calais -12.991 -▁nestled -12.9911 -nicki -12.9912 -▁brutally -12.9913 -aroo -12.9915 -▁powerhouse -12.9916 -latt -12.9916 -search -12.9917 -840 -12.992 -extended -12.992 -289 -12.992 -▁gettysburg -12.9921 -▁montenegrin -12.9921 -▁horrific -12.9921 -▁valuation -12.9921 -▁pesticide -12.9921 -▁caracas -12.9922 -heaven -12.9922 -▁cantonese -12.9922 -▁conjure -12.9923 -▁pepsi -12.9923 -▁rumour -12.9926 -kovac -12.9926 -lala -12.9927 -▁groundwater -12.9928 -▁engle -12.9928 -▁swaying -12.9932 -ccia -12.9933 -▁hath -12.9934 -schaft -12.9935 -confucian -12.9936 -▁hampered -12.9936 -▁nfc -12.9937 -▁splatter -12.9937 -▁casket -12.9937 -▁inverness -12.9937 -▁gilles -12.9937 -circular -12.9939 -▁fulfilling -12.9939 -▁hagg -12.9941 -▁chatting -12.9942 -337 -12.9943 -324 -12.9944 -▁cleo -12.9945 -aurel -12.9946 -▁puma -12.9946 -▁elisa -12.9948 -▁centralized -12.9948 -▁confesses -12.9948 -▁sweetness -12.9949 -▁wolff -12.995 -hida -12.995 -doro -12.9951 -9780 -12.9951 -▁cleopatra -12.9952 -▁clumsy -12.9952 -▁barricade -12.9952 -▁imperative -12.9952 -▁harvesting -12.9954 -▁koto -12.9954 -▁reproduced -12.9954 -▁gunnar -12.9956 -▁andalusia -12.9957 -▁barrie -12.9957 -▁outgoing -12.9958 -baugh -12.9959 -accus -12.9959 -▁snowboard -12.9959 -▁parana -12.9961 -▁elgin -12.9963 -▁statistic -12.9967 -▁catastrophic -12.9967 -▁thessaloniki -12.9967 -effe -12.9968 -▁dripped -12.9968 -292 -12.9968 -▁frankenstein -12.9969 -▁alchemist -12.9969 -▁croak -12.997 -gramma -12.9971 -1864 -12.9972 -▁tailored -12.9972 -▁youthful -12.9974 -▁gambia -12.9975 -sharing -12.9976 -▁prelate -12.9976 -▁repel -12.9976 -novo -12.9976 -▁bargaining -12.9977 -▁fascia -12.9977 -hosted -12.9977 -▁exponent -12.9982 -masa -12.9982 -▁houghton -12.9983 -▁continuum -12.9983 -▁cumulative -12.9983 -▁cactus -12.9983 -▁brittle -12.9984 -▁$35 -12.9984 -▁nibble -12.9985 -▁wavy -12.9986 -▁spurred -12.9986 -▁judi -12.9987 -▁marten -12.9988 -▁harlow -12.9988 -▁lipid -12.9991 -▁recounted -12.9993 -▁serene -12.9995 -▁translating -12.9999 -▁incurred -12.9999 -▁sincerity -12.9999 -▁futile -13 -crum -13.0002 -790 -13.0002 -▁brahman -13.0002 -▁gotham -13.0003 -▁arsen -13.0003 -▁kahl -13.0005 -▁evacuate -13.0006 -▁halftime -13.0006 -▁mustard -13.0007 -▁dictate -13.0007 -▁poised -13.0008 -▁mariano -13.0009 -▁freaked -13.0011 -▁reappeared -13.0013 -▁hallmark -13.0014 -chick -13.0014 -▁parramatta -13.0014 -▁outburst -13.0014 -▁pelican -13.0014 -▁beaufort -13.0015 -▁regroup -13.0018 -▁obstruction -13.0018 -atura -13.0018 -▁hoof -13.0018 -sulfate -13.0019 -▁typing -13.0021 -arbitr -13.0022 -elec -13.0022 -▁nightstand -13.0024 -vata -13.0024 -▁comedies -13.0025 -▁filtering -13.0025 -owska -13.0026 -▁berna -13.0027 -oye -13.003 -▁atrocities -13.003 -▁decipher -13.003 -▁refurbishment -13.0031 -1863 -13.0032 -▁fisk -13.0033 -▁trach -13.0034 -▁toxicity -13.0034 -▁$50,000 -13.0034 -▁congratulate -13.0035 -▁afforded -13.0037 -▁specialising -13.0039 -▁freighter -13.0041 -▁antonia -13.0041 -▁kaka -13.0041 -conservative -13.0041 -▁uruguayan -13.0042 -422 -13.0043 -harry -13.0044 -▁concacaf -13.0046 -▁financier -13.0046 -▁suarez -13.0046 -▁candace -13.0046 -▁pulsing -13.0047 -▁dietrich -13.0047 -holme -13.0049 -▁jeb -13.0049 -1,500 -13.0049 -▁revere -13.005 -▁bwf -13.0053 -▁salford -13.0056 -▁11,000 -13.0056 -▁breck -13.0057 -victor -13.0057 -▁havilland -13.0061 -▁emptiness -13.0061 -▁furnishings -13.0062 -▁reboot -13.0062 -laugh -13.0063 -generated -13.0063 -▁injuring -13.0063 -▁preoccupied -13.0064 -▁privileged -13.0064 -▁lesions -13.0065 -▁snowfall -13.0065 -feli -13.0065 -▁unarmed -13.0066 -▁crib -13.0067 -▁craze -13.0068 -▁benchmark -13.0069 -stack -13.007 -917 -13.0071 -▁sonnet -13.0072 -archiv -13.0072 -▁cristian -13.0072 -413 -13.0074 -▁receptionist -13.0075 -1858 -13.0076 -▁arno -13.0077 -▁irrelevant -13.0077 -▁kendrick -13.0077 -▁cholera -13.0077 -▁neurological -13.0078 -▁cruising -13.0078 -▁harvested -13.0078 -▁deliveries -13.0082 -however -13.0084 -nedra -13.0085 -koma -13.0088 -activated -13.0088 -correct -13.0089 -ocracy -13.0092 -aquitaine -13.0093 -▁tajikistan -13.0093 -▁tempting -13.0093 -▁creditors -13.0094 -▁temperance -13.0094 -▁systematically -13.0095 -▁groundbreaking -13.0096 -▁applicant -13.0099 -pso -13.0104 -▁forsyth -13.0104 -495 -13.0107 -demand -13.0107 -▁blending -13.0108 -▁wj -13.0108 -▁turbulent -13.0109 -kaw -13.0113 -tepe -13.0115 -ellidae -13.0116 -▁bogdan -13.0116 -▁bleach -13.0117 -▁siam -13.0118 -▁authoritative -13.0125 -▁encroach -13.0125 -▁alleging -13.0125 -▁intellect -13.0125 -ifiable -13.0125 -▁subconscious -13.0127 -▁clashed -13.0127 -▁terence -13.0128 -▁theoretically -13.0128 -ikka -13.0128 -▁tyrol -13.0128 -▁figuring -13.0129 -▁$22 -13.0129 -▁sinha -13.0129 -▁1720 -13.0129 -▁gunboat -13.0129 -▁massif -13.0131 -▁welding -13.0132 -▁lear -13.0138 -▁malmo -13.014 -norman -13.014 -▁banged -13.014 -▁estimation -13.014 -▁inquisition -13.014 -▁novgorod -13.014 -▁registrar -13.014 -▁grassroots -13.014 -▁surya -13.0141 -▁cinderella -13.0141 -▁lucifer -13.0141 -▁watercolor -13.0141 -▁kelvin -13.0141 -▁thinner -13.0141 -▁fairchild -13.0142 -▁hilary -13.0143 -▁outrageous -13.0144 -▁habib -13.0145 -▁lazarus -13.0146 -421 -13.0149 -▁repent -13.0149 -1800 -13.015 -▁tep -13.015 -viti -13.0152 -▁hilltop -13.0154 -islam -13.0155 -▁enact -13.0156 -▁hunch -13.0156 -▁darryl -13.0156 -▁mcdonnell -13.0158 -▁weaponry -13.0159 -▁kaba -13.016 -spoon -13.016 -▁bax -13.0161 -▁freiburg -13.0162 -▁relaxation -13.0162 -▁cadre -13.0163 -content -13.0165 -platz -13.0166 -▁reconstruct -13.0166 -▁kilo -13.0167 -straight -13.0169 -▁installing -13.0169 -▁marques -13.017 -▁incarcerated -13.0172 -▁multiplication -13.0173 -▁slapping -13.0173 -326 -13.0175 -▁betsy -13.0177 -hash -13.0177 -▁rosh -13.0178 -▁tinker -13.0178 -▁roadside -13.0179 -▁steered -13.018 -▁kew -13.0181 -hini -13.0182 -muse -13.0182 -everybody -13.0185 -photo -13.0186 -▁mused -13.0188 -▁gargoyle -13.0188 -▁meritorious -13.0188 -▁telangana -13.0188 -chris -13.0188 -▁appellate -13.0188 -▁felony -13.0188 -▁gothenburg -13.0188 -▁navarro -13.0188 -▁gracious -13.0189 -elian -13.0189 -▁$17 -13.0191 -opti -13.0193 -▁reprised -13.0193 -▁turkic -13.0194 -▁carleton -13.0194 -▁volta -13.0194 -▁robson -13.0195 -riba -13.0195 -gender -13.0199 -▁lehigh -13.0201 -▁nme -13.0201 -▁woken -13.0202 -▁holler -13.0202 -▁armory -13.0202 -▁chilled -13.0204 -▁melancholy -13.0204 -▁uncomfortably -13.0204 -▁lobster -13.0204 -▁regulating -13.0205 -gyeong -13.0205 -24% -13.0206 -▁rollins -13.0207 -gyu -13.0208 -animal -13.0209 -▁accumulate -13.0212 -▁pico -13.0212 -kuru -13.0214 -resident -13.0215 -▁bayou -13.0216 -▁timo -13.0217 -omba -13.0218 -wata -13.0218 -▁operatic -13.0219 -▁tangent -13.022 -▁assimilate -13.022 -▁biochemistry -13.0221 -▁optics -13.0222 -▁dispense -13.0222 -hachi -13.0222 -▁kerman -13.0223 -udin -13.0225 -▁lviv -13.0226 -▁gallant -13.0226 -▁subsp -13.023 -musical -13.0231 -distinguishable -13.0231 -▁delle -13.0231 -alien -13.0233 -▁claimant -13.0234 -▁vile -13.0235 -381 -13.0235 -▁descriptive -13.0236 -compliant -13.0236 -▁louvre -13.0236 -▁mahmud -13.0236 -▁progresses -13.0238 -▁erased -13.0238 -▁kingsley -13.0239 -21% -13.024 -▁arya -13.024 -▁classmate -13.0241 -▁rebirth -13.0241 -finance -13.0242 -▁disclose -13.0246 -▁glued -13.0246 -▁trois -13.0247 -excerpt -13.0248 -▁trag -13.0249 -drift -13.0249 -▁transcend -13.0249 -▁$13 -13.025 -▁nagoya -13.0252 -▁eroded -13.0252 -▁nakamura -13.0252 -780 -13.0253 -▁pele -13.0253 -pcc -13.0254 -▁zoology -13.0254 -▁hive -13.0254 -gada -13.0255 -▁comin -13.0255 -electro -13.0256 -▁kiln -13.0257 -▁skylar -13.0259 -▁reactive -13.0259 -chuan -13.0261 -▁obscured -13.0262 -▁koko -13.0262 -1840 -13.0264 -natha -13.0264 -▁concurrency -13.0268 -▁intriguing -13.0268 -▁satisfactory -13.0268 -▁wilcox -13.0268 -▁gottingen -13.0268 -▁foreword -13.0269 -▁lesley -13.0269 -▁myriad -13.027 -▁barnsley -13.027 -▁dormant -13.027 -▁neumann -13.0272 -▁filmmaking -13.0272 -667 -13.0276 -▁reinhard -13.0277 -tape -13.0278 -▁$18 -13.0278 -42% -13.0279 -ometry -13.0282 -▁instructional -13.0282 -▁ascertain -13.0284 -▁ferocious -13.0284 -▁frustrating -13.0284 -▁ulysses -13.0284 -▁identifier -13.0284 -▁volley -13.0284 -▁hydrocarbon -13.0285 -tension -13.0285 -▁corbin -13.0289 -▁jagger -13.0289 -dressed -13.029 -colloquially -13.029 -▁prudent -13.0293 -▁manchu -13.0296 -lover -13.0296 -▁exhibiting -13.0296 -▁boasted -13.0296 -▁whitehead -13.0298 -oderm -13.0298 -▁ezio -13.0299 -48% -13.03 -▁entropy -13.03 -blom -13.0301 -▁fundraiser -13.0301 -▁clicking -13.0301 -▁craving -13.0301 -▁slaughtered -13.0303 -▁garnet -13.0304 -agora -13.0304 -▁insulted -13.0304 -▁cadence -13.0305 -▁query -13.0305 -▁labourers -13.0306 -▁shave -13.0307 -communication -13.031 -▁munchen -13.0311 -picture -13.0312 -split -13.0314 -▁renal -13.0316 -▁efficacy -13.0316 -▁applaud -13.0316 -▁perished -13.0317 -▁fidelity -13.0318 -▁urn -13.0318 -▁magnolia -13.0319 -▁scraping -13.032 -▁portage -13.0323 -▁blot -13.0324 -▁denies -13.0327 -▁storing -13.0328 -▁northernmost -13.0329 -930 -13.033 -▁hurled -13.0331 -▁meticulous -13.0333 -▁influenza -13.0333 -▁lauderdale -13.0333 -▁octagonal -13.0333 -▁giacomo -13.0333 -▁microscopic -13.0333 -▁rumored -13.0334 -▁kup -13.0336 -nabi -13.034 -▁chrono -13.0342 -▁fend -13.0343 -swamy -13.0344 -75,000 -13.0346 -▁stave -13.0348 -27% -13.0348 -▁underestimate -13.0348 -▁astonishing -13.0349 -▁infirmary -13.0349 -▁rallied -13.0349 -▁nomadic -13.0349 -▁nizam -13.0349 -▁dupont -13.0351 -▁gurney -13.0351 -▁dietary -13.0352 -▁veli -13.0353 -▁lithograph -13.0354 -▁gilmore -13.0354 -▁frescoes -13.0355 -▁hawthorne -13.0356 -1849 -13.0357 -▁ameri -13.0358 -▁austen -13.0358 -465 -13.0359 -▁lsu -13.0365 -▁fertilizer -13.0365 -▁guadalupe -13.0365 -▁protruding -13.0365 -▁ridicule -13.0365 -▁casimir -13.0365 -▁horizontally -13.0365 -▁modelled -13.0366 -opathy -13.0366 -▁gadget -13.0366 -▁kaladin -13.0366 -▁crossbow -13.0369 -▁janus -13.0369 -▁jiu -13.037 -▁clawed -13.037 -▁choreographed -13.037 -excuse -13.0372 -▁jalan -13.0372 -▁gastro -13.0373 -index -13.0376 -▁islamist -13.038 -▁sequencing -13.0381 -▁vortex -13.0381 -▁emitted -13.0381 -▁aleppo -13.0381 -▁demetri -13.0382 -▁sturdy -13.0383 -▁layne -13.0384 -▁darting -13.0385 -▁mummy -13.0387 -▁twain -13.0389 -▁consolidate -13.039 -▁tully -13.039 -767 -13.039 -371 -13.039 -504 -13.0393 -▁jingle -13.0394 -seong -13.0396 -▁paisley -13.0398 -▁tortoise -13.0398 -▁commotion -13.0398 -plastic -13.0398 -▁claremont -13.0399 -tsuka -13.0399 -cito -13.0399 -▁norwood -13.04 -▁akademi -13.0402 -brow -13.0403 -▁govt -13.0403 -budget -13.0404 -▁braden -13.0407 -▁synthesized -13.0408 -▁trill -13.0409 -▁indulge -13.0412 -▁glamorgan -13.0414 -▁britannia -13.0414 -▁upbringing -13.0414 -▁yerevan -13.0414 -▁radiated -13.0414 -▁archangel -13.0416 -▁jolly -13.0416 -▁seafood -13.0416 -▁fishery -13.042 -▁azure -13.0421 -important -13.0422 -414 -13.0422 -▁kasa -13.0424 -▁tuna -13.0425 -▁$26 -13.0426 -▁auditioned -13.0429 -siphon -13.0429 -▁advising -13.043 -▁terminating -13.043 -▁chesterfield -13.0435 -▁trimmed -13.0435 -▁resurrected -13.0439 -▁provoke -13.0439 -africa -13.0439 -▁disconnected -13.044 -▁warily -13.0441 -▁leash -13.0444 -19% -13.0445 -▁mammoth -13.0446 -▁terrier -13.0447 -▁passageway -13.0447 -▁accessibility -13.0448 -▁secretaries -13.0449 -▁chamb -13.0451 -liffe -13.0452 -▁ioan -13.0452 -▁laborers -13.0454 -▁cinder -13.0454 -▁priestess -13.0455 -▁discourage -13.0455 -ritch -13.0457 -jacques -13.0458 -347 -13.046 -▁orchestrated -13.0462 -▁unnoticed -13.0463 -▁adriatic -13.0463 -▁whaling -13.0463 -▁dalmatia -13.0463 -▁fiesta -13.0464 -▁cerv -13.0467 -▁squid -13.0468 -▁cradled -13.0469 -▁nerd -13.0469 -▁resigning -13.047 -nbl -13.0472 -gothic -13.0474 -haul -13.0475 -▁thunderbird -13.0475 -onyx -13.0476 -384 -13.0478 -▁fallout -13.0479 -▁taboo -13.0479 -▁cavendish -13.0479 -▁unconventional -13.0479 -▁reorganisation -13.0479 -▁radiating -13.0479 -▁stubble -13.048 -ovsk -13.0483 -▁devout -13.0483 -▁milford -13.0484 -▁fortuna -13.0487 -▁volcanoes -13.0493 -▁motown -13.0494 -lieutenant -13.0495 -leutnant -13.0496 -▁unbearable -13.0496 -▁deduction -13.0496 -441 -13.0496 -▁nouveau -13.0496 -▁intestine -13.0496 -hofer -13.0496 -▁hacking -13.0496 -▁whorls -13.0497 -pru -13.0498 -▁ethanol -13.0498 -▁fathom -13.0499 -▁cryptic -13.0499 -▁godfather -13.05 -▁cress -13.05 -▁strategically -13.0503 -hiya -13.0503 -▁durga -13.0504 -▁conifer -13.0506 -▁cheney -13.0506 -▁sumner -13.0508 -▁posse -13.0511 -▁strang -13.0511 -novel -13.0512 -▁eucalypt -13.0512 -▁sentencing -13.0512 -▁wehrmacht -13.0512 -▁cuthbert -13.0512 -▁plummet -13.0513 -▁fleetwood -13.0513 -▁wendell -13.0513 -▁intercourse -13.0513 -influenced -13.0514 -akti -13.0514 -▁corbett -13.0514 -▁mcki -13.0514 -▁superfamily -13.0515 -▁spores -13.0515 -▁cheung -13.0517 -1855 -13.0517 -▁ewing -13.0518 -403 -13.0518 -▁judah -13.0518 -imposed -13.0519 -▁morg -13.052 -malay -13.052 -pion -13.0521 -▁unjust -13.0522 -▁siena -13.0522 -▁worthless -13.0525 -▁forcefully -13.0526 -scenes -13.0527 -▁drape -13.0527 -▁mammal -13.0528 -ophilus -13.0528 -crow -13.0528 -▁executing -13.0529 -▁monsieur -13.0529 -▁nomenclature -13.0529 -▁tbilisi -13.0529 -▁tolkien -13.0529 -▁trespass -13.0529 -▁mcgrath -13.0529 -▁mundane -13.0529 -▁mobilization -13.0529 -1848 -13.0529 -▁looming -13.0532 -▁inertia -13.0534 -▁vivo -13.0534 -▁eaves -13.0535 -ophila -13.0535 -iglio -13.0536 -▁cambodian -13.0537 -▁prae -13.0538 -▁stresses -13.0539 -▁agatha -13.054 -frin -13.0542 -▁fabrication -13.0543 -▁moaning -13.0543 -▁gillian -13.0543 -voir -13.0544 -future -13.0545 -▁albrecht -13.0548 -flame -13.0548 -▁colbert -13.0549 -quick -13.0549 -ografi -13.0549 -▁fabio -13.0549 -vous -13.055 -▁demonic -13.0553 -nepali -13.0553 -▁pereira -13.0554 -▁muck -13.0554 -▁grimace -13.0555 -364 -13.0556 -leste -13.0556 -▁bahr -13.0556 -▁ulm -13.056 -enthusiastically -13.056 -kreuz -13.0561 -senior -13.0561 -▁unauthorized -13.0562 -▁pharmacist -13.0562 -▁inference -13.0562 -▁transmitting -13.0563 -▁drago -13.0564 -cellular -13.0569 -ikki -13.0569 -duty -13.0571 -▁syriac -13.0573 -johnny -13.0573 -derived -13.0573 -▁clenching -13.0576 -▁converter -13.0577 -▁depleted -13.0578 -▁emphasizing -13.0578 -▁expansive -13.0578 -▁futsal -13.0578 -▁metcalf -13.0578 -▁wau -13.0579 -▁mocked -13.058 -297 -13.058 -commonly -13.058 -▁harcourt -13.0581 -▁hoffmann -13.0583 -crystal -13.0584 -▁nape -13.0584 -47% -13.0584 -▁loki -13.0586 -▁czar -13.0587 -▁expire -13.0587 -distinct -13.0588 -▁catastrophe -13.0595 -▁mcclellan -13.0595 -▁translucent -13.0595 -▁wreath -13.0595 -▁unaffected -13.0596 -▁hushed -13.0596 -▁ammonia -13.0598 -▁berwick -13.0598 -▁skr -13.0598 -cita -13.0601 -▁thong -13.0602 -▁raiding -13.0602 -▁instituto -13.0604 -▁jura -13.0608 -▁oleg -13.0608 -▁folio -13.0609 -▁analogy -13.0611 -▁differentiated -13.0611 -▁mcguire -13.0611 -▁whistling -13.0611 -▁repulsed -13.0611 -▁marlborough -13.0611 -▁renaming -13.0611 -▁misconduct -13.0612 -▁oliveira -13.0613 -▁hurriedly -13.0613 -▁knut -13.0618 -▁discredit -13.0621 -▁firearm -13.0624 -esthesia -13.0625 -threatening -13.0625 -▁bodo -13.0626 -cratic -13.0628 -▁mclaughlin -13.0628 -▁vincenzo -13.0628 -▁seminole -13.0628 -3:30 -13.0629 -▁societal -13.0629 -▁florian -13.0632 -▁moines -13.0632 -344 -13.0634 -omir -13.0634 -▁johnstone -13.0636 -▁situ -13.0636 -▁supervise -13.0637 -zhuang -13.0638 -mbc -13.0639 -monopol -13.0639 -▁handwriting -13.0639 -▁mccu -13.0641 -sohn -13.0642 -▁barron -13.0642 -consecrat -13.0644 -▁hauling -13.0645 -▁discontent -13.0645 -▁reek -13.0646 -▁tangible -13.0647 -▁premio -13.0647 -▁condemnation -13.0648 -plica -13.0648 -▁netball -13.0648 -▁steff -13.0649 -▁lunatic -13.065 -▁scala -13.0651 -▁hogg -13.0652 -▁warrington -13.0652 -282 -13.0653 -▁dictated -13.0654 -▁revered -13.0655 -▁druid -13.0657 -377 -13.0657 -376 -13.0659 -▁larkin -13.066 -▁inexpensive -13.0661 -▁migratory -13.0661 -▁ptolemy -13.0661 -▁replenish -13.0661 -▁bjork -13.0661 -▁genomic -13.0662 -▁sticker -13.0662 -▁wrestle -13.0662 -▁mazda -13.0663 -neither -13.0664 -▁tirana -13.0665 -connect -13.0665 -▁$27 -13.0669 -▁adequately -13.0669 -▁chirp -13.067 -▁assent -13.0671 -learning -13.0671 -▁seizing -13.0675 -▁adorn -13.0675 -▁sunken -13.0676 -▁arboretum -13.0678 -▁composure -13.0678 -▁trajectory -13.0678 -▁transient -13.0678 -▁shapiro -13.0678 -▁sesame -13.0678 -▁brill -13.0679 -▁danzig -13.068 -elva -13.0681 -99% -13.0682 -▁redwood -13.0682 -▁sipping -13.0683 -757 -13.0685 -▁stitches -13.0686 -▁burnham -13.0689 -salem -13.0693 -▁astonishment -13.0695 -▁feasibility -13.0695 -▁flushing -13.0695 -▁grasshopper -13.0695 -▁chichester -13.0696 -▁wisp -13.0698 -▁fink -13.0698 -oxford -13.0699 -▁fastened -13.07 -▁benito -13.0701 -▁fief -13.0704 -▁braking -13.0704 -▁harrisburg -13.0707 -90% -13.0708 -▁lamina -13.0708 -▁salim -13.0709 -▁divin -13.071 -izzi -13.0711 -▁illnesses -13.0711 -▁clave -13.0711 -▁admiring -13.0712 -▁constabulary -13.0712 -▁raju -13.0712 -▁taxon -13.0712 -▁maestro -13.0713 -▁memorize -13.0714 -▁crutch -13.0714 -▁baylor -13.0718 -alpine -13.0723 -▁bowel -13.0724 -develop -13.0726 -▁raaf -13.0726 -▁nocturnal -13.0726 -▁darkest -13.0726 -universitat -13.0726 -▁corrosion -13.0728 -▁curvature -13.0728 -▁rescuing -13.0728 -▁midfield -13.0729 -▁compress -13.0729 -▁schuster -13.073 -▁punta -13.073 -▁pmc -13.0731 -▁cambridgeshire -13.0731 -▁ruse -13.0732 -▁hooper -13.0733 -▁autopsy -13.0735 -▁mckee -13.0735 -olini -13.0737 -cran -13.0737 -▁emery -13.0737 -junior -13.0738 -▁girard -13.0744 -339 -13.0745 -omys -13.0745 -▁barbecue -13.0745 -▁iroquois -13.0745 -▁venerable -13.0745 -▁charismatic -13.0746 -56% -13.0746 -▁burk -13.0746 -294 -13.0746 -vj -13.0747 -▁trident -13.0748 -▁yamaha -13.0748 -▁warlock -13.0748 -▁adoptive -13.0749 -▁unfolded -13.0749 -starring -13.075 -▁overdose -13.075 -▁castellan -13.0751 -▁gnu -13.0752 -▁mendel -13.0752 -▁kildare -13.0755 -▁greenish -13.0755 -▁bootleg -13.0756 -gado -13.0757 -▁durban -13.0757 -▁ricci -13.0758 -▁mundo -13.0758 -▁cheated -13.0759 -fran -13.076 -biotic -13.076 -▁bask -13.0761 -▁pinto -13.0762 -▁wiener -13.0762 -▁sympathize -13.0762 -▁mahogany -13.0762 -▁scientology -13.0762 -▁stucco -13.0762 -▁2021 -13.0763 -▁schubert -13.0763 -▁ruh -13.0765 -▁sprawling -13.0769 -quette -13.0769 -349 -13.077 -▁finalized -13.077 -hatter -13.077 -development -13.0771 -php -13.0773 -▁200102 -13.0776 -▁eurasian -13.0777 -introduction -13.0777 -sculpt -13.0778 -▁appendix -13.0779 -▁saetan -13.0779 -▁sociological -13.0779 -▁mcgraw -13.0779 -pulse -13.078 -▁bouquet -13.078 -▁rectory -13.0781 -pedia -13.0781 -chul -13.0782 -▁outraged -13.0783 -▁carmichael -13.0785 -▁kimberly -13.0786 -▁casper -13.0787 -▁platy -13.079 -typically -13.0791 -▁plight -13.0792 -qar -13.0793 -▁susie -13.0793 -▁cringed -13.0794 -opathic -13.0794 -▁eyewitness -13.0796 -▁kurdistan -13.0796 -▁hapoel -13.0796 -▁epilogue -13.0796 -sugar -13.0798 -▁wildfire -13.08 -▁cheering -13.08 -▁nasser -13.0801 -▁psychopath -13.0801 -▁napoli -13.0801 -▁prevail -13.0804 -cutting -13.0806 -▁nonstop -13.0807 -chita -13.0808 -spheric -13.0808 -▁distracting -13.081 -▁hypothetical -13.0813 -▁periphery -13.0813 -▁grimsby -13.0813 -dige -13.0813 -▁snuck -13.0814 -twenty -13.0815 -▁drumming -13.0816 -▁recited -13.0819 -▁suggestive -13.0819 -accio -13.082 -seriously -13.0821 -bung -13.0825 -▁winfield -13.0825 -▁juris -13.0826 -332 -13.0827 -▁janis -13.0828 -▁francais -13.0829 -afrika -13.0829 -▁juarez -13.083 -▁mccormick -13.083 -▁saratoga -13.083 -ktor -13.083 -▁blatant -13.083 -▁marquette -13.0831 -▁sarcastically -13.0831 -▁knoll -13.0831 -▁protege -13.0833 -▁clapton -13.0835 -▁aimee -13.0836 -▁tesla -13.0837 -▁scooted -13.084 -delia -13.0841 -▁mime -13.0842 -fahr -13.0845 -▁hidalgo -13.0847 -▁occidental -13.0847 -▁puncture -13.0847 -▁wilfred -13.0847 -▁radcliffe -13.0847 -▁fluttering -13.0848 -▁hermitage -13.0848 -▁mitochondrial -13.0848 -bila -13.0849 -456 -13.0849 -▁footpath -13.085 -▁campground -13.0851 -▁johor -13.0851 -▁fatima -13.0851 -▁greta -13.0851 -▁grate -13.0852 -▁cramp -13.0852 -▁granville -13.0854 -▁vasco -13.0856 -▁gleam -13.0856 -▁linkage -13.0858 -298 -13.0859 -▁octavia -13.0863 -blaze -13.0863 -▁exasperated -13.0864 -▁expatriate -13.0864 -▁wrocaw -13.0864 -▁credible -13.0864 -▁engraver -13.0864 -▁wexford -13.0864 -352 -13.0864 -▁antrim -13.0865 -▁shamrock -13.0865 -▁shaker -13.0865 -▁heaving -13.0865 -ignac -13.0865 -▁clavi -13.0866 -▁nueva -13.0866 -▁noticeably -13.0867 -▁recaptured -13.0867 -shree -13.0867 -clough -13.0868 -▁unpaid -13.0868 -▁pollock -13.0868 -▁cobble -13.0869 -▁gundam -13.087 -▁engulfed -13.087 -▁chilly -13.0873 -armenian -13.0873 -study -13.0875 -▁curate -13.0875 -296 -13.0879 -▁rustle -13.088 -▁flawed -13.0881 -▁howitzer -13.0881 -▁munoz -13.0882 -▁discard -13.0883 -▁invoked -13.0883 -▁devlin -13.0884 -ogne -13.0884 -krist -13.0885 -pheno -13.0885 -▁quarterfinal -13.0891 -islamic -13.0896 -knuckle -13.0897 -▁nominally -13.0898 -▁condominium -13.0898 -▁jurisprudence -13.0898 -▁maternity -13.0898 -▁pendleton -13.0898 -▁dynasties -13.0898 -▁mindanao -13.0898 -eighth -13.0898 -▁agustin -13.0899 -▁subdistrict -13.0901 -▁sharia -13.0901 -▁diplo -13.0902 -▁blueprint -13.0904 -▁implication -13.0905 -▁matteo -13.0908 -▁temeraire -13.0915 -▁wharton -13.0915 -▁interfering -13.0915 -▁versatile -13.0915 -▁allusion -13.0916 -▁reece -13.0916 -990 -13.0917 -westerly -13.0917 -▁incline -13.0919 -twist -13.092 -hagan -13.0922 -▁sloop -13.0922 -348 -13.0925 -1853 -13.0926 -486 -13.0928 -shahr -13.0929 -▁helplessly -13.0929 -boyfriend -13.093 -analysis -13.0932 -gallon -13.0932 -▁concubine -13.0932 -▁electrification -13.0932 -ellus -13.0932 -▁pagoda -13.0933 -▁jarrett -13.0933 -▁shrill -13.0933 -407 -13.0933 -▁mildred -13.0935 -biblio -13.0936 -▁parapet -13.0936 -▁luciano -13.0938 -▁rhea -13.0939 -▁woodrow -13.094 -rugg -13.0942 -▁anxiously -13.0942 -▁successively -13.0943 -▁gutter -13.0944 -▁accomplice -13.0949 -▁unreliable -13.0949 -▁multiply -13.095 -▁pantheon -13.095 -▁montevideo -13.095 -▁condor -13.095 -▁kuch -13.095 -▁halves -13.0951 -▁analytics -13.0952 -▁tyrant -13.0953 -▁$19 -13.0953 -▁molo -13.0954 -▁acidic -13.0955 -▁kalin -13.0955 -▁crumb -13.0956 -▁vasili -13.0959 -brunn -13.0959 -▁saucer -13.0959 -38% -13.096 -▁computed -13.0962 -▁shortstop -13.0962 -▁airliner -13.0964 -▁leaking -13.0965 -▁sporadic -13.0966 -▁embracing -13.0967 -▁thunderbolt -13.0967 -▁lycan -13.0968 -▁humanoid -13.0968 -whether -13.0969 -54% -13.097 -▁chola -13.097 -▁partridge -13.0971 -hsi -13.0978 -▁frick -13.0979 -393 -13.098 -▁valeria -13.0981 -▁everest -13.0984 -▁inaccurate -13.0984 -▁horticultural -13.0984 -▁privatization -13.0984 -conjugate -13.0984 -▁fulbright -13.0984 -▁adorable -13.0985 -palm -13.0988 -▁gambler -13.0989 -▁catfish -13.0989 -▁correlated -13.099 -bench -13.0993 -▁doorstep -13.0996 -▁marrow -13.1 -apocalyptic -13.1001 -testosterone -13.1001 -▁chattanooga -13.1001 -▁delilah -13.1001 -▁empowerment -13.1002 -▁kimberley -13.1002 -▁saigon -13.1003 -▁distressed -13.1006 -▁excerpts -13.1006 -▁accessory -13.1006 -▁graders -13.1008 -505 -13.1009 -▁reinforcement -13.101 -outstanding -13.101 -▁esq -13.101 -▁rotational -13.1014 -furst -13.1018 -▁anecdote -13.1018 -▁decimal -13.1019 -▁taxonomic -13.1019 -▁alistair -13.1019 -▁epistle -13.1019 -▁morbid -13.102 -▁vasily -13.102 -▁acacia -13.102 -bapt -13.1026 -polli -13.1027 -frequency -13.1027 -translated -13.1027 -fluoro -13.1028 -▁dipping -13.103 -▁chern -13.1033 -▁harbin -13.1033 -▁caricature -13.1036 -▁karlsruhe -13.1036 -▁disintegrate -13.1037 -▁titanium -13.1037 -445 -13.1039 -▁cowan -13.104 -485 -13.1042 -▁flak -13.1042 -▁snare -13.1044 -absolutely -13.1047 -▁calvert -13.1048 -▁managerial -13.105 -▁tren -13.105 -▁roxy -13.105 -ruba -13.1052 -▁bewildered -13.1053 -▁trondheim -13.1053 -▁cheerleader -13.1053 -▁augsburg -13.1054 -▁modulation -13.1054 -▁stagecoach -13.1055 -▁cheered -13.1057 -▁landfill -13.1058 -▁tingling -13.1059 -▁schol -13.1059 -▁fundamentally -13.1062 -▁tenderness -13.1063 -▁wigg -13.1063 -portrait -13.1064 -361 -13.1066 -containing -13.1066 -▁wcw -13.1068 -lehr -13.1069 -▁prentice -13.1071 -▁procedural -13.1071 -▁separatist -13.1071 -▁consecration -13.1071 -▁josiah -13.1071 -▁childish -13.1071 -▁hobbs -13.1072 -▁gustaf -13.1072 -▁soaring -13.1072 -▁messaging -13.1072 -creator -13.1073 -▁rudi -13.1073 -▁rebelled -13.1075 -▁sixties -13.1077 -71% -13.1078 -▁yearbook -13.108 -▁tink -13.108 -533 -13.1081 -▁accomplishment -13.1081 -ophyllum -13.1083 -▁dumont -13.1085 -▁wilbur -13.1087 -▁michal -13.1087 -▁harpsichord -13.1088 -▁olympus -13.1088 -▁plausible -13.1088 -▁provocative -13.1088 -▁fidget -13.1088 -▁silo -13.1089 -444 -13.109 -▁200001 -13.1091 -358 -13.1092 -▁etching -13.1092 -▁insulting -13.1093 -▁umm -13.1099 -387 -13.11 -▁magdalena -13.1101 -▁confuse -13.1102 -aditya -13.1102 -basic -13.1103 -▁hamad -13.1103 -receptor -13.1104 -commerce -13.1105 -▁claudius -13.1105 -▁convection -13.1105 -▁dorothea -13.1105 -▁pensacola -13.1105 -▁reprimand -13.1105 -▁mitigate -13.1106 -▁musique -13.1107 -▁dashboard -13.1107 -▁marred -13.1108 -▁cerro -13.1108 -▁prest -13.1109 -▁maratha -13.1112 -▁dividend -13.1113 -▁strung -13.1117 -▁seraph -13.1118 -▁encompassed -13.1118 -▁grandmaster -13.1119 -366 -13.1119 -▁distillery -13.1123 -▁willoughby -13.1123 -▁regatta -13.1123 -▁lilith -13.1124 -▁drilled -13.1125 -▁strangle -13.1127 -ehler -13.1128 -78% -13.1129 -chandran -13.1131 -▁consequent -13.1132 -smoke -13.1137 -▁tarzan -13.114 -▁fraudulent -13.114 -▁leukemia -13.114 -▁maldives -13.114 -▁kincaid -13.114 -etsu -13.1141 -▁anatomical -13.1141 -▁bharatiya -13.1141 -▁collide -13.1141 -▁ndp -13.1143 -▁flexed -13.1144 -▁turnbull -13.1144 -▁celine -13.1144 -▁loomed -13.1144 -▁dubois -13.1145 -croatian -13.1145 -lithuanian -13.1146 -hij -13.1146 -▁delightful -13.1146 -▁sensational -13.1146 -▁firth -13.1148 -▁highlanders -13.1149 -▁fleck -13.1152 -▁dumping -13.1155 -▁barbed -13.1157 -▁eastbound -13.1157 -▁apprehension -13.1158 -▁hannibal -13.1158 -2,400 -13.1158 -▁somber -13.1159 -▁buddies -13.116 -▁dismissive -13.116 -▁vanishing -13.1161 -▁10:00 -13.1161 -▁sanction -13.1162 -▁spitting -13.1162 -▁fabricated -13.1163 -▁bloomfield -13.1163 -medical -13.1164 -ancient -13.1164 -▁offender -13.1165 -austria -13.1166 -empty -13.1176 -▁telepathic -13.1176 -▁respondents -13.1176 -▁opined -13.1176 -▁tnt -13.1176 -▁remington -13.1176 -bomber -13.1178 -▁sargent -13.1178 -isomer -13.118 -▁swiped -13.118 -▁madhav -13.1181 -▁ushered -13.1181 -▁sidekick -13.1183 -industrial -13.1185 -▁svet -13.1186 -▁simulated -13.1186 -34% -13.1187 -muller -13.1188 -▁sugi -13.1188 -▁compile -13.1191 -▁scrum -13.1193 -▁bratislava -13.1193 -▁iglesia -13.1193 -▁tchaikovsky -13.1193 -▁stanisaw -13.1193 -▁penultimate -13.1193 -▁affix -13.1194 -▁bonfire -13.1195 -▁haryana -13.1195 -▁topical -13.1197 -▁overlord -13.1198 -1852 -13.1198 -▁hindustan -13.1198 -431 -13.1198 -cultura -13.1198 -▁spindle -13.12 -▁courageous -13.1204 -▁circumstance -13.1204 -washington -13.1205 -▁breakout -13.1205 -368 -13.1206 -▁shetland -13.1206 -▁moldavia -13.1209 -▁diverge -13.121 -▁catalytic -13.1211 -▁philanthropic -13.1211 -▁shuffling -13.1211 -▁illicit -13.1211 -▁deux -13.1212 -▁piotr -13.1212 -▁bicker -13.1213 -wik -13.1215 -▁makar -13.1215 -▁1689 -13.1215 -▁pollard -13.1218 -▁pious -13.122 -▁poz -13.122 -329 -13.1221 -▁shul -13.1221 -magnetic -13.1224 -▁groaning -13.1224 -▁phosphor -13.1226 -▁recur -13.1226 -▁goldstein -13.1228 -▁blockbuster -13.1228 -▁derivation -13.1228 -▁flopped -13.1228 -▁unmistakable -13.1228 -▁bibliography -13.1229 -▁excitedly -13.1229 -▁gustavo -13.1231 -▁disapprove -13.1231 -▁crises -13.1231 -▁brutality -13.1232 -▁lutz -13.1235 -ocular -13.1238 -▁campsite -13.1239 -research -13.124 -college -13.1243 -408 -13.1244 -▁caption -13.1246 -▁botanic -13.1246 -▁yourselves -13.1246 -▁consultancy -13.1246 -▁lurking -13.1246 -▁glue -13.1247 -▁tahiti -13.1247 -▁aquino -13.1248 -▁6:00 -13.1249 -▁encompass -13.1251 -▁culp -13.1251 -▁invertebrates -13.1252 -▁medallist -13.1253 -▁toddler -13.1254 -378 -13.1255 -920 -13.1256 -▁patrolling -13.1258 -▁symptom -13.1258 -1856 -13.1258 -adio -13.1261 -▁assassinate -13.1261 -▁nunn -13.1261 -▁cosmopolitan -13.1264 -▁apologise -13.1264 -▁promenade -13.1264 -▁stryker -13.1264 -▁subcontinent -13.1265 -▁horsemen -13.1266 -khali -13.1269 -▁suture -13.1269 -ziel -13.1272 -57% -13.1276 -▁haig -13.1278 -cilla -13.128 -▁recite -13.1281 -▁auschwitz -13.1282 -▁fledgling -13.1282 -ophthalm -13.1282 -▁dummy -13.1282 -▁alvaro -13.1282 -▁paddington -13.1283 -▁hellenic -13.1283 -delic -13.1284 -▁canteen -13.1285 -73% -13.1286 -spirited -13.1287 -▁fortnight -13.1289 -▁lexie -13.1289 -▁meteorite -13.1289 -1851 -13.1289 -▁waldo -13.1289 -adze -13.129 -▁armagh -13.1292 -▁torches -13.1292 -hallow -13.1294 -ilius -13.1295 -▁italianate -13.1295 -untitled -13.1297 -▁consolation -13.1299 -▁disrespect -13.13 -anthi -13.1301 -▁saddam -13.1301 -▁westbound -13.1301 -▁urgently -13.1302 -▁elective -13.1304 -▁cynical -13.1309 -39% -13.131 -970 -13.1311 -▁huffed -13.1313 -▁sweetie -13.1313 -acqua -13.1313 -▁chopper -13.1314 -flash -13.1315 -▁cupping -13.1316 -▁chandelier -13.1317 -▁mercantile -13.1317 -▁saskatoon -13.1317 -▁rumbling -13.1318 -1744 -13.1318 -▁christensen -13.1318 -▁rooney -13.1319 -▁dutt -13.1319 -458 -13.132 -▁bellamy -13.1322 -village -13.1323 -▁jewell -13.1324 -▁twitching -13.1325 -▁14,000 -13.1327 -zewski -13.1329 -▁showdown -13.1329 -64% -13.133 -860 -13.1333 -1857 -13.1334 -▁greenberg -13.1334 -▁marcelo -13.1335 -▁gonzales -13.1335 -▁alligator -13.1335 -▁asthma -13.1336 -▁insistent -13.1336 -▁sloping -13.1336 -▁concordia -13.1337 -colour -13.134 -▁cesare -13.134 -▁unleash -13.134 -▁fedor -13.1341 -▁jordanian -13.1341 -soprano -13.1344 -▁saad -13.1344 -▁picard -13.1345 -▁cumbria -13.1346 -▁hesitantly -13.1346 -▁speculate -13.1347 -32% -13.1347 -provide -13.135 -thromb -13.1351 -▁burnley -13.1355 -▁blaming -13.1356 -▁permitting -13.1358 -391 -13.1359 -▁adapting -13.136 -▁phyto -13.1364 -▁angelina -13.1365 -▁potts -13.1367 -▁taku -13.1368 -▁dario -13.137 -▁cognition -13.1371 -▁precipitate -13.1371 -▁unsuitable -13.1371 -▁mennonite -13.1371 -▁ebook -13.1371 -nosed -13.1372 -▁caressing -13.1374 -▁rajput -13.1374 -▁argus -13.1375 -elberg -13.1379 -▁scud -13.1379 -438 -13.1381 -▁eyeball -13.1382 -▁cristo -13.1383 -▁padua -13.1383 -municipality -13.1385 -global -13.1386 -▁evaluating -13.1389 -▁ferreira -13.1389 -▁intimidating -13.1389 -▁mcintyre -13.1389 -▁redistribution -13.1389 -▁valkyrie -13.1389 -▁glistening -13.1389 -▁uppsala -13.1389 -▁wellesley -13.1389 -▁weasel -13.1392 -rigged -13.1394 -▁magma -13.1395 -▁husk -13.1395 -▁vitro -13.1395 -fraction -13.1399 -▁stipulated -13.1399 -▁celeb -13.14 -chicago -13.1405 -▁shimo -13.1406 -vika -13.1406 -940 -13.1407 -▁obesity -13.1407 -▁infidel -13.1407 -▁fascism -13.1408 -▁montrose -13.1408 -eanu -13.1408 -▁exchanging -13.1408 -▁sedimentary -13.1409 -▁gilded -13.1409 -symmetr -13.1409 -▁marital -13.141 -▁nonlinear -13.141 -76% -13.1411 -souza -13.1411 -▁courtier -13.1414 -▁avoidance -13.1415 -373 -13.1418 -▁williamsburg -13.1421 -▁taxonomy -13.1425 -▁precarious -13.1425 -▁fairbanks -13.1425 -▁devastation -13.1425 -▁nrhp -13.1425 -▁ceasefire -13.1425 -▁crumbling -13.1426 -▁equator -13.1428 -▁compressor -13.1429 -plicate -13.143 -▁raghu -13.1431 -▁graft -13.1432 -▁stowe -13.1433 -jala -13.1437 -▁grading -13.1438 -▁fermi -13.144 -▁wince -13.144 -▁authoritarian -13.1443 -▁magnesium -13.1443 -▁centurion -13.1443 -▁hanoi -13.1447 -freedom -13.1447 -363 -13.1448 -azam -13.1449 -▁nantes -13.1449 -▁lcd -13.1449 -▁gogh -13.1451 -▁scaling -13.1456 -princip -13.1457 -▁disneyland -13.1458 -▁facilitating -13.1461 -▁saturated -13.1461 -▁smallpox -13.1461 -▁dependency -13.1461 -▁slumber -13.1462 -▁ghent -13.1462 -▁hospitalized -13.1463 -▁bracken -13.1463 -▁vinnie -13.1464 -▁pretoria -13.1465 -▁aggressively -13.1465 -▁darby -13.1466 -▁nellie -13.1469 -62% -13.147 -1725 -13.1472 -verton -13.1472 -▁cayman -13.1473 -quadra -13.1475 -▁endorse -13.1476 -▁littered -13.1476 -▁familiarity -13.1477 -▁conical -13.1477 -▁scrambling -13.1479 -▁segregated -13.1479 -▁biplane -13.1482 -tzky -13.1482 -▁melinda -13.1484 -▁relinquish -13.1484 -▁tucking -13.1485 -1830 -13.1492 -▁cleanup -13.1494 -▁hohen -13.1495 -▁kuhn -13.1497 -▁sift -13.1497 -▁anthologies -13.1497 -▁cheerleading -13.1497 -▁noctuidae -13.1497 -▁ostensibly -13.1497 -▁vuelta -13.1497 -▁pediment -13.1497 -▁eviction -13.1497 -▁confines -13.1497 -rakh -13.1499 -▁galvan -13.1499 -▁visitation -13.1499 -▁proxim -13.1501 -▁babylonian -13.1503 -▁chiba -13.1503 -▁contractual -13.1504 -▁alber -13.1504 -instrumentalist -13.1506 -california -13.1507 -christmas -13.1507 -▁sandals -13.1511 -▁overwhelmingly -13.1511 -▁catapult -13.1515 -▁emergencies -13.1515 -▁hezbollah -13.1515 -▁retribution -13.1515 -▁siegfried -13.1516 -▁lifespan -13.1517 -▁severn -13.1517 -▁trou -13.1517 -fear -13.1518 -▁pandit -13.152 -▁prostate -13.1527 -▁marlon -13.1528 -▁thaw -13.1529 -jiao -13.1529 -▁durable -13.1529 -▁liebe -13.1532 -▁scratches -13.1533 -disqualification -13.1534 -▁casablanca -13.1534 -▁entourage -13.1534 -▁insurrection -13.1534 -▁spectroscopy -13.1534 -▁uninhabited -13.1534 -▁huffington -13.1534 -malley -13.1534 -hyster -13.1535 -▁whimpered -13.1535 -▁dealership -13.1535 -▁restrictive -13.1536 -▁clancy -13.1539 -▁chronicler -13.154 -▁fetus -13.1541 -futu -13.1544 -▁arundel -13.1546 -▁jaun -13.1547 -66% -13.1549 -3:1 -13.1551 -▁interned -13.1552 -▁mahmoud -13.1552 -▁sigismund -13.1552 -knock -13.1552 -▁indicative -13.1552 -▁diversified -13.1553 -▁linde -13.1553 -▁beginner -13.1556 -▁revisited -13.1561 -▁vedic -13.1562 -▁mouthful -13.1565 -puis -13.1568 -▁batavia -13.1568 -▁quarantine -13.157 -▁unconditional -13.157 -▁upgrading -13.157 -▁enumerat -13.157 -▁haydn -13.1571 -▁pleasing -13.1572 -1844 -13.1573 -ezza -13.1575 -▁moshe -13.1576 -▁plaid -13.1577 -▁factual -13.1577 -promise -13.1578 -▁translit -13.1579 -▁praetor -13.1579 -▁humiliated -13.158 -▁salva -13.1581 -▁scro -13.1581 -snake -13.1582 -1841 -13.1585 -feature -13.1588 -▁gershwin -13.1589 -▁introductory -13.1589 -▁mcpherson -13.1589 -▁spoof -13.1589 -▁unequal -13.1589 -▁takahashi -13.1589 -▁clarissa -13.1589 -▁chopped -13.1589 -ulatus -13.1591 -▁craftsmen -13.1592 -▁stepmother -13.1592 -▁succumb -13.1594 -▁jacobite -13.1597 -bamba -13.1597 -platte -13.16 -▁succumbed -13.1601 -push -13.1603 -llinger -13.1603 -ethnic -13.1604 -▁aeronautical -13.1604 -▁bubbling -13.1607 -▁distaste -13.1607 -▁distraught -13.1607 -▁grievance -13.1607 -▁quadruple -13.1607 -▁emphatic -13.1607 -▁schism -13.1607 -schrift -13.1607 -▁trotsky -13.1608 -▁standalone -13.1609 -▁papacy -13.1609 -dancing -13.161 -1737 -13.1611 -atomic -13.1611 -▁keynote -13.1611 -syria -13.1612 -▁kiwi -13.1613 -voll -13.1613 -▁shuddering -13.1613 -▁detour -13.1615 -72% -13.1617 -▁ripley -13.1619 -457 -13.1621 -▁bolivian -13.1622 -▁benevolent -13.1625 -▁educating -13.1625 -▁eyelashes -13.1625 -▁schizophrenia -13.1625 -▁unspecified -13.1625 -▁unmanned -13.1625 -▁bradshaw -13.1626 -▁drool -13.1627 -▁sagged -13.1628 -liya -13.163 -scotland -13.163 -▁specialization -13.1632 -spread -13.1632 -pneuma -13.1635 -▁199697 -13.1636 -▁tasha -13.1637 -▁zimmer -13.1638 -ivist -13.1638 -▁tunis -13.1638 -chetti -13.1638 -▁indefinite -13.1643 -▁faulkner -13.1644 -▁influencing -13.1644 -▁vertebrae -13.1644 -▁tectonic -13.1644 -▁immersed -13.1644 -▁adherents -13.1644 -sourcing -13.1645 -▁mundi -13.1646 -▁wager -13.1646 -▁subtract -13.1646 -▁mueller -13.1646 -▁feldman -13.1647 -▁mischief -13.1647 -platform -13.1649 -mentioned -13.1651 -77% -13.1652 -367 -13.1655 -chaud -13.166 -▁attribution -13.1662 -▁limousine -13.1662 -▁oblivion -13.1662 -▁burroughs -13.1662 -▁flawless -13.1662 -▁prze -13.1662 -▁patting -13.1663 -▁sykes -13.1663 -jeff -13.1666 -▁armchair -13.1666 -▁demoted -13.1667 -▁superhuman -13.1669 -59% -13.167 -▁mannheim -13.1671 -▁monet -13.1673 -adult -13.1673 -planned -13.1674 -▁obedient -13.1681 -▁resurgence -13.1681 -▁counterfeit -13.1681 -▁pontiac -13.1681 -▁dobson -13.1681 -▁callahan -13.1684 -▁playlist -13.1684 -2,200 -13.1686 -▁drastic -13.1687 -▁brute -13.1687 -▁coiled -13.1687 -1845 -13.1687 -▁virginity -13.1693 -▁crusader -13.1697 -football -13.1697 -▁cornerback -13.1699 -▁impoverished -13.1699 -▁subgenus -13.1699 -▁maitland -13.1699 -▁heterosexual -13.1699 -1842 -13.17 -▁immensely -13.1701 -▁mumble -13.1704 -▁jimmie -13.1704 -▁guildford -13.1704 -800,000 -13.1708 -econom -13.1713 -▁gunter -13.1713 -korean -13.1715 -▁rampart -13.1717 -▁hyundai -13.1718 -▁liszt -13.1718 -▁springsteen -13.1719 -▁bayonet -13.1719 -▁nasr -13.1719 -hanna -13.172 -▁iihf -13.1721 -▁unsafe -13.1723 -▁meaningless -13.1726 -bhadra -13.1726 -▁alcoholism -13.173 -▁whereupon -13.173 -▁13,000 -13.1731 -▁codename -13.1732 -▁apologies -13.1736 -▁katharine -13.1736 -▁essendon -13.1737 -aceous -13.1737 -▁annabelle -13.1737 -▁ballast -13.1739 -▁kiyo -13.174 -▁vidal -13.1741 -▁westchester -13.1743 -▁salsa -13.1744 -1847 -13.1745 -▁republished -13.1747 -▁minu -13.175 -▁keating -13.1751 -▁remade -13.1751 -jhl -13.1752 -▁decorate -13.1753 -▁luminous -13.1755 -▁searing -13.1758 -stylis -13.1758 -illian -13.1761 -▁#10 -13.1761 -acchi -13.1761 -▁donegal -13.1762 -▁persi -13.1762 -▁phyl -13.1765 -guille -13.1765 -▁tacit -13.1766 -▁ashland -13.1766 -▁koji -13.1768 -▁lemur -13.1768 -vaux -13.1769 -▁fencer -13.1771 -▁refreshing -13.1771 -▁chopin -13.1773 -▁mingled -13.1773 -▁obsessive -13.1774 -▁disembark -13.1774 -▁wainwright -13.1774 -fluoride -13.1774 -▁evicted -13.1774 -brau -13.1774 -▁embodied -13.1774 -▁tapestry -13.1774 -▁sudanese -13.1775 -▁literate -13.1775 -▁existential -13.1775 -▁volga -13.1776 -▁gregorian -13.1782 -▁baseline -13.1784 -chondr -13.1787 -cevic -13.1787 -▁trieste -13.179 -▁squealed -13.1792 -▁clink -13.1792 -▁approving -13.1792 -▁moffat -13.1792 -▁amelie -13.1793 -▁eyre -13.1793 -▁wobble -13.1793 -attu -13.1793 -adores -13.1794 -▁kava -13.1795 -▁ratification -13.1795 -▁purana -13.1796 -▁wilton -13.1797 -▁blushing -13.1802 -▁calderon -13.1803 -▁alphabetical -13.1803 -2,300 -13.1803 -▁antigua -13.1803 -▁retake -13.1805 -1846 -13.1805 -▁whitley -13.1806 -▁globalization -13.1807 -metro -13.1808 -▁kuz -13.1809 -▁aggravated -13.1811 -▁arrogance -13.1811 -▁bureaucracy -13.1811 -▁rectangle -13.1811 -▁snuggled -13.1811 -▁gestapo -13.1811 -▁sibyl -13.1813 -▁ortega -13.1814 -▁senna -13.1814 -▁unmarked -13.1815 -▁proxy -13.1815 -▁whack -13.1815 -▁hiram -13.1824 -▁archway -13.1825 -▁gleamed -13.1825 -▁19992000 -13.1826 -bowl -13.1826 -▁1642 -13.1829 -▁apparition -13.183 -▁sheppard -13.183 -▁incursion -13.183 -▁faisal -13.183 -▁colourful -13.183 -▁edel -13.183 -▁synchronized -13.183 -▁quadrant -13.183 -▁tubular -13.1831 -▁headwaters -13.1831 -dominated -13.1832 -▁concourse -13.1832 -▁chav -13.1834 -shade -13.1834 -▁starboard -13.1835 -▁defected -13.1837 -▁catalyze -13.1838 -▁reverb -13.1838 -huang -13.1844 -▁timid -13.1847 -▁conscription -13.1849 -▁observance -13.1849 -▁vibrating -13.1849 -▁acqui -13.1849 -▁blah -13.1849 -▁salazar -13.185 -guru -13.185 -▁gaj -13.185 -▁waistband -13.1851 -▁skipping -13.1852 -▁coinage -13.1854 -▁whim -13.1855 -kirche -13.1855 -gauge -13.1856 -consul -13.1857 -alexander -13.1861 -▁tricho -13.1863 -conductor -13.1864 -▁roque -13.1865 -▁cuckoo -13.1867 -▁corrugated -13.1867 -▁easiest -13.1867 -▁billiard -13.1867 -▁bromwich -13.1868 -1721 -13.1868 -▁hines -13.1868 -▁annapolis -13.1869 -penny -13.1871 -▁superliga -13.1872 -strict -13.1872 -▁swipe -13.1882 -occhi -13.1882 -milk -13.1884 -▁mussel -13.1884 -vigne -13.1886 -▁superstition -13.1886 -▁orthogonal -13.1886 -▁juniper -13.1886 -▁arterial -13.1886 -▁aggregation -13.1886 -▁geometridae -13.1886 -▁servicing -13.1886 -▁phosphorus -13.189 -43% -13.1891 -tinted -13.1892 -▁breakaway -13.1893 -434 -13.1894 -▁materialized -13.1894 -▁199798 -13.1897 -roofed -13.1897 -▁frighten -13.1898 -hula -13.19 -▁exhale -13.19 -▁homemade -13.1901 -defunct -13.1903 -▁jayne -13.1905 -▁civilized -13.1905 -licensed -13.1905 -▁sphinx -13.1905 -▁rochelle -13.1906 -▁elusive -13.1907 -▁thayer -13.1907 -▁quartermaster -13.191 -▁16,000 -13.1912 -jager -13.1912 -▁sparsely -13.1917 -▁speechless -13.1917 -▁fenn -13.1921 -▁artefacts -13.1924 -▁cymbal -13.1924 -▁shreveport -13.1924 -▁staggering -13.1924 -▁estranged -13.1924 -▁initiating -13.1924 -▁appease -13.1925 -▁bryson -13.1925 -▁droplets -13.1926 -▁quivering -13.1928 -▁hunk -13.1929 -359 -13.193 -kyung -13.1933 -▁199899 -13.1936 -436 -13.1937 -▁abolitionist -13.1937 -▁comprehension -13.1943 -▁revolving -13.1943 -▁maguire -13.1943 -▁sulphur -13.1943 -▁asturias -13.1943 -▁quarries -13.1943 -▁abbess -13.1943 -▁henning -13.1946 -▁vomiting -13.1946 -▁paco -13.1947 -▁treb -13.1947 -▁**** -13.1947 -▁fasci -13.1948 -initial -13.195 -cortic -13.1951 -63% -13.1953 -▁mojo -13.1955 -▁godwin -13.1956 -▁relinquished -13.1957 -▁doorbell -13.1959 -▁interspersed -13.1962 -▁raccoon -13.1962 -▁scaffold -13.1962 -▁sanitary -13.1962 -▁sweatshirt -13.1964 -▁sincerely -13.1964 -▁euroleague -13.1964 -▁gauntlet -13.1964 -▁dentistry -13.1964 -▁immoral -13.1965 -890 -13.1966 -▁twinned -13.1966 -▁compost -13.1967 -beyond -13.1967 -▁juliette -13.1968 -aime -13.1969 -▁dedicate -13.1976 -▁endanger -13.1979 -▁fragmented -13.198 -▁reload -13.1981 -▁guernsey -13.1981 -▁hospice -13.1981 -▁nicholls -13.1981 -▁kenji -13.1986 -▁nylon -13.1988 -average -13.1989 -marne -13.1989 -scented -13.1989 -▁oskar -13.1993 -▁palette -13.1995 -1603 -13.1997 -▁chute -13.1999 -▁kalli -13.1999 -▁seekers -13.2 -▁groceries -13.2 -▁cobalt -13.2001 -▁greasy -13.2001 -▁unilateral -13.2001 -▁refute -13.2001 -▁fuchs -13.2003 -oberliga -13.2003 -▁tierney -13.2004 -romanian -13.2005 -▁leuco -13.2011 -▁spiro -13.2012 -▁alteration -13.2016 -▁sybil -13.2017 -▁blackberry -13.2019 -▁equivalence -13.2019 -▁regression -13.2019 -▁syndication -13.2019 -▁corinne -13.2019 -▁eradicate -13.2019 -▁erasmus -13.2019 -▁carousel -13.2019 -▁dissatisfied -13.202 -▁clutter -13.202 -▁elsie -13.2021 -▁supersonic -13.2022 -▁gulped -13.2023 -getting -13.2023 -jitsu -13.2025 -▁tulip -13.2025 -gibbon -13.2027 -▁wach -13.2032 -98% -13.2032 -iflora -13.2032 -▁enigma -13.2036 -▁mcleod -13.2038 -▁misfortune -13.2038 -▁treacherous -13.2038 -lullaby -13.2039 -lauri -13.2039 -▁trafford -13.2039 -▁hotspur -13.2039 -crown -13.2039 -chapter -13.2039 -▁kyiv -13.2041 -fledged -13.2041 -▁emory -13.2042 -uggle -13.2042 -▁1661 -13.2043 -▁epstein -13.2045 -phylla -13.2046 -▁equate -13.2047 -comedy -13.2051 -▁handheld -13.2051 -ollywood -13.2051 -▁insulation -13.2053 -▁fenton -13.2053 -▁teaser -13.2054 -caria -13.2056 -▁contemplating -13.2058 -▁grotesque -13.2058 -▁enriched -13.2058 -▁goalscorer -13.2058 -▁assailant -13.2058 -▁delgado -13.2059 -▁altarpiece -13.2059 -▁townspeople -13.2059 -sectarian -13.206 -▁jeu -13.2061 -▁sagar -13.2065 -▁seaplane -13.2065 -▁lucknow -13.2065 -▁lashed -13.2066 -▁newsweek -13.2066 -▁millennia -13.2067 -▁mellow -13.2068 -chemistry -13.2072 -▁disperse -13.2073 -uthu -13.2075 -regulated -13.2075 -denominational -13.2076 -vietnam -13.2076 -▁controversies -13.2077 -▁erebidae -13.2077 -▁suicidal -13.2077 -▁kyushu -13.2077 -▁eucharist -13.2077 -▁restarted -13.2077 -period -13.2077 -▁magpie -13.2078 -▁spicy -13.2079 -▁kruger -13.208 -fasc -13.2081 -▁pinpoint -13.2083 -▁norbert -13.2084 -▁delete -13.2085 -▁leung -13.2085 -▁greyish -13.209 -▁glaze -13.2091 -architect -13.2092 -columbian -13.2094 -residence -13.2096 -translation -13.2096 -▁prowess -13.2096 -attentive -13.2096 -▁cloister -13.2097 -populated -13.2097 -▁rosalind -13.2098 -▁supplementary -13.2099 -▁barrington -13.21 -▁renumbered -13.2101 -▁hoax -13.2108 -▁scatter -13.2109 -▁precede -13.211 -▁secretion -13.2112 -▁witty -13.2114 -▁etymology -13.2115 -▁prohibiting -13.2115 -▁thoroughfare -13.2115 -▁zodiac -13.2116 -▁xinjiang -13.2116 -▁revolutionaries -13.2117 -▁agile -13.2119 -▁enforcer -13.212 -slavery -13.2121 -74% -13.2121 -▁bassoon -13.2122 -▁mahon -13.2125 -▁grupo -13.2127 -▁undone -13.2133 -wissenschaft -13.2135 -▁scoffed -13.2135 -▁empowered -13.2135 -▁connacht -13.2136 -▁spawning -13.2137 -▁baronetcy -13.2137 -offensive -13.2141 -thorne -13.2144 -459 -13.2145 -▁appleton -13.2146 -▁tatum -13.2153 -▁argyll -13.2154 -▁disrepair -13.2154 -▁mauritania -13.2154 -▁amnesia -13.2154 -▁complied -13.2155 -▁nurture -13.2155 -▁geographer -13.2156 -▁evie -13.2156 -▁bulging -13.2156 -▁cadiz -13.2156 -68% -13.2158 -▁romain -13.2159 -▁leib -13.2161 -darshan -13.2166 -window -13.2169 -shish -13.2173 -▁disseminate -13.2174 -▁edifice -13.2174 -▁hodgson -13.2174 -▁persuasion -13.2174 -▁relaunched -13.2174 -▁showcasing -13.2174 -▁erskine -13.2174 -▁prequel -13.2176 -▁popcorn -13.2177 -▁misuse -13.2179 -▁climatic -13.2179 -▁manchuria -13.2181 -revolutionary -13.2184 -collins -13.2185 -▁khor -13.2185 -▁conservator -13.2186 -▁cookbook -13.2187 -▁hunan -13.2189 -gnan -13.219 -▁zyg -13.2191 -▁deterioration -13.2193 -▁minesweeper -13.2193 -▁hideout -13.2194 -▁partizan -13.2194 -▁netting -13.2194 -▁burundi -13.2194 -▁apparel -13.2194 -▁sobbed -13.2194 -▁hazy -13.2195 -▁parnell -13.2195 -anhalt -13.2196 -▁royalties -13.2196 -▁rediscovered -13.2196 -81% -13.2197 -▁osborn -13.2199 -▁faltered -13.2206 -soccer -13.2206 -▁lucid -13.2207 -1728 -13.221 -▁bassett -13.2211 -1734 -13.2212 -▁zappa -13.2212 -disproportionate -13.2213 -▁peugeot -13.2213 -▁assortment -13.2213 -▁moira -13.2213 -alternative -13.2215 -▁freshmen -13.2216 -▁lupin -13.2216 -▁canaan -13.2218 -▁rampant -13.2218 -▁fontana -13.2218 -czyk -13.222 -▁bingo -13.2221 -▁$5,000 -13.2222 -▁comrade -13.2222 -▁grieve -13.2224 -element -13.2229 -▁oaxaca -13.2232 -▁irritating -13.2232 -▁lobbied -13.2232 -▁shaggy -13.2232 -▁mcdowell -13.2232 -▁deformation -13.2232 -▁cheetah -13.2232 -▁gottfried -13.2232 -adapt -13.2233 -▁estrada -13.2233 -▁dunlop -13.2233 -▁snuff -13.2233 -▁macbeth -13.2234 -lugged -13.2237 -▁furrow -13.2243 -▁kennel -13.2244 -1704 -13.2244 -▁cheerfully -13.2248 -▁authorship -13.225 -▁commencing -13.2252 -▁condensed -13.2252 -▁extravagant -13.2252 -reserve -13.2252 -▁oscillation -13.2252 -▁bilbao -13.2252 -▁featherweight -13.2252 -▁greaves -13.2252 -▁johansson -13.2253 -obliterat -13.2253 -▁zoological -13.2254 -▁brentford -13.2255 -▁winthrop -13.2255 -▁stripper -13.2263 -▁cedric -13.2265 -▁spontaneously -13.2266 -wolves -13.2269 -▁cochin -13.227 -magazine -13.2271 -▁mediation -13.2271 -▁scribble -13.2271 -▁wwii -13.2272 -▁idris -13.2274 -▁tusk -13.2275 -▁copeland -13.2278 -▁spartak -13.2284 -▁duane -13.2286 -▁seamus -13.2287 -armee -13.229 -84% -13.2291 -▁balthazar -13.2291 -▁galveston -13.2291 -▁priscilla -13.2291 -▁argyle -13.2291 -▁blanchard -13.2291 -▁syringe -13.2291 -▁yamamoto -13.2291 -▁inexperienced -13.2291 -▁mikael -13.2292 -▁sterile -13.2292 -imber -13.2292 -▁apical -13.2293 -▁favorably -13.2294 -martial -13.2296 -▁tipping -13.2296 -▁tanned -13.2296 -▁kimball -13.2297 -reiter -13.2297 -▁thakur -13.2298 -blooded -13.23 -▁ghanaian -13.2301 -▁mallet -13.2307 -▁enoch -13.231 -▁compulsion -13.2311 -▁internacional -13.2311 -▁snooker -13.2311 -▁vittorio -13.2311 -▁sublime -13.2311 -▁smuggler -13.2311 -▁slicing -13.2311 -prabha -13.2311 -▁clemens -13.2312 -▁schulz -13.2314 -▁saro -13.2315 -▁marlene -13.2316 -▁postmodern -13.2316 -tomorrow -13.2316 -▁hajj -13.2318 -▁leighton -13.2319 -biology -13.2319 -frog -13.232 -▁domestically -13.2324 -▁agonist -13.2325 -broken -13.2326 -▁smeared -13.2327 -▁nutritional -13.233 -▁deceptive -13.233 -▁subsistence -13.233 -▁susquehanna -13.233 -▁turquoise -13.233 -▁niccolo -13.233 -▁figurative -13.233 -▁specifies -13.2331 -▁skepticism -13.2331 -▁mammalian -13.2332 -▁midsummer -13.2333 -wielding -13.2338 -▁henson -13.2338 -▁franck -13.2339 -▁199596 -13.234 -▁lurch -13.2342 -▁murderous -13.2342 -▁thirsty -13.2344 -pizz -13.2347 -▁britton -13.2348 -broke -13.2349 -▁urb -13.235 -▁kellogg -13.235 -▁scranton -13.235 -▁culprit -13.235 -▁decatur -13.235 -▁paralysis -13.2351 -▁asahi -13.2352 -▁jogged -13.2352 -1705 -13.2352 -▁hackett -13.2353 -▁drugged -13.2354 -▁unease -13.2354 -▁ferenc -13.2356 -▁chemo -13.2356 -▁paxton -13.2357 -hobo -13.236 -continent -13.236 -received -13.2361 -described -13.2361 -▁crump -13.2364 -▁sabo -13.2368 -▁reminisce -13.237 -▁dispersal -13.237 -▁pleistocene -13.237 -▁zaragoza -13.237 -▁deliberation -13.237 -▁miocene -13.237 -▁impetus -13.237 -▁grudge -13.237 -▁transatlantic -13.2371 -▁asbestos -13.2371 -▁adjustable -13.2375 -88% -13.2375 -ewicz -13.2377 -▁beatty -13.238 -1743 -13.2381 -administrative -13.2382 -strength -13.2383 -blown -13.2385 -▁$24 -13.2386 -1837 -13.2386 -concept -13.2386 -constitu -13.2389 -▁bequeathed -13.239 -▁pornographic -13.239 -▁postdoctoral -13.239 -▁terrific -13.239 -▁hoisted -13.239 -▁knitting -13.239 -▁nagasaki -13.239 -▁emmett -13.239 -▁blindfold -13.2391 -▁nitrate -13.2392 -▁tacoma -13.2392 -▁ghosh -13.2393 -phel -13.2393 -▁worsened -13.2395 -▁pudding -13.2396 -▁leasing -13.2396 -▁demolish -13.2397 -▁susanna -13.2399 -▁scooter -13.2403 -▁huntingdon -13.2404 -jimmy -13.2407 -▁secluded -13.241 -▁rotherham -13.241 -iyeh -13.241 -▁caspian -13.241 -▁bellowed -13.241 -representing -13.2413 -technic -13.2414 -▁corral -13.2415 -▁taco -13.2417 -▁gaulle -13.2417 -▁predominate -13.2417 -▁conserve -13.2426 -saturday -13.2428 -▁negligence -13.243 -▁transcribed -13.243 -▁degraded -13.243 -▁indochina -13.243 -▁cartwright -13.243 -barrel -13.2434 -capitul -13.2436 -▁deutsch -13.2437 -▁oscillator -13.2437 -▁siegel -13.244 -▁consular -13.2444 -▁contemplate -13.2444 -▁resented -13.2447 -▁silvia -13.2447 -▁compatriot -13.245 -▁generosity -13.245 -▁reciprocal -13.245 -▁relocating -13.245 -▁nirvana -13.245 -▁frigid -13.245 -▁rochdale -13.245 -▁allotment -13.245 -intelligence -13.245 -▁dorsey -13.2451 -▁woj -13.2451 -▁hummed -13.2452 -▁heroism -13.2452 -▁plumage -13.2454 -▁almanac -13.2454 -▁roaming -13.2458 -voj -13.2458 -▁daydream -13.246 -▁gaunt -13.246 -▁mustache -13.246 -▁kimber -13.2461 -▁downloadable -13.2461 -▁briar -13.2466 -owsky -13.2467 -▁liechtenstein -13.247 -▁manipulating -13.247 -▁potsdam -13.247 -▁fitzpatrick -13.247 -▁retaliate -13.247 -wip -13.247 -▁collarbone -13.247 -▁leaflets -13.2471 -▁tianjin -13.2471 -1605 -13.2472 -challenge -13.2472 -▁monique -13.2473 -▁minions -13.2477 -▁murat -13.2478 -▁ennis -13.2484 -433 -13.2485 -▁magdalene -13.2485 -1733 -13.2487 -krishna -13.2488 -amphetamine -13.249 -▁articulation -13.249 -▁qualitative -13.249 -▁ethernet -13.249 -▁frazier -13.249 -▁vantage -13.249 -▁vigilante -13.249 -1683 -13.249 -▁omnibus -13.249 -wijk -13.2491 -▁teja -13.2491 -ppp -13.2492 -▁superstructure -13.2493 -▁gerais -13.2495 -▁palau -13.2504 -▁corinth -13.2505 -▁minerva -13.2509 -▁persecuted -13.251 -▁pilasters -13.251 -▁sizable -13.251 -▁immersion -13.251 -▁throbbed -13.251 -▁shandong -13.251 -▁ultrasound -13.251 -▁videotape -13.2512 -▁whitehall -13.2516 -determination -13.2518 -apparently -13.2518 -▁stockings -13.2518 -▁scully -13.2523 -▁ashford -13.2525 -▁auditory -13.2529 -obligatory -13.253 -▁esoteric -13.253 -▁marquez -13.253 -▁spaghetti -13.253 -▁reuters -13.253 -▁9:00 -13.253 -honneur -13.253 -▁innovator -13.2531 -brach -13.2531 -sceptic -13.2531 -▁blackened -13.2534 -vidhan -13.2536 -▁orchestration -13.2539 -criminal -13.254 -▁cultivate -13.2546 -▁staats -13.2547 -▁kayla -13.2547 -▁hiroshi -13.2548 -owiec -13.2549 -▁gonzaga -13.255 -▁marriott -13.255 -▁tequila -13.255 -▁concoct -13.255 -▁stylish -13.255 -▁gunslinger -13.2551 -▁manoeuvre -13.2554 -▁olav -13.2554 -bjrn -13.2557 -▁serialized -13.2557 -▁acknowledgement -13.256 -▁fetal -13.2561 -▁peking -13.2563 -▁commonplace -13.2564 -wrapped -13.2565 -kassel -13.2565 -▁mathis -13.2565 -5:30 -13.2569 -▁resolute -13.257 -▁turkmenistan -13.257 -▁reworked -13.257 -▁fivb -13.2571 -▁sliver -13.2571 -▁rewrite -13.2572 -▁finlay -13.2573 -▁xylo -13.2574 -▁dissect -13.2575 -▁oblong -13.2575 -▁eil -13.2577 -keefe -13.2578 -▁vimes -13.258 -▁maximal -13.2582 -construction -13.2582 -▁denim -13.2582 -▁sprite -13.2583 -▁gatt -13.2585 -thousand -13.2585 -▁saline -13.2588 -▁racetrack -13.259 -▁charlemagne -13.259 -▁intimidation -13.259 -▁vaccination -13.259 -▁derelict -13.259 -▁writhing -13.259 -▁caitlin -13.259 -▁invariably -13.259 -▁conduit -13.259 -▁heaviest -13.259 -▁socioeconomic -13.2591 -▁locating -13.2591 -▁proctor -13.2591 -▁congenital -13.2592 -▁camilla -13.2594 -principal -13.2599 -1731 -13.2599 -▁ngc -13.26 -▁moravian -13.26 -1:30 -13.2601 -▁fulfil -13.2602 -▁loeb -13.2606 -▁falter -13.2607 -▁inherently -13.2609 -▁governorship -13.2609 -▁ozone -13.2609 -▁administra -13.261 -▁khyber -13.2611 -▁ignatius -13.2611 -▁mechanized -13.2611 -▁minogue -13.2611 -▁jalal -13.2611 -▁empathy -13.2612 -activating -13.2612 -▁alyssa -13.2612 -▁biomass -13.2612 -▁calves -13.2613 -▁brunette -13.2614 -▁muriel -13.2614 -▁tagged -13.2615 -▁britten -13.2616 -carbo -13.2616 -▁$25,000 -13.2618 -▁heraldic -13.2621 -address -13.2622 -zola -13.2622 -▁prax -13.2625 -▁recapture -13.2627 -▁practise -13.2627 -▁rohan -13.2629 -▁flanagan -13.2631 -▁haplogroup -13.2631 -▁obscene -13.2631 -▁anomaly -13.2631 -▁whitaker -13.2631 -▁strife -13.2632 -pakistan -13.2632 -▁authentication -13.2635 -▁undertaker -13.2635 -mandala -13.2638 -▁minnie -13.2642 -▁anticipate -13.2647 -▁dempsey -13.2651 -▁genealogy -13.2651 -▁illustrious -13.2651 -▁fluffy -13.2652 -▁ravaged -13.2652 -▁merciless -13.2652 -▁imbalance -13.2653 -▁bertram -13.2653 -▁donnelly -13.2654 -reflect -13.2655 -▁coulter -13.2655 -extreme -13.2655 -nigg -13.2658 -▁weinberg -13.266 -▁faux -13.2663 -functional -13.2666 -▁mastermind -13.2667 -▁cleavage -13.2672 -▁quadrangle -13.2672 -▁upanishad -13.2672 -▁intervening -13.2672 -▁pristine -13.2672 -▁seduction -13.2672 -▁thyroid -13.2672 -▁goblet -13.2672 -▁gyr -13.2675 -▁toulon -13.2676 -▁crotch -13.2676 -1839 -13.2677 -▁ashby -13.2678 -preis -13.2678 -▁validation -13.2681 -▁jillian -13.2682 -▁blotch -13.2685 -▁pervert -13.2689 -▁amplified -13.2692 -▁arthritis -13.2692 -▁dazzling -13.2692 -▁mukherjee -13.2692 -▁nostalgia -13.2692 -▁wrexham -13.2692 -▁godzilla -13.2692 -▁unicode -13.2693 -▁bloomington -13.2694 -▁malacca -13.2694 -▁robyn -13.2694 -graha -13.2694 -▁pentecostal -13.2694 -▁gregorio -13.2694 -▁midwife -13.2696 -reference -13.2696 -▁payroll -13.2697 -▁cheque -13.2698 -▁$29 -13.2701 -excellent -13.2701 -hispanic -13.2701 -▁$28 -13.2703 -▁phyllo -13.2706 -▁aust -13.2709 -▁euler -13.271 -▁tidy -13.2712 -▁monterrey -13.2713 -▁somerville -13.2713 -700,000 -13.2713 -▁mascara -13.2713 -vector -13.2714 -▁caliphate -13.2714 -▁forbade -13.2714 -ophyte -13.2715 -▁subsided -13.2716 -hoshi -13.2717 -▁homi -13.2717 -▁airstrip -13.2719 -▁nonfiction -13.272 -▁keane -13.2723 -molecular -13.2724 -▁pancha -13.2724 -▁trigon -13.2725 -indonesia -13.2725 -▁winnie -13.2726 -▁bedrock -13.2728 -▁blindness -13.273 -accept -13.273 -▁wrapper -13.2732 -administratively -13.2733 -▁conservatoire -13.2733 -▁substantive -13.2733 -▁clermont -13.2733 -▁michelangelo -13.2733 -▁metadata -13.2734 -▁polgara -13.2734 -▁hilbert -13.2734 -▁holiness -13.2735 -1838 -13.2736 -▁patsy -13.2742 -ignon -13.2745 -8000 -13.2745 -▁merritt -13.2751 -putra -13.2751 -dirty -13.2752 -▁impulsive -13.2754 -▁horatio -13.2754 -▁transept -13.2754 -▁utilization -13.2754 -▁goofy -13.2754 -▁piccolo -13.2754 -1843 -13.2754 -▁malvern -13.2755 -1655 -13.276 -▁charred -13.2761 -▁andersson -13.2761 -▁daze -13.2761 -avignon -13.2761 -▁brann -13.2763 -▁jonny -13.2766 -experience -13.2768 -deutscher -13.2771 -uddy -13.2771 -▁anticipating -13.2774 -▁reykjavik -13.2774 -▁cabbage -13.2774 -▁longevity -13.2774 -▁remodeled -13.2774 -▁naacp -13.2774 -▁kiosk -13.2774 -▁nozzle -13.2775 -▁salamander -13.2775 -▁gallipoli -13.2775 -▁childbirth -13.2776 -attenuat -13.2777 -▁estrogen -13.2778 -▁malibu -13.278 -▁correlate -13.2792 -▁illuminate -13.2793 -1676 -13.2794 -▁libertadores -13.2795 -▁roanoke -13.2795 -▁tortricidae -13.2795 -▁benfica -13.2795 -▁affirmative -13.2795 -▁gifford -13.2796 -▁abnormalities -13.2796 -▁clapping -13.2796 -▁irregularities -13.2796 -charlie -13.2798 -▁sunflower -13.28 -▁chevy -13.2801 -▁woolf -13.2801 -!!! -13.2804 -▁trau -13.2805 -▁pantry -13.2807 -curring -13.2809 -hindi -13.2815 -▁bouncer -13.2816 -synaptic -13.2816 -▁illustrating -13.2816 -▁ymca -13.2816 -▁illuminating -13.2816 -▁rousseau -13.2816 -▁sylvie -13.2816 -cambridge -13.2819 -▁wallpaper -13.2819 -▁rustling -13.2821 -▁overseer -13.2823 -document -13.2823 -▁maury -13.2824 -▁paving -13.2824 -▁semp -13.2825 -▁nasi -13.2827 -pitch -13.2833 -▁gracefully -13.2833 -▁bartolome -13.2837 -▁proficient -13.2837 -▁seychelles -13.2837 -▁moderator -13.2837 -▁allergic -13.2837 -▁churning -13.2837 -▁anarchy -13.2837 -▁quoting -13.2837 -▁hackney -13.2839 -scottish -13.2841 -▁shakti -13.2841 -stefan -13.2843 -▁puget -13.2843 -▁cocoon -13.2845 -▁joyah -13.2849 -▁feeble -13.285 -▁bursa -13.2853 -▁khaki -13.2856 -▁bobbie -13.2857 -extraterrestrial -13.2857 -▁perpetu -13.2858 -▁hendrik -13.2858 -scientific -13.2859 -▁bukit -13.2861 -▁intensify -13.2861 -▁ballpark -13.2861 -▁cleansing -13.2863 -scrolling -13.2863 -▁geraldine -13.2864 -▁affectionately -13.2865 -▁zub -13.2865 -▁winslow -13.2866 -▁habitation -13.2874 -▁parochial -13.2878 -▁prodigy -13.2878 -▁reassurance -13.2878 -▁hepatitis -13.2878 -▁immature -13.2878 -▁notwithstanding -13.2878 -shark -13.2878 -▁ephemer -13.2878 -▁rihanna -13.2878 -▁piracy -13.2879 -▁gawk -13.288 -▁mcconnell -13.2881 -▁cisco -13.2881 -▁coveted -13.2882 -▁georgina -13.2886 -▁continual -13.2891 -▁srinivas -13.2899 -▁brochure -13.2899 -▁concepcion -13.2899 -▁elegance -13.2899 -▁hemingway -13.2899 -▁archduke -13.2899 -▁hurley -13.2902 -vote -13.2903 -▁moritz -13.2905 -altitude -13.291 -▁bidder -13.2915 -▁brightest -13.2915 -▁teren -13.2919 -▁fluctuations -13.292 -▁rehabilitate -13.292 -▁imaginative -13.292 -▁predicament -13.292 -▁instagram -13.292 -▁divergence -13.292 -▁chevron -13.292 -▁metaphysical -13.292 -▁nazareth -13.292 -▁preferential -13.2921 -bwv -13.2921 -▁khalifa -13.2921 -▁canucks -13.2921 -▁indira -13.2921 -crip -13.2922 -▁purcell -13.2922 -▁massimo -13.2923 -imento -13.2924 -▁breathtaking -13.2924 -▁bribery -13.2924 -▁quinlan -13.2927 -▁probing -13.2928 -▁dialog -13.293 -5:1 -13.2931 -▁pounce -13.2932 -▁logistical -13.2933 -▁$500,000 -13.2934 -▁$36 -13.2934 -▁millet -13.2937 -▁greensboro -13.2937 -▁jody -13.294 -▁ezekiel -13.2941 -▁oppressive -13.2941 -▁socrates -13.2941 -▁disobey -13.2941 -▁fission -13.2941 -▁cessna -13.2941 -▁inquiries -13.2941 -▁carnage -13.2941 -▁variability -13.2941 -▁brescia -13.2941 -▁ahmedabad -13.2942 -▁filippo -13.2945 -▁jaipur -13.2945 -▁drury -13.2945 -▁marxism -13.2946 -▁saab -13.2947 -nihil -13.295 -▁brodie -13.2952 -▁darkening -13.2955 -▁leyte -13.2956 -popular -13.2956 -qualifying -13.2959 -▁encampment -13.2962 -▁pictorial -13.2962 -▁puebla -13.2962 -▁simplify -13.2962 -defamation -13.2962 -▁ultimatum -13.2962 -▁aegean -13.2962 -▁jiangsu -13.2962 -detect -13.2963 -▁silvio -13.2963 -▁ascribed -13.2964 -impressionist -13.2965 -▁exemplary -13.2966 -▁sharpened -13.2966 -▁refill -13.2969 -federal -13.2976 -arbeit -13.298 -▁dignitaries -13.2983 -▁impedance -13.2983 -▁parentheses -13.2983 -▁booze -13.2986 -▁daimon -13.2988 -▁disused -13.2988 -▁poplar -13.2993 -▁multicultural -13.2993 -▁3:00 -13.2993 -▁caledonian -13.3 -▁hatfield -13.3002 -6,500 -13.3003 -▁dredge -13.3004 -▁brilliance -13.3004 -▁discriminate -13.3004 -▁rescheduled -13.3004 -▁shampoo -13.3004 -▁zhejiang -13.3004 -▁celaena -13.3004 -oooo -13.3004 -discovery -13.3006 -foreign -13.3006 -▁ragnar -13.3007 -▁ithaca -13.3008 -▁dilute -13.3011 -▁psychotic -13.3011 -▁chechen -13.3011 -▁palacio -13.3013 -andrew -13.3015 -▁adolescence -13.3025 -▁enrichment -13.3025 -▁escarpment -13.3025 -▁eunuch -13.3025 -▁jeopardy -13.3025 -▁mcmillan -13.3025 -▁antelope -13.3025 -▁behest -13.3027 -▁sudbury -13.3027 -▁vizier -13.3027 -degenerate -13.3029 -▁steeple -13.3029 -▁wastewater -13.303 -▁antibody -13.303 -▁dutton -13.303 -▁conformation -13.3032 -▁exclaim -13.3035 -▁yash -13.3037 -▁principe -13.3037 -droit -13.3037 -▁trab -13.3044 -▁nonchalant -13.3046 -▁kaitlyn -13.3046 -▁cremated -13.3046 -▁wrestlemania -13.3046 -▁overcame -13.3047 -sunday -13.3047 -▁wnba -13.3048 -annoy -13.3048 -▁fantasia -13.305 -▁sanjay -13.3054 -▁messina -13.3057 -lusive -13.306 -▁stockport -13.3061 -▁dinah -13.3065 -▁ambiguity -13.3068 -▁zephyr -13.3068 -▁islamabad -13.307 -▁nunez -13.307 -▁balfour -13.3072 -▁slew -13.3073 -▁kidnapper -13.3077 -wether -13.3082 -▁schla -13.3087 -▁lipp -13.3087 -▁adhesive -13.3089 -▁sorority -13.3089 -▁clarendon -13.3089 -▁unearthed -13.3089 -▁shitty -13.3089 -▁schizo -13.3089 -▁hypnotic -13.3089 -▁earrings -13.3089 -▁toppled -13.3089 -▁quezon -13.309 -qiao -13.3093 -hyper -13.3098 -rousse -13.3101 -▁kaspar -13.3103 -company -13.3103 -community -13.3105 -▁spank -13.3108 -▁kraj -13.3109 -▁fusiliers -13.311 -▁aarhus -13.311 -▁knesset -13.311 -▁yarmouth -13.311 -▁aerobic -13.3111 -▁sepals -13.3111 -▁aeroplane -13.3111 -▁wealthiest -13.3111 -▁invoke -13.3112 -▁excise -13.3112 -▁thuringia -13.3113 -▁boucher -13.3114 -▁vail -13.3114 -▁stiffen -13.3117 -▁rigging -13.3119 -ordinary -13.3125 -4:1 -13.3129 -▁idiom -13.3129 -breg -13.313 -▁pursuant -13.3132 -▁yeomanry -13.3132 -▁conclusive -13.3132 -▁nuisance -13.3132 -▁pedersen -13.3132 -▁populist -13.3132 -▁reagent -13.3132 -▁handicapped -13.3132 -▁cyborg -13.3134 -▁reintroduced -13.3134 -▁sickening -13.3135 -▁watercolour -13.3135 -▁chasse -13.3137 -dijk -13.314 -1691 -13.3141 -▁nisha -13.3142 -▁nihon -13.3146 -▁fiend -13.3147 -ambul -13.3147 -enfant -13.3148 -▁chameleon -13.3153 -▁covington -13.3153 -▁deprivation -13.3153 -▁epilepsy -13.3153 -▁taekwondo -13.3153 -▁frieze -13.3153 -▁hammersmith -13.3155 -▁ulcer -13.3155 -▁woodwork -13.3158 -▁xander -13.3163 -▁kodak -13.3163 -▁calabria -13.3165 -▁cornet -13.3173 -philippi -13.3174 -▁assimilation -13.3174 -▁chihuahua -13.3174 -▁proficiency -13.3174 -▁retrieval -13.3174 -▁percival -13.3174 -steeplechase -13.3174 -▁pectoral -13.3175 -▁shenzhen -13.3175 -▁himalayan -13.3175 -▁floppy -13.3175 -▁anselm -13.3175 -▁tiberius -13.3177 -▁cuddle -13.3177 -▁scoot -13.3178 -▁bromley -13.3179 -▁nagpur -13.318 -▁dowry -13.318 -▁redeveloped -13.3182 -bahnhof -13.3182 -▁sneakers -13.3186 -▁detrimental -13.3187 -▁zoning -13.319 -▁diagnose -13.3193 -▁displeasure -13.3196 -▁eireann -13.3196 -▁horribly -13.3196 -▁impatience -13.3196 -▁pragmatic -13.3196 -▁subsidy -13.3196 -▁onslaught -13.3196 -▁breaststroke -13.3197 -▁corolla -13.32 -▁$200 -13.3202 -▁quark -13.3203 -▁shutdown -13.3206 -medium -13.3209 -▁arvi -13.3212 -▁deteriorating -13.3218 -▁unreasonable -13.3218 -▁plunging -13.3218 -▁gecko -13.3218 -▁makh -13.3218 -bezirk -13.3219 -▁matron -13.3219 -▁jerzy -13.322 -increment -13.322 -pocket -13.3221 -▁bulldog -13.3231 -▁bjp -13.3231 -xiu -13.3233 -▁marvelous -13.3235 -▁pachy -13.3237 -▁liberator -13.3237 -▁nudge -13.3239 -▁adversary -13.3239 -▁hellenistic -13.3239 -▁landscaping -13.3239 -▁seagull -13.3239 -▁ebony -13.3239 -▁kawasaki -13.3239 -▁determinant -13.3239 -▁storyteller -13.3239 -▁grubb -13.324 -▁radiator -13.324 -dicating -13.3242 -▁merrick -13.3242 -▁rinse -13.3245 -▁takashi -13.3246 -attached -13.3247 -▁keita -13.325 -origin -13.3251 -▁gyro -13.3253 -khin -13.3253 -▁electronically -13.3254 -▁advertise -13.3254 -▁bmg -13.3256 -piro -13.3259 -azole -13.3259 -▁overshadowed -13.3261 -▁orkney -13.3261 -▁coolidge -13.3262 -▁magister -13.3262 -▁grotto -13.3264 -▁waltham -13.3266 -▁anzac -13.3267 -▁aachen -13.3268 -permanent -13.327 -kanta -13.3271 -▁nemo -13.3271 -latif -13.3273 -▁eamon -13.3274 -havn -13.3275 -▁chimed -13.3275 -▁wretched -13.3282 -▁chemotherapy -13.3282 -▁connotation -13.3282 -▁operetta -13.3283 -▁lucinda -13.3283 -▁felicity -13.3283 -▁expectancy -13.3284 -▁sevilla -13.3284 -▁margrave -13.3287 -▁sidelined -13.3293 -czech -13.3294 -▁199495 -13.3294 -▁oclock -13.3295 -▁entice -13.3299 -2,800 -13.3302 -academic -13.3303 -▁surrogate -13.3304 -▁filmfare -13.3304 -▁soared -13.3307 -▁jennie -13.3312 -▁vuk -13.3316 -citizen -13.3318 -▁chopra -13.3319 -goodbye -13.3321 -▁rampage -13.3325 -▁dissatisfaction -13.3326 -▁multiplied -13.3326 -▁plopped -13.3326 -▁reclamation -13.3326 -▁yucatan -13.3326 -▁calculator -13.3326 -▁masjid -13.3326 -▁innsbruck -13.3326 -▁assorted -13.3326 -▁spielberg -13.3326 -▁francophone -13.3327 -dionysi -13.3327 -▁dramatist -13.3328 -▁rizal -13.333 -▁clemson -13.333 -▁compassionate -13.3331 -▁pickering -13.3331 -ophilic -13.3334 -undated -13.3336 -▁bessie -13.3337 -▁realising -13.3337 -cranial -13.3338 -▁diaper -13.3344 -lopho -13.3345 -transitive -13.3348 -▁assemblage -13.3348 -▁fermentation -13.3348 -▁kobayashi -13.3348 -▁nietzsche -13.3348 -▁obelisk -13.3348 -▁spiegel -13.3348 -▁dementia -13.3348 -▁starbucks -13.3348 -▁handcuffs -13.3348 -czynski -13.3352 -▁demetrius -13.3352 -amento -13.3352 -▁grafton -13.3353 -▁dalai -13.3353 -▁bongo -13.3358 -▁warbler -13.3358 -▁kanji -13.3366 -▁postpone -13.3368 -odden -13.3369 -contained -13.3369 -▁bellevue -13.337 -▁harlequin -13.337 -▁panoramic -13.337 -▁sloppy -13.337 -▁zenith -13.337 -▁persistence -13.337 -▁primaries -13.3371 -▁ferrara -13.3371 -▁yadav -13.3371 -▁magyar -13.3372 -▁bancroft -13.3372 -▁signifies -13.3372 -▁rearview -13.3376 -▁martinique -13.3379 -▁retort -13.338 -▁crackling -13.3382 -1678 -13.3383 -▁paraguayan -13.3383 -columbia -13.3388 -▁rosary -13.3391 -▁kibbutz -13.3392 -▁scurried -13.3392 -▁transvaal -13.3392 -▁paranoia -13.3392 -▁henchmen -13.3392 -▁tiebreaker -13.3393 -▁tahir -13.3393 -▁niels -13.3394 -minator -13.34 -▁rhetorical -13.3405 -▁custer -13.3406 -▁distal -13.3406 -▁merle -13.341 -▁lokomotiv -13.3414 -▁intertwined -13.3414 -▁reunification -13.3414 -▁orthography -13.3414 -▁apertura -13.3414 -▁sephardi -13.3414 -▁azores -13.3414 -phobic -13.3414 -▁cilia -13.3415 -▁rahul -13.3415 -▁wistful -13.3417 -▁supernova -13.3417 -▁taz -13.3419 -▁monotypic -13.342 -collar -13.3421 -▁minami -13.3426 -represented -13.3428 -▁lilli -13.343 -rzyn -13.343 -kimi -13.3432 -▁exercising -13.3436 -▁mcnamara -13.3436 -▁promulgated -13.3436 -sylvania -13.3436 -▁amadeus -13.3436 -▁deafening -13.3436 -▁vinegar -13.3437 -▁epsom -13.3438 -▁purification -13.3438 -brief -13.3439 -▁glendale -13.344 -definition -13.3442 -▁andorra -13.3451 -colonize -13.3458 -▁humiliating -13.3458 -▁inquisitor -13.3458 -▁turbulence -13.3458 -▁anthropological -13.3458 -▁refining -13.3458 -▁antilles -13.3458 -▁aquinas -13.3458 -▁lucille -13.3459 -▁defective -13.3459 -▁zoologist -13.3462 -▁resonate -13.3463 -▁stylist -13.3467 -republican -13.3467 -▁abduct -13.3467 -soldier -13.3467 -adhya -13.3469 -concert -13.3471 -flops -13.3474 -▁diablo -13.3474 -▁leila -13.3475 -fumi -13.3477 -▁elliptical -13.348 -▁exemplified -13.348 -▁intestinal -13.348 -▁peshawar -13.348 -▁inaccessible -13.348 -▁braxton -13.348 -▁grenada -13.348 -▁nexus -13.3481 -▁utmost -13.3481 -▁cider -13.3481 -▁rattling -13.3481 -▁unspoken -13.3482 -▁referral -13.3482 -▁crawley -13.3483 -▁bluish -13.3485 -discovered -13.3491 -▁detach -13.3492 -▁lilian -13.3497 -▁forewing -13.3499 -acyl -13.3501 -▁resolving -13.3502 -▁identifiable -13.3502 -▁brabant -13.3502 -▁genealogical -13.3502 -▁chalmers -13.3502 -▁woolwich -13.3503 -▁zipped -13.3503 -▁pitiful -13.3503 -▁cochran -13.3505 -▁nikita -13.3505 -▁patriotism -13.3506 -▁fragmentation -13.3506 -▁vhf -13.3507 -ploid -13.3507 -▁omission -13.3512 -▁adored -13.3516 -beek -13.352 -▁impede -13.3521 -▁stammered -13.3524 -▁permutation -13.3524 -▁skimmed -13.3524 -▁aguilera -13.3524 -▁conservancy -13.3524 -▁hooves -13.3524 -▁reiterated -13.3524 -▁predicate -13.3524 -▁shrunk -13.3524 -▁iqbal -13.3524 -▁shadowhunter -13.3525 -▁zamora -13.3525 -▁helsing -13.3526 -▁internment -13.3527 -▁tulane -13.3529 -▁cavall -13.3534 -▁abide -13.3537 -married -13.3539 -scribing -13.354 -▁mccann -13.3542 -scheid -13.3543 -▁almighty -13.3546 -▁bautista -13.3546 -▁impeachment -13.3546 -▁mcallister -13.3546 -▁papyrus -13.3546 -▁pendulum -13.3546 -▁vojvodina -13.3546 -▁thierry -13.3547 -▁uzbek -13.3547 -▁fukuoka -13.3547 -▁medicare -13.3547 -ashvili -13.3547 -▁javanese -13.3547 -▁riemann -13.3548 -▁shogun -13.3548 -emitting -13.355 -▁shawnee -13.3551 -subject -13.3567 -▁chauffeur -13.3569 -▁chimpanzee -13.3569 -▁marylebone -13.3569 -▁subterranean -13.3569 -▁laszlo -13.3569 -▁migrating -13.3569 -▁bedouin -13.3569 -▁constrained -13.3569 -▁departement -13.3569 -hakim -13.3569 -▁loretta -13.3571 -▁snag -13.3571 -▁rammed -13.3575 -▁colonia -13.3577 -▁datu -13.3579 -▁plotted -13.3581 -▁pavlo -13.3583 -▁spree -13.3587 -strasse -13.3587 -2:1 -13.3588 -destroy -13.3589 -▁adventurous -13.3591 -▁stabilization -13.3591 -▁ultraviolet -13.3591 -▁crockett -13.3591 -▁tweak -13.3591 -▁8:00 -13.3591 -▁biscay -13.3592 -▁bedfordshire -13.3592 -▁ludlow -13.3592 -knowledge -13.3593 -▁knotted -13.3595 -▁hangover -13.3597 -infested -13.3599 -▁commend -13.3599 -▁customized -13.3599 -▁fanning -13.3601 -skog -13.3607 -▁geese -13.3608 -▁kowalski -13.3614 -▁ubiquitous -13.3614 -▁unharmed -13.3614 -▁appalled -13.3614 -vash -13.3614 -▁recurrent -13.3614 -▁dorchester -13.3614 -▁pineapple -13.3614 -alkyl -13.3615 -▁spectra -13.3616 -▁hillsborough -13.3616 -▁optimism -13.3617 -▁australasian -13.3619 -▁ailment -13.3619 -▁adultery -13.362 -khel -13.3622 -▁bobbed -13.3622 -2,600 -13.3624 -▁weldon -13.3625 -▁marcello -13.3626 -▁affectionate -13.3631 -▁constraint -13.3633 -▁fugue -13.3634 -▁dispersion -13.3636 -▁huguenot -13.3636 -▁infuriated -13.3636 -▁memorabilia -13.3636 -▁suffice -13.3636 -▁willamette -13.3636 -▁blackhawks -13.3636 -▁agility -13.3637 -▁vertigo -13.3637 -▁impartial -13.3638 -pogon -13.3638 -▁fervent -13.3639 -▁giovan -13.364 -▁rutland -13.3641 -indeed -13.3645 -relief -13.3646 -▁unfit -13.3646 -▁kathmandu -13.3659 -▁pegasus -13.3659 -▁penitentiary -13.3659 -▁piccadilly -13.3659 -▁sulawesi -13.3659 -▁depressing -13.3659 -▁reversing -13.3659 -▁swedes -13.3659 -▁conceive -13.3659 -▁ethnographic -13.3659 -▁jogging -13.3659 -▁trudeau -13.366 -securit -13.366 -▁abstain -13.3662 -zeitung -13.3662 -▁boardwalk -13.3666 -▁unsigned -13.3668 -knife -13.3672 -monger -13.3678 -▁metabolite -13.3681 -▁weightlifting -13.3681 -▁talisman -13.3681 -▁plumbing -13.3682 -▁wessex -13.3683 -▁mcqueen -13.3683 -▁submitting -13.3685 -▁plurality -13.3685 -▁pretext -13.3687 -▁kanye -13.3687 -▁vinny -13.369 -▁yamato -13.369 -▁maitre -13.3691 -referred -13.3692 -▁furnish -13.3693 -segment -13.3694 -retired -13.3696 -pennine -13.3697 -pyg -13.3698 -▁prickle -13.37 -▁incarceration -13.3704 -dreyfus -13.3704 -▁higashi -13.3704 -▁duluth -13.3704 -▁equitable -13.3704 -▁striding -13.3705 -▁haggard -13.3705 -▁donetsk -13.371 -▁suzy -13.3713 -▁brachy -13.3714 -▁haines -13.3714 -▁visualization -13.3714 -inducing -13.3715 -▁tartu -13.3718 -festival -13.3719 -discriminatory -13.3726 -▁walsall -13.3727 -▁emanating -13.3727 -▁headphones -13.3727 -▁rosenthal -13.3727 -▁sporadically -13.3727 -▁7:00 -13.3729 -▁reactivated -13.3732 -▁fungal -13.3733 -▁mulder -13.3735 -▁mauro -13.3737 -▁malice -13.3737 -▁thurston -13.3739 -ostoma -13.3739 -▁episcop -13.3743 -▁loudspeaker -13.3749 -▁sebastien -13.3749 -▁uncanny -13.3749 -▁configured -13.3749 -▁krypton -13.3749 -▁aggie -13.3749 -▁rubbish -13.3749 -▁menzies -13.375 -▁earnhardt -13.375 -▁britney -13.3752 -▁oliva -13.3752 -flavored -13.3753 -phenol -13.3754 -▁bloch -13.3756 -5,500 -13.3759 -▁venomous -13.3762 -▁walther -13.3763 -▁appreciative -13.3772 -▁epsilon -13.3772 -▁groningen -13.3772 -▁reimburse -13.3772 -provoking -13.3772 -▁palisade -13.3772 -▁allegro -13.3772 -▁deletion -13.3772 -▁nxt -13.3773 -▁peacekeeping -13.3774 -▁tomasz -13.3774 -sufficient -13.3774 -▁impossibly -13.3775 -▁ascetic -13.3775 -▁festive -13.3777 -anthro -13.3778 -kunda -13.3781 -police -13.3783 -▁disappoint -13.379 -1684 -13.3794 -▁bombardier -13.3795 -▁exchequer -13.3795 -▁impromptu -13.3795 -▁selangor -13.3795 -▁hickory -13.3795 -▁phenotype -13.3795 -▁avro -13.3795 -▁rajendra -13.3796 -▁fissure -13.3796 -species -13.3796 -schmidt -13.3797 -▁harrier -13.3798 -bengali -13.3798 -georgian -13.3799 -▁patrolled -13.3804 -dienst -13.3805 -▁ecuadorian -13.3806 -▁selby -13.381 -▁unsettling -13.3818 -▁instantaneous -13.3818 -▁andrzej -13.3818 -▁daimler -13.3818 -▁reindeer -13.3818 -▁salamanca -13.3818 -▁hathaway -13.3818 -▁crevice -13.3818 -▁wahl -13.382 -▁averted -13.382 -▁accentuat -13.3821 -▁ditt -13.3821 -▁lucie -13.3821 -▁scalar -13.3822 -▁throng -13.3822 -abdu -13.3829 -frost -13.3837 -issima -13.3838 -▁argentinian -13.3841 -▁gruesome -13.3841 -▁quotient -13.3841 -▁accelerating -13.3841 -▁beverley -13.3841 -▁holotype -13.3841 -▁hysteria -13.3842 -▁flask -13.3843 -▁symphonies -13.3843 -discipline -13.3847 -▁typewriter -13.3847 -environment -13.3848 -provincial -13.3849 -alternate -13.3849 -▁diode -13.3851 -▁bosco -13.3855 -olytic -13.3858 -▁obsidian -13.3864 -▁perplexed -13.3864 -▁szczecin -13.3864 -▁confection -13.3864 -▁circumvent -13.3864 -7:30 -13.3866 -▁philology -13.3868 -▁mahler -13.3872 -▁footbridge -13.3872 -▁199394 -13.3873 -independence -13.3874 -expression -13.3877 -brugge -13.3878 -▁$1,000 -13.3881 -▁nettle -13.3882 -iasis -13.3885 -fetched -13.3886 -▁bantamweight -13.3887 -▁misunderstood -13.3887 -▁montpellier -13.3887 -▁reprisal -13.3887 -▁erickson -13.3887 -champaign -13.3887 -▁huskies -13.3888 -▁flapping -13.3888 -▁chadwick -13.3889 -▁absolut -13.3892 -▁pratap -13.3892 -▁manipur -13.3895 -bbins -13.3898 -approved -13.3901 -▁altair -13.3909 -▁mcintosh -13.391 -▁miscarriage -13.391 -▁satisfies -13.391 -▁suffragan -13.391 -▁wadysaw -13.391 -▁arteries -13.391 -▁colleen -13.3911 -transferase -13.3911 -▁ljub -13.3913 -▁pillai -13.3913 -▁shoemaker -13.3916 -calibre -13.3921 -shield -13.3924 -▁baffled -13.3933 -▁enquiry -13.3933 -▁hedgehog -13.3933 -▁undesirable -13.3933 -▁obligated -13.3933 -▁unsteady -13.3933 -▁eastenders -13.3933 -▁adherence -13.3933 -▁dunkirk -13.3933 -▁kirsten -13.3934 -▁dismounted -13.3935 -▁melodi -13.3936 -▁plugged -13.3937 -▁kiara -13.3947 -example -13.3951 -regiment -13.3952 -▁obnoxious -13.3956 -deficient -13.3956 -pharmacology -13.3956 -▁conclave -13.3956 -qvist -13.3956 -▁microbiology -13.3957 -▁smudge -13.3957 -▁arsenic -13.3958 -▁roderick -13.3958 -▁fayette -13.3958 -▁nugent -13.3959 -▁grandstand -13.3963 -▁gabby -13.3963 -▁cramer -13.3964 -▁bookseller -13.3964 -composer -13.3967 -▁contentious -13.3971 -distributed -13.3979 -snippet -13.3979 -▁accompanies -13.3979 -▁dwarves -13.3979 -▁pantomime -13.3979 -▁cherished -13.3979 -▁cabrera -13.3979 -▁nudity -13.3979 -▁opaque -13.398 -▁scrubbed -13.398 -▁cornelia -13.3984 -▁papill -13.3984 -guilla -13.3987 -▁mahesh -13.3998 -▁chaste -13.3999 -▁gonzalo -13.4003 -▁navigable -13.4003 -▁unicef -13.4003 -▁sikkim -13.4003 -▁hannover -13.4003 -▁reverence -13.4003 -▁shredded -13.4003 -▁tigre -13.4003 -▁counsellor -13.4004 -▁tumour -13.4004 -▁bmx -13.4004 -assistant -13.4005 -▁lycee -13.4005 -▁effortlessly -13.4006 -▁summed -13.4007 -▁rosalie -13.4007 -▁zwi -13.401 -▁dizziness -13.4026 -▁tabernacle -13.4026 -▁triathlon -13.4026 -▁uyghur -13.4026 -▁whirlwind -13.4026 -▁woodpecker -13.4026 -▁binoculars -13.4026 -▁oxidize -13.4026 -▁cambrian -13.4027 -▁bipolar -13.4027 -▁shroud -13.4027 -▁ainsley -13.4028 -▁lingerie -13.4028 -▁stemming -13.4029 -▁huntsville -13.4029 -association -13.403 -▁millwall -13.4031 -assisted -13.4032 -▁mahadev -13.4037 -taylor -13.4038 -rhomb -13.4042 -idze -13.4047 -▁caffeine -13.4049 -▁doorknob -13.4049 -▁negotiator -13.4049 -▁albatros -13.4049 -▁salomon -13.405 -serious -13.405 -▁rotunda -13.405 -▁chlorine -13.405 -▁antoinette -13.405 -trouble -13.4051 -▁ehren -13.4052 -▁clique -13.4054 -dasht -13.4058 -▁zander -13.4062 -▁envelop -13.4064 -▁tampere -13.4065 -hatta -13.4065 -▁envision -13.4066 -gimme -13.4066 -establishment -13.4072 -▁macpherson -13.4073 -▁wurzburg -13.4073 -▁dopamine -13.4073 -▁sugarcane -13.4073 -▁afrikaans -13.4073 -▁marlowe -13.4073 -▁henchman -13.4073 -▁eyesight -13.4073 -▁isfahan -13.4073 -quercus -13.4075 -lewis -13.4077 -▁burbank -13.4077 -▁flamenco -13.4077 -▁abbasid -13.4081 -account -13.4084 -▁sieg -13.4085 -▁throb -13.4096 -▁prosecute -13.4096 -▁appendage -13.4096 -▁diligent -13.4096 -▁dissemination -13.4096 -▁ephraim -13.4096 -▁goggles -13.4096 -▁plentiful -13.4096 -▁upheaval -13.4096 -▁laundering -13.4097 -▁contradictory -13.4097 -▁augustinian -13.4097 -▁impractical -13.4097 -▁compagn -13.4098 -▁unbroken -13.4099 -▁carrera -13.4101 -▁rhett -13.4103 -thoracic -13.4104 -▁rabid -13.411 -confidence -13.4111 -▁curfew -13.412 -▁hampden -13.412 -▁hypotheses -13.412 -▁vivienne -13.412 -▁antidote -13.412 -▁westinghouse -13.412 -▁repelled -13.4121 -▁spacing -13.4122 -▁sangeet -13.4123 -▁rambling -13.4123 -▁lexical -13.4124 -▁vitoria -13.4125 -▁latched -13.4125 -▁insurgent -13.4126 -▁pallet -13.4127 -▁carrington -13.4129 -excret -13.4131 -▁stereotypical -13.4133 -sweden -13.414 -▁chappell -13.4142 -▁apostol -13.4142 -maastricht -13.4144 -▁embroidery -13.4144 -▁esperanto -13.4144 -▁lyceum -13.4144 -▁vanuatu -13.4144 -▁cauldron -13.4144 -▁battista -13.4144 -▁raquel -13.4144 -▁hanuman -13.4144 -▁choctaw -13.4144 -▁nieuw -13.4145 -kampf -13.4145 -▁pelvic -13.4145 -▁kampala -13.4145 -▁harmonies -13.4146 -raiser -13.4147 -▁boredom -13.4147 -▁undeveloped -13.4149 -▁vichy -13.4152 -khet -13.4154 -▁alcove -13.4155 -▁knack -13.4155 -zadeh -13.4158 -▁jolie -13.4159 -victoria -13.4164 -▁schwab -13.4164 -▁amphitheater -13.4167 -▁embargo -13.4167 -▁jalisco -13.4167 -▁straddling -13.4167 -▁madurai -13.4167 -▁culmination -13.4167 -▁oncology -13.4168 -▁roscoe -13.4168 -▁swapped -13.4169 -▁monoplane -13.4169 -▁samaj -13.4171 -▁exertion -13.4176 -▁ferret -13.4191 -▁solstice -13.4191 -callaghan -13.4191 -▁deuce -13.4192 -▁timberlake -13.4192 -▁brightened -13.4195 -▁havre -13.4196 -▁duarte -13.4196 -▁franca -13.4211 -▁flinders -13.4215 -▁preclude -13.4215 -▁comanche -13.4215 -▁inventive -13.4215 -▁mendez -13.4215 -▁cervical -13.4216 -▁shrugging -13.4217 -success -13.4218 -▁buick -13.4218 -▁renato -13.4219 -▁unloaded -13.422 -▁carriageway -13.4226 -▁interstellar -13.4239 -▁olfactory -13.4239 -▁refinement -13.4239 -polynesian -13.4239 -referencing -13.4239 -▁bhopal -13.4239 -▁reparation -13.4239 -▁juicy -13.4239 -▁chisholm -13.4239 -▁ecstatic -13.4239 -▁sligo -13.4239 -▁subtly -13.4241 -▁pylon -13.4242 -department -13.4243 -▁kristof -13.4252 -▁wildcat -13.4254 -▁krista -13.4254 -▁abkhazia -13.4263 -▁geothermal -13.4263 -▁incompetent -13.4263 -jazeera -13.4263 -▁sprague -13.4263 -▁kepler -13.4263 -▁altercation -13.4263 -▁streamlined -13.4264 -▁rizzo -13.4265 -▁devise -13.4266 -▁monika -13.4269 -▁hype -13.4271 -▁morgue -13.4272 -▁pampa -13.4278 -philosoph -13.4285 -▁khalil -13.4287 -▁bydgoszcz -13.4287 -▁unsettled -13.4287 -▁minstrel -13.4287 -driscoll -13.4287 -▁merciful -13.4288 -▁trapper -13.4289 -▁fulfillment -13.429 -▁polarization -13.4291 -▁familial -13.4295 -8,500 -13.4297 -▁rossini -13.4301 -▁presume -13.431 -▁acknowledgment -13.4311 -▁enforcing -13.4311 -▁reincarnation -13.4311 -▁stochastic -13.4311 -▁corroborat -13.4311 -▁erstwhile -13.4311 -▁tycoon -13.4311 -▁trapez -13.4313 -▁fianna -13.4314 -winkle -13.4314 -▁footnote -13.4315 -▁subdue -13.4316 -▁stamina -13.4319 -▁treble -13.4325 -elimination -13.4326 -▁surrealist -13.4327 -▁medusa -13.433 -▁eurobasket -13.4335 -▁skopje -13.4335 -▁confidant -13.4335 -▁fanfare -13.4335 -▁cosmology -13.4335 -▁consultative -13.4335 -▁protrude -13.4337 -▁enigmatic -13.4338 -▁dundas -13.4338 -▁ramakrishna -13.4342 -▁deflection -13.4344 -▁csx -13.4348 -unov -13.4351 -stitutionalized -13.4355 -▁hypothesized -13.4359 -▁universiade -13.4359 -▁grizzly -13.4359 -▁rudimentary -13.4359 -▁strategist -13.4359 -▁subsidize -13.4359 -▁wrongdoing -13.4359 -▁shogunate -13.436 -▁candlelight -13.4361 -▁shanti -13.4362 -▁gestation -13.4362 -▁discord -13.4364 -▁patrice -13.4364 -▁tapered -13.4367 -▁abode -13.4369 -murthy -13.4374 -▁muppet -13.4377 -quechua -13.4377 -satellite -13.4379 -▁megalo -13.438 -resolution -13.438 -▁launceston -13.4383 -▁suffused -13.4383 -▁bethesda -13.4383 -▁beckoned -13.4383 -▁aquifer -13.4383 -▁therapies -13.4383 -▁shrank -13.4384 -▁cradling -13.4384 -▁crucifixion -13.4384 -▁biosphere -13.4385 -▁trotted -13.4385 -▁devonshire -13.4385 -▁vandalism -13.4386 -stretch -13.4393 -build -13.4394 -▁taunton -13.4395 -▁disconnect -13.4396 -▁styria -13.4397 -▁brickwork -13.4402 -belgium -13.4407 -▁eindhoven -13.4407 -▁horticulture -13.4407 -▁triassic -13.4407 -▁ballerina -13.4408 -▁gainesville -13.4408 -▁townshend -13.4408 -▁blvd -13.4408 -▁abdicate -13.4408 -▁himachal -13.4408 -▁schumann -13.4409 -imagine -13.441 -▁jumble -13.4411 -▁serenade -13.4419 -statist -13.4421 -rukh -13.4422 -▁pallid -13.4423 -▁embarrass -13.4429 -▁perpetuate -13.4431 -gastrointestinal -13.4432 -▁argonauts -13.4432 -▁rasmussen -13.4432 -▁eminem -13.4432 -▁farthest -13.4432 -▁fayetteville -13.4433 -▁federated -13.4434 -▁zelda -13.4434 -technology -13.4434 -▁marietta -13.4435 -▁yeovil -13.444 -▁modulate -13.445 -▁ethic -13.4452 -8:30 -13.4453 -▁honduran -13.4456 -▁pedigree -13.4456 -▁almeida -13.4456 -▁bathtub -13.4456 -▁encrypted -13.4456 -▁magdeburg -13.4456 -▁parishioners -13.4456 -▁sanctum -13.4456 -▁congolese -13.4456 -▁afloat -13.4456 -▁galilee -13.4456 -▁alameda -13.4456 -▁dependencies -13.4456 -▁giddy -13.4457 -sequence -13.446 -▁maharaj -13.4462 -▁supercup -13.4462 -▁lengthened -13.4464 -▁levee -13.4473 -▁assembling -13.4481 -▁deferred -13.4481 -▁strickland -13.4481 -▁samaritan -13.4481 -ammonium -13.4481 -▁cessation -13.4481 -▁plywood -13.4481 -▁valdez -13.4481 -▁embryonic -13.4481 -▁shelved -13.4481 -▁cusp -13.4482 -jordan -13.4482 -▁decorating -13.4482 -▁stemmed -13.4483 -assembly -13.449 -▁henrique -13.4493 -structural -13.4498 -akademie -13.4498 -wrenching -13.45 -succin -13.4503 -glamorous -13.4505 -▁cistercian -13.4505 -▁cucumber -13.4505 -▁reconstituted -13.4505 -▁undivided -13.4505 -▁ecoregion -13.4505 -▁shortcomings -13.4505 -▁heartbroken -13.4507 -▁nilsson -13.4508 -▁mittel -13.4509 -▁tartar -13.451 -▁concede -13.4516 -decision -13.4516 -semitism -13.4529 -logarithm -13.453 -▁carcinoma -13.453 -▁dislodge -13.453 -▁concise -13.453 -▁fukushima -13.453 -▁wyndham -13.453 -coccus -13.453 -▁tattered -13.453 -▁surmounted -13.453 -▁severance -13.4531 -▁pelvis -13.4532 -▁entrepreneurial -13.4532 -▁druze -13.4535 -▁rennes -13.4537 -spear -13.4541 -identified -13.4543 -▁diarrhea -13.4554 -▁jharkhand -13.4554 -▁palladium -13.4554 -▁flurry -13.4554 -▁concave -13.4554 -▁psychotherapy -13.4555 -▁soyuz -13.4555 -▁aguilar -13.4555 -▁raspberry -13.4555 -▁janitor -13.4555 -▁sigmund -13.4555 -▁ossetia -13.4555 -logger -13.4557 -▁caramel -13.4562 -▁saracen -13.4563 -▁joyful -13.4569 -▁secund -13.4574 -▁blissful -13.4575 -composed -13.4576 -enlightened -13.4577 -▁comptroller -13.4579 -▁glastonbury -13.4579 -▁kickstarter -13.4579 -▁masquerade -13.4579 -▁pedagogy -13.4579 -▁shenandoah -13.4579 -▁tambourine -13.4579 -▁hyperbolic -13.4579 -▁indignant -13.4579 -▁mandible -13.4579 -▁rojas -13.4579 -▁questionnaire -13.4581 -▁shush -13.4582 -reliant -13.4582 -▁breweries -13.4582 -▁ornamentation -13.4584 -▁felici -13.4585 -▁sahitya -13.4589 -▁resurrect -13.459 -rhynch -13.4591 -tournament -13.4599 -bureaucrat -13.4601 -▁bucuresti -13.4604 -▁haarlem -13.4604 -▁interjected -13.4604 -▁pedagogical -13.4604 -▁practising -13.4604 -▁trafalgar -13.4604 -▁remedies -13.4604 -▁esteban -13.4604 -▁gentile -13.4606 -▁earldom -13.4609 -▁steinberg -13.461 -▁kinship -13.461 -▁limburg -13.4614 -▁imogen -13.462 -▁eurasia -13.4622 -council -13.4626 -occupancy -13.4629 -▁admonish -13.4629 -▁custodian -13.4629 -▁expiration -13.4629 -▁qualifies -13.4629 -▁dalinar -13.4629 -▁purposefully -13.4635 -▁sherri -13.4635 -▁dishonest -13.4642 -above -13.465 -deutsche -13.4653 -▁calypso -13.4654 -▁kessler -13.4654 -▁unheard -13.4654 -▁mahatma -13.4654 -▁inferred -13.4654 -▁chretien -13.4654 -▁gresham -13.4655 -▁glean -13.4656 -▁conserva -13.4656 -▁optimum -13.4657 -▁bleachers -13.4657 -exclusive -13.4658 -▁channing -13.4658 -▁murky -13.4659 -frater -13.4667 -▁nikol -13.4674 -▁burlesque -13.4678 -▁incapacitate -13.4678 -▁mcgovern -13.4678 -▁tuxedo -13.4678 -▁lourdes -13.4678 -▁madrigal -13.4678 -▁sociedad -13.4678 -▁daredevil -13.4679 -▁wilfrid -13.4679 -1016/ -13.4679 -▁rarity -13.4679 -▁laredo -13.4679 -▁schiller -13.4679 -▁northerly -13.468 -▁adoration -13.468 -▁clipping -13.4681 -▁velez -13.4682 -▁cardigan -13.4683 -▁lexicon -13.4683 -environmentalist -13.4689 -▁polemic -13.4691 -▁malabar -13.4693 -▁dilapidated -13.4703 -▁guelph -13.4703 -▁mcdermott -13.4703 -▁oratorio -13.4704 -▁pretense -13.4704 -▁aramaic -13.4704 -polski -13.4704 -▁cannonball -13.4706 -defend -13.4709 -primary -13.4713 -▁defection -13.4714 -▁logistic -13.4714 -sphaer -13.4717 -▁cursor -13.472 -▁adhesion -13.4728 -▁citroen -13.4728 -▁invaluable -13.4728 -▁watanabe -13.4728 -▁crammed -13.4729 -▁ballarat -13.4729 -▁physique -13.4729 -saturation -13.4729 -▁sturgeon -13.4729 -▁cristobal -13.4729 -▁lorentz -13.473 -▁comcast -13.473 -▁bailiff -13.473 -▁melrose -13.473 -▁heathrow -13.473 -▁worthwhile -13.4731 -▁cronus -13.4732 -qasim -13.4732 -▁moravia -13.4743 -▁regenerate -13.4747 -▁brevet -13.4748 -glauco -13.4751 -▁cohesive -13.4754 -▁disarmament -13.4754 -▁measurable -13.4754 -▁colossal -13.4754 -▁oppressed -13.4754 -▁celsius -13.4754 -▁futbol -13.4754 -▁movable -13.4754 -▁storefront -13.4759 -relax -13.4772 -▁britannica -13.4779 -▁epitaph -13.4779 -▁parodies -13.4779 -▁reclassified -13.4779 -▁sapporo -13.4779 -▁tijuana -13.4779 -▁densities -13.4779 -▁weinstein -13.4779 -▁banshee -13.4779 -▁fragrant -13.4779 -▁bastille -13.4779 -▁bacterio -13.478 -▁biochemical -13.478 -▁cortez -13.478 -▁morrissey -13.4783 -▁racine -13.4784 -▁misrepresent -13.4792 -violence -13.4798 -constant -13.4801 -▁diminutive -13.4804 -▁philanthropy -13.4804 -▁smoldering -13.4804 -▁huxley -13.4804 -▁minuscule -13.4804 -▁okrug -13.4804 -▁giulio -13.4804 -▁pacifist -13.4804 -100,000 -13.4804 -▁hypertension -13.4804 -▁looney -13.4804 -▁voicing -13.4805 -▁antisemitism -13.4805 -▁meteorologist -13.4806 -▁chengdu -13.4807 -▁yamada -13.4809 -▁ovation -13.4812 -▁ravel -13.4821 -positiv -13.4827 -gruber -13.4828 -▁apprehensive -13.4829 -▁carmarthen -13.4829 -▁excruciating -13.4829 -▁prosthetic -13.4829 -▁rhapsody -13.4829 -▁trujillo -13.4829 -▁unfavorable -13.4829 -▁poseidon -13.4829 -▁psychoanalysis -13.483 -▁desolate -13.483 -▁fiberglass -13.483 -▁beauchamp -13.483 -▁martyrdom -13.483 -▁troms -13.4837 -▁striat -13.4838 -▁spelt -13.4843 -▁circumference -13.4855 -▁hexagonal -13.4855 -▁mckinney -13.4855 -▁rodrigues -13.4855 -▁sauntered -13.4855 -▁veterinarian -13.4855 -▁estrella -13.4855 -▁holliday -13.4855 -▁buxton -13.4855 -▁tendrils -13.4855 -capacity -13.4855 -▁ellsworth -13.4855 -▁pundit -13.4855 -▁evasion -13.4857 -▁rostov -13.4858 -▁digestive -13.4858 -▁patriarchate -13.4862 -▁reconnect -13.4873 -flagged -13.4878 -aquila -13.4879 -▁coinciding -13.488 -▁condensation -13.488 -▁etruscan -13.488 -▁guadalcanal -13.488 -▁neutrino -13.488 -▁rippling -13.488 -▁unrestricted -13.488 -cutaneous -13.488 -▁unprotected -13.488 -▁microbial -13.488 -▁serenity -13.488 -▁sentient -13.488 -▁echelon -13.488 -▁osbourne -13.4882 -▁luthor -13.4882 -▁xviii -13.4882 -▁lockhart -13.4883 -▁appraisal -13.4906 -▁microscopy -13.4906 -▁polluted -13.4906 -▁tomlinson -13.4906 -▁flustered -13.4906 -▁goliath -13.4906 -▁scolded -13.4906 -▁sludge -13.4906 -▁agonizing -13.4906 -▁wycombe -13.4907 -▁stewardship -13.4907 -▁tutorial -13.4908 -▁sejm -13.4909 -▁bateman -13.491 -▁devyn -13.491 -linguistic -13.4911 -▁renown -13.492 -severin -13.492 -deliver -13.4924 -▁vocation -13.493 -▁afflicted -13.4931 -▁contemplation -13.4931 -▁mccormack -13.4931 -▁riviera -13.4931 -▁uninterrupted -13.4931 -▁vehemently -13.4931 -▁boniface -13.4931 -▁gottlieb -13.4931 -▁lecturing -13.4931 -▁baptised -13.4931 -▁fyodor -13.4931 -▁quorum -13.4932 -▁dahlia -13.4933 -▁cordelia -13.4933 -▁decompose -13.4933 -▁nepalese -13.4933 -▁readership -13.4936 -▁orientalis -13.4939 -professor -13.494 -3,200 -13.4941 -▁mathieu -13.4941 -documentary -13.4942 -▁revisit -13.4944 -▁lubeck -13.4947 -▁punctuated -13.4957 -▁rodolfo -13.4957 -▁uncontrollably -13.4957 -syllabic -13.4957 -▁aircrew -13.4957 -▁fokker -13.4957 -▁lothian -13.4957 -▁mehmed -13.4957 -▁snoring -13.4958 -▁walpole -13.4958 -▁washburn -13.4959 -amalgam -13.496 -▁coerce -13.4961 -▁flax -13.4962 -▁stroud -13.4966 -synthetic -13.497 -algebra -13.4971 -▁zwei -13.4974 -▁contingency -13.4983 -▁futuristic -13.4983 -▁involuntarily -13.4983 -▁peregrine -13.4983 -▁pyotr -13.4983 -▁vasquez -13.4983 -▁cantilever -13.4983 -▁acrylic -13.4983 -▁dictionaries -13.4983 -▁catarina -13.4983 -▁geophysical -13.4983 -▁torturing -13.4983 -▁trolleybus -13.4983 -▁inflated -13.4984 -▁crocker -13.4985 -▁schott -13.4985 -▁gryph -13.4986 -▁parrish -13.4986 -▁overwhelm -13.5008 -▁aborigines -13.5008 -▁deforestation -13.5008 -▁protracted -13.5008 -▁displeased -13.5008 -▁stratton -13.5009 -▁allahabad -13.5009 -▁discography -13.5011 -▁nascent -13.5011 -▁viewership -13.5011 -▁bureaucratic -13.5012 -▁burgos -13.5013 -theoretic -13.5016 -▁honeycomb -13.5023 -several -13.5029 -sacrificing -13.5034 -▁scuttled -13.5034 -▁teutonic -13.5034 -▁treachery -13.5034 -▁esquire -13.5034 -▁prudence -13.5034 -▁albedo -13.5034 -▁heineken -13.5034 -▁prefectural -13.5034 -▁extracellular -13.5035 -▁divergent -13.5035 -▁walmart -13.5036 -▁neutralize -13.5036 -▁atelier -13.5037 -▁arista -13.5046 -▁grig -13.5059 -▁braunschweig -13.506 -▁shrapnel -13.506 -▁calligraphy -13.506 -▁encased -13.506 -▁benefice -13.506 -▁daimyo -13.506 -▁overtaken -13.506 -▁fetish -13.506 -▁fujiwara -13.5061 -▁evalle -13.5062 -▁circulate -13.5062 -▁coleridge -13.5064 -▁serpentine -13.5064 -▁bhavan -13.5065 -▁memoria -13.5067 -▁apologizing -13.5086 -▁chongqing -13.5086 -▁eskimos -13.5086 -▁tyranny -13.5086 -▁sorcery -13.5086 -▁scarecrow -13.5086 -▁skunk -13.5087 -▁lonesome -13.5088 -▁reims -13.509 -▁kurds -13.5092 -▁braith -13.5095 -formatted -13.5103 -▁plagiar -13.5111 -▁antiquarian -13.5112 -▁disillusioned -13.5112 -▁disposable -13.5112 -▁indignation -13.5112 -▁torquay -13.5112 -▁unprepared -13.5112 -▁aptitude -13.5112 -▁weymouth -13.5112 -▁persephone -13.5113 -▁skidded -13.5113 -▁ludovic -13.5113 -▁empties -13.5114 -benzene -13.5114 -▁wheelbase -13.5115 -▁refreshment -13.512 -▁phonograph -13.5126 -hockey -13.5134 -▁exasperation -13.5138 -▁yamaguchi -13.5138 -▁jabbed -13.514 -▁amiens -13.514 -▁interpersonal -13.514 -▁batista -13.5141 -▁teodor -13.5143 -▁mckell -13.5143 -▁petrovic -13.515 -▁pooja -13.5154 -▁cartilage -13.5164 -▁eredivisie -13.5164 -▁macgregor -13.5164 -▁resilience -13.5164 -▁alchemy -13.5164 -▁aurelius -13.5165 -▁venerated -13.5165 -▁scrunched -13.5165 -▁censure -13.5165 -▁falmouth -13.5165 -▁blunder -13.5165 -▁elevate -13.5167 -▁mutated -13.5167 -▁comuni -13.5169 -▁leblanc -13.5171 -▁deviate -13.5173 -historic -13.5188 -▁dissuade -13.5191 -▁purplish -13.5191 -▁cummins -13.5191 -▁steadfast -13.5191 -▁afonso -13.5191 -▁magellan -13.5191 -▁dodging -13.5191 -▁vogt -13.5192 -▁nativity -13.5192 -▁paddock -13.5192 -▁taurus -13.5194 -▁gcse -13.5195 -▁tawny -13.5196 -▁lumb -13.5196 -▁burrell -13.5202 -▁$20,000 -13.5202 -contact -13.5204 -dedicated -13.5204 -goldwyn -13.5216 -▁caballero -13.5217 -▁extortion -13.5217 -▁garibaldi -13.5217 -▁hacienda -13.5217 -▁prometheus -13.5217 -▁unanswered -13.5217 -▁alluvial -13.5217 -▁ghulam -13.5217 -▁caregiver -13.5217 -▁carniola -13.5217 -▁voltaire -13.5217 -▁mamluk -13.5217 -▁salient -13.5219 -▁footwear -13.522 -▁torneo -13.522 -▁terrell -13.5222 -neutral -13.5233 -ifolium -13.5236 -constitution -13.5237 -▁incessant -13.5243 -▁ashkenazi -13.5243 -▁burgeoning -13.5243 -▁grenoble -13.5243 -▁punitive -13.5243 -▁travancore -13.5243 -▁etiquette -13.5243 -▁orpheus -13.5243 -▁tuvalu -13.5243 -▁couture -13.5244 -▁deceit -13.5244 -▁transcendental -13.5244 -▁snapshot -13.5245 -▁jstor -13.5245 -▁dooley -13.5245 -▁cathode -13.5245 -▁concentric -13.5246 -▁outweigh -13.5247 -puzha -13.5248 -▁magdalen -13.5256 -skoye -13.5262 -result -13.5262 -orbital -13.5264 -erythr -13.5265 -▁shanxi -13.5269 -uncharacteristic -13.527 -▁conscientious -13.527 -▁djibouti -13.527 -▁extermination -13.527 -▁grieving -13.527 -▁ideologies -13.527 -▁mendelssohn -13.527 -▁unexplained -13.527 -▁fraternal -13.527 -▁spalding -13.527 -▁repressed -13.527 -▁dorsum -13.527 -▁wreak -13.527 -▁$250,000 -13.5271 -▁emanate -13.5274 -▁jaffa -13.5274 -▁ghz -13.5274 -▁hawkeye -13.5275 -▁incremental -13.5276 -wound -13.528 -2,100 -13.5291 -3,300 -13.5296 -phosphorylation -13.5296 -sufficiency -13.5296 -▁grosvenor -13.5296 -▁whirling -13.5296 -auvergne -13.5296 -▁alkaline -13.5296 -▁virtuoso -13.5297 -▁predation -13.5297 -▁saviour -13.5297 -▁archivist -13.5298 -▁obverse -13.5298 -error -13.5298 -▁tyrion -13.5299 -▁addictive -13.5299 -▁veneto -13.53 -▁colloquial -13.5313 -agog -13.5318 -▁deficiencies -13.5323 -▁eloquent -13.5323 diff --git a/langml/tests/data/wp_cn_vocab.txt b/langml/tests/data/wp_cn_vocab.txt deleted file mode 100644 index ca4f978..0000000 --- a/langml/tests/data/wp_cn_vocab.txt +++ /dev/null @@ -1,21128 +0,0 @@ -[PAD] -[unused1] -[unused2] -[unused3] -[unused4] -[unused5] -[unused6] -[unused7] -[unused8] -[unused9] -[unused10] -[unused11] -[unused12] -[unused13] -[unused14] -[unused15] -[unused16] -[unused17] -[unused18] -[unused19] -[unused20] -[unused21] -[unused22] -[unused23] -[unused24] -[unused25] -[unused26] -[unused27] -[unused28] -[unused29] -[unused30] -[unused31] -[unused32] -[unused33] -[unused34] -[unused35] -[unused36] -[unused37] -[unused38] -[unused39] -[unused40] -[unused41] -[unused42] -[unused43] -[unused44] -[unused45] -[unused46] -[unused47] -[unused48] -[unused49] -[unused50] -[unused51] -[unused52] -[unused53] -[unused54] -[unused55] -[unused56] -[unused57] -[unused58] -[unused59] -[unused60] -[unused61] -[unused62] -[unused63] -[unused64] -[unused65] -[unused66] -[unused67] -[unused68] -[unused69] -[unused70] -[unused71] -[unused72] -[unused73] -[unused74] -[unused75] -[unused76] -[unused77] -[unused78] -[unused79] -[unused80] -[unused81] -[unused82] -[unused83] -[unused84] -[unused85] -[unused86] -[unused87] -[unused88] -[unused89] -[unused90] -[unused91] -[unused92] -[unused93] -[unused94] -[unused95] -[unused96] -[unused97] -[unused98] -[unused99] -[UNK] -[CLS] -[SEP] -[MASK] - - -! -" -# -$ -% -& -' -( -) -* -+ -, -- -. -/ -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -: -; -< -= -> -? -@ -[ -\ -] -^ -_ -a -b -c -d -e -f -g -h -i -j -k -l -m -n -o -p -q -r -s -t -u -v -w -x -y -z -{ -| -} -~ -£ -¤ -¥ -§ -© -« -® -° -± -² -³ -µ -· -¹ -º -» -¼ -× -ß -æ -÷ -ø -đ -ŋ -ɔ -ə -ɡ -ʰ -ˇ -ˈ -ˊ -ˋ -ˍ -ː -˙ -˚ -ˢ -α -β -γ -δ -ε -η -θ -ι -κ -λ -μ -ν -ο -π -ρ -ς -σ -τ -υ -φ -χ -ψ -ω -а -б -в -г -д -е -ж -з -и -к -л -м -н -о -п -р -с -т -у -ф -х -ц -ч -ш -ы -ь -я -і -ا -ب -ة -ت -د -ر -س -ع -ل -م -ن -ه -و -ي -۩ -ก -ง -น -ม -ย -ร -อ -า -เ -๑ -་ -ღ -ᄀ -ᄁ -ᄂ -ᄃ -ᄅ -ᄆ -ᄇ -ᄈ -ᄉ -ᄋ -ᄌ -ᄎ -ᄏ -ᄐ -ᄑ -ᄒ -ᅡ -ᅢ -ᅣ -ᅥ -ᅦ -ᅧ -ᅨ -ᅩ -ᅪ -ᅬ -ᅭ -ᅮ -ᅯ -ᅲ -ᅳ -ᅴ -ᅵ -ᆨ -ᆫ -ᆯ -ᆷ -ᆸ -ᆺ -ᆻ -ᆼ -ᗜ -ᵃ -ᵉ -ᵍ -ᵏ -ᵐ -ᵒ -ᵘ -‖ -„ -† -• -‥ -‧ -
 -‰ -′ -″ -‹ -› -※ -‿ -⁄ -ⁱ -⁺ -ⁿ -₁ -₂ -₃ -₄ -€ -℃ -№ -™ -ⅰ -ⅱ -ⅲ -ⅳ -ⅴ -← -↑ -→ -↓ -↔ -↗ -↘ -⇒ -∀ -− -∕ -∙ -√ -∞ -∟ -∠ -∣ -∥ -∩ -∮ -∶ -∼ -∽ -≈ -≒ -≡ -≤ -≥ -≦ -≧ -≪ -≫ -⊙ -⋅ -⋈ -⋯ -⌒ -① -② -③ -④ -⑤ -⑥ -⑦ -⑧ -⑨ -⑩ -⑴ -⑵ -⑶ -⑷ -⑸ -⒈ -⒉ -⒊ -⒋ -ⓒ -ⓔ -ⓘ -─ -━ -│ -┃ -┅ -┆ -┊ -┌ -└ -├ -┣ -═ -║ -╚ -╞ -╠ -╭ -╮ -╯ -╰ -╱ -╳ -▂ -▃ -▅ -▇ -█ -▉ -▋ -▌ -▍ -▎ -■ -□ -▪ -▫ -▬ -▲ -△ -▶ -► -▼ -▽ -◆ -◇ -○ -◎ -● -◕ -◠ -◢ -◤ -☀ -★ -☆ -☕ -☞ -☺ -☼ -♀ -♂ -♠ -♡ -♣ -♥ -♦ -♪ -♫ -♬ -✈ -✔ -✕ -✖ -✦ -✨ -✪ -✰ -✿ -❀ -❤ -➜ -➤ -⦿ -、 -。 -〃 -々 -〇 -〈 -〉 -《 -》 -「 -」 -『 -』 -【 -】 -〓 -〔 -〕 -〖 -〗 -〜 -〝 -〞 -ぁ -あ -ぃ -い -う -ぇ -え -お -か -き -く -け -こ -さ -し -す -せ -そ -た -ち -っ -つ -て -と -な -に -ぬ -ね -の -は -ひ -ふ -へ -ほ -ま -み -む -め -も -ゃ -や -ゅ -ゆ -ょ -よ -ら -り -る -れ -ろ -わ -を -ん -゜ -ゝ -ァ -ア -ィ -イ -ゥ -ウ -ェ -エ -ォ -オ -カ -キ -ク -ケ -コ -サ -シ -ス -セ -ソ -タ -チ -ッ -ツ -テ -ト -ナ -ニ -ヌ -ネ -ノ -ハ -ヒ -フ -ヘ -ホ -マ -ミ -ム -メ -モ -ャ -ヤ -ュ -ユ -ョ -ヨ -ラ -リ -ル -レ -ロ -ワ -ヲ -ン -ヶ -・ -ー -ヽ -ㄅ -ㄆ -ㄇ -ㄉ -ㄋ -ㄌ -ㄍ -ㄎ -ㄏ -ㄒ -ㄚ -ㄛ -ㄞ -ㄟ -ㄢ -ㄤ -ㄥ -ㄧ -ㄨ -ㆍ -㈦ -㊣ -㎡ -㗎 -一 -丁 -七 -万 -丈 -三 -上 -下 -不 -与 -丐 -丑 -专 -且 -丕 -世 -丘 -丙 -业 -丛 -东 -丝 -丞 -丟 -両 -丢 -两 -严 -並 -丧 -丨 -个 -丫 -中 -丰 -串 -临 -丶 -丸 -丹 -为 -主 -丼 -丽 -举 -丿 -乂 -乃 -久 -么 -义 -之 -乌 -乍 -乎 -乏 -乐 -乒 -乓 -乔 -乖 -乗 -乘 -乙 -乜 -九 -乞 -也 -习 -乡 -书 -乩 -买 -乱 -乳 -乾 -亀 -亂 -了 -予 -争 -事 -二 -于 -亏 -云 -互 -五 -井 -亘 -亙 -亚 -些 -亜 -亞 -亟 -亡 -亢 -交 -亥 -亦 -产 -亨 -亩 -享 -京 -亭 -亮 -亲 -亳 -亵 -人 -亿 -什 -仁 -仃 -仄 -仅 -仆 -仇 -今 -介 -仍 -从 -仏 -仑 -仓 -仔 -仕 -他 -仗 -付 -仙 -仝 -仞 -仟 -代 -令 -以 -仨 -仪 -们 -仮 -仰 -仲 -件 -价 -任 -份 -仿 -企 -伉 -伊 -伍 -伎 -伏 -伐 -休 -伕 -众 -优 -伙 -会 -伝 -伞 -伟 -传 -伢 -伤 -伦 -伪 -伫 -伯 -估 -伴 -伶 -伸 -伺 -似 -伽 -佃 -但 -佇 -佈 -位 -低 -住 -佐 -佑 -体 -佔 -何 -佗 -佘 -余 -佚 -佛 -作 -佝 -佞 -佟 -你 -佢 -佣 -佤 -佥 -佩 -佬 -佯 -佰 -佳 -併 -佶 -佻 -佼 -使 -侃 -侄 -來 -侈 -例 -侍 -侏 -侑 -侖 -侗 -供 -依 -侠 -価 -侣 -侥 -侦 -侧 -侨 -侬 -侮 -侯 -侵 -侶 -侷 -便 -係 -促 -俄 -俊 -俎 -俏 -俐 -俑 -俗 -俘 -俚 -保 -俞 -俟 -俠 -信 -俨 -俩 -俪 -俬 -俭 -修 -俯 -俱 -俳 -俸 -俺 -俾 -倆 -倉 -個 -倌 -倍 -倏 -們 -倒 -倔 -倖 -倘 -候 -倚 -倜 -借 -倡 -値 -倦 -倩 -倪 -倫 -倬 -倭 -倶 -债 -值 -倾 -偃 -假 -偈 -偉 -偌 -偎 -偏 -偕 -做 -停 -健 -側 -偵 -偶 -偷 -偻 -偽 -偿 -傀 -傅 -傍 -傑 -傘 -備 -傚 -傢 -傣 -傥 -储 -傩 -催 -傭 -傲 -傳 -債 -傷 -傻 -傾 -僅 -働 -像 -僑 -僕 -僖 -僚 -僥 -僧 -僭 -僮 -僱 -僵 -價 -僻 -儀 -儂 -億 -儆 -儉 -儋 -儒 -儕 -儘 -償 -儡 -優 -儲 -儷 -儼 -儿 -兀 -允 -元 -兄 -充 -兆 -兇 -先 -光 -克 -兌 -免 -児 -兑 -兒 -兔 -兖 -党 -兜 -兢 -入 -內 -全 -兩 -八 -公 -六 -兮 -兰 -共 -兲 -关 -兴 -兵 -其 -具 -典 -兹 -养 -兼 -兽 -冀 -内 -円 -冇 -冈 -冉 -冊 -册 -再 -冏 -冒 -冕 -冗 -写 -军 -农 -冠 -冢 -冤 -冥 -冨 -冪 -冬 -冯 -冰 -冲 -决 -况 -冶 -冷 -冻 -冼 -冽 -冾 -净 -凄 -准 -凇 -凈 -凉 -凋 -凌 -凍 -减 -凑 -凛 -凜 -凝 -几 -凡 -凤 -処 -凪 -凭 -凯 -凰 -凱 -凳 -凶 -凸 -凹 -出 -击 -函 -凿 -刀 -刁 -刃 -分 -切 -刈 -刊 -刍 -刎 -刑 -划 -列 -刘 -则 -刚 -创 -初 -删 -判 -別 -刨 -利 -刪 -别 -刮 -到 -制 -刷 -券 -刹 -刺 -刻 -刽 -剁 -剂 -剃 -則 -剉 -削 -剋 -剌 -前 -剎 -剐 -剑 -剔 -剖 -剛 -剜 -剝 -剣 -剤 -剥 -剧 -剩 -剪 -副 -割 -創 -剷 -剽 -剿 -劃 -劇 -劈 -劉 -劊 -劍 -劏 -劑 -力 -劝 -办 -功 -加 -务 -劣 -动 -助 -努 -劫 -劭 -励 -劲 -劳 -労 -劵 -効 -劾 -势 -勁 -勃 -勇 -勉 -勋 -勐 -勒 -動 -勖 -勘 -務 -勛 -勝 -勞 -募 -勢 -勤 -勧 -勳 -勵 -勸 -勺 -勻 -勾 -勿 -匀 -包 -匆 -匈 -匍 -匐 -匕 -化 -北 -匙 -匝 -匠 -匡 -匣 -匪 -匮 -匯 -匱 -匹 -区 -医 -匾 -匿 -區 -十 -千 -卅 -升 -午 -卉 -半 -卍 -华 -协 -卑 -卒 -卓 -協 -单 -卖 -南 -単 -博 -卜 -卞 -卟 -占 -卡 -卢 -卤 -卦 -卧 -卫 -卮 -卯 -印 -危 -即 -却 -卵 -卷 -卸 -卻 -卿 -厂 -厄 -厅 -历 -厉 -压 -厌 -厕 -厘 -厚 -厝 -原 -厢 -厥 -厦 -厨 -厩 -厭 -厮 -厲 -厳 -去 -县 -叁 -参 -參 -又 -叉 -及 -友 -双 -反 -収 -发 -叔 -取 -受 -变 -叙 -叛 -叟 -叠 -叡 -叢 -口 -古 -句 -另 -叨 -叩 -只 -叫 -召 -叭 -叮 -可 -台 -叱 -史 -右 -叵 -叶 -号 -司 -叹 -叻 -叼 -叽 -吁 -吃 -各 -吆 -合 -吉 -吊 -吋 -同 -名 -后 -吏 -吐 -向 -吒 -吓 -吕 -吖 -吗 -君 -吝 -吞 -吟 -吠 -吡 -否 -吧 -吨 -吩 -含 -听 -吭 -吮 -启 -吱 -吳 -吴 -吵 -吶 -吸 -吹 -吻 -吼 -吽 -吾 -呀 -呂 -呃 -呆 -呈 -告 -呋 -呎 -呐 -呓 -呕 -呗 -员 -呛 -呜 -呢 -呤 -呦 -周 -呱 -呲 -味 -呵 -呷 -呸 -呻 -呼 -命 -咀 -咁 -咂 -咄 -咆 -咋 -和 -咎 -咏 -咐 -咒 -咔 -咕 -咖 -咗 -咘 -咙 -咚 -咛 -咣 -咤 -咦 -咧 -咨 -咩 -咪 -咫 -咬 -咭 -咯 -咱 -咲 -咳 -咸 -咻 -咽 -咿 -哀 -品 -哂 -哄 -哆 -哇 -哈 -哉 -哋 -哌 -响 -哎 -哏 -哐 -哑 -哒 -哔 -哗 -哟 -員 -哥 -哦 -哧 -哨 -哩 -哪 -哭 -哮 -哲 -哺 -哼 -哽 -唁 -唄 -唆 -唇 -唉 -唏 -唐 -唑 -唔 -唠 -唤 -唧 -唬 -售 -唯 -唰 -唱 -唳 -唷 -唸 -唾 -啃 -啄 -商 -啉 -啊 -問 -啓 -啕 -啖 -啜 -啞 -啟 -啡 -啤 -啥 -啦 -啧 -啪 -啫 -啬 -啮 -啰 -啱 -啲 -啵 -啶 -啷 -啸 -啻 -啼 -啾 -喀 -喂 -喃 -善 -喆 -喇 -喉 -喊 -喋 -喎 -喏 -喔 -喘 -喙 -喚 -喜 -喝 -喟 -喧 -喪 -喫 -喬 -單 -喰 -喱 -喲 -喳 -喵 -営 -喷 -喹 -喺 -喻 -喽 -嗅 -嗆 -嗇 -嗎 -嗑 -嗒 -嗓 -嗔 -嗖 -嗚 -嗜 -嗝 -嗟 -嗡 -嗣 -嗤 -嗦 -嗨 -嗪 -嗬 -嗯 -嗰 -嗲 -嗳 -嗶 -嗷 -嗽 -嘀 -嘅 -嘆 -嘈 -嘉 -嘌 -嘍 -嘎 -嘔 -嘖 -嘗 -嘘 -嘚 -嘛 -嘜 -嘞 -嘟 -嘢 -嘣 -嘤 -嘧 -嘩 -嘭 -嘮 -嘯 -嘰 -嘱 -嘲 -嘴 -嘶 -嘸 -嘹 -嘻 -嘿 -噁 -噌 -噎 -噓 -噔 -噗 -噙 -噜 -噠 -噢 -噤 -器 -噩 -噪 -噬 -噱 -噴 -噶 -噸 -噹 -噻 -噼 -嚀 -嚇 -嚎 -嚏 -嚐 -嚓 -嚕 -嚟 -嚣 -嚥 -嚨 -嚮 -嚴 -嚷 -嚼 -囂 -囉 -囊 -囍 -囑 -囔 -囗 -囚 -四 -囝 -回 -囟 -因 -囡 -团 -団 -囤 -囧 -囪 -囫 -园 -困 -囱 -囲 -図 -围 -囹 -固 -国 -图 -囿 -圃 -圄 -圆 -圈 -國 -圍 -圏 -園 -圓 -圖 -團 -圜 -土 -圣 -圧 -在 -圩 -圭 -地 -圳 -场 -圻 -圾 -址 -坂 -均 -坊 -坍 -坎 -坏 -坐 -坑 -块 -坚 -坛 -坝 -坞 -坟 -坠 -坡 -坤 -坦 -坨 -坪 -坯 -坳 -坵 -坷 -垂 -垃 -垄 -型 -垒 -垚 -垛 -垠 -垢 -垣 -垦 -垩 -垫 -垭 -垮 -垵 -埂 -埃 -埋 -城 -埔 -埕 -埗 -域 -埠 -埤 -埵 -執 -埸 -培 -基 -埼 -堀 -堂 -堃 -堅 -堆 -堇 -堑 -堕 -堙 -堡 -堤 -堪 -堯 -堰 -報 -場 -堵 -堺 -堿 -塊 -塌 -塑 -塔 -塗 -塘 -塚 -塞 -塢 -塩 -填 -塬 -塭 -塵 -塾 -墀 -境 -墅 -墉 -墊 -墒 -墓 -増 -墘 -墙 -墜 -增 -墟 -墨 -墩 -墮 -墳 -墻 -墾 -壁 -壅 -壆 -壇 -壊 -壑 -壓 -壕 -壘 -壞 -壟 -壢 -壤 -壩 -士 -壬 -壮 -壯 -声 -売 -壳 -壶 -壹 -壺 -壽 -处 -备 -変 -复 -夏 -夔 -夕 -外 -夙 -多 -夜 -够 -夠 -夢 -夥 -大 -天 -太 -夫 -夭 -央 -夯 -失 -头 -夷 -夸 -夹 -夺 -夾 -奂 -奄 -奇 -奈 -奉 -奋 -奎 -奏 -奐 -契 -奔 -奕 -奖 -套 -奘 -奚 -奠 -奢 -奥 -奧 -奪 -奬 -奮 -女 -奴 -奶 -奸 -她 -好 -如 -妃 -妄 -妆 -妇 -妈 -妊 -妍 -妒 -妓 -妖 -妘 -妙 -妝 -妞 -妣 -妤 -妥 -妨 -妩 -妪 -妮 -妲 -妳 -妹 -妻 -妾 -姆 -姉 -姊 -始 -姍 -姐 -姑 -姒 -姓 -委 -姗 -姚 -姜 -姝 -姣 -姥 -姦 -姨 -姪 -姫 -姬 -姹 -姻 -姿 -威 -娃 -娄 -娅 -娆 -娇 -娉 -娑 -娓 -娘 -娛 -娜 -娟 -娠 -娣 -娥 -娩 -娱 -娲 -娴 -娶 -娼 -婀 -婁 -婆 -婉 -婊 -婕 -婚 -婢 -婦 -婧 -婪 -婭 -婴 -婵 -婶 -婷 -婺 -婿 -媒 -媚 -媛 -媞 -媧 -媲 -媳 -媽 -媾 -嫁 -嫂 -嫉 -嫌 -嫑 -嫔 -嫖 -嫘 -嫚 -嫡 -嫣 -嫦 -嫩 -嫲 -嫵 -嫻 -嬅 -嬉 -嬌 -嬗 -嬛 -嬢 -嬤 -嬪 -嬰 -嬴 -嬷 -嬸 -嬿 -孀 -孃 -子 -孑 -孔 -孕 -孖 -字 -存 -孙 -孚 -孛 -孜 -孝 -孟 -孢 -季 -孤 -学 -孩 -孪 -孫 -孬 -孰 -孱 -孳 -孵 -學 -孺 -孽 -孿 -宁 -它 -宅 -宇 -守 -安 -宋 -完 -宏 -宓 -宕 -宗 -官 -宙 -定 -宛 -宜 -宝 -实 -実 -宠 -审 -客 -宣 -室 -宥 -宦 -宪 -宫 -宮 -宰 -害 -宴 -宵 -家 -宸 -容 -宽 -宾 -宿 -寂 -寄 -寅 -密 -寇 -富 -寐 -寒 -寓 -寛 -寝 -寞 -察 -寡 -寢 -寥 -實 -寧 -寨 -審 -寫 -寬 -寮 -寰 -寵 -寶 -寸 -对 -寺 -寻 -导 -対 -寿 -封 -専 -射 -将 -將 -專 -尉 -尊 -尋 -對 -導 -小 -少 -尔 -尕 -尖 -尘 -尚 -尝 -尤 -尧 -尬 -就 -尴 -尷 -尸 -尹 -尺 -尻 -尼 -尽 -尾 -尿 -局 -屁 -层 -屄 -居 -屆 -屈 -屉 -届 -屋 -屌 -屍 -屎 -屏 -屐 -屑 -展 -屜 -属 -屠 -屡 -屢 -層 -履 -屬 -屯 -山 -屹 -屿 -岀 -岁 -岂 -岌 -岐 -岑 -岔 -岖 -岗 -岘 -岙 -岚 -岛 -岡 -岩 -岫 -岬 -岭 -岱 -岳 -岷 -岸 -峇 -峋 -峒 -峙 -峡 -峤 -峥 -峦 -峨 -峪 -峭 -峯 -峰 -峴 -島 -峻 -峽 -崁 -崂 -崆 -崇 -崎 -崑 -崔 -崖 -崗 -崙 -崛 -崧 -崩 -崭 -崴 -崽 -嵇 -嵊 -嵋 -嵌 -嵐 -嵘 -嵩 -嵬 -嵯 -嶂 -嶄 -嶇 -嶋 -嶙 -嶺 -嶼 -嶽 -巅 -巍 -巒 -巔 -巖 -川 -州 -巡 -巢 -工 -左 -巧 -巨 -巩 -巫 -差 -己 -已 -巳 -巴 -巷 -巻 -巽 -巾 -巿 -币 -市 -布 -帅 -帆 -师 -希 -帐 -帑 -帕 -帖 -帘 -帚 -帛 -帜 -帝 -帥 -带 -帧 -師 -席 -帮 -帯 -帰 -帳 -帶 -帷 -常 -帼 -帽 -幀 -幂 -幄 -幅 -幌 -幔 -幕 -幟 -幡 -幢 -幣 -幫 -干 -平 -年 -并 -幸 -幹 -幺 -幻 -幼 -幽 -幾 -广 -庁 -広 -庄 -庆 -庇 -床 -序 -庐 -库 -应 -底 -庖 -店 -庙 -庚 -府 -庞 -废 -庠 -度 -座 -庫 -庭 -庵 -庶 -康 -庸 -庹 -庾 -廁 -廂 -廃 -廈 -廉 -廊 -廓 -廖 -廚 -廝 -廟 -廠 -廢 -廣 -廬 -廳 -延 -廷 -建 -廿 -开 -弁 -异 -弃 -弄 -弈 -弊 -弋 -式 -弑 -弒 -弓 -弔 -引 -弗 -弘 -弛 -弟 -张 -弥 -弦 -弧 -弩 -弭 -弯 -弱 -張 -強 -弹 -强 -弼 -弾 -彅 -彆 -彈 -彌 -彎 -归 -当 -录 -彗 -彙 -彝 -形 -彤 -彥 -彦 -彧 -彩 -彪 -彫 -彬 -彭 -彰 -影 -彷 -役 -彻 -彼 -彿 -往 -征 -径 -待 -徇 -很 -徉 -徊 -律 -後 -徐 -徑 -徒 -従 -徕 -得 -徘 -徙 -徜 -從 -徠 -御 -徨 -復 -循 -徬 -微 -徳 -徴 -徵 -德 -徹 -徼 -徽 -心 -必 -忆 -忌 -忍 -忏 -忐 -忑 -忒 -忖 -志 -忘 -忙 -応 -忠 -忡 -忤 -忧 -忪 -快 -忱 -念 -忻 -忽 -忿 -怀 -态 -怂 -怅 -怆 -怎 -怏 -怒 -怔 -怕 -怖 -怙 -怜 -思 -怠 -怡 -急 -怦 -性 -怨 -怪 -怯 -怵 -总 -怼 -恁 -恃 -恆 -恋 -恍 -恐 -恒 -恕 -恙 -恚 -恢 -恣 -恤 -恥 -恨 -恩 -恪 -恫 -恬 -恭 -息 -恰 -恳 -恵 -恶 -恸 -恺 -恻 -恼 -恿 -悄 -悅 -悉 -悌 -悍 -悔 -悖 -悚 -悟 -悠 -患 -悦 -您 -悩 -悪 -悬 -悯 -悱 -悲 -悴 -悵 -悶 -悸 -悻 -悼 -悽 -情 -惆 -惇 -惊 -惋 -惑 -惕 -惘 -惚 -惜 -惟 -惠 -惡 -惦 -惧 -惨 -惩 -惫 -惬 -惭 -惮 -惯 -惰 -惱 -想 -惴 -惶 -惹 -惺 -愁 -愆 -愈 -愉 -愍 -意 -愕 -愚 -愛 -愜 -感 -愣 -愤 -愧 -愫 -愷 -愿 -慄 -慈 -態 -慌 -慎 -慑 -慕 -慘 -慚 -慟 -慢 -慣 -慧 -慨 -慫 -慮 -慰 -慳 -慵 -慶 -慷 -慾 -憂 -憊 -憋 -憎 -憐 -憑 -憔 -憚 -憤 -憧 -憨 -憩 -憫 -憬 -憲 -憶 -憾 -懂 -懇 -懈 -應 -懊 -懋 -懑 -懒 -懦 -懲 -懵 -懶 -懷 -懸 -懺 -懼 -懾 -懿 -戀 -戈 -戊 -戌 -戍 -戎 -戏 -成 -我 -戒 -戕 -或 -战 -戚 -戛 -戟 -戡 -戦 -截 -戬 -戮 -戰 -戲 -戳 -戴 -戶 -户 -戸 -戻 -戾 -房 -所 -扁 -扇 -扈 -扉 -手 -才 -扎 -扑 -扒 -打 -扔 -払 -托 -扛 -扣 -扦 -执 -扩 -扪 -扫 -扬 -扭 -扮 -扯 -扰 -扱 -扳 -扶 -批 -扼 -找 -承 -技 -抄 -抉 -把 -抑 -抒 -抓 -投 -抖 -抗 -折 -抚 -抛 -抜 -択 -抟 -抠 -抡 -抢 -护 -报 -抨 -披 -抬 -抱 -抵 -抹 -押 -抽 -抿 -拂 -拄 -担 -拆 -拇 -拈 -拉 -拋 -拌 -拍 -拎 -拐 -拒 -拓 -拔 -拖 -拗 -拘 -拙 -拚 -招 -拜 -拟 -拡 -拢 -拣 -拥 -拦 -拧 -拨 -择 -括 -拭 -拮 -拯 -拱 -拳 -拴 -拷 -拼 -拽 -拾 -拿 -持 -挂 -指 -挈 -按 -挎 -挑 -挖 -挙 -挚 -挛 -挝 -挞 -挟 -挠 -挡 -挣 -挤 -挥 -挨 -挪 -挫 -振 -挲 -挹 -挺 -挽 -挾 -捂 -捅 -捆 -捉 -捋 -捌 -捍 -捎 -捏 -捐 -捕 -捞 -损 -捡 -换 -捣 -捧 -捨 -捩 -据 -捱 -捲 -捶 -捷 -捺 -捻 -掀 -掂 -掃 -掇 -授 -掉 -掌 -掏 -掐 -排 -掖 -掘 -掙 -掛 -掠 -採 -探 -掣 -接 -控 -推 -掩 -措 -掬 -掰 -掲 -掳 -掴 -掷 -掸 -掺 -揀 -揃 -揄 -揆 -揉 -揍 -描 -提 -插 -揖 -揚 -換 -握 -揣 -揩 -揪 -揭 -揮 -援 -揶 -揸 -揹 -揽 -搀 -搁 -搂 -搅 -損 -搏 -搐 -搓 -搔 -搖 -搗 -搜 -搞 -搡 -搪 -搬 -搭 -搵 -搶 -携 -搽 -摀 -摁 -摄 -摆 -摇 -摈 -摊 -摒 -摔 -摘 -摞 -摟 -摧 -摩 -摯 -摳 -摸 -摹 -摺 -摻 -撂 -撃 -撅 -撇 -撈 -撐 -撑 -撒 -撓 -撕 -撚 -撞 -撤 -撥 -撩 -撫 -撬 -播 -撮 -撰 -撲 -撵 -撷 -撸 -撻 -撼 -撿 -擀 -擁 -擂 -擄 -擅 -擇 -擊 -擋 -操 -擎 -擒 -擔 -擘 -據 -擞 -擠 -擡 -擢 -擦 -擬 -擰 -擱 -擲 -擴 -擷 -擺 -擼 -擾 -攀 -攏 -攒 -攔 -攘 -攙 -攜 -攝 -攞 -攢 -攣 -攤 -攥 -攪 -攫 -攬 -支 -收 -攸 -改 -攻 -放 -政 -故 -效 -敌 -敍 -敎 -敏 -救 -敕 -敖 -敗 -敘 -教 -敛 -敝 -敞 -敢 -散 -敦 -敬 -数 -敲 -整 -敵 -敷 -數 -斂 -斃 -文 -斋 -斌 -斎 -斐 -斑 -斓 -斗 -料 -斛 -斜 -斟 -斡 -斤 -斥 -斧 -斩 -斫 -斬 -断 -斯 -新 -斷 -方 -於 -施 -旁 -旃 -旅 -旋 -旌 -旎 -族 -旖 -旗 -无 -既 -日 -旦 -旧 -旨 -早 -旬 -旭 -旮 -旱 -时 -旷 -旺 -旻 -昀 -昂 -昆 -昇 -昉 -昊 -昌 -明 -昏 -易 -昔 -昕 -昙 -星 -映 -春 -昧 -昨 -昭 -是 -昱 -昴 -昵 -昶 -昼 -显 -晁 -時 -晃 -晉 -晋 -晌 -晏 -晒 -晓 -晔 -晕 -晖 -晗 -晚 -晝 -晞 -晟 -晤 -晦 -晨 -晩 -普 -景 -晰 -晴 -晶 -晷 -智 -晾 -暂 -暄 -暇 -暈 -暉 -暌 -暐 -暑 -暖 -暗 -暝 -暢 -暧 -暨 -暫 -暮 -暱 -暴 -暸 -暹 -曄 -曆 -曇 -曉 -曖 -曙 -曜 -曝 -曠 -曦 -曬 -曰 -曲 -曳 -更 -書 -曹 -曼 -曾 -替 -最 -會 -月 -有 -朋 -服 -朐 -朔 -朕 -朗 -望 -朝 -期 -朦 -朧 -木 -未 -末 -本 -札 -朮 -术 -朱 -朴 -朵 -机 -朽 -杀 -杂 -权 -杆 -杈 -杉 -李 -杏 -材 -村 -杓 -杖 -杜 -杞 -束 -杠 -条 -来 -杨 -杭 -杯 -杰 -東 -杳 -杵 -杷 -杼 -松 -板 -极 -构 -枇 -枉 -枋 -析 -枕 -林 -枚 -果 -枝 -枢 -枣 -枪 -枫 -枭 -枯 -枰 -枱 -枳 -架 -枷 -枸 -柄 -柏 -某 -柑 -柒 -染 -柔 -柘 -柚 -柜 -柞 -柠 -柢 -查 -柩 -柬 -柯 -柱 -柳 -柴 -柵 -査 -柿 -栀 -栃 -栄 -栅 -标 -栈 -栉 -栋 -栎 -栏 -树 -栓 -栖 -栗 -校 -栩 -株 -样 -核 -根 -格 -栽 -栾 -桀 -桁 -桂 -桃 -桅 -框 -案 -桉 -桌 -桎 -桐 -桑 -桓 -桔 -桜 -桠 -桡 -桢 -档 -桥 -桦 -桧 -桨 -桩 -桶 -桿 -梁 -梅 -梆 -梏 -梓 -梗 -條 -梟 -梢 -梦 -梧 -梨 -梭 -梯 -械 -梳 -梵 -梶 -检 -棂 -棄 -棉 -棋 -棍 -棒 -棕 -棗 -棘 -棚 -棟 -棠 -棣 -棧 -森 -棱 -棲 -棵 -棹 -棺 -椁 -椅 -椋 -植 -椎 -椒 -検 -椪 -椭 -椰 -椹 -椽 -椿 -楂 -楊 -楓 -楔 -楚 -楝 -楞 -楠 -楣 -楨 -楫 -業 -楮 -極 -楷 -楸 -楹 -楼 -楽 -概 -榄 -榆 -榈 -榉 -榔 -榕 -榖 -榛 -榜 -榨 -榫 -榭 -榮 -榱 -榴 -榷 -榻 -槁 -槃 -構 -槌 -槍 -槎 -槐 -槓 -様 -槛 -槟 -槤 -槭 -槲 -槳 -槻 -槽 -槿 -樁 -樂 -樊 -樑 -樓 -標 -樞 -樟 -模 -樣 -権 -横 -樫 -樯 -樱 -樵 -樸 -樹 -樺 -樽 -樾 -橄 -橇 -橋 -橐 -橘 -橙 -機 -橡 -橢 -橫 -橱 -橹 -橼 -檀 -檄 -檎 -檐 -檔 -檗 -檜 -檢 -檬 -檯 -檳 -檸 -檻 -櫃 -櫚 -櫛 -櫥 -櫸 -櫻 -欄 -權 -欒 -欖 -欠 -次 -欢 -欣 -欧 -欲 -欸 -欺 -欽 -款 -歆 -歇 -歉 -歌 -歎 -歐 -歓 -歙 -歛 -歡 -止 -正 -此 -步 -武 -歧 -歩 -歪 -歯 -歲 -歳 -歴 -歷 -歸 -歹 -死 -歼 -殁 -殃 -殆 -殇 -殉 -殊 -残 -殒 -殓 -殖 -殘 -殞 -殡 -殤 -殭 -殯 -殲 -殴 -段 -殷 -殺 -殼 -殿 -毀 -毁 -毂 -毅 -毆 -毋 -母 -毎 -每 -毒 -毓 -比 -毕 -毗 -毘 -毙 -毛 -毡 -毫 -毯 -毽 -氈 -氏 -氐 -民 -氓 -气 -氖 -気 -氙 -氛 -氟 -氡 -氢 -氣 -氤 -氦 -氧 -氨 -氪 -氫 -氮 -氯 -氰 -氲 -水 -氷 -永 -氹 -氾 -汀 -汁 -求 -汆 -汇 -汉 -汎 -汐 -汕 -汗 -汙 -汛 -汝 -汞 -江 -池 -污 -汤 -汨 -汩 -汪 -汰 -汲 -汴 -汶 -汹 -決 -汽 -汾 -沁 -沂 -沃 -沅 -沈 -沉 -沌 -沏 -沐 -沒 -沓 -沖 -沙 -沛 -沟 -没 -沢 -沣 -沥 -沦 -沧 -沪 -沫 -沭 -沮 -沱 -河 -沸 -油 -治 -沼 -沽 -沾 -沿 -況 -泄 -泉 -泊 -泌 -泓 -法 -泗 -泛 -泞 -泠 -泡 -波 -泣 -泥 -注 -泪 -泫 -泮 -泯 -泰 -泱 -泳 -泵 -泷 -泸 -泻 -泼 -泽 -泾 -洁 -洄 -洋 -洒 -洗 -洙 -洛 -洞 -津 -洩 -洪 -洮 -洱 -洲 -洵 -洶 -洸 -洹 -活 -洼 -洽 -派 -流 -浃 -浄 -浅 -浆 -浇 -浊 -测 -济 -浏 -浑 -浒 -浓 -浔 -浙 -浚 -浜 -浣 -浦 -浩 -浪 -浬 -浮 -浯 -浴 -海 -浸 -涂 -涅 -涇 -消 -涉 -涌 -涎 -涓 -涔 -涕 -涙 -涛 -涝 -涞 -涟 -涠 -涡 -涣 -涤 -润 -涧 -涨 -涩 -涪 -涮 -涯 -液 -涵 -涸 -涼 -涿 -淀 -淄 -淅 -淆 -淇 -淋 -淌 -淑 -淒 -淖 -淘 -淙 -淚 -淞 -淡 -淤 -淦 -淨 -淩 -淪 -淫 -淬 -淮 -深 -淳 -淵 -混 -淹 -淺 -添 -淼 -清 -済 -渉 -渊 -渋 -渍 -渎 -渐 -渔 -渗 -渙 -渚 -減 -渝 -渠 -渡 -渣 -渤 -渥 -渦 -温 -測 -渭 -港 -渲 -渴 -游 -渺 -渾 -湃 -湄 -湊 -湍 -湖 -湘 -湛 -湟 -湧 -湫 -湮 -湯 -湳 -湾 -湿 -満 -溃 -溅 -溉 -溏 -源 -準 -溜 -溝 -溟 -溢 -溥 -溧 -溪 -溫 -溯 -溱 -溴 -溶 -溺 -溼 -滁 -滂 -滄 -滅 -滇 -滋 -滌 -滑 -滓 -滔 -滕 -滙 -滚 -滝 -滞 -滟 -满 -滢 -滤 -滥 -滦 -滨 -滩 -滬 -滯 -滲 -滴 -滷 -滸 -滾 -滿 -漁 -漂 -漆 -漉 -漏 -漓 -演 -漕 -漠 -漢 -漣 -漩 -漪 -漫 -漬 -漯 -漱 -漲 -漳 -漸 -漾 -漿 -潆 -潇 -潋 -潍 -潑 -潔 -潘 -潛 -潜 -潞 -潟 -潢 -潤 -潦 -潧 -潭 -潮 -潰 -潴 -潸 -潺 -潼 -澀 -澄 -澆 -澈 -澍 -澎 -澗 -澜 -澡 -澤 -澧 -澱 -澳 -澹 -激 -濁 -濂 -濃 -濑 -濒 -濕 -濘 -濛 -濟 -濠 -濡 -濤 -濫 -濬 -濮 -濯 -濱 -濺 -濾 -瀅 -瀆 -瀉 -瀋 -瀏 -瀑 -瀕 -瀘 -瀚 -瀛 -瀝 -瀞 -瀟 -瀧 -瀨 -瀬 -瀰 -瀾 -灌 -灏 -灑 -灘 -灝 -灞 -灣 -火 -灬 -灭 -灯 -灰 -灵 -灶 -灸 -灼 -災 -灾 -灿 -炀 -炁 -炅 -炉 -炊 -炎 -炒 -炔 -炕 -炖 -炙 -炜 -炫 -炬 -炭 -炮 -炯 -炳 -炷 -炸 -点 -為 -炼 -炽 -烁 -烂 -烃 -烈 -烊 -烏 -烘 -烙 -烛 -烟 -烤 -烦 -烧 -烨 -烩 -烫 -烬 -热 -烯 -烷 -烹 -烽 -焉 -焊 -焕 -焖 -焗 -焘 -焙 -焚 -焜 -無 -焦 -焯 -焰 -焱 -然 -焼 -煅 -煉 -煊 -煌 -煎 -煒 -煖 -煙 -煜 -煞 -煤 -煥 -煦 -照 -煨 -煩 -煮 -煲 -煸 -煽 -熄 -熊 -熏 -熒 -熔 -熙 -熟 -熠 -熨 -熬 -熱 -熵 -熹 -熾 -燁 -燃 -燄 -燈 -燉 -燊 -燎 -燒 -燔 -燕 -燙 -燜 -營 -燥 -燦 -燧 -燭 -燮 -燴 -燻 -燼 -燿 -爆 -爍 -爐 -爛 -爪 -爬 -爭 -爰 -爱 -爲 -爵 -父 -爷 -爸 -爹 -爺 -爻 -爽 -爾 -牆 -片 -版 -牌 -牍 -牒 -牙 -牛 -牝 -牟 -牠 -牡 -牢 -牦 -牧 -物 -牯 -牲 -牴 -牵 -特 -牺 -牽 -犀 -犁 -犄 -犊 -犍 -犒 -犢 -犧 -犬 -犯 -状 -犷 -犸 -犹 -狀 -狂 -狄 -狈 -狎 -狐 -狒 -狗 -狙 -狞 -狠 -狡 -狩 -独 -狭 -狮 -狰 -狱 -狸 -狹 -狼 -狽 -猎 -猕 -猖 -猗 -猙 -猛 -猜 -猝 -猥 -猩 -猪 -猫 -猬 -献 -猴 -猶 -猷 -猾 -猿 -獄 -獅 -獎 -獐 -獒 -獗 -獠 -獣 -獨 -獭 -獰 -獲 -獵 -獷 -獸 -獺 -獻 -獼 -獾 -玄 -率 -玉 -王 -玑 -玖 -玛 -玟 -玠 -玥 -玩 -玫 -玮 -环 -现 -玲 -玳 -玷 -玺 -玻 -珀 -珂 -珅 -珈 -珉 -珊 -珍 -珏 -珐 -珑 -珙 -珞 -珠 -珣 -珥 -珩 -珪 -班 -珮 -珲 -珺 -現 -球 -琅 -理 -琇 -琉 -琊 -琍 -琏 -琐 -琛 -琢 -琥 -琦 -琨 -琪 -琬 -琮 -琰 -琲 -琳 -琴 -琵 -琶 -琺 -琼 -瑀 -瑁 -瑄 -瑋 -瑕 -瑗 -瑙 -瑚 -瑛 -瑜 -瑞 -瑟 -瑠 -瑣 -瑤 -瑩 -瑪 -瑯 -瑰 -瑶 -瑾 -璀 -璁 -璃 -璇 -璉 -璋 -璎 -璐 -璜 -璞 -璟 -璧 -璨 -環 -璽 -璿 -瓊 -瓏 -瓒 -瓜 -瓢 -瓣 -瓤 -瓦 -瓮 -瓯 -瓴 -瓶 -瓷 -甄 -甌 -甕 -甘 -甙 -甚 -甜 -生 -產 -産 -甥 -甦 -用 -甩 -甫 -甬 -甭 -甯 -田 -由 -甲 -申 -电 -男 -甸 -町 -画 -甾 -畀 -畅 -界 -畏 -畑 -畔 -留 -畜 -畝 -畢 -略 -畦 -番 -畫 -異 -畲 -畳 -畴 -當 -畸 -畹 -畿 -疆 -疇 -疊 -疏 -疑 -疔 -疖 -疗 -疙 -疚 -疝 -疟 -疡 -疣 -疤 -疥 -疫 -疮 -疯 -疱 -疲 -疳 -疵 -疸 -疹 -疼 -疽 -疾 -痂 -病 -症 -痈 -痉 -痊 -痍 -痒 -痔 -痕 -痘 -痙 -痛 -痞 -痠 -痢 -痣 -痤 -痧 -痨 -痪 -痫 -痰 -痱 -痴 -痹 -痺 -痼 -痿 -瘀 -瘁 -瘋 -瘍 -瘓 -瘘 -瘙 -瘟 -瘠 -瘡 -瘢 -瘤 -瘦 -瘧 -瘩 -瘪 -瘫 -瘴 -瘸 -瘾 -療 -癇 -癌 -癒 -癖 -癜 -癞 -癡 -癢 -癣 -癥 -癫 -癬 -癮 -癱 -癲 -癸 -発 -登 -發 -白 -百 -皂 -的 -皆 -皇 -皈 -皋 -皎 -皑 -皓 -皖 -皙 -皚 -皮 -皰 -皱 -皴 -皺 -皿 -盂 -盃 -盅 -盆 -盈 -益 -盎 -盏 -盐 -监 -盒 -盔 -盖 -盗 -盘 -盛 -盜 -盞 -盟 -盡 -監 -盤 -盥 -盧 -盪 -目 -盯 -盱 -盲 -直 -相 -盹 -盼 -盾 -省 -眈 -眉 -看 -県 -眙 -眞 -真 -眠 -眦 -眨 -眩 -眯 -眶 -眷 -眸 -眺 -眼 -眾 -着 -睁 -睇 -睏 -睐 -睑 -睛 -睜 -睞 -睡 -睢 -督 -睥 -睦 -睨 -睪 -睫 -睬 -睹 -睽 -睾 -睿 -瞄 -瞅 -瞇 -瞋 -瞌 -瞎 -瞑 -瞒 -瞓 -瞞 -瞟 -瞠 -瞥 -瞧 -瞩 -瞪 -瞬 -瞭 -瞰 -瞳 -瞻 -瞼 -瞿 -矇 -矍 -矗 -矚 -矛 -矜 -矢 -矣 -知 -矩 -矫 -短 -矮 -矯 -石 -矶 -矽 -矾 -矿 -码 -砂 -砌 -砍 -砒 -研 -砖 -砗 -砚 -砝 -砣 -砥 -砧 -砭 -砰 -砲 -破 -砷 -砸 -砺 -砼 -砾 -础 -硅 -硐 -硒 -硕 -硝 -硫 -硬 -确 -硯 -硼 -碁 -碇 -碉 -碌 -碍 -碎 -碑 -碓 -碗 -碘 -碚 -碛 -碟 -碣 -碧 -碩 -碰 -碱 -碳 -碴 -確 -碼 -碾 -磁 -磅 -磊 -磋 -磐 -磕 -磚 -磡 -磨 -磬 -磯 -磲 -磷 -磺 -礁 -礎 -礙 -礡 -礦 -礪 -礫 -礴 -示 -礼 -社 -祀 -祁 -祂 -祇 -祈 -祉 -祎 -祐 -祕 -祖 -祗 -祚 -祛 -祜 -祝 -神 -祟 -祠 -祢 -祥 -票 -祭 -祯 -祷 -祸 -祺 -祿 -禀 -禁 -禄 -禅 -禍 -禎 -福 -禛 -禦 -禧 -禪 -禮 -禱 -禹 -禺 -离 -禽 -禾 -禿 -秀 -私 -秃 -秆 -秉 -秋 -种 -科 -秒 -秘 -租 -秣 -秤 -秦 -秧 -秩 -秭 -积 -称 -秸 -移 -秽 -稀 -稅 -程 -稍 -税 -稔 -稗 -稚 -稜 -稞 -稟 -稠 -稣 -種 -稱 -稲 -稳 -稷 -稹 -稻 -稼 -稽 -稿 -穀 -穂 -穆 -穌 -積 -穎 -穗 -穢 -穩 -穫 -穴 -究 -穷 -穹 -空 -穿 -突 -窃 -窄 -窈 -窍 -窑 -窒 -窓 -窕 -窖 -窗 -窘 -窜 -窝 -窟 -窠 -窥 -窦 -窨 -窩 -窪 -窮 -窯 -窺 -窿 -竄 -竅 -竇 -竊 -立 -竖 -站 -竜 -竞 -竟 -章 -竣 -童 -竭 -端 -競 -竹 -竺 -竽 -竿 -笃 -笆 -笈 -笋 -笏 -笑 -笔 -笙 -笛 -笞 -笠 -符 -笨 -第 -笹 -笺 -笼 -筆 -等 -筊 -筋 -筍 -筏 -筐 -筑 -筒 -答 -策 -筛 -筝 -筠 -筱 -筲 -筵 -筷 -筹 -签 -简 -箇 -箋 -箍 -箏 -箐 -箔 -箕 -算 -箝 -管 -箩 -箫 -箭 -箱 -箴 -箸 -節 -篁 -範 -篆 -篇 -築 -篑 -篓 -篙 -篝 -篠 -篡 -篤 -篩 -篪 -篮 -篱 -篷 -簇 -簌 -簍 -簡 -簦 -簧 -簪 -簫 -簷 -簸 -簽 -簾 -簿 -籁 -籃 -籌 -籍 -籐 -籟 -籠 -籤 -籬 -籮 -籲 -米 -类 -籼 -籽 -粄 -粉 -粑 -粒 -粕 -粗 -粘 -粟 -粤 -粥 -粧 -粪 -粮 -粱 -粲 -粳 -粵 -粹 -粼 -粽 -精 -粿 -糅 -糊 -糍 -糕 -糖 -糗 -糙 -糜 -糞 -糟 -糠 -糧 -糬 -糯 -糰 -糸 -系 -糾 -紀 -紂 -約 -紅 -紉 -紊 -紋 -納 -紐 -紓 -純 -紗 -紘 -紙 -級 -紛 -紜 -素 -紡 -索 -紧 -紫 -紮 -累 -細 -紳 -紹 -紺 -終 -絃 -組 -絆 -経 -結 -絕 -絞 -絡 -絢 -給 -絨 -絮 -統 -絲 -絳 -絵 -絶 -絹 -綁 -綏 -綑 -經 -継 -続 -綜 -綠 -綢 -綦 -綫 -綬 -維 -綱 -網 -綴 -綵 -綸 -綺 -綻 -綽 -綾 -綿 -緊 -緋 -総 -緑 -緒 -緘 -線 -緝 -緞 -締 -緣 -編 -緩 -緬 -緯 -練 -緹 -緻 -縁 -縄 -縈 -縛 -縝 -縣 -縫 -縮 -縱 -縴 -縷 -總 -績 -繁 -繃 -繆 -繇 -繋 -織 -繕 -繚 -繞 -繡 -繩 -繪 -繫 -繭 -繳 -繹 -繼 -繽 -纂 -續 -纍 -纏 -纓 -纔 -纖 -纜 -纠 -红 -纣 -纤 -约 -级 -纨 -纪 -纫 -纬 -纭 -纯 -纰 -纱 -纲 -纳 -纵 -纶 -纷 -纸 -纹 -纺 -纽 -纾 -线 -绀 -练 -组 -绅 -细 -织 -终 -绊 -绍 -绎 -经 -绑 -绒 -结 -绔 -绕 -绘 -给 -绚 -绛 -络 -绝 -绞 -统 -绡 -绢 -绣 -绥 -绦 -继 -绩 -绪 -绫 -续 -绮 -绯 -绰 -绳 -维 -绵 -绶 -绷 -绸 -绻 -综 -绽 -绾 -绿 -缀 -缄 -缅 -缆 -缇 -缈 -缉 -缎 -缓 -缔 -缕 -编 -缘 -缙 -缚 -缜 -缝 -缠 -缢 -缤 -缥 -缨 -缩 -缪 -缭 -缮 -缰 -缱 -缴 -缸 -缺 -缽 -罂 -罄 -罌 -罐 -网 -罔 -罕 -罗 -罚 -罡 -罢 -罩 -罪 -置 -罰 -署 -罵 -罷 -罹 -羁 -羅 -羈 -羊 -羌 -美 -羔 -羚 -羞 -羟 -羡 -羣 -群 -羥 -羧 -羨 -義 -羯 -羲 -羸 -羹 -羽 -羿 -翁 -翅 -翊 -翌 -翎 -習 -翔 -翘 -翟 -翠 -翡 -翦 -翩 -翰 -翱 -翳 -翹 -翻 -翼 -耀 -老 -考 -耄 -者 -耆 -耋 -而 -耍 -耐 -耒 -耕 -耗 -耘 -耙 -耦 -耨 -耳 -耶 -耷 -耸 -耻 -耽 -耿 -聂 -聆 -聊 -聋 -职 -聒 -联 -聖 -聘 -聚 -聞 -聪 -聯 -聰 -聲 -聳 -聴 -聶 -職 -聽 -聾 -聿 -肃 -肄 -肅 -肆 -肇 -肉 -肋 -肌 -肏 -肓 -肖 -肘 -肚 -肛 -肝 -肠 -股 -肢 -肤 -肥 -肩 -肪 -肮 -肯 -肱 -育 -肴 -肺 -肽 -肾 -肿 -胀 -胁 -胃 -胄 -胆 -背 -胍 -胎 -胖 -胚 -胛 -胜 -胝 -胞 -胡 -胤 -胥 -胧 -胫 -胭 -胯 -胰 -胱 -胳 -胴 -胶 -胸 -胺 -能 -脂 -脅 -脆 -脇 -脈 -脉 -脊 -脍 -脏 -脐 -脑 -脓 -脖 -脘 -脚 -脛 -脣 -脩 -脫 -脯 -脱 -脲 -脳 -脸 -脹 -脾 -腆 -腈 -腊 -腋 -腌 -腎 -腐 -腑 -腓 -腔 -腕 -腥 -腦 -腩 -腫 -腭 -腮 -腰 -腱 -腳 -腴 -腸 -腹 -腺 -腻 -腼 -腾 -腿 -膀 -膈 -膊 -膏 -膑 -膘 -膚 -膛 -膜 -膝 -膠 -膦 -膨 -膩 -膳 -膺 -膻 -膽 -膾 -膿 -臀 -臂 -臃 -臆 -臉 -臊 -臍 -臓 -臘 -臟 -臣 -臥 -臧 -臨 -自 -臬 -臭 -至 -致 -臺 -臻 -臼 -臾 -舀 -舂 -舅 -舆 -與 -興 -舉 -舊 -舌 -舍 -舎 -舐 -舒 -舔 -舖 -舗 -舛 -舜 -舞 -舟 -航 -舫 -般 -舰 -舱 -舵 -舶 -舷 -舸 -船 -舺 -舾 -艇 -艋 -艘 -艙 -艦 -艮 -良 -艰 -艱 -色 -艳 -艷 -艹 -艺 -艾 -节 -芃 -芈 -芊 -芋 -芍 -芎 -芒 -芙 -芜 -芝 -芡 -芥 -芦 -芩 -芪 -芫 -芬 -芭 -芮 -芯 -花 -芳 -芷 -芸 -芹 -芻 -芽 -芾 -苁 -苄 -苇 -苋 -苍 -苏 -苑 -苒 -苓 -苔 -苕 -苗 -苛 -苜 -苞 -苟 -苡 -苣 -若 -苦 -苫 -苯 -英 -苷 -苹 -苻 -茁 -茂 -范 -茄 -茅 -茉 -茎 -茏 -茗 -茜 -茧 -茨 -茫 -茬 -茭 -茯 -茱 -茲 -茴 -茵 -茶 -茸 -茹 -茼 -荀 -荃 -荆 -草 -荊 -荏 -荐 -荒 -荔 -荖 -荘 -荚 -荞 -荟 -荠 -荡 -荣 -荤 -荥 -荧 -荨 -荪 -荫 -药 -荳 -荷 -荸 -荻 -荼 -荽 -莅 -莆 -莉 -莊 -莎 -莒 -莓 -莖 -莘 -莞 -莠 -莢 -莧 -莪 -莫 -莱 -莲 -莴 -获 -莹 -莺 -莽 -莿 -菀 -菁 -菅 -菇 -菈 -菊 -菌 -菏 -菓 -菖 -菘 -菜 -菟 -菠 -菡 -菩 -華 -菱 -菲 -菸 -菽 -萁 -萃 -萄 -萊 -萋 -萌 -萍 -萎 -萘 -萝 -萤 -营 -萦 -萧 -萨 -萩 -萬 -萱 -萵 -萸 -萼 -落 -葆 -葉 -著 -葚 -葛 -葡 -董 -葦 -葩 -葫 -葬 -葭 -葯 -葱 -葳 -葵 -葷 -葺 -蒂 -蒋 -蒐 -蒔 -蒙 -蒜 -蒞 -蒟 -蒡 -蒨 -蒲 -蒸 -蒹 -蒻 -蒼 -蒿 -蓁 -蓄 -蓆 -蓉 -蓋 -蓑 -蓓 -蓖 -蓝 -蓟 -蓦 -蓬 -蓮 -蓼 -蓿 -蔑 -蔓 -蔔 -蔗 -蔘 -蔚 -蔡 -蔣 -蔥 -蔫 -蔬 -蔭 -蔵 -蔷 -蔺 -蔻 -蔼 -蔽 -蕁 -蕃 -蕈 -蕉 -蕊 -蕎 -蕙 -蕤 -蕨 -蕩 -蕪 -蕭 -蕲 -蕴 -蕻 -蕾 -薄 -薅 -薇 -薈 -薊 -薏 -薑 -薔 -薙 -薛 -薦 -薨 -薩 -薪 -薬 -薯 -薰 -薹 -藉 -藍 -藏 -藐 -藓 -藕 -藜 -藝 -藤 -藥 -藩 -藹 -藻 -藿 -蘆 -蘇 -蘊 -蘋 -蘑 -蘚 -蘭 -蘸 -蘼 -蘿 -虎 -虏 -虐 -虑 -虔 -處 -虚 -虛 -虜 -虞 -號 -虢 -虧 -虫 -虬 -虱 -虹 -虻 -虽 -虾 -蚀 -蚁 -蚂 -蚊 -蚌 -蚓 -蚕 -蚜 -蚝 -蚣 -蚤 -蚩 -蚪 -蚯 -蚱 -蚵 -蛀 -蛆 -蛇 -蛊 -蛋 -蛎 -蛐 -蛔 -蛙 -蛛 -蛟 -蛤 -蛭 -蛮 -蛰 -蛳 -蛹 -蛻 -蛾 -蜀 -蜂 -蜃 -蜆 -蜇 -蜈 -蜊 -蜍 -蜒 -蜓 -蜕 -蜗 -蜘 -蜚 -蜜 -蜡 -蜢 -蜥 -蜱 -蜴 -蜷 -蜻 -蜿 -蝇 -蝈 -蝉 -蝌 -蝎 -蝕 -蝗 -蝙 -蝟 -蝠 -蝦 -蝨 -蝴 -蝶 -蝸 -蝼 -螂 -螃 -融 -螞 -螢 -螨 -螯 -螳 -螺 -蟀 -蟄 -蟆 -蟋 -蟎 -蟑 -蟒 -蟠 -蟬 -蟲 -蟹 -蟻 -蟾 -蠅 -蠍 -蠔 -蠕 -蠛 -蠟 -蠡 -蠢 -蠣 -蠱 -蠶 -蠹 -蠻 -血 -衄 -衅 -衆 -行 -衍 -術 -衔 -街 -衙 -衛 -衝 -衞 -衡 -衢 -衣 -补 -表 -衩 -衫 -衬 -衮 -衰 -衲 -衷 -衹 -衾 -衿 -袁 -袂 -袄 -袅 -袈 -袋 -袍 -袒 -袖 -袜 -袞 -袤 -袪 -被 -袭 -袱 -裁 -裂 -装 -裆 -裊 -裏 -裔 -裕 -裘 -裙 -補 -裝 -裟 -裡 -裤 -裨 -裱 -裳 -裴 -裸 -裹 -製 -裾 -褂 -複 -褐 -褒 -褓 -褔 -褚 -褥 -褪 -褫 -褲 -褶 -褻 -襁 -襄 -襟 -襠 -襪 -襬 -襯 -襲 -西 -要 -覃 -覆 -覇 -見 -規 -覓 -視 -覚 -覦 -覧 -親 -覬 -観 -覷 -覺 -覽 -觀 -见 -观 -规 -觅 -视 -览 -觉 -觊 -觎 -觐 -觑 -角 -觞 -解 -觥 -触 -觸 -言 -訂 -計 -訊 -討 -訓 -訕 -訖 -託 -記 -訛 -訝 -訟 -訣 -訥 -訪 -設 -許 -訳 -訴 -訶 -診 -註 -証 -詆 -詐 -詔 -評 -詛 -詞 -詠 -詡 -詢 -詣 -試 -詩 -詫 -詬 -詭 -詮 -詰 -話 -該 -詳 -詹 -詼 -誅 -誇 -誉 -誌 -認 -誓 -誕 -誘 -語 -誠 -誡 -誣 -誤 -誥 -誦 -誨 -說 -説 -読 -誰 -課 -誹 -誼 -調 -諄 -談 -請 -諏 -諒 -論 -諗 -諜 -諡 -諦 -諧 -諫 -諭 -諮 -諱 -諳 -諷 -諸 -諺 -諾 -謀 -謁 -謂 -謄 -謊 -謎 -謐 -謔 -謗 -謙 -講 -謝 -謠 -謨 -謬 -謹 -謾 -譁 -證 -譎 -譏 -識 -譙 -譚 -譜 -警 -譬 -譯 -議 -譲 -譴 -護 -譽 -讀 -變 -讓 -讚 -讞 -计 -订 -认 -讥 -讧 -讨 -让 -讪 -讫 -训 -议 -讯 -记 -讲 -讳 -讴 -讶 -讷 -许 -讹 -论 -讼 -讽 -设 -访 -诀 -证 -诃 -评 -诅 -识 -诈 -诉 -诊 -诋 -词 -诏 -译 -试 -诗 -诘 -诙 -诚 -诛 -话 -诞 -诟 -诠 -诡 -询 -诣 -诤 -该 -详 -诧 -诩 -诫 -诬 -语 -误 -诰 -诱 -诲 -说 -诵 -诶 -请 -诸 -诺 -读 -诽 -课 -诿 -谀 -谁 -调 -谄 -谅 -谆 -谈 -谊 -谋 -谌 -谍 -谎 -谏 -谐 -谑 -谒 -谓 -谔 -谕 -谗 -谘 -谙 -谚 -谛 -谜 -谟 -谢 -谣 -谤 -谥 -谦 -谧 -谨 -谩 -谪 -谬 -谭 -谯 -谱 -谲 -谴 -谶 -谷 -豁 -豆 -豇 -豈 -豉 -豊 -豌 -豎 -豐 -豔 -豚 -象 -豢 -豪 -豫 -豬 -豹 -豺 -貂 -貅 -貌 -貓 -貔 -貘 -貝 -貞 -負 -財 -貢 -貧 -貨 -販 -貪 -貫 -責 -貯 -貰 -貳 -貴 -貶 -買 -貸 -費 -貼 -貽 -貿 -賀 -賁 -賂 -賃 -賄 -資 -賈 -賊 -賑 -賓 -賜 -賞 -賠 -賡 -賢 -賣 -賤 -賦 -質 -賬 -賭 -賴 -賺 -購 -賽 -贅 -贈 -贊 -贍 -贏 -贓 -贖 -贛 -贝 -贞 -负 -贡 -财 -责 -贤 -败 -账 -货 -质 -贩 -贪 -贫 -贬 -购 -贮 -贯 -贰 -贱 -贲 -贴 -贵 -贷 -贸 -费 -贺 -贻 -贼 -贾 -贿 -赁 -赂 -赃 -资 -赅 -赈 -赊 -赋 -赌 -赎 -赏 -赐 -赓 -赔 -赖 -赘 -赚 -赛 -赝 -赞 -赠 -赡 -赢 -赣 -赤 -赦 -赧 -赫 -赭 -走 -赳 -赴 -赵 -赶 -起 -趁 -超 -越 -趋 -趕 -趙 -趟 -趣 -趨 -足 -趴 -趵 -趸 -趺 -趾 -跃 -跄 -跆 -跋 -跌 -跎 -跑 -跖 -跚 -跛 -距 -跟 -跡 -跤 -跨 -跩 -跪 -路 -跳 -践 -跷 -跹 -跺 -跻 -踉 -踊 -踌 -踏 -踐 -踝 -踞 -踟 -踢 -踩 -踪 -踮 -踱 -踴 -踵 -踹 -蹂 -蹄 -蹇 -蹈 -蹉 -蹊 -蹋 -蹑 -蹒 -蹙 -蹟 -蹣 -蹤 -蹦 -蹩 -蹬 -蹭 -蹲 -蹴 -蹶 -蹺 -蹼 -蹿 -躁 -躇 -躉 -躊 -躋 -躍 -躏 -躪 -身 -躬 -躯 -躲 -躺 -軀 -車 -軋 -軌 -軍 -軒 -軟 -転 -軸 -軼 -軽 -軾 -較 -載 -輒 -輓 -輔 -輕 -輛 -輝 -輟 -輩 -輪 -輯 -輸 -輻 -輾 -輿 -轄 -轅 -轆 -轉 -轍 -轎 -轟 -车 -轧 -轨 -轩 -转 -轭 -轮 -软 -轰 -轲 -轴 -轶 -轻 -轼 -载 -轿 -较 -辄 -辅 -辆 -辇 -辈 -辉 -辊 -辍 -辐 -辑 -输 -辕 -辖 -辗 -辘 -辙 -辛 -辜 -辞 -辟 -辣 -辦 -辨 -辩 -辫 -辭 -辮 -辯 -辰 -辱 -農 -边 -辺 -辻 -込 -辽 -达 -迁 -迂 -迄 -迅 -过 -迈 -迎 -运 -近 -返 -还 -这 -进 -远 -违 -连 -迟 -迢 -迤 -迥 -迦 -迩 -迪 -迫 -迭 -述 -迴 -迷 -迸 -迹 -迺 -追 -退 -送 -适 -逃 -逅 -逆 -选 -逊 -逍 -透 -逐 -递 -途 -逕 -逗 -這 -通 -逛 -逝 -逞 -速 -造 -逢 -連 -逮 -週 -進 -逵 -逶 -逸 -逻 -逼 -逾 -遁 -遂 -遅 -遇 -遊 -運 -遍 -過 -遏 -遐 -遑 -遒 -道 -達 -違 -遗 -遙 -遛 -遜 -遞 -遠 -遢 -遣 -遥 -遨 -適 -遭 -遮 -遲 -遴 -遵 -遶 -遷 -選 -遺 -遼 -遽 -避 -邀 -邁 -邂 -邃 -還 -邇 -邈 -邊 -邋 -邏 -邑 -邓 -邕 -邛 -邝 -邢 -那 -邦 -邨 -邪 -邬 -邮 -邯 -邰 -邱 -邳 -邵 -邸 -邹 -邺 -邻 -郁 -郅 -郊 -郎 -郑 -郜 -郝 -郡 -郢 -郤 -郦 -郧 -部 -郫 -郭 -郴 -郵 -郷 -郸 -都 -鄂 -鄉 -鄒 -鄔 -鄙 -鄞 -鄢 -鄧 -鄭 -鄰 -鄱 -鄲 -鄺 -酉 -酊 -酋 -酌 -配 -酐 -酒 -酗 -酚 -酝 -酢 -酣 -酥 -酩 -酪 -酬 -酮 -酯 -酰 -酱 -酵 -酶 -酷 -酸 -酿 -醃 -醇 -醉 -醋 -醍 -醐 -醒 -醚 -醛 -醜 -醞 -醣 -醪 -醫 -醬 -醮 -醯 -醴 -醺 -釀 -釁 -采 -釉 -释 -釋 -里 -重 -野 -量 -釐 -金 -釗 -釘 -釜 -針 -釣 -釦 -釧 -釵 -鈀 -鈉 -鈍 -鈎 -鈔 -鈕 -鈞 -鈣 -鈦 -鈪 -鈴 -鈺 -鈾 -鉀 -鉄 -鉅 -鉉 -鉑 -鉗 -鉚 -鉛 -鉤 -鉴 -鉻 -銀 -銃 -銅 -銑 -銓 -銖 -銘 -銜 -銬 -銭 -銮 -銳 -銷 -銹 -鋁 -鋅 -鋒 -鋤 -鋪 -鋰 -鋸 -鋼 -錄 -錐 -錘 -錚 -錠 -錢 -錦 -錨 -錫 -錮 -錯 -録 -錳 -錶 -鍊 -鍋 -鍍 -鍛 -鍥 -鍰 -鍵 -鍺 -鍾 -鎂 -鎊 -鎌 -鎏 -鎔 -鎖 -鎗 -鎚 -鎧 -鎬 -鎮 -鎳 -鏈 -鏖 -鏗 -鏘 -鏞 -鏟 -鏡 -鏢 -鏤 -鏽 -鐘 -鐮 -鐲 -鐳 -鐵 -鐸 -鐺 -鑄 -鑊 -鑑 -鑒 -鑣 -鑫 -鑰 -鑲 -鑼 -鑽 -鑾 -鑿 -针 -钉 -钊 -钎 -钏 -钒 -钓 -钗 -钙 -钛 -钜 -钝 -钞 -钟 -钠 -钡 -钢 -钣 -钤 -钥 -钦 -钧 -钨 -钩 -钮 -钯 -钰 -钱 -钳 -钴 -钵 -钺 -钻 -钼 -钾 -钿 -铀 -铁 -铂 -铃 -铄 -铅 -铆 -铉 -铎 -铐 -铛 -铜 -铝 -铠 -铡 -铢 -铣 -铤 -铨 -铩 -铬 -铭 -铮 -铰 -铲 -铵 -银 -铸 -铺 -链 -铿 -销 -锁 -锂 -锄 -锅 -锆 -锈 -锉 -锋 -锌 -锏 -锐 -锑 -错 -锚 -锟 -锡 -锢 -锣 -锤 -锥 -锦 -锭 -键 -锯 -锰 -锲 -锵 -锹 -锺 -锻 -镀 -镁 -镂 -镇 -镉 -镌 -镍 -镐 -镑 -镕 -镖 -镗 -镛 -镜 -镣 -镭 -镯 -镰 -镳 -镶 -長 -长 -門 -閃 -閉 -開 -閎 -閏 -閑 -閒 -間 -閔 -閘 -閡 -関 -閣 -閥 -閨 -閩 -閱 -閲 -閹 -閻 -閾 -闆 -闇 -闊 -闌 -闍 -闔 -闕 -闖 -闘 -關 -闡 -闢 -门 -闪 -闫 -闭 -问 -闯 -闰 -闲 -间 -闵 -闷 -闸 -闹 -闺 -闻 -闽 -闾 -阀 -阁 -阂 -阅 -阆 -阇 -阈 -阉 -阎 -阐 -阑 -阔 -阕 -阖 -阙 -阚 -阜 -队 -阡 -阪 -阮 -阱 -防 -阳 -阴 -阵 -阶 -阻 -阿 -陀 -陂 -附 -际 -陆 -陇 -陈 -陋 -陌 -降 -限 -陕 -陛 -陝 -陞 -陟 -陡 -院 -陣 -除 -陨 -险 -陪 -陰 -陲 -陳 -陵 -陶 -陷 -陸 -険 -陽 -隅 -隆 -隈 -隊 -隋 -隍 -階 -随 -隐 -隔 -隕 -隘 -隙 -際 -障 -隠 -隣 -隧 -隨 -險 -隱 -隴 -隶 -隸 -隻 -隼 -隽 -难 -雀 -雁 -雄 -雅 -集 -雇 -雉 -雋 -雌 -雍 -雎 -雏 -雑 -雒 -雕 -雖 -雙 -雛 -雜 -雞 -離 -難 -雨 -雪 -雯 -雰 -雲 -雳 -零 -雷 -雹 -電 -雾 -需 -霁 -霄 -霆 -震 -霈 -霉 -霊 -霍 -霎 -霏 -霑 -霓 -霖 -霜 -霞 -霧 -霭 -霰 -露 -霸 -霹 -霽 -霾 -靂 -靄 -靈 -青 -靓 -靖 -静 -靚 -靛 -靜 -非 -靠 -靡 -面 -靥 -靦 -革 -靳 -靴 -靶 -靼 -鞅 -鞋 -鞍 -鞏 -鞑 -鞘 -鞠 -鞣 -鞦 -鞭 -韆 -韋 -韌 -韓 -韜 -韦 -韧 -韩 -韬 -韭 -音 -韵 -韶 -韻 -響 -頁 -頂 -頃 -項 -順 -須 -頌 -預 -頑 -頒 -頓 -頗 -領 -頜 -頡 -頤 -頫 -頭 -頰 -頷 -頸 -頹 -頻 -頼 -顆 -題 -額 -顎 -顏 -顔 -願 -顛 -類 -顧 -顫 -顯 -顱 -顴 -页 -顶 -顷 -项 -顺 -须 -顼 -顽 -顾 -顿 -颁 -颂 -预 -颅 -领 -颇 -颈 -颉 -颊 -颌 -颍 -颐 -频 -颓 -颔 -颖 -颗 -题 -颚 -颛 -颜 -额 -颞 -颠 -颡 -颢 -颤 -颦 -颧 -風 -颯 -颱 -颳 -颶 -颼 -飄 -飆 -风 -飒 -飓 -飕 -飘 -飙 -飚 -飛 -飞 -食 -飢 -飨 -飩 -飪 -飯 -飲 -飼 -飽 -飾 -餃 -餅 -餉 -養 -餌 -餐 -餒 -餓 -餘 -餚 -餛 -餞 -餡 -館 -餮 -餵 -餾 -饅 -饈 -饋 -饌 -饍 -饑 -饒 -饕 -饗 -饞 -饥 -饨 -饪 -饬 -饭 -饮 -饯 -饰 -饱 -饲 -饴 -饵 -饶 -饷 -饺 -饼 -饽 -饿 -馀 -馁 -馄 -馅 -馆 -馈 -馋 -馍 -馏 -馒 -馔 -首 -馗 -香 -馥 -馨 -馬 -馭 -馮 -馳 -馴 -駁 -駄 -駅 -駆 -駐 -駒 -駕 -駛 -駝 -駭 -駱 -駿 -騁 -騎 -騏 -験 -騙 -騨 -騰 -騷 -驀 -驅 -驊 -驍 -驒 -驕 -驗 -驚 -驛 -驟 -驢 -驥 -马 -驭 -驮 -驯 -驰 -驱 -驳 -驴 -驶 -驷 -驸 -驹 -驻 -驼 -驾 -驿 -骁 -骂 -骄 -骅 -骆 -骇 -骈 -骊 -骋 -验 -骏 -骐 -骑 -骗 -骚 -骛 -骜 -骞 -骠 -骡 -骤 -骥 -骧 -骨 -骯 -骰 -骶 -骷 -骸 -骼 -髂 -髅 -髋 -髏 -髒 -髓 -體 -髖 -高 -髦 -髪 -髮 -髯 -髻 -鬃 -鬆 -鬍 -鬓 -鬚 -鬟 -鬢 -鬣 -鬥 -鬧 -鬱 -鬼 -魁 -魂 -魄 -魅 -魇 -魍 -魏 -魔 -魘 -魚 -魯 -魷 -鮑 -鮨 -鮪 -鮭 -鮮 -鯉 -鯊 -鯖 -鯛 -鯨 -鯰 -鯽 -鰍 -鰓 -鰭 -鰲 -鰻 -鰾 -鱈 -鱉 -鱔 -鱗 -鱷 -鱸 -鱼 -鱿 -鲁 -鲈 -鲍 -鲑 -鲛 -鲜 -鲟 -鲢 -鲤 -鲨 -鲫 -鲱 -鲲 -鲶 -鲷 -鲸 -鳃 -鳄 -鳅 -鳌 -鳍 -鳕 -鳖 -鳗 -鳝 -鳞 -鳥 -鳩 -鳳 -鳴 -鳶 -鴉 -鴕 -鴛 -鴦 -鴨 -鴻 -鴿 -鵑 -鵜 -鵝 -鵡 -鵬 -鵰 -鵲 -鶘 -鶩 -鶯 -鶴 -鷗 -鷲 -鷹 -鷺 -鸚 -鸞 -鸟 -鸠 -鸡 -鸢 -鸣 -鸥 -鸦 -鸨 -鸪 -鸭 -鸯 -鸳 -鸵 -鸽 -鸾 -鸿 -鹂 -鹃 -鹄 -鹅 -鹈 -鹉 -鹊 -鹌 -鹏 -鹑 -鹕 -鹘 -鹜 -鹞 -鹤 -鹦 -鹧 -鹫 -鹭 -鹰 -鹳 -鹵 -鹹 -鹼 -鹽 -鹿 -麂 -麋 -麒 -麓 -麗 -麝 -麟 -麥 -麦 -麩 -麴 -麵 -麸 -麺 -麻 -麼 -麽 -麾 -黃 -黄 -黍 -黎 -黏 -黑 -黒 -黔 -默 -黛 -黜 -黝 -點 -黠 -黨 -黯 -黴 -鼋 -鼎 -鼐 -鼓 -鼠 -鼬 -鼹 -鼻 -鼾 -齁 -齊 -齋 -齐 -齒 -齡 -齢 -齣 -齦 -齿 -龄 -龅 -龈 -龊 -龋 -龌 -龍 -龐 -龔 -龕 -龙 -龚 -龛 -龜 -龟 -︰ -︱ -︶ -︿ -﹁ -﹂ -﹍ -﹏ -﹐ -﹑ -﹒ -﹔ -﹕ -﹖ -﹗ -﹙ -﹚ -﹝ -﹞ -﹡ -﹣ -! -" -# -$ -% -& -' -( -) -* -+ -, -- -. -/ -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -: -; -< -= -> -? -@ -[ -\ -] -^ -_ -` -a -b -c -d -e -f -g -h -i -j -k -l -m -n -o -p -q -r -s -t -u -v -w -x -y -z -{ -| -} -~ -。 -「 -」 -、 -・ -ッ -ー -イ -ク -シ -ス -ト -ノ -フ -ラ -ル -ン -゙ -゚ - ̄ -¥ -👍 -🔥 -😂 -😎 -... -yam -10 -2017 -12 -11 -2016 -20 -30 -15 -06 -lofter -##s -2015 -by -16 -14 -18 -13 -24 -17 -2014 -21 -##0 -22 -19 -25 -23 -com -100 -00 -05 -2013 -##a -03 -09 -08 -28 -##2 -50 -01 -04 -##1 -27 -02 -2012 -##3 -26 -##e -07 -##8 -##5 -##6 -##4 -##9 -##7 -29 -2011 -40 -##t -2010 -##o -##d -##i -2009 -##n -app -www -the -##m -31 -##c -##l -##y -##r -##g -2008 -60 -http -200 -qq -##p -80 -##f -google -pixnet -90 -cookies -tripadvisor -500 -##er -##k -35 -##h -facebook -2007 -2000 -70 -##b -of -##x -##u -45 -300 -iphone -32 -1000 -2006 -48 -ip -36 -in -38 -3d -##w -##ing -55 -ctrip -##on -##v -33 -##の -to -34 -400 -id -2005 -it -37 -windows -llc -top -99 -42 -39 -000 -led -at -##an -41 -51 -52 -46 -49 -43 -53 -44 -##z -android -58 -and -59 -2004 -56 -vr -##か -5000 -2003 -47 -blogthis -twitter -54 -##le -150 -ok -2018 -57 -75 -cn -no -ios -##in -##mm -##00 -800 -on -te -3000 -65 -2001 -360 -95 -ig -lv -120 -##ng -##を -##us -##に -pc -てす -── -600 -##te -85 -2002 -88 -##ed -html -ncc -wifi -email -64 -blog -is -##10 -##て -mail -online -##al -dvd -##ic -studio -##は -##℃ -##ia -##と -line -vip -72 -##q -98 -##ce -##en -for -##is -##ra -##es -##j -usb -net -cp -1999 -asia -4g -##cm -diy -new -3c -##お -ta -66 -language -vs -apple -tw -86 -web -##ne -ipad -62 -you -##re -101 -68 -##tion -ps -de -bt -pony -atm -##2017 -1998 -67 -##ch -ceo -##or -go -##na -av -pro -cafe -96 -pinterest -97 -63 -pixstyleme3c -##ta -more -said -##2016 -1997 -mp3 -700 -##ll -nba -jun -##20 -92 -tv -1995 -pm -61 -76 -nbsp -250 -##ie -linux -##ma -cd -110 -hd -##17 -78 -##ion -77 -6000 -am -##th -##st -94 -##se -##et -69 -180 -gdp -my -105 -81 -abc -89 -flash -79 -one -93 -1990 -1996 -##ck -gps -##も -##ly -web885 -106 -2020 -91 -##ge -4000 -1500 -xd -boss -isbn -1994 -org -##ry -me -love -##11 -0fork -73 -##12 -3g -##ter -##ar -71 -82 -##la -hotel -130 -1970 -pk -83 -87 -140 -ie -##os -##30 -##el -74 -##50 -seo -cpu -##ml -p2p -84 -may -##る -sun -tue -internet -cc -posted -youtube -##at -##ン -##man -ii -##ル -##15 -abs -nt -pdf -yahoo -ago -1980 -##it -news -mac -104 -##てす -##me -##り -java -1992 -spa -##de -##nt -hk -all -plus -la -1993 -##mb -##16 -##ve -west -##da -160 -air -##い -##ps -から -##to -1989 -logo -htc -php -https -fi -momo -##son -sat -##ke -##80 -ebd -suv -wi -day -apk -##88 -##um -mv -galaxy -wiki -or -brake -##ス -1200 -する -this -1991 -mon -##こ -❤2017 -po -##ない -javascript -life -home -june -##ss -system -900 -##ー -##0 -pp -1988 -world -fb -4k -br -##as -ic -ai -leonardo -safari -##60 -live -free -xx -wed -win7 -kiehl -##co -lg -o2o -##go -us -235 -1949 -mm -しい -vfm -kanye -##90 -##2015 -##id -jr -##ey -123 -rss -##sa -##ro -##am -##no -thu -fri -350 -##sh -##ki -103 -comments -name -##のて -##pe -##ine -max -1987 -8000 -uber -##mi -##ton -wordpress -office -1986 -1985 -##ment -107 -bd -win10 -##ld -##li -gmail -bb -dior -##rs -##ri -##rd -##ます -up -cad -##® -dr -して -read -##21 -をお -##io -##99 -url -1984 -pvc -paypal -show -policy -##40 -##ty -##18 -with -##★ -##01 -txt -102 -##ba -dna -from -post -mini -ar -taiwan -john -##ga -privacy -agoda -##13 -##ny -word -##24 -##22 -##by -##ur -##hz -1982 -##ang -265 -cookie -netscape -108 -##ka -##~ -##ad -house -share -note -ibm -code -hello -nike -sim -survey -##016 -1979 -1950 -wikia -##32 -##017 -5g -cbc -##tor -##kg -1983 -##rt -##14 -campaign -store -2500 -os -##ct -##ts -##° -170 -api -##ns -365 -excel -##な -##ao -##ら -##し -~~ -##nd -university -163 -には -518 -##70 -##ya -##il -##25 -pierre -ipo -0020 -897 -##23 -hotels -##ian -のお -125 -years -6606 -##ers -##26 -high -##day -time -##ay -bug -##line -##く -##す -##be -xp -talk2yam -yamservice -10000 -coco -##dy -sony -##ies -1978 -microsoft -david -people -##ha -1960 -instagram -intel -その -##ot -iso -1981 -##va -115 -##mo -##land -xxx -man -co -ltxsw -##ation -baby -220 -##pa -##ol -1945 -7000 -tag -450 -##ue -msn -##31 -oppo -##ト -##ca -control -##om -st -chrome -##ure -##ん -be -##き -lol -##19 -した -##bo -240 -lady -##100 -##way -##から -4600 -##ko -##do -##un -4s -corporation -168 -##ni -herme -##28 -cp -978 -##up -##06 -ui -##ds -ppt -admin -three -します -bbc -re -128 -##48 -ca -##015 -##35 -hp -##ee -tpp -##た -##ive -×× -root -##cc -##ました -##ble -##ity -adobe -park -114 -et -oled -city -##ex -##ler -##ap -china -##book -20000 -view -##ice -global -##km -your -hong -##mg -out -##ms -ng -ebay -##29 -menu -ubuntu -##cy -rom -##view -open -ktv -do -server -##lo -if -english -##ね -##5 -##oo -1600 -##02 -step1 -kong -club -135 -july -inc -1976 -mr -hi -##net -touch -##ls -##ii -michael -lcd -##05 -##33 -phone -james -step2 -1300 -ios9 -##box -dc -##2 -##ley -samsung -111 -280 -pokemon -css -##ent -##les -いいえ -##1 -s8 -atom -play -bmw -##said -sa -etf -ctrl -♥yoyo♥ -##55 -2025 -##2014 -##66 -adidas -amazon -1958 -##ber -##ner -visa -##77 -##der -1800 -connectivity -##hi -firefox -109 -118 -hr -so -style -mark -pop -ol -skip -1975 -as -##27 -##ir -##61 -190 -mba -##う -##ai -le -##ver -1900 -cafe2017 -lte -super -113 -129 -##ron -amd -like -##☆ -are -##ster -we -##sk -paul -data -international -##ft -longchamp -ssd -good -##ート -##ti -reply -##my -↓↓↓ -apr -star -##ker -source -136 -js -112 -get -force -photo -##one -126 -##2013 -##ow -link -bbs -1972 -goods -##lin -python -119 -##ip -game -##ics -##ません -blue -##● -520 -##45 -page -itunes -##03 -1955 -260 -1968 -gt -gif -618 -##ff -##47 -group -くたさい -about -bar -ganji -##nce -music -lee -not -1977 -1971 -1973 -##per -an -faq -comment -##って -days -##ock -116 -##bs -1974 -1969 -v1 -player -1956 -xbox -sql -fm -f1 -139 -##ah -210 -##lv -##mp -##000 -melody -1957 -##3 -550 -17life -199 -1966 -xml -market -##au -##71 -999 -##04 -what -gl -##95 -##age -tips -##68 -book -##ting -mysql -can -1959 -230 -##ung -wonderland -watch -10℃ -##ction -9000 -mar -mobile -1946 -1962 -article -##db -part -▲top -party -って -1967 -1964 -1948 -##07 -##ore -##op -この -dj -##78 -##38 -010 -main -225 -1965 -##ong -art -320 -ad -134 -020 -##73 -117 -pm2 -japan -228 -##08 -ts -1963 -##ica -der -sm -##36 -2019 -##wa -ct -##7 -##や -##64 -1937 -homemesh -search -##85 -##れは -##tv -##di -macbook -##9 -##くたさい -service -##♥ -type -った -750 -##ier -##si -##75 -##います -##ok -best -##ット -goris -lock -##った -cf -3m -big -##ut -ftp -carol -##vi -10 -1961 -happy -sd -##ac -122 -anti -pe -cnn -iii -1920 -138 -##ラ -1940 -esp -jan -tags -##98 -##51 -august -vol -##86 -154 -##™ -##fs -##れ -##sion -design -ac -##ム -press -jordan -ppp -that -key -check -##6 -##tt -##㎡ -1080p -##lt -power -##42 -1952 -##bc -vivi -##ック -he -133 -121 -jpg -##rry -201 -175 -3500 -1947 -nb -##ted -##rn -しています -1954 -usd -##t00 -master -##ンク -001 -model -##58 -al -##09 -1953 -##34 -ram -goo -ても -##ui -127 -1930 -red -##ary -rpg -item -##pm -##41 -270 -##za -project -##2012 -hot -td -blogabstract -##ger -##62 -650 -##44 -gr2 -##します -##m -black -electronic -nfc -year -asus -また -html5 -cindy -##hd -m3 -132 -esc -##od -booking -##53 -fed -tvb -##81 -##ina -mit -165 -##いる -chan -192 -distribution -next -になる -peter -bios -steam -cm -1941 -にも -pk10 -##ix -##65 -##91 -dec -nasa -##ana -icecat -00z -b1 -will -##46 -li -se -##ji -##み -##ard -oct -##ain -jp -##ze -##bi -cio -##56 -smart -h5 -##39 -##port -curve -vpn -##nm -##dia -utc -##あり -12345678910 -##52 -rmvb -chanel -a4 -miss -##and -##im -media -who -##63 -she -girl -5s -124 -vera -##して -class -vivo -king -##フ -##ei -national -ab -1951 -5cm -888 -145 -ipod -ap -1100 -5mm -211 -ms -2756 -##69 -mp4 -msci -##po -##89 -131 -mg -index -380 -##bit -##out -##zz -##97 -##67 -158 -apec -##8 -photoshop -opec -¥799 -ては -##96 -##tes -##ast -2g -○○ -##ール -¥2899 -##ling -##よ -##ory -1938 -##ical -kitty -content -##43 -step3 -##cn -win8 -155 -vc -1400 -iphone7 -robert -##した -tcl -137 -beauty -##87 -en -dollars -##ys -##oc -step -pay -yy -a1 -##2011 -##lly -##ks -##♪ -1939 -188 -download -1944 -sep -exe -ph -います -school -gb -center -pr -street -##board -uv -##37 -##lan -winrar -##que -##ua -##com -1942 -1936 -480 -gpu -##4 -ettoday -fu -tom -##54 -##ren -##via -149 -##72 -b2b -144 -##79 -##tch -rose -arm -mb -##49 -##ial -##nn -nvidia -step4 -mvp -00㎡ -york -156 -##イ -how -cpi -591 -2765 -gov -kg -joe -##xx -mandy -pa -##ser -copyright -fashion -1935 -don -##け -ecu -##ist -##art -erp -wap -have -##lm -talk -##ek -##ning -##if -ch -##ite -video -1943 -cs -san -iot -look -##84 -##2010 -##ku -october -##ux -trump -##hs -##ide -box -141 -first -##ins -april -##ight -##83 -185 -angel -protected -aa -151 -162 -x1 -m2 -##fe -##× -##ho -size -143 -min -ofo -fun -gomaji -ex -hdmi -food -dns -march -chris -kevin -##のか -##lla -##pp -##ec -ag -ems -6s -720p -##rm -##ham -off -##92 -asp -team -fandom -ed -299 -▌♥ -##ell -info -されています -##82 -sina -4066 -161 -##able -##ctor -330 -399 -315 -dll -rights -ltd -idc -jul -3kg -1927 -142 -ma -surface -##76 -##ク -~~~ -304 -mall -eps -146 -green -##59 -map -space -donald -v2 -sodu -##light -1931 -148 -1700 -まて -310 -reserved -htm -##han -##57 -2d -178 -mod -##ise -##tions -152 -ti -##shi -doc -1933 -icp -055 -wang -##ram -shopping -aug -##pi -##well -now -wam -b2 -からお -##hu -236 -1928 -##gb -266 -f2 -##93 -153 -mix -##ef -##uan -bwl -##plus -##res -core -##ess -tea -5℃ -hktvmall -nhk -##ate -list -##ese -301 -feb -4m -inn -ての -nov -159 -12345 -daniel -##ci -pass -##bet -##nk -coffee -202 -ssl -airbnb -##ute -fbi -woshipm -skype -ea -cg -sp -##fc -##www -yes -edge -alt -007 -##94 -fpga -##ght -##gs -iso9001 -さい -##ile -##wood -##uo -image -lin -icon -american -##em -1932 -set -says -##king -##tive -blogger -##74 -なと -256 -147 -##ox -##zy -##red -##ium -##lf -nokia -claire -##リ -##ding -november -lohas -##500 -##tic -##マ -##cs -##ある -##che -##ire -##gy -##ult -db -january -win -##カ -166 -road -ptt -##ま -##つ -198 -##fa -##mer -anna -pchome -はい -udn -ef -420 -##time -##tte -2030 -##ア -g20 -white -かかります -1929 -308 -garden -eleven -di -##おります -chen -309b -777 -172 -young -cosplay -ちてない -4500 -bat -##123 -##tra -##ては -kindle -npc -steve -etc -##ern -##| -call -xperia -ces -travel -sk -s7 -##ous -1934 -##int -みいたたけます -183 -edu -file -cho -qr -##car -##our -186 -##ant -##d -eric -1914 -rends -##jo -##する -mastercard -##2000 -kb -##min -290 -##ino -vista -##ris -##ud -jack -2400 -##set -169 -pos -1912 -##her -##ou -taipei -しく -205 -beta -##ませんか -232 -##fi -express -255 -body -##ill -aphojoy -user -december -meiki -##ick -tweet -richard -##av -##ᆫ -iphone6 -##dd -ちてすか -views -##mark -321 -pd -##00 -times -##▲ -level -##ash -10g -point -5l -##ome -208 -koreanmall -##ak -george -q2 -206 -wma -tcp -##200 -スタッフ -full -mlb -##lle -##watch -tm -run -179 -911 -smith -business -##und -1919 -color -##tal -222 -171 -##less -moon -4399 -##rl -update -pcb -shop -499 -157 -little -なし -end -##mhz -van -dsp -easy -660 -##house -##key -history -##o -oh -##001 -##hy -##web -oem -let -was -##2009 -##gg -review -##wan -182 -##°c -203 -uc -title -##val -united -233 -2021 -##ons -doi -trivago -overdope -sbs -##ance -##ち -grand -special -573032185 -imf -216 -wx17house -##so -##ーム -audi -##he -london -william -##rp -##ake -science -beach -cfa -amp -ps4 -880 -##800 -##link -##hp -crm -ferragamo -bell -make -##eng -195 -under -zh -photos -2300 -##style -##ント -via -176 -da -##gi -company -i7 -##ray -thomas -370 -ufo -i5 -##max -plc -ben -back -research -8g -173 -mike -##pc -##ッフ -september -189 -##ace -vps -february -167 -pantos -wp -lisa -1921 -★★ -jquery -night -long -offer -##berg -##news -1911 -##いて -ray -fks -wto -せます -over -164 -340 -##all -##rus -1924 -##888 -##works -blogtitle -loftpermalink -##→ -187 -martin -test -ling -km -##め -15000 -fda -v3 -##ja -##ロ -wedding -かある -outlet -family -##ea -をこ -##top -story -##ness -salvatore -##lu -204 -swift -215 -room -している -oracle -##ul -1925 -sam -b2c -week -pi -rock -##のは -##a -##けと -##ean -##300 -##gle -cctv -after -chinese -##back -powered -x2 -##tan -1918 -##nes -##イン -canon -only -181 -##zi -##las -say -##oe -184 -##sd -221 -##bot -##world -##zo -sky -made -top100 -just -1926 -pmi -802 -234 -gap -##vr -177 -les -174 -▲topoct -ball -vogue -vi -ing -ofweek -cos -##list -##ort -▲topmay -##なら -##lon -として -last -##tc -##of -##bus -##gen -real -eva -##コ -a3 -nas -##lie -##ria -##coin -##bt -▲topapr -his -212 -cat -nata -vive -health -⋯⋯ -drive -sir -▲topmar -du -cup -##カー -##ook -##よう -##sy -alex -msg -tour -しました -3ce -##word -193 -ebooks -r8 -block -318 -##より -2200 -nice -pvp -207 -months -1905 -rewards -##ther -1917 -0800 -##xi -##チ -##sc -micro -850 -gg -blogfp -op -1922 -daily -m1 -264 -true -##bb -ml -##tar -##のお -##ky -anthony -196 -253 -##yo -state -218 -##ara -##aa -##rc -##tz -##ston -より -gear -##eo -##ade -ge -see -1923 -##win -##ura -ss -heart -##den -##ita -down -##sm -el -png -2100 -610 -rakuten -whatsapp -bay -dream -add -##use -680 -311 -pad -gucci -mpv -##ode -##fo -island -▲topjun -##▼ -223 -jason -214 -chicago -##❤ -しの -##hone -io -##れる -##ことか -sogo -be2 -##ology -990 -cloud -vcd -##con -2~3 -##ford -##joy -##kb -##こさいます -##rade -but -##ach -docker -##ful -rfid -ul -##ase -hit -ford -##star -580 -##○ -11 -a2 -sdk -reading -edited -##are -cmos -##mc -238 -siri -light -##ella -##ため -bloomberg -##read -pizza -##ison -jimmy -##vm -college -node -journal -ba -18k -##play -245 -##cer -20 -magic -##yu -191 -jump -288 -tt -##ings -asr -##lia -3200 -step5 -network -##cd -mc -いします -1234 -pixstyleme -273 -##600 -2800 -money -★★★★★ -1280 -12 -430 -bl -みの -act -##tus -tokyo -##rial -##life -emba -##ae -saas -tcs -##rk -##wang -summer -##sp -ko -##ving -390 -premium -##その -netflix -##ヒ -uk -mt -##lton -right -frank -two -209 -える -##ple -##cal -021 -##んな -##sen -##ville -hold -nexus -dd -##ius -てお -##mah -##なく -tila -zero -820 -ce -##tin -resort -##ws -charles -old -p10 -5d -report -##360 -##ru -##には -bus -vans -lt -##est -pv -##レ -links -rebecca -##ツ -##dm -azure -##365 -きな -limited -bit -4gb -##mon -1910 -moto -##eam -213 -1913 -var -eos -なとの -226 -blogspot -された -699 -e3 -dos -dm -fc -##ments -##ik -##kw -boy -##bin -##ata -960 -er -##せ -219 -##vin -##tu -##ula -194 -##∥ -station -##ろ -##ature -835 -files -zara -hdr -top10 -nature -950 -magazine -s6 -marriott -##シ -avira -case -##っと -tab -##ran -tony -##home -oculus -im -##ral -jean -saint -cry -307 -rosie -##force -##ini -ice -##bert -のある -##nder -##mber -pet -2600 -##◆ -plurk -▲topdec -##sis -00kg -▲topnov -720 -##ence -tim -##ω -##nc -##ても -##name -log -ips -great -ikea -malaysia -unix -##イト -3600 -##ncy -##nie -12000 -akb48 -##ye -##oid -404 -##chi -##いた -oa -xuehai -##1000 -##orm -##rf -275 -さん -##ware -##リー -980 -ho -##pro -text -##era -560 -bob -227 -##ub -##2008 -8891 -scp -avi -##zen -2022 -mi -wu -museum -qvod -apache -lake -jcb -▲topaug -★★★ -ni -##hr -hill -302 -ne -weibo -490 -ruby -##ーシ -##ヶ -##row -4d -▲topjul -iv -##ish -github -306 -mate -312 -##スト -##lot -##ane -andrew -のハイト -##tina -t1 -rf -ed2k -##vel -##900 -way -final -りの -ns -5a -705 -197 -##メ -sweet -bytes -##ene -▲topjan -231 -##cker -##2007 -##px -100g -topapp -229 -helpapp -rs -low -14k -g4g -care -630 -ldquo -あり -##fork -leave -rm -edition -##gan -##zon -##qq -▲topsep -##google -##ism -gold -224 -explorer -##zer -toyota -category -select -visual -##labels -restaurant -##md -posts -s1 -##ico -もっと -angelababy -123456 -217 -sports -s3 -mbc -1915 -してくたさい -shell -x86 -candy -##new -kbs -face -xl -470 -##here -4a -swissinfo -v8 -▲topfeb -dram -##ual -##vice -3a -##wer -sport -q1 -ios10 -public -int -card -##c -ep -au -rt -##れた -1080 -bill -##mll -kim -30 -460 -wan -##uk -##ミ -x3 -298 -0t -scott -##ming -239 -e5 -##3d -h7n9 -worldcat -brown -##あります -##vo -##led -##580 -##ax -249 -410 -##ert -paris -##~6 -polo -925 -##lr -599 -##ナ -capital -##hing -bank -cv -1g -##chat -##s -##たい -adc -##ule -2m -##e -digital -hotmail -268 -##pad -870 -bbq -quot -##ring -before -wali -##まて -mcu -2k -2b -という -costco -316 -north -333 -switch -##city -##p -philips -##mann -management -panasonic -##cl -##vd -##ping -##rge -alice -##lk -##ましょう -css3 -##ney -vision -alpha -##ular -##400 -##tter -lz -にお -##ありません -mode -gre -1916 -pci -##tm -237 -1~2 -##yan -##そ -について -##let -##キ -work -war -coach -ah -mary -##ᅵ -huang -##pt -a8 -pt -follow -##berry -1895 -##ew -a5 -ghost -##ション -##wn -##og -south -##code -girls -##rid -action -villa -git -r11 -table -games -##cket -error -##anonymoussaid -##ag -here -##ame -##gc -qa -##■ -##lis -gmp -##gin -vmalife -##cher -yu -wedding -##tis -demo -dragon -530 -soho -social -bye -##rant -river -orz -acer -325 -##↑ -##ース -##ats -261 -del -##ven -440 -ups -##ように -##ター -305 -value -macd -yougou -##dn -661 -##ano -ll -##urt -##rent -continue -script -##wen -##ect -paper -263 -319 -shift -##chel -##フト -##cat -258 -x5 -fox -243 -##さん -car -aaa -##blog -loading -##yn -##tp -kuso -799 -si -sns -イカせるテンマ -ヒンクテンマ3 -rmb -vdc -forest -central -prime -help -ultra -##rmb -##ような -241 -square -688 -##しい -のないフロクに -##field -##reen -##ors -##ju -c1 -start -510 -##air -##map -cdn -##wo -cba -stephen -m8 -100km -##get -opera -##base -##ood -vsa -com™ -##aw -##ail -251 -なのて -count -t2 -##ᅡ -##een -2700 -hop -##gp -vsc -tree -##eg -##ose -816 -285 -##ories -##shop -alphago -v4 -1909 -simon -##ᆼ -fluke62max -zip -スホンサー -##sta -louis -cr -bas -##~10 -bc -##yer -hadoop -##ube -##wi -1906 -0755 -hola -##low -place -centre -5v -d3 -##fer -252 -##750 -##media -281 -540 -0l -exchange -262 -series -##ハー -##san -eb -##bank -##k -q3 -##nge -##mail -take -##lp -259 -1888 -client -east -cache -event -vincent -##ールを -きを -##nse -sui -855 -adchoice -##и -##stry -##なたの -246 -##zone -ga -apps -sea -##ab -248 -cisco -##タ -##rner -kymco -##care -dha -##pu -##yi -minkoff -royal -p1 -への -annie -269 -collection -kpi -playstation -257 -になります -866 -bh -##bar -queen -505 -radio -1904 -andy -armani -##xy -manager -iherb -##ery -##share -spring -raid -johnson -1908 -##ob -volvo -hall -##ball -v6 -our -taylor -##hk -bi -242 -##cp -kate -bo -water -technology -##rie -サイトは -277 -##ona -##sl -hpv -303 -gtx -hip -rdquo -jayz -stone -##lex -##rum -namespace -##やり -620 -##ale -##atic -des -##erson -##ql -##ves -##type -enter -##この -##てきます -d2 -##168 -##mix -##bian -との -a9 -jj -ky -##lc -access -movie -##hc -リストに -tower -##ration -##mit -ます -##nch -ua -tel -prefix -##o2 -1907 -##point -1901 -ott -~10 -##http -##ury -baidu -##ink -member -##logy -bigbang -nownews -##js -##shot -##tb -##こと -247 -eba -##tics -##lus -ける -v5 -spark -##ama -there -##ions -god -##lls -##down -hiv -##ress -burberry -day2 -##kv -◆◆ -jeff -related -film -edit -joseph -283 -##ark -cx -32gb -order -g9 -30000 -##ans -##tty -s5 -##bee -かあります -thread -xr -buy -sh -005 -land -spotify -mx -##ari -276 -##verse -×email -sf -why -##ことて -244 -7headlines -nego -sunny -dom -exo -401 -666 -positioning -fit -rgb -##tton -278 -kiss -alexa -adam -lp -みリストを -##g -mp -##ties -##llow -amy -##du -np -002 -institute -271 -##rth -##lar -2345 -590 -##des -sidebar -15 -imax -site -##cky -##kit -##ime -##009 -season -323 -##fun -##ンター -##ひ -gogoro -a7 -pu -lily -fire -twd600 -##ッセーシを -いて -##vis -30ml -##cture -##をお -information -##オ -close -friday -##くれる -yi -nick -てすか -##tta -##tel -6500 -##lock -cbd -economy -254 -かお -267 -tinker -double -375 -8gb -voice -##app -oops -channel -today -985 -##right -raw -xyz -##+ -jim -edm -##cent -7500 -supreme -814 -ds -##its -##asia -dropbox -##てすか -##tti -books -272 -100ml -##tle -##ller -##ken -##more -##boy -sex -309 -##dom -t3 -##ider -##なります -##unch -1903 -810 -feel -5500 -##かった -##put -により -s2 -mo -##gh -men -ka -amoled -div -##tr -##n1 -port -howard -##tags -ken -dnf -##nus -adsense -##а -ide -##へ -buff -thunder -##town -##ique -has -##body -auto -pin -##erry -tee -てした -295 -number -##the -##013 -object -psp -cool -udnbkk -16gb -##mic -miui -##tro -most -r2 -##alk -##nity -1880 -±0 -##いました -428 -s4 -law -version -##oa -n1 -sgs -docomo -##tf -##ack -henry -fc2 -##ded -##sco -##014 -##rite -286 -0mm -linkedin -##ada -##now -wii -##ndy -ucbug -##◎ -sputniknews -legalminer -##ika -##xp -2gb -##bu -q10 -oo -b6 -come -##rman -cheese -ming -maker -##gm -nikon -##fig -ppi -kelly -##ります -jchere -てきます -ted -md -003 -fgo -tech -##tto -dan -soc -##gl -##len -hair -earth -640 -521 -img -##pper -##a1 -##てきる -##ロク -acca -##ition -##ference -suite -##ig -outlook -##mond -##cation -398 -##pr -279 -101vip -358 -##999 -282 -64gb -3800 -345 -airport -##over -284 -##おり -jones -##ith -lab -##su -##いるのて -co2 -town -piece -##llo -no1 -vmware -24h -##qi -focus -reader -##admin -##ora -tb -false -##log -1898 -know -lan -838 -##ces -f4 -##ume -motel -stop -##oper -na -flickr -netcomponents -##af -##─ -pose -williams -local -##ound -##cg -##site -##iko -いお -274 -5m -gsm -con -##ath -1902 -friends -##hip -cell -317 -##rey -780 -cream -##cks -012 -##dp -facebooktwitterpinterestgoogle -sso -324 -shtml -song -swiss -##mw -##キンク -lumia -xdd -string -tiffany -522 -marc -られた -insee -russell -sc -dell -##ations -ok -camera -289 -##vs -##flow -##late -classic -287 -##nter -stay -g1 -mtv -512 -##ever -##lab -##nger -qe -sata -ryan -d1 -50ml -cms -##cing -su -292 -3300 -editor -296 -##nap -security -sunday -association -##ens -##700 -##bra -acg -##かり -sofascore -とは -mkv -##ign -jonathan -gary -build -labels -##oto -tesla -moba -qi -gohappy -general -ajax -1024 -##かる -サイト -society -##test -##urs -wps -fedora -##ich -mozilla -328 -##480 -##dr -usa -urn -##lina -##r -grace -##die -##try -##ader -1250 -##なり -elle -570 -##chen -##ᆯ -price -##ten -uhz -##ough -eq -##hen -states -push -session -balance -wow -506 -##cus -##py -when -##ward -##ep -34e -wong -library -prada -##サイト -##cle -running -##ree -313 -ck -date -q4 -##ctive -##ool -##> -mk -##ira -##163 -388 -die -secret -rq -dota -buffet -は1ヶ -e6 -##ez -pan -368 -ha -##card -##cha -2a -##さ -alan -day3 -eye -f3 -##end -france -keep -adi -rna -tvbs -##ala -solo -nova -##え -##tail -##ょう -support -##ries -##なる -##ved -base -copy -iis -fps -##ways -hero -hgih -profile -fish -mu -ssh -entertainment -chang -##wd -click -cake -##ond -pre -##tom -kic -pixel -##ov -##fl -product -6a -##pd -dear -##gate -es -yumi -audio -##² -##sky -echo -bin -where -##ture -329 -##ape -find -sap -isis -##なと -nand -##101 -##load -##ream -band -a6 -525 -never -##post -festival -50cm -##we -555 -guide -314 -zenfone -##ike -335 -gd -forum -jessica -strong -alexander -##ould -software -allen -##ious -program -360° -else -lohasthree -##gar -することかてきます -please -##れます -rc -##ggle -##ric -bim -50000 -##own -eclipse -355 -brian -3ds -##side -061 -361 -##other -##ける -##tech -##ator -485 -engine -##ged -##t -plaza -##fit -cia -ngo -westbrook -shi -tbs -50mm -##みませんか -sci -291 -reuters -##ily -contextlink -##hn -af -##cil -bridge -very -##cel -1890 -cambridge -##ize -15g -##aid -##data -790 -frm -##head -award -butler -##sun -meta -##mar -america -ps3 -puma -pmid -##すか -lc -670 -kitchen -##lic -オーフン5 -きなしソフトサーヒス -そして -day1 -future -★★★★ -##text -##page -##rris -pm1 -##ket -fans -##っています -1001 -christian -bot -kids -trackback -##hai -c3 -display -##hl -n2 -1896 -idea -さんも -##sent -airmail -##ug -##men -pwm -けます -028 -##lution -369 -852 -awards -schemas -354 -asics -wikipedia -font -##tional -##vy -c2 -293 -##れている -##dget -##ein -っている -contact -pepper -スキル -339 -##~5 -294 -##uel -##ument -730 -##hang -みてす -q5 -##sue -rain -##ndi -wei -swatch -##cept -わせ -331 -popular -##ste -##tag -p2 -501 -trc -1899 -##west -##live -justin -honda -ping -messenger -##rap -v9 -543 -##とは -unity -appqq -はすへて -025 -leo -##tone -##テ -##ass -uniqlo -##010 -502 -her -jane -memory -moneydj -##tical -human -12306 -していると -##m2 -coc -miacare -##mn -tmt -##core -vim -kk -##may -fan -target -use -too -338 -435 -2050 -867 -737 -fast -##2c -services -##ope -omega -energy -##わ -pinkoi -1a -##なから -##rain -jackson -##ement -##シャンルの -374 -366 -そんな -p9 -rd -##ᆨ -1111 -##tier -##vic -zone -##│ -385 -690 -dl -isofix -cpa -m4 -322 -kimi -めて -davis -##lay -lulu -##uck -050 -weeks -qs -##hop -920 -##n -ae -##ear -~5 -eia -405 -##fly -korea -jpeg -boost -##ship -small -##リア -1860 -eur -297 -425 -valley -##iel -simple -##ude -rn -k2 -##ena -されます -non -patrick -しているから -##ナー -feed -5757 -30g -process -well -qqmei -##thing -they -aws -lu -pink -##ters -##kin -または -board -##vertisement -wine -##ien -unicode -##dge -r1 -359 -##tant -いを -##twitter -##3c -cool1 -される -##れて -##l -isp -##012 -standard -45㎡2 -402 -##150 -matt -##fu -326 -##iner -googlemsn -pixnetfacebookyahoo -##ラン -x7 -886 -##uce -メーカー -sao -##ev -##きました -##file -9678 -403 -xddd -shirt -6l -##rio -##hat -3mm -givenchy -ya -bang -##lio -monday -crystal -ロクイン -##abc -336 -head -890 -ubuntuforumwikilinuxpastechat -##vc -##~20 -##rity -cnc -7866 -ipv6 -null -1897 -##ost -yang -imsean -tiger -##fet -##ンス -352 -##= -dji -327 -ji -maria -##come -##んて -foundation -3100 -##beth -##なった -1m -601 -active -##aft -##don -3p -sr -349 -emma -##khz -living -415 -353 -1889 -341 -709 -457 -sas -x6 -##face -pptv -x4 -##mate -han -sophie -##jing -337 -fifa -##mand -other -sale -inwedding -##gn -てきちゃいます -##mmy -##pmlast -bad -nana -nbc -してみてくたさいね -なとはお -##wu -##かあります -##あ -note7 -single -##340 -せからこ -してくたさい♪この -しにはとんとんワークケートを -するとあなたにもっとマッチした -ならワークケートへ -もみつかっちゃうかも -ワークケートの -##bel -window -##dio -##ht -union -age -382 -14 -##ivity -##y -コメント -domain -neo -##isa -##lter -5k -f5 -steven -##cts -powerpoint -tft -self -g2 -ft -##テル -zol -##act -mwc -381 -343 -もう -nbapop -408 -てある -eds -ace -##room -previous -author -tomtom -il -##ets -hu -financial -☆☆☆ -っています -bp -5t -chi -1gb -##hg -fairmont -cross -008 -gay -h2 -function -##けて -356 -also -1b -625 -##ータ -##raph -1894 -3~5 -##ils -i3 -334 -avenue -##host -による -##bon -##tsu -message -navigation -50g -fintech -h6 -##ことを -8cm -##ject -##vas -##firm -credit -##wf -xxxx -form -##nor -##space -huawei -plan -json -sbl -##dc -machine -921 -392 -wish -##120 -##sol -windows7 -edward -##ために -development -washington -##nsis -lo -818 -##sio -##ym -##bor -planet -##~8 -##wt -ieee -gpa -##めて -camp -ann -gm -##tw -##oka -connect -##rss -##work -##atus -wall -chicken -soul -2mm -##times -fa -##ather -##cord -009 -##eep -hitachi -gui -harry -##pan -e1 -disney -##press -##ーション -wind -386 -frigidaire -##tl -liu -hsu -332 -basic -von -ev -いた -てきる -スホンサーサイト -learning -##ull -expedia -archives -change -##wei -santa -cut -ins -6gb -turbo -brand -cf1 -508 -004 -return -747 -##rip -h1 -##nis -##をこ -128gb -##にお -3t -application -しており -emc -rx -##oon -384 -quick -412 -15058 -wilson -wing -chapter -##bug -beyond -##cms -##dar -##oh -zoom -e2 -trip -sb -##nba -rcep -342 -aspx -ci -080 -gc -gnu -める -##count -advanced -dance -dv -##url -##ging -367 -8591 -am09 -shadow -battle -346 -##i -##cia -##という -emily -##のてす -##tation -host -ff -techorz -sars -##mini -##mporary -##ering -nc -4200 -798 -##next -cma -##mbps -##gas -##ift -##dot -##ィ -455 -##~17 -amana -##りの -426 -##ros -ir -00㎡1 -##eet -##ible -##↓ -710 -ˋ▽ˊ -##aka -dcs -iq -##v -l1 -##lor -maggie -##011 -##iu -588 -##~1 -830 -##gt -1tb -articles -create -##burg -##iki -database -fantasy -##rex -##cam -dlc -dean -##you -hard -path -gaming -victoria -maps -cb -##lee -##itor -overchicstoretvhome -systems -##xt -416 -p3 -sarah -760 -##nan -407 -486 -x9 -install -second -626 -##ann -##ph -##rcle -##nic -860 -##nar -ec -##とう -768 -metro -chocolate -##rian -~4 -##table -##しています -skin -##sn -395 -mountain -##0mm -inparadise -6m -7x24 -ib -4800 -##jia -eeworld -creative -g5 -g3 -357 -parker -ecfa -village -からの -18000 -sylvia -サーヒス -hbl -##ques -##onsored -##x2 -##きます -##v4 -##tein -ie6 -383 -##stack -389 -ver -##ads -##baby -sound -bbe -##110 -##lone -##uid -ads -022 -gundam -351 -thinkpad -006 -scrum -match -##ave -mems -##470 -##oy -##なりました -##talk -glass -lamigo -span -##eme -job -##a5 -jay -wade -kde -498 -##lace -ocean -tvg -##covery -##r3 -##ners -##rea -junior -think -##aine -cover -##ision -##sia -↓↓ -##bow -msi -413 -458 -406 -##love -711 -801 -soft -z2 -##pl -456 -1840 -mobil -mind -##uy -427 -nginx -##oi -めた -##rr -6221 -##mple -##sson -##ーシてす -371 -##nts -91tv -comhd -crv3000 -##uard -1868 -397 -deep -lost -field -gallery -##bia -rate -spf -redis -traction -930 -icloud -011 -なら -fe -jose -372 -##tory -into -sohu -fx -899 -379 -kicstart2 -##hia -すく -##~3 -##sit -ra -24 -##walk -##xure -500g -##pact -pacific -xa -natural -carlo -##250 -##walker -1850 -##can -cto -gigi -516 -##サー -pen -##hoo -ob -matlab -##b -##yy -13913459 -##iti -mango -##bbs -sense -c5 -oxford -##ニア -walker -jennifer -##ola -course -##bre -701 -##pus -##rder -lucky -075 -##ぁ -ivy -なお -##nia -sotheby -side -##ugh -joy -##orage -##ush -##bat -##dt -364 -r9 -##2d -##gio -511 -country -wear -##lax -##~7 -##moon -393 -seven -study -411 -348 -lonzo -8k -##ェ -evolution -##イフ -##kk -gs -kd -##レス -arduino -344 -b12 -##lux -arpg -##rdon -cook -##x5 -dark -five -##als -##ida -とても -sign -362 -##ちの -something -20mm -##nda -387 -##posted -fresh -tf -1870 -422 -cam -##mine -##skip -##form -##ssion -education -394 -##tee -dyson -stage -##jie -want -##night -epson -pack -あります -##ppy -テリヘル -##█ -wd -##eh -##rence -left -##lvin -golden -mhz -discovery -##trix -##n2 -loft -##uch -##dra -##sse -speed -~1 -1mdb -sorry -welcome -##urn -wave -gaga -##lmer -teddy -##160 -トラックハック -せよ -611 -##f2016 -378 -rp -##sha -rar -##あなたに -##きた -840 -holiday -##ュー -373 -074 -##vg -##nos -##rail -gartner -gi -6p -##dium -kit -488 -b3 -eco -##ろう -20g -sean -##stone -autocad -nu -##np -f16 -write -029 -m5 -##ias -images -atp -##dk -fsm -504 -1350 -ve -52kb -##xxx -##のに -##cake -414 -unit -lim -ru -1v -##ification -published -angela -16g -analytics -ak -##q -##nel -gmt -##icon -again -##₂ -##bby -ios11 -445 -かこさいます -waze -いてす -##ハ -9985 -##ust -##ティー -framework -##007 -iptv -delete -52sykb -cl -wwdc -027 -30cm -##fw -##ての -1389 -##xon -brandt -##ses -##dragon -tc -vetements -anne -monte -modern -official -##へて -##ere -##nne -##oud -もちろん -50 -etnews -##a2 -##graphy -421 -863 -##ちゃん -444 -##rtex -##てお -l2 -##gma -mount -ccd -たと -archive -morning -tan -ddos -e7 -##ホ -day4 -##ウ -gis -453 -its -495 -factory -bruce -pg -##ito -ってくたさい -guest -cdma -##lling -536 -n3 -しかし -3~4 -mega -eyes -ro -13 -women -dac -church -##jun -singapore -##facebook -6991 -starbucks -##tos -##stin -##shine -zen -##mu -tina -20℃ -1893 -##たけて -503 -465 -request -##gence -qt -##っ -1886 -347 -363 -q7 -##zzi -diary -##tore -409 -##ead -468 -cst -##osa -canada -agent -va -##jiang -##ちは -##ーク -##lam -sg -##nix -##sday -##よって -g6 -##master -bing -##zl -charlie -16 -8mm -nb40 -##ーン -thai -##ルフ -ln284ct -##itz -##2f -bonnie -##food -##lent -originals -##stro -##lts -418 -∟∣ -##bscribe -children -ntd -yesstyle -##かも -hmv -##tment -d5 -2cm -arts -sms -##pn -##я -##いい -topios9 -539 -lifestyle -virtual -##ague -xz -##deo -muji -024 -unt -##nnis -##ᅩ -faq1 -1884 -396 -##ette -fly -64㎡ -はしめまして -441 -curry -##pop -のこ -release -##← -##◆◆ -##cast -073 -ありな -500ml -##ews -5c -##stle -ios7 -##ima -787 -dog -lenovo -##r4 -roger -013 -cbs -vornado -100m -417 -##desk -##クok -##ald -1867 -9595 -2900 -##van -oil -##x -some -break -common -##jy -##lines -g7 -twice -419 -ella -nano -belle -にこ -##mes -##self -##note -jb -##ことかてきます -benz -##との -##ova -451 -save -##wing -##ますのて -kai -りは -##hua -##rect -rainer -##unge -448 -##0m -adsl -##かな -guestname -##uma -##kins -##zu -tokichoi -##price -county -##med -##mus -rmk -391 -address -vm -えて -openload -##group -##hin -##iginal -amg -urban -##oz -jobs -emi -##public -beautiful -##sch -album -##dden -##bell -jerry -works -hostel -miller -##drive -##rmin -##10 -376 -boot -828 -##370 -##fx -##cm~ -1885 -##nome -##ctionary -##oman -##lish -##cr -##hm -433 -##how -432 -francis -xi -c919 -b5 -evernote -##uc -vga -##3000 -coupe -##urg -##cca -##uality -019 -6g -れる -multi -##また -##ett -em -hey -##ani -##tax -##rma -inside -than -740 -leonnhurt -##jin -ict -れた -bird -notes -200mm -くの -##dical -##lli -result -442 -iu -ee -438 -smap -gopro -##last -yin -pure -998 -32g -けた -5kg -##dan -##rame -mama -##oot -bean -marketing -##hur -2l -bella -sync -xuite -##ground -515 -discuz -##getrelax -##ince -##bay -##5s -cj -##イス -gmat -apt -##pass -jing -##rix -c4 -rich -##とても -niusnews -##ello -bag -770 -##eting -##mobile -18 -culture -015 -##のてすか -377 -1020 -area -##ience -616 -details -gp -universal -silver -dit -はお -private -ddd -u11 -kanshu -##ified -fung -##nny -dx -##520 -tai -475 -023 -##fr -##lean -3s -##pin -429 -##rin -25000 -ly -rick -##bility -usb3 -banner -##baru -##gion -metal -dt -vdf -1871 -karl -qualcomm -bear -1010 -oldid -ian -jo -##tors -population -##ernel -1882 -mmorpg -##mv -##bike -603 -##© -ww -friend -##ager -exhibition -##del -##pods -fpx -structure -##free -##tings -kl -##rley -##copyright -##mma -california -3400 -orange -yoga -4l -canmake -honey -##anda -##コメント -595 -nikkie -##ルハイト -dhl -publishing -##mall -##gnet -20cm -513 -##クセス -##┅ -e88 -970 -##dog -fishbase -##! -##" -### -##$ -##% -##& -##' -##( -##) -##* -##+ -##, -##- -##. -##/ -##: -##; -##< -##= -##> -##? -##@ -##[ -##\ -##] -##^ -##_ -##{ -##| -##} -##~ -##£ -##¤ -##¥ -##§ -##« -##± -##³ -##µ -##· -##¹ -##º -##» -##¼ -##ß -##æ -##÷ -##ø -##đ -##ŋ -##ɔ -##ə -##ɡ -##ʰ -##ˇ -##ˈ -##ˊ -##ˋ -##ˍ -##ː -##˙ -##˚ -##ˢ -##α -##β -##γ -##δ -##ε -##η -##θ -##ι -##κ -##λ -##μ -##ν -##ο -##π -##ρ -##ς -##σ -##τ -##υ -##φ -##χ -##ψ -##б -##в -##г -##д -##е -##ж -##з -##к -##л -##м -##н -##о -##п -##р -##с -##т -##у -##ф -##х -##ц -##ч -##ш -##ы -##ь -##і -##ا -##ب -##ة -##ت -##د -##ر -##س -##ع -##ل -##م -##ن -##ه -##و -##ي -##۩ -##ก -##ง -##น -##ม -##ย -##ร -##อ -##า -##เ -##๑ -##་ -##ღ -##ᄀ -##ᄁ -##ᄂ -##ᄃ -##ᄅ -##ᄆ -##ᄇ -##ᄈ -##ᄉ -##ᄋ -##ᄌ -##ᄎ -##ᄏ -##ᄐ -##ᄑ -##ᄒ -##ᅢ -##ᅣ -##ᅥ -##ᅦ -##ᅧ -##ᅨ -##ᅪ -##ᅬ -##ᅭ -##ᅮ -##ᅯ -##ᅲ -##ᅳ -##ᅴ -##ᆷ -##ᆸ -##ᆺ -##ᆻ -##ᗜ -##ᵃ -##ᵉ -##ᵍ -##ᵏ -##ᵐ -##ᵒ -##ᵘ -##‖ -##„ -##† -##• -##‥ -##‧ -##
 -##‰ -##′ -##″ -##‹ -##› -##※ -##‿ -##⁄ -##ⁱ -##⁺ -##ⁿ -##₁ -##₃ -##₄ -##€ -##№ -##ⅰ -##ⅱ -##ⅲ -##ⅳ -##ⅴ -##↔ -##↗ -##↘ -##⇒ -##∀ -##− -##∕ -##∙ -##√ -##∞ -##∟ -##∠ -##∣ -##∩ -##∮ -##∶ -##∼ -##∽ -##≈ -##≒ -##≡ -##≤ -##≥ -##≦ -##≧ -##≪ -##≫ -##⊙ -##⋅ -##⋈ -##⋯ -##⌒ -##① -##② -##③ -##④ -##⑤ -##⑥ -##⑦ -##⑧ -##⑨ -##⑩ -##⑴ -##⑵ -##⑶ -##⑷ -##⑸ -##⒈ -##⒉ -##⒊ -##⒋ -##ⓒ -##ⓔ -##ⓘ -##━ -##┃ -##┆ -##┊ -##┌ -##└ -##├ -##┣ -##═ -##║ -##╚ -##╞ -##╠ -##╭ -##╮ -##╯ -##╰ -##╱ -##╳ -##▂ -##▃ -##▅ -##▇ -##▉ -##▋ -##▌ -##▍ -##▎ -##□ -##▪ -##▫ -##▬ -##△ -##▶ -##► -##▽ -##◇ -##◕ -##◠ -##◢ -##◤ -##☀ -##☕ -##☞ -##☺ -##☼ -##♀ -##♂ -##♠ -##♡ -##♣ -##♦ -##♫ -##♬ -##✈ -##✔ -##✕ -##✖ -##✦ -##✨ -##✪ -##✰ -##✿ -##❀ -##➜ -##➤ -##⦿ -##、 -##。 -##〃 -##々 -##〇 -##〈 -##〉 -##《 -##》 -##「 -##」 -##『 -##』 -##【 -##】 -##〓 -##〔 -##〕 -##〖 -##〗 -##〜 -##〝 -##〞 -##ぃ -##ぇ -##ぬ -##ふ -##ほ -##む -##ゃ -##ゅ -##ゆ -##ょ -##゜ -##ゝ -##ァ -##ゥ -##エ -##ォ -##ケ -##サ -##セ -##ソ -##ッ -##ニ -##ヌ -##ネ -##ノ -##ヘ -##モ -##ャ -##ヤ -##ュ -##ユ -##ョ -##ヨ -##ワ -##ヲ -##・ -##ヽ -##ㄅ -##ㄆ -##ㄇ -##ㄉ -##ㄋ -##ㄌ -##ㄍ -##ㄎ -##ㄏ -##ㄒ -##ㄚ -##ㄛ -##ㄞ -##ㄟ -##ㄢ -##ㄤ -##ㄥ -##ㄧ -##ㄨ -##ㆍ -##㈦ -##㊣ -##㗎 -##一 -##丁 -##七 -##万 -##丈 -##三 -##上 -##下 -##不 -##与 -##丐 -##丑 -##专 -##且 -##丕 -##世 -##丘 -##丙 -##业 -##丛 -##东 -##丝 -##丞 -##丟 -##両 -##丢 -##两 -##严 -##並 -##丧 -##丨 -##个 -##丫 -##中 -##丰 -##串 -##临 -##丶 -##丸 -##丹 -##为 -##主 -##丼 -##丽 -##举 -##丿 -##乂 -##乃 -##久 -##么 -##义 -##之 -##乌 -##乍 -##乎 -##乏 -##乐 -##乒 -##乓 -##乔 -##乖 -##乗 -##乘 -##乙 -##乜 -##九 -##乞 -##也 -##习 -##乡 -##书 -##乩 -##买 -##乱 -##乳 -##乾 -##亀 -##亂 -##了 -##予 -##争 -##事 -##二 -##于 -##亏 -##云 -##互 -##五 -##井 -##亘 -##亙 -##亚 -##些 -##亜 -##亞 -##亟 -##亡 -##亢 -##交 -##亥 -##亦 -##产 -##亨 -##亩 -##享 -##京 -##亭 -##亮 -##亲 -##亳 -##亵 -##人 -##亿 -##什 -##仁 -##仃 -##仄 -##仅 -##仆 -##仇 -##今 -##介 -##仍 -##从 -##仏 -##仑 -##仓 -##仔 -##仕 -##他 -##仗 -##付 -##仙 -##仝 -##仞 -##仟 -##代 -##令 -##以 -##仨 -##仪 -##们 -##仮 -##仰 -##仲 -##件 -##价 -##任 -##份 -##仿 -##企 -##伉 -##伊 -##伍 -##伎 -##伏 -##伐 -##休 -##伕 -##众 -##优 -##伙 -##会 -##伝 -##伞 -##伟 -##传 -##伢 -##伤 -##伦 -##伪 -##伫 -##伯 -##估 -##伴 -##伶 -##伸 -##伺 -##似 -##伽 -##佃 -##但 -##佇 -##佈 -##位 -##低 -##住 -##佐 -##佑 -##体 -##佔 -##何 -##佗 -##佘 -##余 -##佚 -##佛 -##作 -##佝 -##佞 -##佟 -##你 -##佢 -##佣 -##佤 -##佥 -##佩 -##佬 -##佯 -##佰 -##佳 -##併 -##佶 -##佻 -##佼 -##使 -##侃 -##侄 -##來 -##侈 -##例 -##侍 -##侏 -##侑 -##侖 -##侗 -##供 -##依 -##侠 -##価 -##侣 -##侥 -##侦 -##侧 -##侨 -##侬 -##侮 -##侯 -##侵 -##侶 -##侷 -##便 -##係 -##促 -##俄 -##俊 -##俎 -##俏 -##俐 -##俑 -##俗 -##俘 -##俚 -##保 -##俞 -##俟 -##俠 -##信 -##俨 -##俩 -##俪 -##俬 -##俭 -##修 -##俯 -##俱 -##俳 -##俸 -##俺 -##俾 -##倆 -##倉 -##個 -##倌 -##倍 -##倏 -##們 -##倒 -##倔 -##倖 -##倘 -##候 -##倚 -##倜 -##借 -##倡 -##値 -##倦 -##倩 -##倪 -##倫 -##倬 -##倭 -##倶 -##债 -##值 -##倾 -##偃 -##假 -##偈 -##偉 -##偌 -##偎 -##偏 -##偕 -##做 -##停 -##健 -##側 -##偵 -##偶 -##偷 -##偻 -##偽 -##偿 -##傀 -##傅 -##傍 -##傑 -##傘 -##備 -##傚 -##傢 -##傣 -##傥 -##储 -##傩 -##催 -##傭 -##傲 -##傳 -##債 -##傷 -##傻 -##傾 -##僅 -##働 -##像 -##僑 -##僕 -##僖 -##僚 -##僥 -##僧 -##僭 -##僮 -##僱 -##僵 -##價 -##僻 -##儀 -##儂 -##億 -##儆 -##儉 -##儋 -##儒 -##儕 -##儘 -##償 -##儡 -##優 -##儲 -##儷 -##儼 -##儿 -##兀 -##允 -##元 -##兄 -##充 -##兆 -##兇 -##先 -##光 -##克 -##兌 -##免 -##児 -##兑 -##兒 -##兔 -##兖 -##党 -##兜 -##兢 -##入 -##內 -##全 -##兩 -##八 -##公 -##六 -##兮 -##兰 -##共 -##兲 -##关 -##兴 -##兵 -##其 -##具 -##典 -##兹 -##养 -##兼 -##兽 -##冀 -##内 -##円 -##冇 -##冈 -##冉 -##冊 -##册 -##再 -##冏 -##冒 -##冕 -##冗 -##写 -##军 -##农 -##冠 -##冢 -##冤 -##冥 -##冨 -##冪 -##冬 -##冯 -##冰 -##冲 -##决 -##况 -##冶 -##冷 -##冻 -##冼 -##冽 -##冾 -##净 -##凄 -##准 -##凇 -##凈 -##凉 -##凋 -##凌 -##凍 -##减 -##凑 -##凛 -##凜 -##凝 -##几 -##凡 -##凤 -##処 -##凪 -##凭 -##凯 -##凰 -##凱 -##凳 -##凶 -##凸 -##凹 -##出 -##击 -##函 -##凿 -##刀 -##刁 -##刃 -##分 -##切 -##刈 -##刊 -##刍 -##刎 -##刑 -##划 -##列 -##刘 -##则 -##刚 -##创 -##初 -##删 -##判 -##別 -##刨 -##利 -##刪 -##别 -##刮 -##到 -##制 -##刷 -##券 -##刹 -##刺 -##刻 -##刽 -##剁 -##剂 -##剃 -##則 -##剉 -##削 -##剋 -##剌 -##前 -##剎 -##剐 -##剑 -##剔 -##剖 -##剛 -##剜 -##剝 -##剣 -##剤 -##剥 -##剧 -##剩 -##剪 -##副 -##割 -##創 -##剷 -##剽 -##剿 -##劃 -##劇 -##劈 -##劉 -##劊 -##劍 -##劏 -##劑 -##力 -##劝 -##办 -##功 -##加 -##务 -##劣 -##动 -##助 -##努 -##劫 -##劭 -##励 -##劲 -##劳 -##労 -##劵 -##効 -##劾 -##势 -##勁 -##勃 -##勇 -##勉 -##勋 -##勐 -##勒 -##動 -##勖 -##勘 -##務 -##勛 -##勝 -##勞 -##募 -##勢 -##勤 -##勧 -##勳 -##勵 -##勸 -##勺 -##勻 -##勾 -##勿 -##匀 -##包 -##匆 -##匈 -##匍 -##匐 -##匕 -##化 -##北 -##匙 -##匝 -##匠 -##匡 -##匣 -##匪 -##匮 -##匯 -##匱 -##匹 -##区 -##医 -##匾 -##匿 -##區 -##十 -##千 -##卅 -##升 -##午 -##卉 -##半 -##卍 -##华 -##协 -##卑 -##卒 -##卓 -##協 -##单 -##卖 -##南 -##単 -##博 -##卜 -##卞 -##卟 -##占 -##卡 -##卢 -##卤 -##卦 -##卧 -##卫 -##卮 -##卯 -##印 -##危 -##即 -##却 -##卵 -##卷 -##卸 -##卻 -##卿 -##厂 -##厄 -##厅 -##历 -##厉 -##压 -##厌 -##厕 -##厘 -##厚 -##厝 -##原 -##厢 -##厥 -##厦 -##厨 -##厩 -##厭 -##厮 -##厲 -##厳 -##去 -##县 -##叁 -##参 -##參 -##又 -##叉 -##及 -##友 -##双 -##反 -##収 -##发 -##叔 -##取 -##受 -##变 -##叙 -##叛 -##叟 -##叠 -##叡 -##叢 -##口 -##古 -##句 -##另 -##叨 -##叩 -##只 -##叫 -##召 -##叭 -##叮 -##可 -##台 -##叱 -##史 -##右 -##叵 -##叶 -##号 -##司 -##叹 -##叻 -##叼 -##叽 -##吁 -##吃 -##各 -##吆 -##合 -##吉 -##吊 -##吋 -##同 -##名 -##后 -##吏 -##吐 -##向 -##吒 -##吓 -##吕 -##吖 -##吗 -##君 -##吝 -##吞 -##吟 -##吠 -##吡 -##否 -##吧 -##吨 -##吩 -##含 -##听 -##吭 -##吮 -##启 -##吱 -##吳 -##吴 -##吵 -##吶 -##吸 -##吹 -##吻 -##吼 -##吽 -##吾 -##呀 -##呂 -##呃 -##呆 -##呈 -##告 -##呋 -##呎 -##呐 -##呓 -##呕 -##呗 -##员 -##呛 -##呜 -##呢 -##呤 -##呦 -##周 -##呱 -##呲 -##味 -##呵 -##呷 -##呸 -##呻 -##呼 -##命 -##咀 -##咁 -##咂 -##咄 -##咆 -##咋 -##和 -##咎 -##咏 -##咐 -##咒 -##咔 -##咕 -##咖 -##咗 -##咘 -##咙 -##咚 -##咛 -##咣 -##咤 -##咦 -##咧 -##咨 -##咩 -##咪 -##咫 -##咬 -##咭 -##咯 -##咱 -##咲 -##咳 -##咸 -##咻 -##咽 -##咿 -##哀 -##品 -##哂 -##哄 -##哆 -##哇 -##哈 -##哉 -##哋 -##哌 -##响 -##哎 -##哏 -##哐 -##哑 -##哒 -##哔 -##哗 -##哟 -##員 -##哥 -##哦 -##哧 -##哨 -##哩 -##哪 -##哭 -##哮 -##哲 -##哺 -##哼 -##哽 -##唁 -##唄 -##唆 -##唇 -##唉 -##唏 -##唐 -##唑 -##唔 -##唠 -##唤 -##唧 -##唬 -##售 -##唯 -##唰 -##唱 -##唳 -##唷 -##唸 -##唾 -##啃 -##啄 -##商 -##啉 -##啊 -##問 -##啓 -##啕 -##啖 -##啜 -##啞 -##啟 -##啡 -##啤 -##啥 -##啦 -##啧 -##啪 -##啫 -##啬 -##啮 -##啰 -##啱 -##啲 -##啵 -##啶 -##啷 -##啸 -##啻 -##啼 -##啾 -##喀 -##喂 -##喃 -##善 -##喆 -##喇 -##喉 -##喊 -##喋 -##喎 -##喏 -##喔 -##喘 -##喙 -##喚 -##喜 -##喝 -##喟 -##喧 -##喪 -##喫 -##喬 -##單 -##喰 -##喱 -##喲 -##喳 -##喵 -##営 -##喷 -##喹 -##喺 -##喻 -##喽 -##嗅 -##嗆 -##嗇 -##嗎 -##嗑 -##嗒 -##嗓 -##嗔 -##嗖 -##嗚 -##嗜 -##嗝 -##嗟 -##嗡 -##嗣 -##嗤 -##嗦 -##嗨 -##嗪 -##嗬 -##嗯 -##嗰 -##嗲 -##嗳 -##嗶 -##嗷 -##嗽 -##嘀 -##嘅 -##嘆 -##嘈 -##嘉 -##嘌 -##嘍 -##嘎 -##嘔 -##嘖 -##嘗 -##嘘 -##嘚 -##嘛 -##嘜 -##嘞 -##嘟 -##嘢 -##嘣 -##嘤 -##嘧 -##嘩 -##嘭 -##嘮 -##嘯 -##嘰 -##嘱 -##嘲 -##嘴 -##嘶 -##嘸 -##嘹 -##嘻 -##嘿 -##噁 -##噌 -##噎 -##噓 -##噔 -##噗 -##噙 -##噜 -##噠 -##噢 -##噤 -##器 -##噩 -##噪 -##噬 -##噱 -##噴 -##噶 -##噸 -##噹 -##噻 -##噼 -##嚀 -##嚇 -##嚎 -##嚏 -##嚐 -##嚓 -##嚕 -##嚟 -##嚣 -##嚥 -##嚨 -##嚮 -##嚴 -##嚷 -##嚼 -##囂 -##囉 -##囊 -##囍 -##囑 -##囔 -##囗 -##囚 -##四 -##囝 -##回 -##囟 -##因 -##囡 -##团 -##団 -##囤 -##囧 -##囪 -##囫 -##园 -##困 -##囱 -##囲 -##図 -##围 -##囹 -##固 -##国 -##图 -##囿 -##圃 -##圄 -##圆 -##圈 -##國 -##圍 -##圏 -##園 -##圓 -##圖 -##團 -##圜 -##土 -##圣 -##圧 -##在 -##圩 -##圭 -##地 -##圳 -##场 -##圻 -##圾 -##址 -##坂 -##均 -##坊 -##坍 -##坎 -##坏 -##坐 -##坑 -##块 -##坚 -##坛 -##坝 -##坞 -##坟 -##坠 -##坡 -##坤 -##坦 -##坨 -##坪 -##坯 -##坳 -##坵 -##坷 -##垂 -##垃 -##垄 -##型 -##垒 -##垚 -##垛 -##垠 -##垢 -##垣 -##垦 -##垩 -##垫 -##垭 -##垮 -##垵 -##埂 -##埃 -##埋 -##城 -##埔 -##埕 -##埗 -##域 -##埠 -##埤 -##埵 -##執 -##埸 -##培 -##基 -##埼 -##堀 -##堂 -##堃 -##堅 -##堆 -##堇 -##堑 -##堕 -##堙 -##堡 -##堤 -##堪 -##堯 -##堰 -##報 -##場 -##堵 -##堺 -##堿 -##塊 -##塌 -##塑 -##塔 -##塗 -##塘 -##塚 -##塞 -##塢 -##塩 -##填 -##塬 -##塭 -##塵 -##塾 -##墀 -##境 -##墅 -##墉 -##墊 -##墒 -##墓 -##増 -##墘 -##墙 -##墜 -##增 -##墟 -##墨 -##墩 -##墮 -##墳 -##墻 -##墾 -##壁 -##壅 -##壆 -##壇 -##壊 -##壑 -##壓 -##壕 -##壘 -##壞 -##壟 -##壢 -##壤 -##壩 -##士 -##壬 -##壮 -##壯 -##声 -##売 -##壳 -##壶 -##壹 -##壺 -##壽 -##处 -##备 -##変 -##复 -##夏 -##夔 -##夕 -##外 -##夙 -##多 -##夜 -##够 -##夠 -##夢 -##夥 -##大 -##天 -##太 -##夫 -##夭 -##央 -##夯 -##失 -##头 -##夷 -##夸 -##夹 -##夺 -##夾 -##奂 -##奄 -##奇 -##奈 -##奉 -##奋 -##奎 -##奏 -##奐 -##契 -##奔 -##奕 -##奖 -##套 -##奘 -##奚 -##奠 -##奢 -##奥 -##奧 -##奪 -##奬 -##奮 -##女 -##奴 -##奶 -##奸 -##她 -##好 -##如 -##妃 -##妄 -##妆 -##妇 -##妈 -##妊 -##妍 -##妒 -##妓 -##妖 -##妘 -##妙 -##妝 -##妞 -##妣 -##妤 -##妥 -##妨 -##妩 -##妪 -##妮 -##妲 -##妳 -##妹 -##妻 -##妾 -##姆 -##姉 -##姊 -##始 -##姍 -##姐 -##姑 -##姒 -##姓 -##委 -##姗 -##姚 -##姜 -##姝 -##姣 -##姥 -##姦 -##姨 -##姪 -##姫 -##姬 -##姹 -##姻 -##姿 -##威 -##娃 -##娄 -##娅 -##娆 -##娇 -##娉 -##娑 -##娓 -##娘 -##娛 -##娜 -##娟 -##娠 -##娣 -##娥 -##娩 -##娱 -##娲 -##娴 -##娶 -##娼 -##婀 -##婁 -##婆 -##婉 -##婊 -##婕 -##婚 -##婢 -##婦 -##婧 -##婪 -##婭 -##婴 -##婵 -##婶 -##婷 -##婺 -##婿 -##媒 -##媚 -##媛 -##媞 -##媧 -##媲 -##媳 -##媽 -##媾 -##嫁 -##嫂 -##嫉 -##嫌 -##嫑 -##嫔 -##嫖 -##嫘 -##嫚 -##嫡 -##嫣 -##嫦 -##嫩 -##嫲 -##嫵 -##嫻 -##嬅 -##嬉 -##嬌 -##嬗 -##嬛 -##嬢 -##嬤 -##嬪 -##嬰 -##嬴 -##嬷 -##嬸 -##嬿 -##孀 -##孃 -##子 -##孑 -##孔 -##孕 -##孖 -##字 -##存 -##孙 -##孚 -##孛 -##孜 -##孝 -##孟 -##孢 -##季 -##孤 -##学 -##孩 -##孪 -##孫 -##孬 -##孰 -##孱 -##孳 -##孵 -##學 -##孺 -##孽 -##孿 -##宁 -##它 -##宅 -##宇 -##守 -##安 -##宋 -##完 -##宏 -##宓 -##宕 -##宗 -##官 -##宙 -##定 -##宛 -##宜 -##宝 -##实 -##実 -##宠 -##审 -##客 -##宣 -##室 -##宥 -##宦 -##宪 -##宫 -##宮 -##宰 -##害 -##宴 -##宵 -##家 -##宸 -##容 -##宽 -##宾 -##宿 -##寂 -##寄 -##寅 -##密 -##寇 -##富 -##寐 -##寒 -##寓 -##寛 -##寝 -##寞 -##察 -##寡 -##寢 -##寥 -##實 -##寧 -##寨 -##審 -##寫 -##寬 -##寮 -##寰 -##寵 -##寶 -##寸 -##对 -##寺 -##寻 -##导 -##対 -##寿 -##封 -##専 -##射 -##将 -##將 -##專 -##尉 -##尊 -##尋 -##對 -##導 -##小 -##少 -##尔 -##尕 -##尖 -##尘 -##尚 -##尝 -##尤 -##尧 -##尬 -##就 -##尴 -##尷 -##尸 -##尹 -##尺 -##尻 -##尼 -##尽 -##尾 -##尿 -##局 -##屁 -##层 -##屄 -##居 -##屆 -##屈 -##屉 -##届 -##屋 -##屌 -##屍 -##屎 -##屏 -##屐 -##屑 -##展 -##屜 -##属 -##屠 -##屡 -##屢 -##層 -##履 -##屬 -##屯 -##山 -##屹 -##屿 -##岀 -##岁 -##岂 -##岌 -##岐 -##岑 -##岔 -##岖 -##岗 -##岘 -##岙 -##岚 -##岛 -##岡 -##岩 -##岫 -##岬 -##岭 -##岱 -##岳 -##岷 -##岸 -##峇 -##峋 -##峒 -##峙 -##峡 -##峤 -##峥 -##峦 -##峨 -##峪 -##峭 -##峯 -##峰 -##峴 -##島 -##峻 -##峽 -##崁 -##崂 -##崆 -##崇 -##崎 -##崑 -##崔 -##崖 -##崗 -##崙 -##崛 -##崧 -##崩 -##崭 -##崴 -##崽 -##嵇 -##嵊 -##嵋 -##嵌 -##嵐 -##嵘 -##嵩 -##嵬 -##嵯 -##嶂 -##嶄 -##嶇 -##嶋 -##嶙 -##嶺 -##嶼 -##嶽 -##巅 -##巍 -##巒 -##巔 -##巖 -##川 -##州 -##巡 -##巢 -##工 -##左 -##巧 -##巨 -##巩 -##巫 -##差 -##己 -##已 -##巳 -##巴 -##巷 -##巻 -##巽 -##巾 -##巿 -##币 -##市 -##布 -##帅 -##帆 -##师 -##希 -##帐 -##帑 -##帕 -##帖 -##帘 -##帚 -##帛 -##帜 -##帝 -##帥 -##带 -##帧 -##師 -##席 -##帮 -##帯 -##帰 -##帳 -##帶 -##帷 -##常 -##帼 -##帽 -##幀 -##幂 -##幄 -##幅 -##幌 -##幔 -##幕 -##幟 -##幡 -##幢 -##幣 -##幫 -##干 -##平 -##年 -##并 -##幸 -##幹 -##幺 -##幻 -##幼 -##幽 -##幾 -##广 -##庁 -##広 -##庄 -##庆 -##庇 -##床 -##序 -##庐 -##库 -##应 -##底 -##庖 -##店 -##庙 -##庚 -##府 -##庞 -##废 -##庠 -##度 -##座 -##庫 -##庭 -##庵 -##庶 -##康 -##庸 -##庹 -##庾 -##廁 -##廂 -##廃 -##廈 -##廉 -##廊 -##廓 -##廖 -##廚 -##廝 -##廟 -##廠 -##廢 -##廣 -##廬 -##廳 -##延 -##廷 -##建 -##廿 -##开 -##弁 -##异 -##弃 -##弄 -##弈 -##弊 -##弋 -##式 -##弑 -##弒 -##弓 -##弔 -##引 -##弗 -##弘 -##弛 -##弟 -##张 -##弥 -##弦 -##弧 -##弩 -##弭 -##弯 -##弱 -##張 -##強 -##弹 -##强 -##弼 -##弾 -##彅 -##彆 -##彈 -##彌 -##彎 -##归 -##当 -##录 -##彗 -##彙 -##彝 -##形 -##彤 -##彥 -##彦 -##彧 -##彩 -##彪 -##彫 -##彬 -##彭 -##彰 -##影 -##彷 -##役 -##彻 -##彼 -##彿 -##往 -##征 -##径 -##待 -##徇 -##很 -##徉 -##徊 -##律 -##後 -##徐 -##徑 -##徒 -##従 -##徕 -##得 -##徘 -##徙 -##徜 -##從 -##徠 -##御 -##徨 -##復 -##循 -##徬 -##微 -##徳 -##徴 -##徵 -##德 -##徹 -##徼 -##徽 -##心 -##必 -##忆 -##忌 -##忍 -##忏 -##忐 -##忑 -##忒 -##忖 -##志 -##忘 -##忙 -##応 -##忠 -##忡 -##忤 -##忧 -##忪 -##快 -##忱 -##念 -##忻 -##忽 -##忿 -##怀 -##态 -##怂 -##怅 -##怆 -##怎 -##怏 -##怒 -##怔 -##怕 -##怖 -##怙 -##怜 -##思 -##怠 -##怡 -##急 -##怦 -##性 -##怨 -##怪 -##怯 -##怵 -##总 -##怼 -##恁 -##恃 -##恆 -##恋 -##恍 -##恐 -##恒 -##恕 -##恙 -##恚 -##恢 -##恣 -##恤 -##恥 -##恨 -##恩 -##恪 -##恫 -##恬 -##恭 -##息 -##恰 -##恳 -##恵 -##恶 -##恸 -##恺 -##恻 -##恼 -##恿 -##悄 -##悅 -##悉 -##悌 -##悍 -##悔 -##悖 -##悚 -##悟 -##悠 -##患 -##悦 -##您 -##悩 -##悪 -##悬 -##悯 -##悱 -##悲 -##悴 -##悵 -##悶 -##悸 -##悻 -##悼 -##悽 -##情 -##惆 -##惇 -##惊 -##惋 -##惑 -##惕 -##惘 -##惚 -##惜 -##惟 -##惠 -##惡 -##惦 -##惧 -##惨 -##惩 -##惫 -##惬 -##惭 -##惮 -##惯 -##惰 -##惱 -##想 -##惴 -##惶 -##惹 -##惺 -##愁 -##愆 -##愈 -##愉 -##愍 -##意 -##愕 -##愚 -##愛 -##愜 -##感 -##愣 -##愤 -##愧 -##愫 -##愷 -##愿 -##慄 -##慈 -##態 -##慌 -##慎 -##慑 -##慕 -##慘 -##慚 -##慟 -##慢 -##慣 -##慧 -##慨 -##慫 -##慮 -##慰 -##慳 -##慵 -##慶 -##慷 -##慾 -##憂 -##憊 -##憋 -##憎 -##憐 -##憑 -##憔 -##憚 -##憤 -##憧 -##憨 -##憩 -##憫 -##憬 -##憲 -##憶 -##憾 -##懂 -##懇 -##懈 -##應 -##懊 -##懋 -##懑 -##懒 -##懦 -##懲 -##懵 -##懶 -##懷 -##懸 -##懺 -##懼 -##懾 -##懿 -##戀 -##戈 -##戊 -##戌 -##戍 -##戎 -##戏 -##成 -##我 -##戒 -##戕 -##或 -##战 -##戚 -##戛 -##戟 -##戡 -##戦 -##截 -##戬 -##戮 -##戰 -##戲 -##戳 -##戴 -##戶 -##户 -##戸 -##戻 -##戾 -##房 -##所 -##扁 -##扇 -##扈 -##扉 -##手 -##才 -##扎 -##扑 -##扒 -##打 -##扔 -##払 -##托 -##扛 -##扣 -##扦 -##执 -##扩 -##扪 -##扫 -##扬 -##扭 -##扮 -##扯 -##扰 -##扱 -##扳 -##扶 -##批 -##扼 -##找 -##承 -##技 -##抄 -##抉 -##把 -##抑 -##抒 -##抓 -##投 -##抖 -##抗 -##折 -##抚 -##抛 -##抜 -##択 -##抟 -##抠 -##抡 -##抢 -##护 -##报 -##抨 -##披 -##抬 -##抱 -##抵 -##抹 -##押 -##抽 -##抿 -##拂 -##拄 -##担 -##拆 -##拇 -##拈 -##拉 -##拋 -##拌 -##拍 -##拎 -##拐 -##拒 -##拓 -##拔 -##拖 -##拗 -##拘 -##拙 -##拚 -##招 -##拜 -##拟 -##拡 -##拢 -##拣 -##拥 -##拦 -##拧 -##拨 -##择 -##括 -##拭 -##拮 -##拯 -##拱 -##拳 -##拴 -##拷 -##拼 -##拽 -##拾 -##拿 -##持 -##挂 -##指 -##挈 -##按 -##挎 -##挑 -##挖 -##挙 -##挚 -##挛 -##挝 -##挞 -##挟 -##挠 -##挡 -##挣 -##挤 -##挥 -##挨 -##挪 -##挫 -##振 -##挲 -##挹 -##挺 -##挽 -##挾 -##捂 -##捅 -##捆 -##捉 -##捋 -##捌 -##捍 -##捎 -##捏 -##捐 -##捕 -##捞 -##损 -##捡 -##换 -##捣 -##捧 -##捨 -##捩 -##据 -##捱 -##捲 -##捶 -##捷 -##捺 -##捻 -##掀 -##掂 -##掃 -##掇 -##授 -##掉 -##掌 -##掏 -##掐 -##排 -##掖 -##掘 -##掙 -##掛 -##掠 -##採 -##探 -##掣 -##接 -##控 -##推 -##掩 -##措 -##掬 -##掰 -##掲 -##掳 -##掴 -##掷 -##掸 -##掺 -##揀 -##揃 -##揄 -##揆 -##揉 -##揍 -##描 -##提 -##插 -##揖 -##揚 -##換 -##握 -##揣 -##揩 -##揪 -##揭 -##揮 -##援 -##揶 -##揸 -##揹 -##揽 -##搀 -##搁 -##搂 -##搅 -##損 -##搏 -##搐 -##搓 -##搔 -##搖 -##搗 -##搜 -##搞 -##搡 -##搪 -##搬 -##搭 -##搵 -##搶 -##携 -##搽 -##摀 -##摁 -##摄 -##摆 -##摇 -##摈 -##摊 -##摒 -##摔 -##摘 -##摞 -##摟 -##摧 -##摩 -##摯 -##摳 -##摸 -##摹 -##摺 -##摻 -##撂 -##撃 -##撅 -##撇 -##撈 -##撐 -##撑 -##撒 -##撓 -##撕 -##撚 -##撞 -##撤 -##撥 -##撩 -##撫 -##撬 -##播 -##撮 -##撰 -##撲 -##撵 -##撷 -##撸 -##撻 -##撼 -##撿 -##擀 -##擁 -##擂 -##擄 -##擅 -##擇 -##擊 -##擋 -##操 -##擎 -##擒 -##擔 -##擘 -##據 -##擞 -##擠 -##擡 -##擢 -##擦 -##擬 -##擰 -##擱 -##擲 -##擴 -##擷 -##擺 -##擼 -##擾 -##攀 -##攏 -##攒 -##攔 -##攘 -##攙 -##攜 -##攝 -##攞 -##攢 -##攣 -##攤 -##攥 -##攪 -##攫 -##攬 -##支 -##收 -##攸 -##改 -##攻 -##放 -##政 -##故 -##效 -##敌 -##敍 -##敎 -##敏 -##救 -##敕 -##敖 -##敗 -##敘 -##教 -##敛 -##敝 -##敞 -##敢 -##散 -##敦 -##敬 -##数 -##敲 -##整 -##敵 -##敷 -##數 -##斂 -##斃 -##文 -##斋 -##斌 -##斎 -##斐 -##斑 -##斓 -##斗 -##料 -##斛 -##斜 -##斟 -##斡 -##斤 -##斥 -##斧 -##斩 -##斫 -##斬 -##断 -##斯 -##新 -##斷 -##方 -##於 -##施 -##旁 -##旃 -##旅 -##旋 -##旌 -##旎 -##族 -##旖 -##旗 -##无 -##既 -##日 -##旦 -##旧 -##旨 -##早 -##旬 -##旭 -##旮 -##旱 -##时 -##旷 -##旺 -##旻 -##昀 -##昂 -##昆 -##昇 -##昉 -##昊 -##昌 -##明 -##昏 -##易 -##昔 -##昕 -##昙 -##星 -##映 -##春 -##昧 -##昨 -##昭 -##是 -##昱 -##昴 -##昵 -##昶 -##昼 -##显 -##晁 -##時 -##晃 -##晉 -##晋 -##晌 -##晏 -##晒 -##晓 -##晔 -##晕 -##晖 -##晗 -##晚 -##晝 -##晞 -##晟 -##晤 -##晦 -##晨 -##晩 -##普 -##景 -##晰 -##晴 -##晶 -##晷 -##智 -##晾 -##暂 -##暄 -##暇 -##暈 -##暉 -##暌 -##暐 -##暑 -##暖 -##暗 -##暝 -##暢 -##暧 -##暨 -##暫 -##暮 -##暱 -##暴 -##暸 -##暹 -##曄 -##曆 -##曇 -##曉 -##曖 -##曙 -##曜 -##曝 -##曠 -##曦 -##曬 -##曰 -##曲 -##曳 -##更 -##書 -##曹 -##曼 -##曾 -##替 -##最 -##會 -##月 -##有 -##朋 -##服 -##朐 -##朔 -##朕 -##朗 -##望 -##朝 -##期 -##朦 -##朧 -##木 -##未 -##末 -##本 -##札 -##朮 -##术 -##朱 -##朴 -##朵 -##机 -##朽 -##杀 -##杂 -##权 -##杆 -##杈 -##杉 -##李 -##杏 -##材 -##村 -##杓 -##杖 -##杜 -##杞 -##束 -##杠 -##条 -##来 -##杨 -##杭 -##杯 -##杰 -##東 -##杳 -##杵 -##杷 -##杼 -##松 -##板 -##极 -##构 -##枇 -##枉 -##枋 -##析 -##枕 -##林 -##枚 -##果 -##枝 -##枢 -##枣 -##枪 -##枫 -##枭 -##枯 -##枰 -##枱 -##枳 -##架 -##枷 -##枸 -##柄 -##柏 -##某 -##柑 -##柒 -##染 -##柔 -##柘 -##柚 -##柜 -##柞 -##柠 -##柢 -##查 -##柩 -##柬 -##柯 -##柱 -##柳 -##柴 -##柵 -##査 -##柿 -##栀 -##栃 -##栄 -##栅 -##标 -##栈 -##栉 -##栋 -##栎 -##栏 -##树 -##栓 -##栖 -##栗 -##校 -##栩 -##株 -##样 -##核 -##根 -##格 -##栽 -##栾 -##桀 -##桁 -##桂 -##桃 -##桅 -##框 -##案 -##桉 -##桌 -##桎 -##桐 -##桑 -##桓 -##桔 -##桜 -##桠 -##桡 -##桢 -##档 -##桥 -##桦 -##桧 -##桨 -##桩 -##桶 -##桿 -##梁 -##梅 -##梆 -##梏 -##梓 -##梗 -##條 -##梟 -##梢 -##梦 -##梧 -##梨 -##梭 -##梯 -##械 -##梳 -##梵 -##梶 -##检 -##棂 -##棄 -##棉 -##棋 -##棍 -##棒 -##棕 -##棗 -##棘 -##棚 -##棟 -##棠 -##棣 -##棧 -##森 -##棱 -##棲 -##棵 -##棹 -##棺 -##椁 -##椅 -##椋 -##植 -##椎 -##椒 -##検 -##椪 -##椭 -##椰 -##椹 -##椽 -##椿 -##楂 -##楊 -##楓 -##楔 -##楚 -##楝 -##楞 -##楠 -##楣 -##楨 -##楫 -##業 -##楮 -##極 -##楷 -##楸 -##楹 -##楼 -##楽 -##概 -##榄 -##榆 -##榈 -##榉 -##榔 -##榕 -##榖 -##榛 -##榜 -##榨 -##榫 -##榭 -##榮 -##榱 -##榴 -##榷 -##榻 -##槁 -##槃 -##構 -##槌 -##槍 -##槎 -##槐 -##槓 -##様 -##槛 -##槟 -##槤 -##槭 -##槲 -##槳 -##槻 -##槽 -##槿 -##樁 -##樂 -##樊 -##樑 -##樓 -##標 -##樞 -##樟 -##模 -##樣 -##権 -##横 -##樫 -##樯 -##樱 -##樵 -##樸 -##樹 -##樺 -##樽 -##樾 -##橄 -##橇 -##橋 -##橐 -##橘 -##橙 -##機 -##橡 -##橢 -##橫 -##橱 -##橹 -##橼 -##檀 -##檄 -##檎 -##檐 -##檔 -##檗 -##檜 -##檢 -##檬 -##檯 -##檳 -##檸 -##檻 -##櫃 -##櫚 -##櫛 -##櫥 -##櫸 -##櫻 -##欄 -##權 -##欒 -##欖 -##欠 -##次 -##欢 -##欣 -##欧 -##欲 -##欸 -##欺 -##欽 -##款 -##歆 -##歇 -##歉 -##歌 -##歎 -##歐 -##歓 -##歙 -##歛 -##歡 -##止 -##正 -##此 -##步 -##武 -##歧 -##歩 -##歪 -##歯 -##歲 -##歳 -##歴 -##歷 -##歸 -##歹 -##死 -##歼 -##殁 -##殃 -##殆 -##殇 -##殉 -##殊 -##残 -##殒 -##殓 -##殖 -##殘 -##殞 -##殡 -##殤 -##殭 -##殯 -##殲 -##殴 -##段 -##殷 -##殺 -##殼 -##殿 -##毀 -##毁 -##毂 -##毅 -##毆 -##毋 -##母 -##毎 -##每 -##毒 -##毓 -##比 -##毕 -##毗 -##毘 -##毙 -##毛 -##毡 -##毫 -##毯 -##毽 -##氈 -##氏 -##氐 -##民 -##氓 -##气 -##氖 -##気 -##氙 -##氛 -##氟 -##氡 -##氢 -##氣 -##氤 -##氦 -##氧 -##氨 -##氪 -##氫 -##氮 -##氯 -##氰 -##氲 -##水 -##氷 -##永 -##氹 -##氾 -##汀 -##汁 -##求 -##汆 -##汇 -##汉 -##汎 -##汐 -##汕 -##汗 -##汙 -##汛 -##汝 -##汞 -##江 -##池 -##污 -##汤 -##汨 -##汩 -##汪 -##汰 -##汲 -##汴 -##汶 -##汹 -##決 -##汽 -##汾 -##沁 -##沂 -##沃 -##沅 -##沈 -##沉 -##沌 -##沏 -##沐 -##沒 -##沓 -##沖 -##沙 -##沛 -##沟 -##没 -##沢 -##沣 -##沥 -##沦 -##沧 -##沪 -##沫 -##沭 -##沮 -##沱 -##河 -##沸 -##油 -##治 -##沼 -##沽 -##沾 -##沿 -##況 -##泄 -##泉 -##泊 -##泌 -##泓 -##法 -##泗 -##泛 -##泞 -##泠 -##泡 -##波 -##泣 -##泥 -##注 -##泪 -##泫 -##泮 -##泯 -##泰 -##泱 -##泳 -##泵 -##泷 -##泸 -##泻 -##泼 -##泽 -##泾 -##洁 -##洄 -##洋 -##洒 -##洗 -##洙 -##洛 -##洞 -##津 -##洩 -##洪 -##洮 -##洱 -##洲 -##洵 -##洶 -##洸 -##洹 -##活 -##洼 -##洽 -##派 -##流 -##浃 -##浄 -##浅 -##浆 -##浇 -##浊 -##测 -##济 -##浏 -##浑 -##浒 -##浓 -##浔 -##浙 -##浚 -##浜 -##浣 -##浦 -##浩 -##浪 -##浬 -##浮 -##浯 -##浴 -##海 -##浸 -##涂 -##涅 -##涇 -##消 -##涉 -##涌 -##涎 -##涓 -##涔 -##涕 -##涙 -##涛 -##涝 -##涞 -##涟 -##涠 -##涡 -##涣 -##涤 -##润 -##涧 -##涨 -##涩 -##涪 -##涮 -##涯 -##液 -##涵 -##涸 -##涼 -##涿 -##淀 -##淄 -##淅 -##淆 -##淇 -##淋 -##淌 -##淑 -##淒 -##淖 -##淘 -##淙 -##淚 -##淞 -##淡 -##淤 -##淦 -##淨 -##淩 -##淪 -##淫 -##淬 -##淮 -##深 -##淳 -##淵 -##混 -##淹 -##淺 -##添 -##淼 -##清 -##済 -##渉 -##渊 -##渋 -##渍 -##渎 -##渐 -##渔 -##渗 -##渙 -##渚 -##減 -##渝 -##渠 -##渡 -##渣 -##渤 -##渥 -##渦 -##温 -##測 -##渭 -##港 -##渲 -##渴 -##游 -##渺 -##渾 -##湃 -##湄 -##湊 -##湍 -##湖 -##湘 -##湛 -##湟 -##湧 -##湫 -##湮 -##湯 -##湳 -##湾 -##湿 -##満 -##溃 -##溅 -##溉 -##溏 -##源 -##準 -##溜 -##溝 -##溟 -##溢 -##溥 -##溧 -##溪 -##溫 -##溯 -##溱 -##溴 -##溶 -##溺 -##溼 -##滁 -##滂 -##滄 -##滅 -##滇 -##滋 -##滌 -##滑 -##滓 -##滔 -##滕 -##滙 -##滚 -##滝 -##滞 -##滟 -##满 -##滢 -##滤 -##滥 -##滦 -##滨 -##滩 -##滬 -##滯 -##滲 -##滴 -##滷 -##滸 -##滾 -##滿 -##漁 -##漂 -##漆 -##漉 -##漏 -##漓 -##演 -##漕 -##漠 -##漢 -##漣 -##漩 -##漪 -##漫 -##漬 -##漯 -##漱 -##漲 -##漳 -##漸 -##漾 -##漿 -##潆 -##潇 -##潋 -##潍 -##潑 -##潔 -##潘 -##潛 -##潜 -##潞 -##潟 -##潢 -##潤 -##潦 -##潧 -##潭 -##潮 -##潰 -##潴 -##潸 -##潺 -##潼 -##澀 -##澄 -##澆 -##澈 -##澍 -##澎 -##澗 -##澜 -##澡 -##澤 -##澧 -##澱 -##澳 -##澹 -##激 -##濁 -##濂 -##濃 -##濑 -##濒 -##濕 -##濘 -##濛 -##濟 -##濠 -##濡 -##濤 -##濫 -##濬 -##濮 -##濯 -##濱 -##濺 -##濾 -##瀅 -##瀆 -##瀉 -##瀋 -##瀏 -##瀑 -##瀕 -##瀘 -##瀚 -##瀛 -##瀝 -##瀞 -##瀟 -##瀧 -##瀨 -##瀬 -##瀰 -##瀾 -##灌 -##灏 -##灑 -##灘 -##灝 -##灞 -##灣 -##火 -##灬 -##灭 -##灯 -##灰 -##灵 -##灶 -##灸 -##灼 -##災 -##灾 -##灿 -##炀 -##炁 -##炅 -##炉 -##炊 -##炎 -##炒 -##炔 -##炕 -##炖 -##炙 -##炜 -##炫 -##炬 -##炭 -##炮 -##炯 -##炳 -##炷 -##炸 -##点 -##為 -##炼 -##炽 -##烁 -##烂 -##烃 -##烈 -##烊 -##烏 -##烘 -##烙 -##烛 -##烟 -##烤 -##烦 -##烧 -##烨 -##烩 -##烫 -##烬 -##热 -##烯 -##烷 -##烹 -##烽 -##焉 -##焊 -##焕 -##焖 -##焗 -##焘 -##焙 -##焚 -##焜 -##無 -##焦 -##焯 -##焰 -##焱 -##然 -##焼 -##煅 -##煉 -##煊 -##煌 -##煎 -##煒 -##煖 -##煙 -##煜 -##煞 -##煤 -##煥 -##煦 -##照 -##煨 -##煩 -##煮 -##煲 -##煸 -##煽 -##熄 -##熊 -##熏 -##熒 -##熔 -##熙 -##熟 -##熠 -##熨 -##熬 -##熱 -##熵 -##熹 -##熾 -##燁 -##燃 -##燄 -##燈 -##燉 -##燊 -##燎 -##燒 -##燔 -##燕 -##燙 -##燜 -##營 -##燥 -##燦 -##燧 -##燭 -##燮 -##燴 -##燻 -##燼 -##燿 -##爆 -##爍 -##爐 -##爛 -##爪 -##爬 -##爭 -##爰 -##爱 -##爲 -##爵 -##父 -##爷 -##爸 -##爹 -##爺 -##爻 -##爽 -##爾 -##牆 -##片 -##版 -##牌 -##牍 -##牒 -##牙 -##牛 -##牝 -##牟 -##牠 -##牡 -##牢 -##牦 -##牧 -##物 -##牯 -##牲 -##牴 -##牵 -##特 -##牺 -##牽 -##犀 -##犁 -##犄 -##犊 -##犍 -##犒 -##犢 -##犧 -##犬 -##犯 -##状 -##犷 -##犸 -##犹 -##狀 -##狂 -##狄 -##狈 -##狎 -##狐 -##狒 -##狗 -##狙 -##狞 -##狠 -##狡 -##狩 -##独 -##狭 -##狮 -##狰 -##狱 -##狸 -##狹 -##狼 -##狽 -##猎 -##猕 -##猖 -##猗 -##猙 -##猛 -##猜 -##猝 -##猥 -##猩 -##猪 -##猫 -##猬 -##献 -##猴 -##猶 -##猷 -##猾 -##猿 -##獄 -##獅 -##獎 -##獐 -##獒 -##獗 -##獠 -##獣 -##獨 -##獭 -##獰 -##獲 -##獵 -##獷 -##獸 -##獺 -##獻 -##獼 -##獾 -##玄 -##率 -##玉 -##王 -##玑 -##玖 -##玛 -##玟 -##玠 -##玥 -##玩 -##玫 -##玮 -##环 -##现 -##玲 -##玳 -##玷 -##玺 -##玻 -##珀 -##珂 -##珅 -##珈 -##珉 -##珊 -##珍 -##珏 -##珐 -##珑 -##珙 -##珞 -##珠 -##珣 -##珥 -##珩 -##珪 -##班 -##珮 -##珲 -##珺 -##現 -##球 -##琅 -##理 -##琇 -##琉 -##琊 -##琍 -##琏 -##琐 -##琛 -##琢 -##琥 -##琦 -##琨 -##琪 -##琬 -##琮 -##琰 -##琲 -##琳 -##琴 -##琵 -##琶 -##琺 -##琼 -##瑀 -##瑁 -##瑄 -##瑋 -##瑕 -##瑗 -##瑙 -##瑚 -##瑛 -##瑜 -##瑞 -##瑟 -##瑠 -##瑣 -##瑤 -##瑩 -##瑪 -##瑯 -##瑰 -##瑶 -##瑾 -##璀 -##璁 -##璃 -##璇 -##璉 -##璋 -##璎 -##璐 -##璜 -##璞 -##璟 -##璧 -##璨 -##環 -##璽 -##璿 -##瓊 -##瓏 -##瓒 -##瓜 -##瓢 -##瓣 -##瓤 -##瓦 -##瓮 -##瓯 -##瓴 -##瓶 -##瓷 -##甄 -##甌 -##甕 -##甘 -##甙 -##甚 -##甜 -##生 -##產 -##産 -##甥 -##甦 -##用 -##甩 -##甫 -##甬 -##甭 -##甯 -##田 -##由 -##甲 -##申 -##电 -##男 -##甸 -##町 -##画 -##甾 -##畀 -##畅 -##界 -##畏 -##畑 -##畔 -##留 -##畜 -##畝 -##畢 -##略 -##畦 -##番 -##畫 -##異 -##畲 -##畳 -##畴 -##當 -##畸 -##畹 -##畿 -##疆 -##疇 -##疊 -##疏 -##疑 -##疔 -##疖 -##疗 -##疙 -##疚 -##疝 -##疟 -##疡 -##疣 -##疤 -##疥 -##疫 -##疮 -##疯 -##疱 -##疲 -##疳 -##疵 -##疸 -##疹 -##疼 -##疽 -##疾 -##痂 -##病 -##症 -##痈 -##痉 -##痊 -##痍 -##痒 -##痔 -##痕 -##痘 -##痙 -##痛 -##痞 -##痠 -##痢 -##痣 -##痤 -##痧 -##痨 -##痪 -##痫 -##痰 -##痱 -##痴 -##痹 -##痺 -##痼 -##痿 -##瘀 -##瘁 -##瘋 -##瘍 -##瘓 -##瘘 -##瘙 -##瘟 -##瘠 -##瘡 -##瘢 -##瘤 -##瘦 -##瘧 -##瘩 -##瘪 -##瘫 -##瘴 -##瘸 -##瘾 -##療 -##癇 -##癌 -##癒 -##癖 -##癜 -##癞 -##癡 -##癢 -##癣 -##癥 -##癫 -##癬 -##癮 -##癱 -##癲 -##癸 -##発 -##登 -##發 -##白 -##百 -##皂 -##的 -##皆 -##皇 -##皈 -##皋 -##皎 -##皑 -##皓 -##皖 -##皙 -##皚 -##皮 -##皰 -##皱 -##皴 -##皺 -##皿 -##盂 -##盃 -##盅 -##盆 -##盈 -##益 -##盎 -##盏 -##盐 -##监 -##盒 -##盔 -##盖 -##盗 -##盘 -##盛 -##盜 -##盞 -##盟 -##盡 -##監 -##盤 -##盥 -##盧 -##盪 -##目 -##盯 -##盱 -##盲 -##直 -##相 -##盹 -##盼 -##盾 -##省 -##眈 -##眉 -##看 -##県 -##眙 -##眞 -##真 -##眠 -##眦 -##眨 -##眩 -##眯 -##眶 -##眷 -##眸 -##眺 -##眼 -##眾 -##着 -##睁 -##睇 -##睏 -##睐 -##睑 -##睛 -##睜 -##睞 -##睡 -##睢 -##督 -##睥 -##睦 -##睨 -##睪 -##睫 -##睬 -##睹 -##睽 -##睾 -##睿 -##瞄 -##瞅 -##瞇 -##瞋 -##瞌 -##瞎 -##瞑 -##瞒 -##瞓 -##瞞 -##瞟 -##瞠 -##瞥 -##瞧 -##瞩 -##瞪 -##瞬 -##瞭 -##瞰 -##瞳 -##瞻 -##瞼 -##瞿 -##矇 -##矍 -##矗 -##矚 -##矛 -##矜 -##矢 -##矣 -##知 -##矩 -##矫 -##短 -##矮 -##矯 -##石 -##矶 -##矽 -##矾 -##矿 -##码 -##砂 -##砌 -##砍 -##砒 -##研 -##砖 -##砗 -##砚 -##砝 -##砣 -##砥 -##砧 -##砭 -##砰 -##砲 -##破 -##砷 -##砸 -##砺 -##砼 -##砾 -##础 -##硅 -##硐 -##硒 -##硕 -##硝 -##硫 -##硬 -##确 -##硯 -##硼 -##碁 -##碇 -##碉 -##碌 -##碍 -##碎 -##碑 -##碓 -##碗 -##碘 -##碚 -##碛 -##碟 -##碣 -##碧 -##碩 -##碰 -##碱 -##碳 -##碴 -##確 -##碼 -##碾 -##磁 -##磅 -##磊 -##磋 -##磐 -##磕 -##磚 -##磡 -##磨 -##磬 -##磯 -##磲 -##磷 -##磺 -##礁 -##礎 -##礙 -##礡 -##礦 -##礪 -##礫 -##礴 -##示 -##礼 -##社 -##祀 -##祁 -##祂 -##祇 -##祈 -##祉 -##祎 -##祐 -##祕 -##祖 -##祗 -##祚 -##祛 -##祜 -##祝 -##神 -##祟 -##祠 -##祢 -##祥 -##票 -##祭 -##祯 -##祷 -##祸 -##祺 -##祿 -##禀 -##禁 -##禄 -##禅 -##禍 -##禎 -##福 -##禛 -##禦 -##禧 -##禪 -##禮 -##禱 -##禹 -##禺 -##离 -##禽 -##禾 -##禿 -##秀 -##私 -##秃 -##秆 -##秉 -##秋 -##种 -##科 -##秒 -##秘 -##租 -##秣 -##秤 -##秦 -##秧 -##秩 -##秭 -##积 -##称 -##秸 -##移 -##秽 -##稀 -##稅 -##程 -##稍 -##税 -##稔 -##稗 -##稚 -##稜 -##稞 -##稟 -##稠 -##稣 -##種 -##稱 -##稲 -##稳 -##稷 -##稹 -##稻 -##稼 -##稽 -##稿 -##穀 -##穂 -##穆 -##穌 -##積 -##穎 -##穗 -##穢 -##穩 -##穫 -##穴 -##究 -##穷 -##穹 -##空 -##穿 -##突 -##窃 -##窄 -##窈 -##窍 -##窑 -##窒 -##窓 -##窕 -##窖 -##窗 -##窘 -##窜 -##窝 -##窟 -##窠 -##窥 -##窦 -##窨 -##窩 -##窪 -##窮 -##窯 -##窺 -##窿 -##竄 -##竅 -##竇 -##竊 -##立 -##竖 -##站 -##竜 -##竞 -##竟 -##章 -##竣 -##童 -##竭 -##端 -##競 -##竹 -##竺 -##竽 -##竿 -##笃 -##笆 -##笈 -##笋 -##笏 -##笑 -##笔 -##笙 -##笛 -##笞 -##笠 -##符 -##笨 -##第 -##笹 -##笺 -##笼 -##筆 -##等 -##筊 -##筋 -##筍 -##筏 -##筐 -##筑 -##筒 -##答 -##策 -##筛 -##筝 -##筠 -##筱 -##筲 -##筵 -##筷 -##筹 -##签 -##简 -##箇 -##箋 -##箍 -##箏 -##箐 -##箔 -##箕 -##算 -##箝 -##管 -##箩 -##箫 -##箭 -##箱 -##箴 -##箸 -##節 -##篁 -##範 -##篆 -##篇 -##築 -##篑 -##篓 -##篙 -##篝 -##篠 -##篡 -##篤 -##篩 -##篪 -##篮 -##篱 -##篷 -##簇 -##簌 -##簍 -##簡 -##簦 -##簧 -##簪 -##簫 -##簷 -##簸 -##簽 -##簾 -##簿 -##籁 -##籃 -##籌 -##籍 -##籐 -##籟 -##籠 -##籤 -##籬 -##籮 -##籲 -##米 -##类 -##籼 -##籽 -##粄 -##粉 -##粑 -##粒 -##粕 -##粗 -##粘 -##粟 -##粤 -##粥 -##粧 -##粪 -##粮 -##粱 -##粲 -##粳 -##粵 -##粹 -##粼 -##粽 -##精 -##粿 -##糅 -##糊 -##糍 -##糕 -##糖 -##糗 -##糙 -##糜 -##糞 -##糟 -##糠 -##糧 -##糬 -##糯 -##糰 -##糸 -##系 -##糾 -##紀 -##紂 -##約 -##紅 -##紉 -##紊 -##紋 -##納 -##紐 -##紓 -##純 -##紗 -##紘 -##紙 -##級 -##紛 -##紜 -##素 -##紡 -##索 -##紧 -##紫 -##紮 -##累 -##細 -##紳 -##紹 -##紺 -##終 -##絃 -##組 -##絆 -##経 -##結 -##絕 -##絞 -##絡 -##絢 -##給 -##絨 -##絮 -##統 -##絲 -##絳 -##絵 -##絶 -##絹 -##綁 -##綏 -##綑 -##經 -##継 -##続 -##綜 -##綠 -##綢 -##綦 -##綫 -##綬 -##維 -##綱 -##網 -##綴 -##綵 -##綸 -##綺 -##綻 -##綽 -##綾 -##綿 -##緊 -##緋 -##総 -##緑 -##緒 -##緘 -##線 -##緝 -##緞 -##締 -##緣 -##編 -##緩 -##緬 -##緯 -##練 -##緹 -##緻 -##縁 -##縄 -##縈 -##縛 -##縝 -##縣 -##縫 -##縮 -##縱 -##縴 -##縷 -##總 -##績 -##繁 -##繃 -##繆 -##繇 -##繋 -##織 -##繕 -##繚 -##繞 -##繡 -##繩 -##繪 -##繫 -##繭 -##繳 -##繹 -##繼 -##繽 -##纂 -##續 -##纍 -##纏 -##纓 -##纔 -##纖 -##纜 -##纠 -##红 -##纣 -##纤 -##约 -##级 -##纨 -##纪 -##纫 -##纬 -##纭 -##纯 -##纰 -##纱 -##纲 -##纳 -##纵 -##纶 -##纷 -##纸 -##纹 -##纺 -##纽 -##纾 -##线 -##绀 -##练 -##组 -##绅 -##细 -##织 -##终 -##绊 -##绍 -##绎 -##经 -##绑 -##绒 -##结 -##绔 -##绕 -##绘 -##给 -##绚 -##绛 -##络 -##绝 -##绞 -##统 -##绡 -##绢 -##绣 -##绥 -##绦 -##继 -##绩 -##绪 -##绫 -##续 -##绮 -##绯 -##绰 -##绳 -##维 -##绵 -##绶 -##绷 -##绸 -##绻 -##综 -##绽 -##绾 -##绿 -##缀 -##缄 -##缅 -##缆 -##缇 -##缈 -##缉 -##缎 -##缓 -##缔 -##缕 -##编 -##缘 -##缙 -##缚 -##缜 -##缝 -##缠 -##缢 -##缤 -##缥 -##缨 -##缩 -##缪 -##缭 -##缮 -##缰 -##缱 -##缴 -##缸 -##缺 -##缽 -##罂 -##罄 -##罌 -##罐 -##网 -##罔 -##罕 -##罗 -##罚 -##罡 -##罢 -##罩 -##罪 -##置 -##罰 -##署 -##罵 -##罷 -##罹 -##羁 -##羅 -##羈 -##羊 -##羌 -##美 -##羔 -##羚 -##羞 -##羟 -##羡 -##羣 -##群 -##羥 -##羧 -##羨 -##義 -##羯 -##羲 -##羸 -##羹 -##羽 -##羿 -##翁 -##翅 -##翊 -##翌 -##翎 -##習 -##翔 -##翘 -##翟 -##翠 -##翡 -##翦 -##翩 -##翰 -##翱 -##翳 -##翹 -##翻 -##翼 -##耀 -##老 -##考 -##耄 -##者 -##耆 -##耋 -##而 -##耍 -##耐 -##耒 -##耕 -##耗 -##耘 -##耙 -##耦 -##耨 -##耳 -##耶 -##耷 -##耸 -##耻 -##耽 -##耿 -##聂 -##聆 -##聊 -##聋 -##职 -##聒 -##联 -##聖 -##聘 -##聚 -##聞 -##聪 -##聯 -##聰 -##聲 -##聳 -##聴 -##聶 -##職 -##聽 -##聾 -##聿 -##肃 -##肄 -##肅 -##肆 -##肇 -##肉 -##肋 -##肌 -##肏 -##肓 -##肖 -##肘 -##肚 -##肛 -##肝 -##肠 -##股 -##肢 -##肤 -##肥 -##肩 -##肪 -##肮 -##肯 -##肱 -##育 -##肴 -##肺 -##肽 -##肾 -##肿 -##胀 -##胁 -##胃 -##胄 -##胆 -##背 -##胍 -##胎 -##胖 -##胚 -##胛 -##胜 -##胝 -##胞 -##胡 -##胤 -##胥 -##胧 -##胫 -##胭 -##胯 -##胰 -##胱 -##胳 -##胴 -##胶 -##胸 -##胺 -##能 -##脂 -##脅 -##脆 -##脇 -##脈 -##脉 -##脊 -##脍 -##脏 -##脐 -##脑 -##脓 -##脖 -##脘 -##脚 -##脛 -##脣 -##脩 -##脫 -##脯 -##脱 -##脲 -##脳 -##脸 -##脹 -##脾 -##腆 -##腈 -##腊 -##腋 -##腌 -##腎 -##腐 -##腑 -##腓 -##腔 -##腕 -##腥 -##腦 -##腩 -##腫 -##腭 -##腮 -##腰 -##腱 -##腳 -##腴 -##腸 -##腹 -##腺 -##腻 -##腼 -##腾 -##腿 -##膀 -##膈 -##膊 -##膏 -##膑 -##膘 -##膚 -##膛 -##膜 -##膝 -##膠 -##膦 -##膨 -##膩 -##膳 -##膺 -##膻 -##膽 -##膾 -##膿 -##臀 -##臂 -##臃 -##臆 -##臉 -##臊 -##臍 -##臓 -##臘 -##臟 -##臣 -##臥 -##臧 -##臨 -##自 -##臬 -##臭 -##至 -##致 -##臺 -##臻 -##臼 -##臾 -##舀 -##舂 -##舅 -##舆 -##與 -##興 -##舉 -##舊 -##舌 -##舍 -##舎 -##舐 -##舒 -##舔 -##舖 -##舗 -##舛 -##舜 -##舞 -##舟 -##航 -##舫 -##般 -##舰 -##舱 -##舵 -##舶 -##舷 -##舸 -##船 -##舺 -##舾 -##艇 -##艋 -##艘 -##艙 -##艦 -##艮 -##良 -##艰 -##艱 -##色 -##艳 -##艷 -##艹 -##艺 -##艾 -##节 -##芃 -##芈 -##芊 -##芋 -##芍 -##芎 -##芒 -##芙 -##芜 -##芝 -##芡 -##芥 -##芦 -##芩 -##芪 -##芫 -##芬 -##芭 -##芮 -##芯 -##花 -##芳 -##芷 -##芸 -##芹 -##芻 -##芽 -##芾 -##苁 -##苄 -##苇 -##苋 -##苍 -##苏 -##苑 -##苒 -##苓 -##苔 -##苕 -##苗 -##苛 -##苜 -##苞 -##苟 -##苡 -##苣 -##若 -##苦 -##苫 -##苯 -##英 -##苷 -##苹 -##苻 -##茁 -##茂 -##范 -##茄 -##茅 -##茉 -##茎 -##茏 -##茗 -##茜 -##茧 -##茨 -##茫 -##茬 -##茭 -##茯 -##茱 -##茲 -##茴 -##茵 -##茶 -##茸 -##茹 -##茼 -##荀 -##荃 -##荆 -##草 -##荊 -##荏 -##荐 -##荒 -##荔 -##荖 -##荘 -##荚 -##荞 -##荟 -##荠 -##荡 -##荣 -##荤 -##荥 -##荧 -##荨 -##荪 -##荫 -##药 -##荳 -##荷 -##荸 -##荻 -##荼 -##荽 -##莅 -##莆 -##莉 -##莊 -##莎 -##莒 -##莓 -##莖 -##莘 -##莞 -##莠 -##莢 -##莧 -##莪 -##莫 -##莱 -##莲 -##莴 -##获 -##莹 -##莺 -##莽 -##莿 -##菀 -##菁 -##菅 -##菇 -##菈 -##菊 -##菌 -##菏 -##菓 -##菖 -##菘 -##菜 -##菟 -##菠 -##菡 -##菩 -##華 -##菱 -##菲 -##菸 -##菽 -##萁 -##萃 -##萄 -##萊 -##萋 -##萌 -##萍 -##萎 -##萘 -##萝 -##萤 -##营 -##萦 -##萧 -##萨 -##萩 -##萬 -##萱 -##萵 -##萸 -##萼 -##落 -##葆 -##葉 -##著 -##葚 -##葛 -##葡 -##董 -##葦 -##葩 -##葫 -##葬 -##葭 -##葯 -##葱 -##葳 -##葵 -##葷 -##葺 -##蒂 -##蒋 -##蒐 -##蒔 -##蒙 -##蒜 -##蒞 -##蒟 -##蒡 -##蒨 -##蒲 -##蒸 -##蒹 -##蒻 -##蒼 -##蒿 -##蓁 -##蓄 -##蓆 -##蓉 -##蓋 -##蓑 -##蓓 -##蓖 -##蓝 -##蓟 -##蓦 -##蓬 -##蓮 -##蓼 -##蓿 -##蔑 -##蔓 -##蔔 -##蔗 -##蔘 -##蔚 -##蔡 -##蔣 -##蔥 -##蔫 -##蔬 -##蔭 -##蔵 -##蔷 -##蔺 -##蔻 -##蔼 -##蔽 -##蕁 -##蕃 -##蕈 -##蕉 -##蕊 -##蕎 -##蕙 -##蕤 -##蕨 -##蕩 -##蕪 -##蕭 -##蕲 -##蕴 -##蕻 -##蕾 -##薄 -##薅 -##薇 -##薈 -##薊 -##薏 -##薑 -##薔 -##薙 -##薛 -##薦 -##薨 -##薩 -##薪 -##薬 -##薯 -##薰 -##薹 -##藉 -##藍 -##藏 -##藐 -##藓 -##藕 -##藜 -##藝 -##藤 -##藥 -##藩 -##藹 -##藻 -##藿 -##蘆 -##蘇 -##蘊 -##蘋 -##蘑 -##蘚 -##蘭 -##蘸 -##蘼 -##蘿 -##虎 -##虏 -##虐 -##虑 -##虔 -##處 -##虚 -##虛 -##虜 -##虞 -##號 -##虢 -##虧 -##虫 -##虬 -##虱 -##虹 -##虻 -##虽 -##虾 -##蚀 -##蚁 -##蚂 -##蚊 -##蚌 -##蚓 -##蚕 -##蚜 -##蚝 -##蚣 -##蚤 -##蚩 -##蚪 -##蚯 -##蚱 -##蚵 -##蛀 -##蛆 -##蛇 -##蛊 -##蛋 -##蛎 -##蛐 -##蛔 -##蛙 -##蛛 -##蛟 -##蛤 -##蛭 -##蛮 -##蛰 -##蛳 -##蛹 -##蛻 -##蛾 -##蜀 -##蜂 -##蜃 -##蜆 -##蜇 -##蜈 -##蜊 -##蜍 -##蜒 -##蜓 -##蜕 -##蜗 -##蜘 -##蜚 -##蜜 -##蜡 -##蜢 -##蜥 -##蜱 -##蜴 -##蜷 -##蜻 -##蜿 -##蝇 -##蝈 -##蝉 -##蝌 -##蝎 -##蝕 -##蝗 -##蝙 -##蝟 -##蝠 -##蝦 -##蝨 -##蝴 -##蝶 -##蝸 -##蝼 -##螂 -##螃 -##融 -##螞 -##螢 -##螨 -##螯 -##螳 -##螺 -##蟀 -##蟄 -##蟆 -##蟋 -##蟎 -##蟑 -##蟒 -##蟠 -##蟬 -##蟲 -##蟹 -##蟻 -##蟾 -##蠅 -##蠍 -##蠔 -##蠕 -##蠛 -##蠟 -##蠡 -##蠢 -##蠣 -##蠱 -##蠶 -##蠹 -##蠻 -##血 -##衄 -##衅 -##衆 -##行 -##衍 -##術 -##衔 -##街 -##衙 -##衛 -##衝 -##衞 -##衡 -##衢 -##衣 -##补 -##表 -##衩 -##衫 -##衬 -##衮 -##衰 -##衲 -##衷 -##衹 -##衾 -##衿 -##袁 -##袂 -##袄 -##袅 -##袈 -##袋 -##袍 -##袒 -##袖 -##袜 -##袞 -##袤 -##袪 -##被 -##袭 -##袱 -##裁 -##裂 -##装 -##裆 -##裊 -##裏 -##裔 -##裕 -##裘 -##裙 -##補 -##裝 -##裟 -##裡 -##裤 -##裨 -##裱 -##裳 -##裴 -##裸 -##裹 -##製 -##裾 -##褂 -##複 -##褐 -##褒 -##褓 -##褔 -##褚 -##褥 -##褪 -##褫 -##褲 -##褶 -##褻 -##襁 -##襄 -##襟 -##襠 -##襪 -##襬 -##襯 -##襲 -##西 -##要 -##覃 -##覆 -##覇 -##見 -##規 -##覓 -##視 -##覚 -##覦 -##覧 -##親 -##覬 -##観 -##覷 -##覺 -##覽 -##觀 -##见 -##观 -##规 -##觅 -##视 -##览 -##觉 -##觊 -##觎 -##觐 -##觑 -##角 -##觞 -##解 -##觥 -##触 -##觸 -##言 -##訂 -##計 -##訊 -##討 -##訓 -##訕 -##訖 -##託 -##記 -##訛 -##訝 -##訟 -##訣 -##訥 -##訪 -##設 -##許 -##訳 -##訴 -##訶 -##診 -##註 -##証 -##詆 -##詐 -##詔 -##評 -##詛 -##詞 -##詠 -##詡 -##詢 -##詣 -##試 -##詩 -##詫 -##詬 -##詭 -##詮 -##詰 -##話 -##該 -##詳 -##詹 -##詼 -##誅 -##誇 -##誉 -##誌 -##認 -##誓 -##誕 -##誘 -##語 -##誠 -##誡 -##誣 -##誤 -##誥 -##誦 -##誨 -##說 -##説 -##読 -##誰 -##課 -##誹 -##誼 -##調 -##諄 -##談 -##請 -##諏 -##諒 -##論 -##諗 -##諜 -##諡 -##諦 -##諧 -##諫 -##諭 -##諮 -##諱 -##諳 -##諷 -##諸 -##諺 -##諾 -##謀 -##謁 -##謂 -##謄 -##謊 -##謎 -##謐 -##謔 -##謗 -##謙 -##講 -##謝 -##謠 -##謨 -##謬 -##謹 -##謾 -##譁 -##證 -##譎 -##譏 -##識 -##譙 -##譚 -##譜 -##警 -##譬 -##譯 -##議 -##譲 -##譴 -##護 -##譽 -##讀 -##變 -##讓 -##讚 -##讞 -##计 -##订 -##认 -##讥 -##讧 -##讨 -##让 -##讪 -##讫 -##训 -##议 -##讯 -##记 -##讲 -##讳 -##讴 -##讶 -##讷 -##许 -##讹 -##论 -##讼 -##讽 -##设 -##访 -##诀 -##证 -##诃 -##评 -##诅 -##识 -##诈 -##诉 -##诊 -##诋 -##词 -##诏 -##译 -##试 -##诗 -##诘 -##诙 -##诚 -##诛 -##话 -##诞 -##诟 -##诠 -##诡 -##询 -##诣 -##诤 -##该 -##详 -##诧 -##诩 -##诫 -##诬 -##语 -##误 -##诰 -##诱 -##诲 -##说 -##诵 -##诶 -##请 -##诸 -##诺 -##读 -##诽 -##课 -##诿 -##谀 -##谁 -##调 -##谄 -##谅 -##谆 -##谈 -##谊 -##谋 -##谌 -##谍 -##谎 -##谏 -##谐 -##谑 -##谒 -##谓 -##谔 -##谕 -##谗 -##谘 -##谙 -##谚 -##谛 -##谜 -##谟 -##谢 -##谣 -##谤 -##谥 -##谦 -##谧 -##谨 -##谩 -##谪 -##谬 -##谭 -##谯 -##谱 -##谲 -##谴 -##谶 -##谷 -##豁 -##豆 -##豇 -##豈 -##豉 -##豊 -##豌 -##豎 -##豐 -##豔 -##豚 -##象 -##豢 -##豪 -##豫 -##豬 -##豹 -##豺 -##貂 -##貅 -##貌 -##貓 -##貔 -##貘 -##貝 -##貞 -##負 -##財 -##貢 -##貧 -##貨 -##販 -##貪 -##貫 -##責 -##貯 -##貰 -##貳 -##貴 -##貶 -##買 -##貸 -##費 -##貼 -##貽 -##貿 -##賀 -##賁 -##賂 -##賃 -##賄 -##資 -##賈 -##賊 -##賑 -##賓 -##賜 -##賞 -##賠 -##賡 -##賢 -##賣 -##賤 -##賦 -##質 -##賬 -##賭 -##賴 -##賺 -##購 -##賽 -##贅 -##贈 -##贊 -##贍 -##贏 -##贓 -##贖 -##贛 -##贝 -##贞 -##负 -##贡 -##财 -##责 -##贤 -##败 -##账 -##货 -##质 -##贩 -##贪 -##贫 -##贬 -##购 -##贮 -##贯 -##贰 -##贱 -##贲 -##贴 -##贵 -##贷 -##贸 -##费 -##贺 -##贻 -##贼 -##贾 -##贿 -##赁 -##赂 -##赃 -##资 -##赅 -##赈 -##赊 -##赋 -##赌 -##赎 -##赏 -##赐 -##赓 -##赔 -##赖 -##赘 -##赚 -##赛 -##赝 -##赞 -##赠 -##赡 -##赢 -##赣 -##赤 -##赦 -##赧 -##赫 -##赭 -##走 -##赳 -##赴 -##赵 -##赶 -##起 -##趁 -##超 -##越 -##趋 -##趕 -##趙 -##趟 -##趣 -##趨 -##足 -##趴 -##趵 -##趸 -##趺 -##趾 -##跃 -##跄 -##跆 -##跋 -##跌 -##跎 -##跑 -##跖 -##跚 -##跛 -##距 -##跟 -##跡 -##跤 -##跨 -##跩 -##跪 -##路 -##跳 -##践 -##跷 -##跹 -##跺 -##跻 -##踉 -##踊 -##踌 -##踏 -##踐 -##踝 -##踞 -##踟 -##踢 -##踩 -##踪 -##踮 -##踱 -##踴 -##踵 -##踹 -##蹂 -##蹄 -##蹇 -##蹈 -##蹉 -##蹊 -##蹋 -##蹑 -##蹒 -##蹙 -##蹟 -##蹣 -##蹤 -##蹦 -##蹩 -##蹬 -##蹭 -##蹲 -##蹴 -##蹶 -##蹺 -##蹼 -##蹿 -##躁 -##躇 -##躉 -##躊 -##躋 -##躍 -##躏 -##躪 -##身 -##躬 -##躯 -##躲 -##躺 -##軀 -##車 -##軋 -##軌 -##軍 -##軒 -##軟 -##転 -##軸 -##軼 -##軽 -##軾 -##較 -##載 -##輒 -##輓 -##輔 -##輕 -##輛 -##輝 -##輟 -##輩 -##輪 -##輯 -##輸 -##輻 -##輾 -##輿 -##轄 -##轅 -##轆 -##轉 -##轍 -##轎 -##轟 -##车 -##轧 -##轨 -##轩 -##转 -##轭 -##轮 -##软 -##轰 -##轲 -##轴 -##轶 -##轻 -##轼 -##载 -##轿 -##较 -##辄 -##辅 -##辆 -##辇 -##辈 -##辉 -##辊 -##辍 -##辐 -##辑 -##输 -##辕 -##辖 -##辗 -##辘 -##辙 -##辛 -##辜 -##辞 -##辟 -##辣 -##辦 -##辨 -##辩 -##辫 -##辭 -##辮 -##辯 -##辰 -##辱 -##農 -##边 -##辺 -##辻 -##込 -##辽 -##达 -##迁 -##迂 -##迄 -##迅 -##过 -##迈 -##迎 -##运 -##近 -##返 -##还 -##这 -##进 -##远 -##违 -##连 -##迟 -##迢 -##迤 -##迥 -##迦 -##迩 -##迪 -##迫 -##迭 -##述 -##迴 -##迷 -##迸 -##迹 -##迺 -##追 -##退 -##送 -##适 -##逃 -##逅 -##逆 -##选 -##逊 -##逍 -##透 -##逐 -##递 -##途 -##逕 -##逗 -##這 -##通 -##逛 -##逝 -##逞 -##速 -##造 -##逢 -##連 -##逮 -##週 -##進 -##逵 -##逶 -##逸 -##逻 -##逼 -##逾 -##遁 -##遂 -##遅 -##遇 -##遊 -##運 -##遍 -##過 -##遏 -##遐 -##遑 -##遒 -##道 -##達 -##違 -##遗 -##遙 -##遛 -##遜 -##遞 -##遠 -##遢 -##遣 -##遥 -##遨 -##適 -##遭 -##遮 -##遲 -##遴 -##遵 -##遶 -##遷 -##選 -##遺 -##遼 -##遽 -##避 -##邀 -##邁 -##邂 -##邃 -##還 -##邇 -##邈 -##邊 -##邋 -##邏 -##邑 -##邓 -##邕 -##邛 -##邝 -##邢 -##那 -##邦 -##邨 -##邪 -##邬 -##邮 -##邯 -##邰 -##邱 -##邳 -##邵 -##邸 -##邹 -##邺 -##邻 -##郁 -##郅 -##郊 -##郎 -##郑 -##郜 -##郝 -##郡 -##郢 -##郤 -##郦 -##郧 -##部 -##郫 -##郭 -##郴 -##郵 -##郷 -##郸 -##都 -##鄂 -##鄉 -##鄒 -##鄔 -##鄙 -##鄞 -##鄢 -##鄧 -##鄭 -##鄰 -##鄱 -##鄲 -##鄺 -##酉 -##酊 -##酋 -##酌 -##配 -##酐 -##酒 -##酗 -##酚 -##酝 -##酢 -##酣 -##酥 -##酩 -##酪 -##酬 -##酮 -##酯 -##酰 -##酱 -##酵 -##酶 -##酷 -##酸 -##酿 -##醃 -##醇 -##醉 -##醋 -##醍 -##醐 -##醒 -##醚 -##醛 -##醜 -##醞 -##醣 -##醪 -##醫 -##醬 -##醮 -##醯 -##醴 -##醺 -##釀 -##釁 -##采 -##釉 -##释 -##釋 -##里 -##重 -##野 -##量 -##釐 -##金 -##釗 -##釘 -##釜 -##針 -##釣 -##釦 -##釧 -##釵 -##鈀 -##鈉 -##鈍 -##鈎 -##鈔 -##鈕 -##鈞 -##鈣 -##鈦 -##鈪 -##鈴 -##鈺 -##鈾 -##鉀 -##鉄 -##鉅 -##鉉 -##鉑 -##鉗 -##鉚 -##鉛 -##鉤 -##鉴 -##鉻 -##銀 -##銃 -##銅 -##銑 -##銓 -##銖 -##銘 -##銜 -##銬 -##銭 -##銮 -##銳 -##銷 -##銹 -##鋁 -##鋅 -##鋒 -##鋤 -##鋪 -##鋰 -##鋸 -##鋼 -##錄 -##錐 -##錘 -##錚 -##錠 -##錢 -##錦 -##錨 -##錫 -##錮 -##錯 -##録 -##錳 -##錶 -##鍊 -##鍋 -##鍍 -##鍛 -##鍥 -##鍰 -##鍵 -##鍺 -##鍾 -##鎂 -##鎊 -##鎌 -##鎏 -##鎔 -##鎖 -##鎗 -##鎚 -##鎧 -##鎬 -##鎮 -##鎳 -##鏈 -##鏖 -##鏗 -##鏘 -##鏞 -##鏟 -##鏡 -##鏢 -##鏤 -##鏽 -##鐘 -##鐮 -##鐲 -##鐳 -##鐵 -##鐸 -##鐺 -##鑄 -##鑊 -##鑑 -##鑒 -##鑣 -##鑫 -##鑰 -##鑲 -##鑼 -##鑽 -##鑾 -##鑿 -##针 -##钉 -##钊 -##钎 -##钏 -##钒 -##钓 -##钗 -##钙 -##钛 -##钜 -##钝 -##钞 -##钟 -##钠 -##钡 -##钢 -##钣 -##钤 -##钥 -##钦 -##钧 -##钨 -##钩 -##钮 -##钯 -##钰 -##钱 -##钳 -##钴 -##钵 -##钺 -##钻 -##钼 -##钾 -##钿 -##铀 -##铁 -##铂 -##铃 -##铄 -##铅 -##铆 -##铉 -##铎 -##铐 -##铛 -##铜 -##铝 -##铠 -##铡 -##铢 -##铣 -##铤 -##铨 -##铩 -##铬 -##铭 -##铮 -##铰 -##铲 -##铵 -##银 -##铸 -##铺 -##链 -##铿 -##销 -##锁 -##锂 -##锄 -##锅 -##锆 -##锈 -##锉 -##锋 -##锌 -##锏 -##锐 -##锑 -##错 -##锚 -##锟 -##锡 -##锢 -##锣 -##锤 -##锥 -##锦 -##锭 -##键 -##锯 -##锰 -##锲 -##锵 -##锹 -##锺 -##锻 -##镀 -##镁 -##镂 -##镇 -##镉 -##镌 -##镍 -##镐 -##镑 -##镕 -##镖 -##镗 -##镛 -##镜 -##镣 -##镭 -##镯 -##镰 -##镳 -##镶 -##長 -##长 -##門 -##閃 -##閉 -##開 -##閎 -##閏 -##閑 -##閒 -##間 -##閔 -##閘 -##閡 -##関 -##閣 -##閥 -##閨 -##閩 -##閱 -##閲 -##閹 -##閻 -##閾 -##闆 -##闇 -##闊 -##闌 -##闍 -##闔 -##闕 -##闖 -##闘 -##關 -##闡 -##闢 -##门 -##闪 -##闫 -##闭 -##问 -##闯 -##闰 -##闲 -##间 -##闵 -##闷 -##闸 -##闹 -##闺 -##闻 -##闽 -##闾 -##阀 -##阁 -##阂 -##阅 -##阆 -##阇 -##阈 -##阉 -##阎 -##阐 -##阑 -##阔 -##阕 -##阖 -##阙 -##阚 -##阜 -##队 -##阡 -##阪 -##阮 -##阱 -##防 -##阳 -##阴 -##阵 -##阶 -##阻 -##阿 -##陀 -##陂 -##附 -##际 -##陆 -##陇 -##陈 -##陋 -##陌 -##降 -##限 -##陕 -##陛 -##陝 -##陞 -##陟 -##陡 -##院 -##陣 -##除 -##陨 -##险 -##陪 -##陰 -##陲 -##陳 -##陵 -##陶 -##陷 -##陸 -##険 -##陽 -##隅 -##隆 -##隈 -##隊 -##隋 -##隍 -##階 -##随 -##隐 -##隔 -##隕 -##隘 -##隙 -##際 -##障 -##隠 -##隣 -##隧 -##隨 -##險 -##隱 -##隴 -##隶 -##隸 -##隻 -##隼 -##隽 -##难 -##雀 -##雁 -##雄 -##雅 -##集 -##雇 -##雉 -##雋 -##雌 -##雍 -##雎 -##雏 -##雑 -##雒 -##雕 -##雖 -##雙 -##雛 -##雜 -##雞 -##離 -##難 -##雨 -##雪 -##雯 -##雰 -##雲 -##雳 -##零 -##雷 -##雹 -##電 -##雾 -##需 -##霁 -##霄 -##霆 -##震 -##霈 -##霉 -##霊 -##霍 -##霎 -##霏 -##霑 -##霓 -##霖 -##霜 -##霞 -##霧 -##霭 -##霰 -##露 -##霸 -##霹 -##霽 -##霾 -##靂 -##靄 -##靈 -##青 -##靓 -##靖 -##静 -##靚 -##靛 -##靜 -##非 -##靠 -##靡 -##面 -##靥 -##靦 -##革 -##靳 -##靴 -##靶 -##靼 -##鞅 -##鞋 -##鞍 -##鞏 -##鞑 -##鞘 -##鞠 -##鞣 -##鞦 -##鞭 -##韆 -##韋 -##韌 -##韓 -##韜 -##韦 -##韧 -##韩 -##韬 -##韭 -##音 -##韵 -##韶 -##韻 -##響 -##頁 -##頂 -##頃 -##項 -##順 -##須 -##頌 -##預 -##頑 -##頒 -##頓 -##頗 -##領 -##頜 -##頡 -##頤 -##頫 -##頭 -##頰 -##頷 -##頸 -##頹 -##頻 -##頼 -##顆 -##題 -##額 -##顎 -##顏 -##顔 -##願 -##顛 -##類 -##顧 -##顫 -##顯 -##顱 -##顴 -##页 -##顶 -##顷 -##项 -##顺 -##须 -##顼 -##顽 -##顾 -##顿 -##颁 -##颂 -##预 -##颅 -##领 -##颇 -##颈 -##颉 -##颊 -##颌 -##颍 -##颐 -##频 -##颓 -##颔 -##颖 -##颗 -##题 -##颚 -##颛 -##颜 -##额 -##颞 -##颠 -##颡 -##颢 -##颤 -##颦 -##颧 -##風 -##颯 -##颱 -##颳 -##颶 -##颼 -##飄 -##飆 -##风 -##飒 -##飓 -##飕 -##飘 -##飙 -##飚 -##飛 -##飞 -##食 -##飢 -##飨 -##飩 -##飪 -##飯 -##飲 -##飼 -##飽 -##飾 -##餃 -##餅 -##餉 -##養 -##餌 -##餐 -##餒 -##餓 -##餘 -##餚 -##餛 -##餞 -##餡 -##館 -##餮 -##餵 -##餾 -##饅 -##饈 -##饋 -##饌 -##饍 -##饑 -##饒 -##饕 -##饗 -##饞 -##饥 -##饨 -##饪 -##饬 -##饭 -##饮 -##饯 -##饰 -##饱 -##饲 -##饴 -##饵 -##饶 -##饷 -##饺 -##饼 -##饽 -##饿 -##馀 -##馁 -##馄 -##馅 -##馆 -##馈 -##馋 -##馍 -##馏 -##馒 -##馔 -##首 -##馗 -##香 -##馥 -##馨 -##馬 -##馭 -##馮 -##馳 -##馴 -##駁 -##駄 -##駅 -##駆 -##駐 -##駒 -##駕 -##駛 -##駝 -##駭 -##駱 -##駿 -##騁 -##騎 -##騏 -##験 -##騙 -##騨 -##騰 -##騷 -##驀 -##驅 -##驊 -##驍 -##驒 -##驕 -##驗 -##驚 -##驛 -##驟 -##驢 -##驥 -##马 -##驭 -##驮 -##驯 -##驰 -##驱 -##驳 -##驴 -##驶 -##驷 -##驸 -##驹 -##驻 -##驼 -##驾 -##驿 -##骁 -##骂 -##骄 -##骅 -##骆 -##骇 -##骈 -##骊 -##骋 -##验 -##骏 -##骐 -##骑 -##骗 -##骚 -##骛 -##骜 -##骞 -##骠 -##骡 -##骤 -##骥 -##骧 -##骨 -##骯 -##骰 -##骶 -##骷 -##骸 -##骼 -##髂 -##髅 -##髋 -##髏 -##髒 -##髓 -##體 -##髖 -##高 -##髦 -##髪 -##髮 -##髯 -##髻 -##鬃 -##鬆 -##鬍 -##鬓 -##鬚 -##鬟 -##鬢 -##鬣 -##鬥 -##鬧 -##鬱 -##鬼 -##魁 -##魂 -##魄 -##魅 -##魇 -##魍 -##魏 -##魔 -##魘 -##魚 -##魯 -##魷 -##鮑 -##鮨 -##鮪 -##鮭 -##鮮 -##鯉 -##鯊 -##鯖 -##鯛 -##鯨 -##鯰 -##鯽 -##鰍 -##鰓 -##鰭 -##鰲 -##鰻 -##鰾 -##鱈 -##鱉 -##鱔 -##鱗 -##鱷 -##鱸 -##鱼 -##鱿 -##鲁 -##鲈 -##鲍 -##鲑 -##鲛 -##鲜 -##鲟 -##鲢 -##鲤 -##鲨 -##鲫 -##鲱 -##鲲 -##鲶 -##鲷 -##鲸 -##鳃 -##鳄 -##鳅 -##鳌 -##鳍 -##鳕 -##鳖 -##鳗 -##鳝 -##鳞 -##鳥 -##鳩 -##鳳 -##鳴 -##鳶 -##鴉 -##鴕 -##鴛 -##鴦 -##鴨 -##鴻 -##鴿 -##鵑 -##鵜 -##鵝 -##鵡 -##鵬 -##鵰 -##鵲 -##鶘 -##鶩 -##鶯 -##鶴 -##鷗 -##鷲 -##鷹 -##鷺 -##鸚 -##鸞 -##鸟 -##鸠 -##鸡 -##鸢 -##鸣 -##鸥 -##鸦 -##鸨 -##鸪 -##鸭 -##鸯 -##鸳 -##鸵 -##鸽 -##鸾 -##鸿 -##鹂 -##鹃 -##鹄 -##鹅 -##鹈 -##鹉 -##鹊 -##鹌 -##鹏 -##鹑 -##鹕 -##鹘 -##鹜 -##鹞 -##鹤 -##鹦 -##鹧 -##鹫 -##鹭 -##鹰 -##鹳 -##鹵 -##鹹 -##鹼 -##鹽 -##鹿 -##麂 -##麋 -##麒 -##麓 -##麗 -##麝 -##麟 -##麥 -##麦 -##麩 -##麴 -##麵 -##麸 -##麺 -##麻 -##麼 -##麽 -##麾 -##黃 -##黄 -##黍 -##黎 -##黏 -##黑 -##黒 -##黔 -##默 -##黛 -##黜 -##黝 -##點 -##黠 -##黨 -##黯 -##黴 -##鼋 -##鼎 -##鼐 -##鼓 -##鼠 -##鼬 -##鼹 -##鼻 -##鼾 -##齁 -##齊 -##齋 -##齐 -##齒 -##齡 -##齢 -##齣 -##齦 -##齿 -##龄 -##龅 -##龈 -##龊 -##龋 -##龌 -##龍 -##龐 -##龔 -##龕 -##龙 -##龚 -##龛 -##龜 -##龟 -##︰ -##︱ -##︶ -##︿ -##﹁ -##﹂ -##﹍ -##﹏ -##﹐ -##﹑ -##﹒ -##﹔ -##﹕ -##﹖ -##﹗ -##﹙ -##﹚ -##﹝ -##﹞ -##﹡ -##﹣ -##! -##" -### -##$ -##% -##& -##' -##( -##) -##* -##, -##- -##. -##/ -##: -##; -##< -##? -##@ -##[ -##\ -##] -##^ -##_ -##` -##f -##h -##j -##u -##w -##z -##{ -##} -##。 -##「 -##」 -##、 -##・ -##ッ -##ー -##イ -##ク -##シ -##ス -##ト -##ノ -##フ -##ラ -##ル -##ン -##゙ -##゚ -## ̄ -##¥ -##👍 -##🔥 -##😂 -##😎 diff --git a/langml/tests/test_attention.py b/langml/tests/test_attention.py deleted file mode 100644 index 1fc1ed5..0000000 --- a/langml/tests/test_attention.py +++ /dev/null @@ -1,93 +0,0 @@ -# -*- coding: utf-8 -*- - -from langml import TF_KERAS -if TF_KERAS: - import tensorflow.keras.backend as K - import tensorflow.keras.layers as L -else: - import keras.backend as K - import keras.layers as L - - -def test_self_attention_with_attn(): - from langml.layers import SelfAttention - - X = L.Input(shape=(None, 64)) - o, _ = SelfAttention(return_attention=True)(X) - assert K.int_shape(o) == K.int_shape(X) - - -def test_self_attention_without_attn(): - from langml.layers import SelfAttention - - X = L.Input(shape=(None, 64)) - o = SelfAttention(return_attention=False)(X) - assert K.int_shape(o) == K.int_shape(X) - - -def test_self_attention_with_mask(): - from langml.layers import SelfAttention - - X = L.Input(shape=(None, )) - embed = L.Embedding(64, 64)(X) - mask = L.Lambda(lambda x: K.cast(K.greater(K.expand_dims(x, 2), 0), 'float32'))(X) - o = SelfAttention(return_attention=False)(embed, mask=mask) - assert K.int_shape(o) == K.int_shape(embed) - - -def test_self_additive_attention_with_attn(): - from langml.layers import SelfAdditiveAttention - - X = L.Input(shape=(None, 64)) - o, _ = SelfAdditiveAttention(return_attention=True)(X) - assert K.int_shape(o) == K.int_shape(X) - - -def test_self_additive_attention_without_attn(): - from langml.layers import SelfAdditiveAttention - - X = L.Input(shape=(None, 64)) - o = SelfAdditiveAttention(return_attention=False)(X) - assert K.int_shape(o) == K.int_shape(X) - - -def test_self_additive_attention_with_mask(): - from langml.layers import SelfAdditiveAttention - - X = L.Input(shape=(None, )) - embed = L.Embedding(64, 64)(X) - mask = L.Lambda(lambda x: K.cast(K.greater(K.expand_dims(x, 2), 0), 'float32'))(X) - o = SelfAdditiveAttention(return_attention=False)(embed, mask=mask) - assert K.int_shape(o) == K.int_shape(embed) - - -def test_scaled_dot_product_attention(): - from langml.layers import ScaledDotProductAttention - - X = L.Input(shape=(None, 64)) - o, _ = ScaledDotProductAttention(return_attention=True)(X) - assert K.int_shape(o) == K.int_shape(X) - - -def test_scaled_dot_product_attention_without_attn(): - from langml.layers import ScaledDotProductAttention - - X = L.Input(shape=(None, 64)) - o = ScaledDotProductAttention(return_attention=False)(X) - assert K.int_shape(o) == K.int_shape(X) - - -def test_multihead_attention(): - from langml.layers import MultiHeadAttention - - X = L.Input(shape=(None, 64)) - o, _ = MultiHeadAttention(8, return_attention=True)(X) - assert K.int_shape(o) == K.int_shape(X) - - -def test_multihead_attention_without_attn(): - from langml.layers import MultiHeadAttention - - X = L.Input(shape=(None, 64)) - o = MultiHeadAttention(8, return_attention=False)(X) - assert K.int_shape(o) == K.int_shape(X) diff --git a/langml/tests/test_bert.py b/langml/tests/test_bert.py deleted file mode 100644 index 2216232..0000000 --- a/langml/tests/test_bert.py +++ /dev/null @@ -1,23 +0,0 @@ -# -*- coding: utf-8 -*- - -from langml import TF_KERAS -if TF_KERAS: - import tensorflow.keras.backend as K - import tensorflow.keras.layers as L -else: - import keras.backend as K - import keras.layers as L - - -def test_bert_encoder(): - from langml.plm.bert import BERT - bert = BERT( - 100, - embedding_dim=128, - transformer_blocks=2, - attention_heads=2, - intermediate_size=1000 - ) - bert.build() - model = bert() - assert K.int_shape(model.output) == (None, 512, 128) diff --git a/langml/tests/test_crf.py b/langml/tests/test_crf.py deleted file mode 100644 index c8d4a4d..0000000 --- a/langml/tests/test_crf.py +++ /dev/null @@ -1,43 +0,0 @@ -# -*- coding: utf-8 -*- - -from langml import TF_KERAS -if TF_KERAS: - import tensorflow.keras as keras - import tensorflow.keras.backend as K - import tensorflow.keras.layers as L -else: - import keras - import keras.backend as K - import keras.layers as L - - -def test_crf(): - from langml.layers import CRF - - num_labels = 10 - embedding_size = 100 - hidden_size = 128 - - X = L.Input(shape=(None, ), name='Input-X') - embed = L.Embedding(num_labels, embedding_size, mask_zero=True)(X) - encoded = L.Bidirectional(L.LSTM(hidden_size, return_sequences=True))(embed) - output = L.Dense(num_labels)(encoded) - crf = CRF(num_labels, sparse_target=True) - output = crf(output) - assert len(K.int_shape(output)) == 3 - - -def test_crf_dense_target(): - from langml.layers import CRF - - num_labels = 10 - embedding_size = 100 - hidden_size = 128 - - X = L.Input(shape=(None, ), name='Input-X') - embed = L.Embedding(num_labels, embedding_size, mask_zero=True)(X) - encoded = L.Bidirectional(L.LSTM(hidden_size, return_sequences=True))(embed) - output = L.Dense(num_labels)(encoded) - crf = CRF(num_labels, sparse_target=False) - output = crf(output) - assert len(K.int_shape(output)) == 3 diff --git a/langml/tests/test_layer_norm.py b/langml/tests/test_layer_norm.py deleted file mode 100644 index 79a45cf..0000000 --- a/langml/tests/test_layer_norm.py +++ /dev/null @@ -1,29 +0,0 @@ -# -*- coding: utf-8 -*- - -from langml import TF_KERAS -if TF_KERAS: - import tensorflow.keras.backend as K - import tensorflow.keras.layers as L -else: - import keras.backend as K - import keras.layers as L - -import numpy as np -import pytest - - -@pytest.mark.parametrize("test_input,expected", [ - (K.constant([[1., 2., 3.], - [4., 5., 6.]]), - np.array([[-0.46291006, 0., 0.46291006], - [-0.19738552, 0., 0.19738552]])), - (K.constant([[[1., 2., 3.]], - [[4., 5., 6.]]]), - np.array([[[-0.46291006, 0., 0.46291006]], - [[-0.19738552, 0., 0.19738552]]])) -]) -def test_layer_norm(test_input, expected): - from langml.layers import LayerNorm - - output = LayerNorm(name='layer_norm')(test_input) - assert np.allclose(expected, np.array(K.eval(output).tolist())) diff --git a/langml/tests/test_model.py b/langml/tests/test_model.py deleted file mode 100644 index b9f734b..0000000 --- a/langml/tests/test_model.py +++ /dev/null @@ -1,164 +0,0 @@ -# -*- coding: utf-8 -*- - -import shutil - -from langml import TF_KERAS -if TF_KERAS: - import tensorflow.keras as keras - import tensorflow.keras.backend as K - import tensorflow.keras.layers as L -else: - import keras - import keras.backend as K - import keras.layers as L - - -def test_save_load_model_single_input(): - from langml.layers import SelfAttention - from langml.model import save_frozen, load_frozen - - num_labels = 2 - embedding_size = 100 - hidden_size = 128 - - model = keras.Sequential() - model.add(L.Embedding(num_labels, embedding_size)) - model.add(L.Bidirectional(L.LSTM(hidden_size, return_sequences=True))) - model.add(SelfAttention(hidden_size, return_attention=False)) - model.add(L.Dense(num_labels, activation='softmax')) - model.compile('adam', loss='mse', metrics=['accuracy']) - - save_frozen(model, 'self_attn_frozen') - K.clear_session() - del model - - import tensorflow as tf - tf_version = int(tf.__version__.split('.')[0]) - if tf_version > 1: - model = load_frozen('self_attn_frozen') - else: - session = tf.Session(graph=tf.Graph()) - model = load_frozen('self_attn_frozen', session=session) - shutil.rmtree('self_attn_frozen') - assert model is not None - - -def test_save_load_model_multi_input(): - from langml.layers import SelfAttention - from langml.model import save_frozen, load_frozen - - in1 = L.Input(shape=(None, 16), name='input-1') - in2 = L.Input(shape=(None, 16), name='input-2') - x1, x2 = in1, in2 - o1 = SelfAttention(return_attention=False)(x1) - o2 = SelfAttention(return_attention=False)(x2) - o = L.Concatenate()([o1, o2]) - o = L.Dense(2)(o) - model = keras.Model([x1, x2], o) - model.compile('adam', loss='mse', metrics=['accuracy']) - - save_frozen(model, 'self_attn_frozen.multi_input') - K.clear_session() - del model - - import tensorflow as tf - tf_version = int(tf.__version__.split('.')[0]) - if tf_version > 1: - model = load_frozen('self_attn_frozen.multi_input') - else: - session = tf.Session(graph=tf.Graph()) - model = load_frozen('self_attn_frozen.multi_input', session=session) - shutil.rmtree('self_attn_frozen.multi_input') - assert model is not None - - -def test_save_load_model_multi_input_output(): - from langml.layers import SelfAttention - from langml.model import save_frozen, load_frozen - - in1 = L.Input(shape=(None, 16), name='input-1') - in2 = L.Input(shape=(None, 16), name='input-2') - x1, x2 = in1, in2 - o1 = SelfAttention(return_attention=False)(x1) - o2 = SelfAttention(return_attention=False)(x2) - model = keras.Model([x1, x2], [o1, o2]) - model.compile('adam', loss='mse', metrics=['accuracy']) - - save_frozen(model, 'self_attn_frozen.multi_input_output') - K.clear_session() - del model - - import tensorflow as tf - tf_version = int(tf.__version__.split('.')[0]) - if tf_version > 1: - model = load_frozen('self_attn_frozen.multi_input_output') - else: - session = tf.Session(graph=tf.Graph()) - model = load_frozen('self_attn_frozen.multi_input_output', session=session) - shutil.rmtree('self_attn_frozen.multi_input_output') - assert model is not None - - -def test_crf_save_load(): - from langml.layers import CRF - from langml.model import save_frozen, load_frozen - - num_labels = 10 - embedding_size = 100 - hidden_size = 128 - - model = keras.Sequential() - model.add(L.Embedding(num_labels, embedding_size, mask_zero=True)) - model.add(L.LSTM(hidden_size, return_sequences=True)) - model.add(L.Dense(num_labels)) - crf = CRF(num_labels, sparse_target=False) - model.add(crf) - model.summary() - model.compile('adam', loss=crf.loss, metrics=[crf.accuracy]) - - save_frozen(model, 'crf_frozen') - K.clear_session() - del model - - import tensorflow as tf - tf_version = int(tf.__version__.split('.')[0]) - if tf_version > 1: - model = load_frozen('crf_frozen') - else: - session = tf.Session(graph=tf.Graph()) - model = load_frozen('crf_frozen', session=session) - shutil.rmtree('crf_frozen') - assert model is not None - - -def test_crf_dense_target_save_load(): - from langml.layers import CRF - from langml.model import save_frozen, load_frozen - - num_labels = 10 - embedding_size = 100 - hidden_size = 128 - - model = keras.Sequential() - model.add(L.Embedding(num_labels, embedding_size, mask_zero=True)) - model.add(L.LSTM(hidden_size, return_sequences=True)) - model.add(L.Dense(num_labels)) - crf = CRF(num_labels, sparse_target=False) - model.add(crf) - model.summary() - model.compile('adam', loss=crf.loss, metrics=[crf.accuracy]) - - save_frozen(model, 'crf_frozen_dense_target') - K.clear_session() - del model - - import tensorflow as tf - tf_version = int(tf.__version__.split('.')[0]) - - if tf_version > 1: - model = load_frozen('crf_frozen_dense_target') - else: - session = tf.Session(graph=tf.Graph()) - model = load_frozen('crf_frozen_dense_target', session=session) - shutil.rmtree('crf_frozen_dense_target') - assert model is not None diff --git a/langml/tests/test_modify_boundary.py b/langml/tests/test_modify_boundary.py deleted file mode 100644 index 13dbed9..0000000 --- a/langml/tests/test_modify_boundary.py +++ /dev/null @@ -1,17 +0,0 @@ -# -*- coding: utf-8 -*- - -import pytest -from langml.utils import modify_boundary - - -@pytest.mark.parametrize( - "inputs,expected", - [ - (("动隔振平台", "题 主动隔振平台|||"), "主动隔振平台"), - (("制备型液", "|||制备型液相 1"), "制备型液相") - ] -) -def test_modify_boundary(inputs, expected): - target, content = inputs - result = modify_boundary(target, content) - assert result == expected diff --git a/langml/tests/test_tokenizer.py b/langml/tests/test_tokenizer.py deleted file mode 100644 index 191e9ce..0000000 --- a/langml/tests/test_tokenizer.py +++ /dev/null @@ -1,643 +0,0 @@ -# -*- coding: utf-8 -*- - -import os -import pytest - -from langml.tokenizer import Encoding, SPTokenizer, WPTokenizer - - -data_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data') - - -@pytest.mark.parametrize( - "left_text,right_text", - [ - ( - 'I like apples', None, - ), - ( - '我喜欢吃苹果', None - ), - ( - 'I like apples', '我喜欢吃苹果' - ), - ( - '你好呀\n👋', 'hello world!!!\n👋' - ), - ( - "My mom always said life was like a box of chocolates. You never know what you're gonna get.", None - ), - ( - '''This line irked me. It is from the movie ‘Forrest Gump’ where the protagonist, played by Tom Hanks, quotes his mother:\nForrest Gump: My momma always said, “Life was like a box of chocolates. You never know what you’re gonna get.”\nYet, you do know, don’t you? You are going to get a box of chocolates. Perhaps you won’t know the taste of the chocolate specifically, perhaps one is more minty, the other might have that little coffee-taste of sorts, but chocolates nonetheless.\nI thought about it yesterday in the shower and figured, sure, if you compare it like that everyone gets a box of chocolates. Some boxes are bigger, some are smaller. Some chocolate boxes probably only have one piece of chocolate in it if you are lucky, and women probably have 70% of the chocolate inside.\nUltimately though, you know what you are going to get: chocolate. I admit that if you are getting a box of chocolates gifted to you, yes, you will not know what is inside. Life is a gift after all, so it makes sense. Yet life in itself is not mysterious as such, it is portrayed as quite simple. We wander around looking for meaning behind the chocolate. What does the chocolate mean? What if my chocolate is bitter? I don’t like the dark chocolate, I like it a little lighter, or white, or with caramel, or nuts. What if I don’t like the chocolate?\nI was bothered by the idea that it could be so simple, yet I figure in the grand scheme of things, yes, life is like a box of chocolates. It is that simple. It appears mysterious, that box, on the outside. Who knows what kinds of chocolates are inside? Then you open it and see the forms and shapes of the various chocolates, but you don’t know how it tastes. Take a bite and find out! The mystery unravels itself in time, as you are living.\nThat’s life, taking a bite of that unknown piece of chocolate, but more than than simply taking a bite out of the chocolate and seeing how it tastes, but appreciating that taste. Not judging it for not being the taste you expected, or disappointed that it wasn’t as tasty as it looked. Nor, should it be the case, being sad it only has 5 pieces instead of 10, or that the box isn’t as big as you’d hoped. Enjoy the piece of chocolate, every piece, and don’t leave a single piece behind.\nLife is like a box of chocolates, so enjoy every bite.''', None # NOQA - ), - ( - '''马尚龙 | 上海每一个区,各由一字来微缩 原创 马尚龙 大上海小龙弄\n\n一晃已经是7年前的事情——人一生通常也就是晃十几晃。 🈳️ \n 就是这么一晃之间,许多人和事晃没了,许多人和事晃出来了。比如,晃着晃着,闸北区没了;晃着晃着,临港新片区有了。\n\n承蒙上海航空传媒的抬爱,我担任了《上海魅力》这本书的主编。此书汇集了上海十七个区县的人文历史旅游地貌——2014年崇明尚未撤县,闸北仍是一区。当时我们给自己挖了一个坑,在每一个区县的图文组合之首,做一个“一字解读”,既要点睛,又要有趣和个性化,不求面面俱到,但求冰山一角,而后再用极短的文字解读这一个字。\n\n创意很好。只是所有的创意都是坑,坑挖好了,谁进这个坑呢?只有让“主编大人”跳进去吧。\n\n\n\n\n封面图片说明:伍蠡甫画,1964年 上海炼油厂一角\n\n\n于是我就写下了《上海魅力》十七个“上海之……”。为十七个区县创作浓缩版精华画作的是著名画家戴红倩。我和他的愉快合作始于《上海制造》。\n\n十七个区县的“上海之……”,纯属我个人的“瞎七搭八”,说不上历史依据,更没有官方意图。在当时的《上海航空》先期刊登后,竟也有人看到,还和我讨论。有说我写得妙的,也有不同意的,比如杨浦区“上海之重”,是否应该写成“上海之学”——大学多文化氛围浓。不过我就一意孤行,一个人“一”到底了。本身就是随意为之,一讨论一征求意见,好像是革命样板戏重点题材的创作套路了。\n\n松江:上海之根\n\n\n\n如果说泰晤士小镇是松江的时尚,如果说大学城是松江的心胸,那么广富林是上海的骄傲,当广富林被注水重现上海之初时,在水一方是上海的根。\n\n静安:上海之秀\n\n\n\n静是态度,安是祈福;最袖珍的公园里有最秀雅的梧桐,最拥挤的人群,无疑也是最秀慧的人文景观,一年一度的上海书展,一再创造着中国图书展览的纪录。\n\n嘉定:上海之速\n\n\n\n最极速的是F1,却不完全是,还有中国第一条高速公路沪嘉高速,还有第一个中德合资的汽车品牌大众桑塔纳,更有以此带来的嘉定速度。\n\n杨浦:上海之重\n\n\n\n重可以是工业,上海的重工业基地再次舍我其谁?重也可以是学业,上海的重点大学在此联袂;重还可以是历史,诸多重要的事件在此展开。\n\n金山:上海之焰\n\n\n\n海上升明月是唐诗的意境,海上升焰火是金山的节日,渔村的味道,啤酒节的喧闹,音乐节的声道……可以闲步,可以闲聊,可以闲雅。\n\n虹口:上海之灵\n\n\n\n民族的灵魂在这里发出呐喊,文坛大师的灵感至今回荡;这里传递着从邮政总局发出的信函,从甜爱路散发的爱情传说。\n\n崇明:上海之绿\n\n\n\n曾经的荒芜化为全上海规模最大的生态湿地,曾经的角落化为全上海空气最清新的天然氧吧,曾经的朝发夕至化为桥隧一路通。\n\n长宁:上海之虹\n\n\n\n冥冥中的命名,带来了冥冥中的使命,虹桥,是上海最早通向全世界的天虹之桥,也是通向宁静、通向文明、通向富裕的长虹之桥。\n\n徐汇:上海之影\n\n\n\n这里,有上海电影制片厂留下的光影;有藏书楼留下的文化的背影;有土山湾留下的历史的倒影;有徐家汇商圈留下的熙攘人群的斜影。\n\n宝山:上海之水\n\n\n\n东海、长江和黄浦江三水合一,是著名的“三夹水”,三夹水就在宝山的吴淞口回旋;三水在此汇合,却是以自己的颜色而区分彼此。海纳百川有了一个绝好的注释。如今的邮轮恰是被三夹水涌向远方。\n\n普陀:上海之玉\n\n\n\n玉佛寺外两条路的路名,不经意间体现了最高的禅意——南北向的江宁路,东西向的安远路——宁静而致远;或许,也是玉的境界吧。其实这又何尝不是上海人的生活向往?\n\n青浦:上海之泽\n\n\n\n洋洋大观淀山湖,小桥流水朱家角,尤其是引以为荣的崧泽文化,宏伟的篇幅可以展示,传奇的故事可以流传,浪漫的风情可以演绎——就因为是鱼米之乡和人文故地。奥特莱斯,福寿园,乃至扎肉大米,迥异而声名远扬。\n\n闸北:上海之魔\n\n\n\n曾经有过经典魔术,将两次淞沪战争时期被日军炸毁的火车站迅速修复;曾经有过古彩魔术,把滚地龙变成了新工房;曾经有过时尚魔术,马戏城成为上海旅游的重头戏;还将拉开未来魔术,闸北区融入了静安区。\n\n闵行:上海之宝\n\n\n\n闵行曾经离上海市中心极其遥远,在闵行上班的工人都不能每天回家,如今闵行本身就是居民云集。七宝,曾经久闻七宝大曲,却无法从容来去,如今的七宝古镇,也无法从容来去,只因游人为七宝而去。\n\n奉贤:上海之湾\n\n\n\n海湾是自然的地理态势,蓝天碧海,一览无余;海湾也是人工的创造,碧海金沙,是观海,也是嬉沙。海湾更是人文的港湾,“奉贤”二字,便是告知天下,社会贤达,在这一个港湾的地位。\n\n黄浦:上海之曦\n\n\n\n如果说,曦是每一天阳光之第一,那么,南京路就是第一,国际饭店就是第一,淮海路就是第一,中国人自己创办的自来水厂就是第一……许多历史深远的政治活动仍是第一,比如,一大会址。\n\n浦东:上海之珠\n\n\n\n最初,东方明珠只是一座电视塔,后来,它成为了旅游热地,再后来它已经不再是电视塔,不再是最高,但是它成为了浦东的同名词,成为了浦东的“代言人”,浦东就是东方之珠。\n\n\n\n《上海魅力》出版后,新的创意诞生,那就是后来的《爱上海》明信片珍藏版,仅600册,且由戴敦邦大师题“爱上海”。明信片出版时,崇明撤县改区,闸北并入静安,再没有十七个区县之说,所以《爱上海》是真正的绝版了。\n\n轮不到我画龙点睛,也挨不着我画蛇添足,我只是“大上海小龙弄”一番而已,浪花也不起的。\n\n本次公号文字太少了,就贴两段有关上海的文字吧。这是我写于2009年《海派格调》的段落——\n\n有很多事情,是否发生在上海就会有不同的结果;其他地域当然也会有类似的现象,但是不至于像上海一样,这样的事情会很多,效果会很强烈。尤其是当这样的事情很小,本不应该会有强烈的反响,在其他地域甚至就不会成为一件事情,在上海却能成为一个家喻户晓的新闻事件。一座桥的修整,一座烟囱的保留,可以反反复复成为饭桌上的谈资。\n\n\n\n上海的外白渡桥要做迁移式大修,原本这就是一个市政工程,苏州河上所有的桥都经历了修整,当然外白渡桥享受的是最特殊的待遇,迁移大修,而非拆旧造新。这一项市政工程从发布消息直至正式迁移,一直是上海文化界的热议话题,诸如地标式的意义,旧上海的门户,“华人与狗不得入内”的见证……最有意思的是,时尚界始终将它作为一个时尚事件,围绕外白渡桥的大修,在外白渡桥上举行一系列时尚活动,影星章子怡就在外白渡桥上拍过一组照片。还有人发散性思维地创意:将外白渡桥上拆下来的废旧铆钉嵌在水晶玻璃内,一定是很有意义的纪念品和装饰品,后来果然有了这份镶嵌了废铜烂铁的纪念品。是上海这座城市的意义,决定了一座老桥的地位。\n\n\n\n同样的意义也决定了一座烟囱的保留。在非常注重环境保护的上海市中心徐家汇绿地,不仅保留了小洋房,而且还保留了工业社会象征的烟囱。几十年前,这一座黑烟滚滚的烟囱是伟大的象征,小学生将它写进作文里,画进素描里;几十年后,它静静地矗立在绿地中,依然非常雄性,与他匹配的不再是粗犷的工厂,而是柔情的时尚,小孩子们在烟囱底下游戏拍照,“听妈妈讲过去的故事”。\n\n只有在烟囱已经属于“过去的故事”的时候,它的属性才会由工业演变为文化和时尚;假如这一个城市依然还饱受林立的烟囱和滚滚的黑烟,那么任何一座烟囱都是罪恶。是上海这一座城市的意义,改变了这一座烟囱的是非。\n\n马尚龙\n\n中国作家协会会员,上海作家协会理事、散文报告文学专业创作委员会副主任;编审\n\n民进上海市委出版传媒委员会副主任\n\n上海黄浦区明复图书馆理事长\n\n上海评弹团艺委会顾问\n\n著作主要分为三个系列,分别是《幽默应笑我》《与名人同窗》等杂文系列,《上海制造》《为什么是上海》《上海分寸》《上海女人》《上海路数》等上海系列,《卷手语》《有些意思你从来不懂》等随笔系列 。\n\n\n\n我的新书《上海分寸》,上海书店出版社2021年1月出版。\n\n欢迎关注我的微信公众号“大上海小龙弄”——\n\n原标题:《马尚龙 | 上海每一个区,各由一字来微缩》''', None # NOQA - ) - ] -) -def test_wordpiece_encode(left_text, right_text): - # lowercase=True - tokenizer = WPTokenizer(vocab_path=os.path.join(data_dir, 'wp_cn_vocab.txt'), lowercase=True) - raw_tokenizer = tokenizer.raw_tokenizer() - ret1 = tokenizer.encode(left_text, right_text, return_array=False) - ret2 = raw_tokenizer.encode(left_text, right_text) - - assert ret1.ids == ret2.ids - assert ret1.segment_ids == ret2.type_ids - assert ret1.tokens == ret2.tokens - - # lowercase=False - tokenizer = WPTokenizer(vocab_path=os.path.join(data_dir, 'wp_cn_vocab.txt'), lowercase=False) - raw_tokenizer = tokenizer.raw_tokenizer() - ret1 = tokenizer.encode(left_text, right_text, return_array=False) - ret2 = raw_tokenizer.encode(left_text, right_text) - - assert ret1.ids == ret2.ids - assert ret1.segment_ids == ret2.type_ids - assert ret1.tokens == ret2.tokens - - -@pytest.mark.parametrize( - 'inputs,padding_strategy,expected', - [ - ( - [('I like apples', '我喜欢吃苹果'), ('hello world!', '你好世界👋')], - 'post', - Encoding( - ids=[[101, 151, 8993, 8350, 8118, 102, 2769, 1599, 3614, 1391, 5741, 3362, 102], - [101, 8701, 8572, 106, 102, 872, 1962, 686, 4518, 100, 102, 0, 0]], - segment_ids=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1], - [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0]], - tokens=[['[CLS]', 'i', 'like', 'apple', '##s', '[SEP]', '我', '喜', '欢', '吃', '苹', '果', '[SEP]'], - ['[CLS]', 'hello', 'world', '!', '[SEP]', '你', '好', '世', '界', '[UNK]', '[SEP]', '[PAD]', '[PAD]']] - ), - ), ( - [('I like apples', '我喜欢吃苹果'), ('hello world!', '你好世界👋')], - 'pre', - Encoding( - ids=[[101, 151, 8993, 8350, 8118, 102, 2769, 1599, 3614, 1391, 5741, 3362, 102], - [0, 0, 101, 8701, 8572, 106, 102, 872, 1962, 686, 4518, 100, 102]], - segment_ids=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1], - [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]], - tokens=[['[CLS]', 'i', 'like', 'apple', '##s', '[SEP]', '我', '喜', '欢', '吃', '苹', '果', '[SEP]'], - ['[PAD]', '[PAD]', '[CLS]', 'hello', 'world', '!', '[SEP]', '你', '好', '世', '界', '[UNK]', '[SEP]']] - ) - ) - ] -) -def test_wordpiece_batch_encode_padding(inputs, padding_strategy, expected): - tokenizer = WPTokenizer(vocab_path=os.path.join(data_dir, 'wp_cn_vocab.txt'), lowercase=True) - pred = tokenizer.encode_batch(inputs, padding=True, padding_strategy=padding_strategy, return_array=False) - assert pred.ids == expected.ids - assert pred.segment_ids == expected.segment_ids - assert pred.tokens == expected.tokens - - -@pytest.mark.parametrize( - 'inputs,padding_strategy,expected', - [ - ( - ['I like apples', '我喜欢吃苹果', 'hello world!', '你好世界👋'], - 'post', - Encoding( - ids=[[101, 151, 8993, 8350, 8118, 102, 0, 0], - [101, 2769, 1599, 3614, 1391, 5741, 3362, 102], - [101, 8701, 8572, 106, 102, 0, 0, 0], - [101, 872, 1962, 686, 4518, 100, 102, 0]], - segment_ids=[[0, 0, 0, 0, 0, 0, 0, 0], - [0, 0, 0, 0, 0, 0, 0, 0], - [0, 0, 0, 0, 0, 0, 0, 0], - [0, 0, 0, 0, 0, 0, 0, 0]], - tokens=[['[CLS]', 'i', 'like', 'apple', '##s', '[SEP]', '[PAD]', '[PAD]'], - ['[CLS]', '我', '喜', '欢', '吃', '苹', '果', '[SEP]'], - ['[CLS]', 'hello', 'world', '!', '[SEP]', '[PAD]', '[PAD]', '[PAD]'], - ['[CLS]', '你', '好', '世', '界', '[UNK]', '[SEP]', '[PAD]']] - ), - ), ( - ['I like apples', '我喜欢吃苹果', 'hello world!', '你好世界👋'], - 'pre', - Encoding( - ids=[[0, 0, 101, 151, 8993, 8350, 8118, 102], - [101, 2769, 1599, 3614, 1391, 5741, 3362, 102], - [0, 0, 0, 101, 8701, 8572, 106, 102], - [0, 101, 872, 1962, 686, 4518, 100, 102]], - segment_ids=[[0, 0, 0, 0, 0, 0, 0, 0], - [0, 0, 0, 0, 0, 0, 0, 0], - [0, 0, 0, 0, 0, 0, 0, 0], - [0, 0, 0, 0, 0, 0, 0, 0]], - tokens=[['[PAD]', '[PAD]', '[CLS]', 'i', 'like', 'apple', '##s', '[SEP]'], - ['[CLS]', '我', '喜', '欢', '吃', '苹', '果', '[SEP]'], - ['[PAD]', '[PAD]', '[PAD]', '[CLS]', 'hello', 'world', '!', '[SEP]'], - ['[PAD]', '[CLS]', '你', '好', '世', '界', '[UNK]', '[SEP]']] - ) - ) - ] -) -def test_wordpiece_batch_encode_single(inputs, padding_strategy, expected): - tokenizer = WPTokenizer(vocab_path=os.path.join(data_dir, 'wp_cn_vocab.txt'), lowercase=True) - pred = tokenizer.encode_batch(inputs, padding=True, padding_strategy=padding_strategy, return_array=False) - assert pred.ids == expected.ids - assert pred.segment_ids == expected.segment_ids - assert pred.tokens == expected.tokens - - -@pytest.mark.parametrize( - 'inputs,expected', - [ - ( - [('I like apples', '我喜欢吃苹果'), ('hello world!', '你好世界👋')], - Encoding( - ids=[[101, 151, 8993, 8350, 8118, 102, 2769, 1599, 3614, 1391, 5741, 3362, 102], - [101, 8701, 8572, 106, 102, 872, 1962, 686, 4518, 100, 102]], - segment_ids=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1], - [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]], - tokens=[['[CLS]', 'i', 'like', 'apple', '##s', '[SEP]', '我', '喜', '欢', '吃', '苹', '果', '[SEP]'], - ['[CLS]', 'hello', 'world', '!', '[SEP]', '你', '好', '世', '界', '[UNK]', '[SEP]']] - ), - ) - ] -) -def test_wordpiece_batch_encode_no_padding(inputs, expected): - tokenizer = WPTokenizer(vocab_path=os.path.join(data_dir, 'wp_cn_vocab.txt'), lowercase=True) - pred = tokenizer.encode_batch(inputs, padding=False, return_array=False) - assert pred.ids == expected.ids - assert pred.segment_ids == expected.segment_ids - assert pred.tokens == expected.tokens - - -@pytest.mark.parametrize( - 'inputs,padding_strategy,expected', - [ - ( - [('I like apples', '我喜欢吃苹果'), ('hello world!', '你好世界👋')], - 'post', - Encoding( - ids=[[101, 151, 8993, 8350, 8118, 102, 2769, 1599, 3614, 102], - [101, 8701, 8572, 106, 102, 872, 1962, 686, 4518, 102]], - segment_ids=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1], - [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]], - tokens=[['[CLS]', 'i', 'like', 'apple', '##s', '[SEP]', '我', '喜', '欢', '[SEP]'], - ['[CLS]', 'hello', 'world', '!', '[SEP]', '你', '好', '世', '界', '[SEP]']] - ), - ), - ( - [('I like apples', '我喜欢吃苹果'), ('hello world!', '你好世界👋')], - 'pre', - Encoding( - ids=[[101, 151, 8993, 8350, 8118, 102, 2769, 1599, 3614, 102], - [101, 8701, 8572, 106, 102, 872, 1962, 686, 4518, 102]], - segment_ids=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1], - [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]], - tokens=[['[CLS]', 'i', 'like', 'apple', '##s', '[SEP]', '我', '喜', '欢', '[SEP]'], - ['[CLS]', 'hello', 'world', '!', '[SEP]', '你', '好', '世', '界', '[SEP]']] - ), - ) - ] -) -def test_wordpiece_batch_encode_truncation(inputs, padding_strategy, expected): - tokenizer = WPTokenizer(vocab_path=os.path.join(data_dir, 'wp_cn_vocab.txt'), lowercase=True) - tokenizer.enable_truncation(max_length=10) - pred = tokenizer.encode_batch(inputs, padding_strategy=padding_strategy, return_array=False) - assert pred.ids == expected.ids - assert pred.segment_ids == expected.segment_ids - assert pred.tokens == expected.tokens - - -@pytest.mark.parametrize( - "test_input,skip_special_tokens,expected", - [ - ([101, 872, 1962, 686, 4518, 100, 102], True, ['你', '好', '世', '界']), - ([101, 872, 1962, 686, 4518, 100, 102], False, ['[CLS]', '你', '好', '世', '界', '[UNK]', '[SEP]']), - ([101, 8701, 8572, 102], True, ['hello', 'world']), - ([101, 8701, 8572, 102], False, ['[CLS]', 'hello', 'world', '[SEP]']) - ] -) -def test_wordpiece_decode(test_input, skip_special_tokens, expected): - tokenizer = WPTokenizer(vocab_path=os.path.join(data_dir, 'wp_cn_vocab.txt'), lowercase=True) - - assert tokenizer.decode(test_input, skip_special_tokens=skip_special_tokens) == expected - - -@pytest.mark.parametrize( - "left_text,right_text,expected", - [ - ( - ''.join(['头'] + ['[UNK]'] * 2), - ''.join(['头'] + ['[UNK]'] * 2), - Encoding( - ids=[101, 1928, 100, 100, 102, 1928, 100, 100, 102], - segment_ids=[0, 0, 0, 0, 0, 1, 1, 1, 1], - tokens=['[CLS]', '头', '[UNK]', '[UNK]', '[SEP]', '头', '[UNK]', '[UNK]', '[SEP]'], - ) - ), - ( - ''.join(['头'] + ['[UNK]'] * 2), - ''.join(['头'] + ['[UNK]'] * 8), - Encoding( - ids=[101, 1928, 100, 100, 102, 1928, 100, 100, 100, 102], - segment_ids=[0, 0, 0, 0, 0, 1, 1, 1, 1, 1], - tokens=['[CLS]', '头', '[UNK]', '[UNK]', '[SEP]', '头', '[UNK]', '[UNK]', '[UNK]', '[SEP]'] - ) - ), - ( - ''.join(['头'] + ['[UNK]'] * 8), - ''.join(['头'] + ['[UNK]'] * 2), - Encoding( - ids=[101, 1928, 100, 100, 100, 102, 1928, 100, 100, 102], - segment_ids=[0, 0, 0, 0, 0, 0, 1, 1, 1, 1], - tokens=['[CLS]', '头', '[UNK]', '[UNK]', '[UNK]', '[SEP]', '头', '[UNK]', '[UNK]', '[SEP]'] - ) - ), - ( - ''.join(['头'] + ['[UNK]'] * 8), - ''.join(['头'] + ['[UNK]'] * 8), - Encoding( - ids=[101, 1928, 100, 100, 100, 102, 1928, 100, 100, 102], - segment_ids=[0, 0, 0, 0, 0, 0, 1, 1, 1, 1], - tokens=['[CLS]', '头', '[UNK]', '[UNK]', '[UNK]', '[SEP]', '头', '[UNK]', '[UNK]', '[SEP]'], - ) - ), - ] -) -def test_wordpiece_truncation_post(left_text, right_text, expected): - tokenizer = WPTokenizer(vocab_path=os.path.join(data_dir, 'wp_cn_vocab.txt'), lowercase=True) - tokenizer.enable_truncation(10, strategy='post') - - ret = tokenizer.encode(left_text, right_text, return_array=False) - assert ret.ids == expected.ids - assert ret.segment_ids == expected.segment_ids - assert ret.tokens == expected.tokens - - -@pytest.mark.parametrize( - "left_text,right_text,expected", - [ - ( - ''.join(['[UNK]'] * 2 + ['尾']), - ''.join(['[UNK]'] * 2 + ['尾']), - Encoding( - ids=[101, 100, 100, 2227, 102, 100, 100, 2227, 102], - segment_ids=[0, 0, 0, 0, 0, 1, 1, 1, 1], - tokens=['[CLS]', '[UNK]', '[UNK]', '尾', '[SEP]', '[UNK]', '[UNK]', '尾', '[SEP]'], - ) - ), - ( - ''.join(['[UNK]'] * 2 + ['尾']), - ''.join(['[UNK]'] * 8 + ['尾']), - Encoding( - ids=[101, 100, 100, 2227, 102, 100, 100, 100, 2227, 102], - segment_ids=[0, 0, 0, 0, 0, 1, 1, 1, 1, 1], - tokens=['[CLS]', '[UNK]', '[UNK]', '尾', '[SEP]', '[UNK]', '[UNK]', '[UNK]', '尾', '[SEP]'] - ) - ), - ( - ''.join(['[UNK]'] * 8 + ['尾']), - ''.join(['[UNK]'] * 2 + ['尾']), - Encoding( - ids=[101, 100, 100, 100, 2227, 102, 100, 100, 2227, 102], - segment_ids=[0, 0, 0, 0, 0, 0, 1, 1, 1, 1], - tokens=['[CLS]', '[UNK]', '[UNK]', '[UNK]', '尾', '[SEP]', '[UNK]', '[UNK]', '尾', '[SEP]'] - ) - ), - ( - ''.join(['[UNK]'] * 8 + ['尾']), - ''.join(['[UNK]'] * 8 + ['尾']), - Encoding( - ids=[101, 100, 100, 100, 2227, 102, 100, 100, 2227, 102], - segment_ids=[0, 0, 0, 0, 0, 0, 1, 1, 1, 1], - tokens=['[CLS]', '[UNK]', '[UNK]', '[UNK]', '尾', '[SEP]', '[UNK]', '[UNK]', '尾', '[SEP]'], - ) - ), - ] -) -def test_wordpiece_truncation_pre(left_text, right_text, expected): - tokenizer = WPTokenizer(vocab_path=os.path.join(data_dir, 'wp_cn_vocab.txt'), lowercase=True) - tokenizer.enable_truncation(10, strategy='pre') - - ret = tokenizer.encode(left_text, right_text, return_array=False) - assert ret.ids == expected.ids - assert ret.segment_ids == expected.segment_ids - assert ret.tokens == expected.tokens - - -@pytest.mark.parametrize( - 'test_input,start_index,end_index,expected', - [ - ( - 'I like apples.', 3, 4, 'apples' - ), - ( - '我好菜啊!!', 1, 3, '我好菜' - ) - ] -) -def test_wordpiece_tokens_mapping(test_input, start_index, end_index, expected): - tokenizer = WPTokenizer(vocab_path=os.path.join(data_dir, 'wp_cn_vocab.txt'), lowercase=True) - pred = tokenizer.encode(test_input) - mapping = tokenizer.tokens_mapping(test_input, pred.tokens) - assert test_input[mapping[start_index][0]: mapping[end_index][1]] == expected - - -@pytest.mark.parametrize( - "left_text,right_text,expected", - [ - ( - 'I like apples', None, - Encoding( - [2, 31, 101, 4037, 18, 3], - [0, 0, 0, 0, 0, 0], - ['[CLS]', '▁i', '▁like', '▁apple', 's', '[SEP]'] - ) - ), - ( - 'hello world', 'hello world!!!\n👋', - Encoding( - [2, 10975, 126, 3, 10975, 126, 28116, 13, 1, 3], - [0, 0, 0, 0, 1, 1, 1, 1, 1, 1], - ['[CLS]', '▁hello', '▁world', '[SEP]', '▁hello', '▁world', '!!!', '▁', '👋', '[SEP]'] - ) - ), - ] -) -def test_sentencepiece_encode(left_text, right_text, expected): - tokenizer = SPTokenizer(vocab_path=os.path.join(data_dir, 'albert_vocab/30k-clean.model'), lowercase=True) - ret = tokenizer.encode(left_text, right_text, return_array=False) - - assert ret.ids == expected.ids - assert ret.segment_ids == expected.segment_ids - assert ret.tokens == expected.tokens - - -@pytest.mark.parametrize( - "test_input,skip_special_tokens,expected", - [ - ([2, 10975, 126, 3], True, ['▁hello', '▁world']), - ([2, 10975, 126, 3], False, ['[CLS]', '▁hello', '▁world', '[SEP]']), - ([2, 10975, 126, 28116, 13, 3], True, ['▁hello', '▁world', '!!!', '▁']), - ([2, 10975, 126, 28116, 13, 3], False, ['[CLS]', '▁hello', '▁world', '!!!', '▁', '[SEP]']) - ] -) -def test_sentencepiece_decode(test_input, skip_special_tokens, expected): - tokenizer = SPTokenizer(vocab_path=os.path.join(data_dir, 'albert_vocab/30k-clean.model')) - - assert tokenizer.decode(test_input, skip_special_tokens=skip_special_tokens) == expected - - -@pytest.mark.parametrize( - "left_text,right_text,expected", - [ - ( - ' '.join(['head'] + ['unknown'] * 2), - ' '.join(['head'] + ['unknown'] * 2), - Encoding( - ids=[2, 157, 2562, 2562, 3, 157, 2562, 2562, 3], - segment_ids=[0, 0, 0, 0, 0, 1, 1, 1, 1], - tokens=['[CLS]', '▁head', '▁unknown', '▁unknown', '[SEP]', '▁head', '▁unknown', '▁unknown', '[SEP]'], - ) - ), - ( - ' '.join(['head'] + ['unknown'] * 2), - ' '.join(['head'] + ['unknown'] * 8), - Encoding( - ids=[2, 157, 2562, 2562, 3, 157, 2562, 2562, 2562, 3], - segment_ids=[0, 0, 0, 0, 0, 1, 1, 1, 1, 1], - tokens=['[CLS]', '▁head', '▁unknown', '▁unknown', '[SEP]', '▁head', '▁unknown', '▁unknown', '▁unknown', '[SEP]'] - ) - ), - ( - ' '.join(['head'] + ['unknown'] * 8), - ' '.join(['head'] + ['unknown'] * 2), - Encoding( - ids=[2, 157, 2562, 2562, 2562, 3, 157, 2562, 2562, 3], - segment_ids=[0, 0, 0, 0, 0, 0, 1, 1, 1, 1], - tokens=['[CLS]', '▁head', '▁unknown', '▁unknown', '▁unknown', '[SEP]', '▁head', '▁unknown', '▁unknown', '[SEP]'] - ) - ), - ( - ' '.join(['head'] + ['unknown'] * 8), - ' '.join(['head'] + ['unknown'] * 8), - Encoding( - ids=[2, 157, 2562, 2562, 2562, 3, 157, 2562, 2562, 3], - segment_ids=[0, 0, 0, 0, 0, 0, 1, 1, 1, 1], - tokens=['[CLS]', '▁head', '▁unknown', '▁unknown', '▁unknown', '[SEP]', '▁head', '▁unknown', '▁unknown', '[SEP]'], - ) - ), - ] -) -def test_sentencepiece_truncation_post(left_text, right_text, expected): - tokenizer = SPTokenizer(vocab_path=os.path.join(data_dir, 'albert_vocab/30k-clean.model')) - tokenizer.enable_truncation(10, strategy='post') - - ret = tokenizer.encode(left_text, right_text, return_array=False) - assert ret.ids == expected.ids - assert ret.segment_ids == expected.segment_ids - assert ret.tokens == expected.tokens - - -@pytest.mark.parametrize( - "left_text,right_text,expected", - [ - ( - ' '.join(['unknown'] * 2 + ['tail']), - ' '.join(['unknown'] * 2 + ['tail']), - Encoding( - ids=[2, 2562, 2562, 3424, 3, 2562, 2562, 3424, 3], - segment_ids=[0, 0, 0, 0, 0, 1, 1, 1, 1], - tokens=['[CLS]', '▁unknown', '▁unknown', '▁tail', '[SEP]', '▁unknown', '▁unknown', '▁tail', '[SEP]'], - ) - ), - ( - ' '.join(['unknown'] * 2 + ['tail']), - ' '.join(['unknown'] * 8 + ['tail']), - Encoding( - ids=[2, 2562, 2562, 3424, 3, 2562, 2562, 2562, 3424, 3], - segment_ids=[0, 0, 0, 0, 0, 1, 1, 1, 1, 1], - tokens=['[CLS]', '▁unknown', '▁unknown', '▁tail', '[SEP]', '▁unknown', '▁unknown', '▁unknown', '▁tail', '[SEP]'] - ) - ), - ( - ' '.join(['unknown'] * 8 + ['tail']), - ' '.join(['unknown'] * 2 + ['tail']), - Encoding( - ids=[2, 2562, 2562, 2562, 3424, 3, 2562, 2562, 3424, 3], - segment_ids=[0, 0, 0, 0, 0, 0, 1, 1, 1, 1], - tokens=['[CLS]', '▁unknown', '▁unknown', '▁unknown', '▁tail', '[SEP]', '▁unknown', '▁unknown', '▁tail', '[SEP]'] - ) - ), - ( - ' '.join(['unknown'] * 8 + ['tail']), - ' '.join(['unknown'] * 8 + ['tail']), - Encoding( - ids=[2, 2562, 2562, 2562, 3424, 3, 2562, 2562, 3424, 3], - segment_ids=[0, 0, 0, 0, 0, 0, 1, 1, 1, 1], - tokens=['[CLS]', '▁unknown', '▁unknown', '▁unknown', '▁tail', '[SEP]', '▁unknown', '▁unknown', '▁tail', '[SEP]'], - ) - ), - ] -) -def test_sentencepiece_truncation_pre(left_text, right_text, expected): - tokenizer = SPTokenizer(vocab_path=os.path.join(data_dir, 'albert_vocab/30k-clean.model')) - tokenizer.enable_truncation(10, strategy='pre') - - ret = tokenizer.encode(left_text, right_text, return_array=False) - assert ret.ids == expected.ids - assert ret.segment_ids == expected.segment_ids - assert ret.tokens == expected.tokens - - -@pytest.mark.parametrize( - 'inputs,padding_strategy,expected', - [ - ( - [('I like apples', 'I like watermelones'), ('hello world!', 'hello world')], - 'post', - Encoding( - ids=[[2, 13, 1, 101, 4037, 18, 3, 13, 1, 101, 308, 21008, 2696, 3], - [2, 10975, 126, 187, 3, 10975, 126, 3, 0, 0, 0, 0, 0, 0]], - segment_ids=[[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1], - [0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0]], - tokens=[['[CLS]', '▁', 'I', '▁like', '▁apple', 's', '[SEP]', '▁', 'I', '▁like', '▁water', 'melo', 'nes', '[SEP]'], - ['[CLS]', '▁hello', '▁world', '!', '[SEP]', '▁hello', '▁world', '[SEP]', '', '', '', '', '', '']] - ), - ), ( - [('I like apples', 'I like watermelones'), ('hello world!', 'hello world')], - 'pre', - Encoding( - ids=[[2, 13, 1, 101, 4037, 18, 3, 13, 1, 101, 308, 21008, 2696, 3], - [0, 0, 0, 0, 0, 0, 2, 10975, 126, 187, 3, 10975, 126, 3]], - segment_ids=[[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1], - [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1]], - tokens=[['[CLS]', '▁', 'I', '▁like', '▁apple', 's', '[SEP]', '▁', 'I', '▁like', '▁water', 'melo', 'nes', '[SEP]'], - ['', '', '', '', '', '', '[CLS]', '▁hello', '▁world', '!', '[SEP]', '▁hello', '▁world', '[SEP]']] - ) - ) - ] -) -def test_sentencepiece_batch_encode_padding(inputs, padding_strategy, expected): - tokenizer = SPTokenizer(vocab_path=os.path.join(data_dir, 'albert_vocab/30k-clean.model')) - pred = tokenizer.encode_batch(inputs, padding=True, padding_strategy=padding_strategy, return_array=False) - assert pred.ids == expected.ids - assert pred.segment_ids == expected.segment_ids - assert pred.tokens == expected.tokens - - -@pytest.mark.parametrize( - 'inputs,expected', - [ - ( - [('I like apples', 'I like watermelones'), ('hello world!', 'hello world')], - Encoding( - ids=[[2, 13, 1, 101, 4037, 18, 3, 13, 1, 101, 308, 21008, 2696, 3], - [2, 10975, 126, 187, 3, 10975, 126, 3]], - segment_ids=[[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1], - [0, 0, 0, 0, 0, 1, 1, 1]], - tokens=[['[CLS]', '▁', 'I', '▁like', '▁apple', 's', '[SEP]', '▁', 'I', '▁like', '▁water', 'melo', 'nes', '[SEP]'], - ['[CLS]', '▁hello', '▁world', '!', '[SEP]', '▁hello', '▁world', '[SEP]']] - ), - ) - ] -) -def test_sentencepiece_batch_encode_no_padding(inputs, expected): - tokenizer = SPTokenizer(vocab_path=os.path.join(data_dir, 'albert_vocab/30k-clean.model')) - pred = tokenizer.encode_batch(inputs, padding=False, return_array=False) - assert pred.ids == expected.ids - assert pred.segment_ids == expected.segment_ids - assert pred.tokens == expected.tokens - - -@pytest.mark.parametrize( - 'inputs,padding_strategy,expected', - [ - ( - [('I like apples', 'I like watermelones'), ('hello world!', 'hello world')], - 'post', - Encoding( - ids=[[2, 13, 1, 101, 4037, 3, 13, 1, 101, 3], - [2, 10975, 126, 187, 3, 10975, 126, 3, 0, 0]], - segment_ids=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1], - [0, 0, 0, 0, 0, 1, 1, 1, 0, 0]], - tokens=[['[CLS]', '▁', 'I', '▁like', '▁apple', '[SEP]', '▁', 'I', '▁like', '[SEP]'], - ['[CLS]', '▁hello', '▁world', '!', '[SEP]', '▁hello', '▁world', '[SEP]', '', '']] - ), - ), - ( - [('I like apples', 'I like watermelones'), ('hello world!', 'hello world')], - 'pre', - Encoding( - ids=[[2, 13, 1, 101, 4037, 3, 13, 1, 101, 3], - [0, 0, 2, 10975, 126, 187, 3, 10975, 126, 3]], - segment_ids=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1], - [0, 0, 0, 0, 0, 0, 0, 1, 1, 1]], - tokens=[['[CLS]', '▁', 'I', '▁like', '▁apple', '[SEP]', '▁', 'I', '▁like', '[SEP]'], - ['', '', '[CLS]', '▁hello', '▁world', '!', '[SEP]', '▁hello', '▁world', '[SEP]']] - ), - ) - ] -) -def test_sentencepiece_batch_encode_truncation(inputs, padding_strategy, expected): - tokenizer = SPTokenizer(vocab_path=os.path.join(data_dir, 'albert_vocab/30k-clean.model')) - tokenizer.enable_truncation(max_length=10) - pred = tokenizer.encode_batch(inputs, padding_strategy=padding_strategy, return_array=False) - assert pred.ids == expected.ids - assert pred.segment_ids == expected.segment_ids - assert pred.tokens == expected.tokens - - -@pytest.mark.parametrize( - 'inputs,padding_strategy,expected', - [ - ( - ['I like apples', 'I like watermelones', 'hello world!'], - 'post', - Encoding( - ids=[[2, 13, 1, 101, 4037, 18, 3, 0], - [2, 13, 1, 101, 308, 21008, 2696, 3], - [2, 10975, 126, 187, 3, 0, 0, 0]], - segment_ids=[[0, 0, 0, 0, 0, 0, 0, 0], - [0, 0, 0, 0, 0, 0, 0, 0], - [0, 0, 0, 0, 0, 0, 0, 0]], - tokens=[['[CLS]', '▁', 'I', '▁like', '▁apple', 's', '[SEP]', ''], - ['[CLS]', '▁', 'I', '▁like', '▁water', 'melo', 'nes', '[SEP]'], - ['[CLS]', '▁hello', '▁world', '!', '[SEP]', '', '', '']] - ), - ), ( - ['I like apples', 'I like watermelones', 'hello world!'], - 'pre', - Encoding( - ids=[[0, 2, 13, 1, 101, 4037, 18, 3], - [2, 13, 1, 101, 308, 21008, 2696, 3], - [0, 0, 0, 2, 10975, 126, 187, 3]], - segment_ids=[[0, 0, 0, 0, 0, 0, 0, 0], - [0, 0, 0, 0, 0, 0, 0, 0], - [0, 0, 0, 0, 0, 0, 0, 0]], - tokens=[['', '[CLS]', '▁', 'I', '▁like', '▁apple', 's', '[SEP]'], - ['[CLS]', '▁', 'I', '▁like', '▁water', 'melo', 'nes', '[SEP]'], - ['', '', '', '[CLS]', '▁hello', '▁world', '!', '[SEP]']] - ) - ) - ] -) -def test_sentencepiece_batch_encode_single(inputs, padding_strategy, expected): - tokenizer = SPTokenizer(vocab_path=os.path.join(data_dir, 'albert_vocab/30k-clean.model')) - pred = tokenizer.encode_batch(inputs, padding=True, padding_strategy=padding_strategy, return_array=False) - assert pred.ids == expected.ids - assert pred.segment_ids == expected.segment_ids - assert pred.tokens == expected.tokens - - -@pytest.mark.parametrize( - 'test_input,start_index,end_index,expected', - [ - ( - 'I like watermelons.', 3, 5, 'watermelons' - ), - ( - 'Hello world!!!', 1, 1, 'Hello' - ) - ] -) -def test_sentencepiece_tokens_mapping(test_input, start_index, end_index, expected): - tokenizer = SPTokenizer(vocab_path=os.path.join(data_dir, 'albert_vocab/30k-clean.model'), lowercase=True) - pred = tokenizer.encode(test_input) - mapping = tokenizer.tokens_mapping(test_input, pred.tokens) - assert test_input[mapping[start_index][0]: mapping[end_index][1]] == expected diff --git a/langml/tests/test_transformer.py b/langml/tests/test_transformer.py deleted file mode 100644 index 7e309ae..0000000 --- a/langml/tests/test_transformer.py +++ /dev/null @@ -1,25 +0,0 @@ -# -*- coding: utf-8 -*- - -from langml import TF_KERAS -if TF_KERAS: - import tensorflow.keras.backend as K - import tensorflow.keras.layers as L -else: - import keras.backend as K - import keras.layers as L - - -def test_transformer_encoder(): - from langml.transformer.encoder import TransformerEncoder - - X = L.Input(shape=(None, 64)) - o = TransformerEncoder(4, 64)(X) - assert K.int_shape(o) == K.int_shape(X) - - -def test_transformer_encoder_block(): - from langml.transformer.encoder import TransformerEncoderBlock - - X = L.Input(shape=(None, 64)) - o = TransformerEncoderBlock(2, 4, 64)(X) - assert K.int_shape(o) == K.int_shape(X) diff --git a/model.py b/model.py index 30b6749..7a986d3 100644 --- a/model.py +++ b/model.py @@ -1,152 +1,170 @@ # -*- coding:utf-8 -*- - -import os -from typing import List, Tuple - -import tensorflow as tf -import keras.layers as L -import keras.backend as K -from keras.models import Model -from keras.callbacks import Callback -from keras.optimizers import Adam -from langml.plm.bert import load_bert -from langml.layers import SelfAttention -from langml.tensor_typing import Models - +import torch +import torch.nn as nn +import torch.optim as optim +from transformers import BertModel from utils import compute_metrics - -def build_model(bert_dir: str, learning_rate: float, relation_size: int) -> Tuple[Models, Models, Models, Models]: - - def gather_span(x): - seq, idxs = x - idxs = K.cast(idxs, 'int32') - if len(K.int_shape(idxs)) == 3: - res = [] - for i in range(len(K.int_shape(idxs))): - batch_idxs = K.arange(0, K.shape(seq)[0]) - batch_idxs = K.expand_dims(batch_idxs, 1) - indices = K.concatenate([batch_idxs, idxs[:, i, :]], 1) - res.append(K.expand_dims(tf.gather_nd(seq, indices), 1)) - return K.concatenate(res, 1) - batch_idxs = K.arange(0, K.shape(seq)[0]) - batch_idxs = K.expand_dims(batch_idxs, 1) - idxs = K.concatenate([batch_idxs, idxs], 1) - return tf.gather_nd(seq, idxs) - - bert_model, _ = load_bert( - config_path=os.path.join(bert_dir, 'bert_config.json'), - checkpoint_path=os.path.join(bert_dir, 'bert_model.ckpt'), - ) - - # entities in - gold_entity_heads_in = L.Input(shape=(None, 2), name='gold_entity_heads') - gold_entity_tails_in = L.Input(shape=(None, 2), name='gold_entity_tails') - gold_rels_in = L.Input(shape=(relation_size, ), name='gold_rels') - # pos sample - sub_head_in = L.Input(shape=(1,), name='sample_subj_head') - sub_tail_in = L.Input(shape=(1,), name='sample_subj_tail') - rel_in = L.Input(shape=(1,), name='sample_rel') - gold_obj_head_in = L.Input(shape=(None, ), name='sample_obj_heads') - - gold_entity_heads, gold_entity_tails, sub_head, sub_tail, rel, gold_rels, gold_obj_head = gold_entity_heads_in, gold_entity_tails_in, sub_head_in, sub_tail_in, rel_in, gold_rels_in, gold_obj_head_in - mask = L.Lambda(lambda x: K.cast(K.greater(K.expand_dims(x, 2), 0), 'float32'))(bert_model.input[0]) - - tokens_feature = bert_model.output - - # predict relations - pred_rels = L.Lambda(lambda x: x[:, 0])(tokens_feature) - pred_rels = L.Dense(relation_size, activation='sigmoid', name='pred_rel')(pred_rels) - rel_model = Model(bert_model.input, [pred_rels]) - - # predict entity - pred_entity_heads = L.Dense(2, activation='sigmoid', name='entity_heads')(tokens_feature) - pred_entity_tails = L.Dense(2, activation='sigmoid', name='entity_tails')(tokens_feature) - entity_model = Model(bert_model.input, [pred_entity_heads, pred_entity_tails]) - - # predict object - tokens_feature_size = K.int_shape(tokens_feature)[-1] - sub_head_feature = L.Lambda(gather_span)([tokens_feature, sub_head]) - sub_head_feature = L.Lambda(lambda x: K.expand_dims(x, 1))(sub_head_feature) - sub_tail_feature = L.Lambda(gather_span)([tokens_feature, sub_tail]) - sub_tail_feature = L.Lambda(lambda x: K.expand_dims(x, 1))(sub_tail_feature) - sub_feature = L.Average()([sub_head_feature, sub_tail_feature]) - - rel_feature = L.Embedding(relation_size, tokens_feature_size)(rel) - rel_feature = L.Dense(tokens_feature_size, activation='relu')(rel_feature) - - obj_feature = L.Add()([tokens_feature, sub_feature, rel_feature]) - - value = SelfAttention(is_residual=True, attention_activation='relu')(obj_feature) - - pred_obj_head = L.Dense(1, activation='sigmoid', name='pred_obj_head')(value) - - translate_model = Model((*bert_model.input, sub_head_in, sub_tail_in, rel_in), [pred_obj_head]) - - train_model = Model(inputs=(*bert_model.input, gold_entity_heads_in, gold_entity_tails_in, gold_rels_in, sub_head_in, sub_tail_in, rel_in, gold_obj_head_in), - outputs=[pred_entity_heads, pred_entity_tails, pred_rels, pred_obj_head]) - - # entity loss - entity_heads_loss = K.sum(K.binary_crossentropy(gold_entity_heads, pred_entity_heads), 2, keepdims=True) - entity_heads_loss = K.sum(entity_heads_loss * mask) / K.sum(mask) - entity_tails_loss = K.sum(K.binary_crossentropy(gold_entity_tails, pred_entity_tails), 2, keepdims=True) - entity_tails_loss = K.sum(entity_tails_loss * mask) / K.sum(mask) - - # rel loss - rel_loss = K.mean(K.binary_crossentropy(gold_rels, pred_rels)) - - # obj loss - gold_obj_head = K.expand_dims(gold_obj_head, 2) - obj_head_loss = K.binary_crossentropy(gold_obj_head, pred_obj_head) - obj_head_loss = K.sum(obj_head_loss * mask) / K.sum(mask) - - # joint loss - loss = (entity_heads_loss + entity_tails_loss) + rel_loss + 5.0 * obj_head_loss - - train_model.add_loss(loss) - train_model.compile(optimizer=Adam(learning_rate)) - train_model.summary() - - return entity_model, rel_model, translate_model, train_model - - -class Evaluator(Callback): - def __init__(self, - infer: object, - train_model: Models, - dev_data: List, - save_weights_path: str, - model_name: str, - learning_rate: float = 5e-5, - min_learning_rate: float = 5e-6): +class SelfAttention(nn.Module): + def __init__(self, hidden_dim): + super(SelfAttention, self).__init__() + self.hidden_dim = hidden_dim + self.attention = nn.MultiheadAttention(hidden_dim, num_heads=8, batch_first=True) + + def forward(self, x): + attn_output, _ = self.attention(x, x, x) + return attn_output + x # residual connection + +class EntityModel(nn.Module): + def __init__(self, bert_model_name): + super(EntityModel, self).__init__() + self.bert = BertModel.from_pretrained(bert_model_name) + self.pred_entity_heads = nn.Linear(self.bert.config.hidden_size, 2) + self.pred_entity_tails = nn.Linear(self.bert.config.hidden_size, 2) + + def forward(self, input_ids, attention_mask, token_type_ids): + input_ids = input_ids.to(self.bert.device) + attention_mask = attention_mask.to(self.bert.device) + token_type_ids = token_type_ids.to(self.bert.device) + + bert_outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) + tokens_feature = bert_outputs.last_hidden_state + pred_entity_heads = torch.sigmoid(self.pred_entity_heads(tokens_feature)) + pred_entity_tails = torch.sigmoid(self.pred_entity_tails(tokens_feature)) + return pred_entity_heads, pred_entity_tails + +class RelationModel(nn.Module): + def __init__(self, bert_model_name, relation_size): + super(RelationModel, self).__init__() + self.bert = BertModel.from_pretrained(bert_model_name) + self.pred_rels = nn.Linear(self.bert.config.hidden_size, relation_size) + + def forward(self, input_ids, attention_mask, token_type_ids): + input_ids = input_ids.to(self.bert.device) + attention_mask = attention_mask.to(self.bert.device) + token_type_ids = token_type_ids.to(self.bert.device) + + bert_outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) + tokens_feature = bert_outputs.last_hidden_state + pred_rels = torch.sigmoid(self.pred_rels(tokens_feature[:, 0, :])) + return pred_rels + +class TranslateModel(nn.Module): + def __init__(self, bert_model_name, relation_size, hidden_size): + super(TranslateModel, self).__init__() + self.bert = BertModel.from_pretrained(bert_model_name) + self.rel_embedding = nn.Embedding(relation_size, hidden_size) + self.rel_dense = nn.Linear(hidden_size, hidden_size) + self.self_attention = SelfAttention(hidden_size) + self.pred_obj_head = nn.Linear(hidden_size, 1) + + def forward(self, input_ids, attention_mask, token_type_ids, sub_head, sub_tail, rel): + input_ids = input_ids.to(self.bert.device) + attention_mask = attention_mask.to(self.bert.device) + token_type_ids = token_type_ids.to(self.bert.device) + sub_head = sub_head.to(self.bert.device) + sub_tail = sub_tail.to(self.bert.device) + rel = rel.to(self.bert.device) + + bert_outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) + tokens_feature = bert_outputs.last_hidden_state # (batch_size, seq_len, hidden_size) + + sub_head_feature = tokens_feature[torch.arange(tokens_feature.size(0)), sub_head.squeeze()] # (batch_size, hidden_size) + sub_tail_feature = tokens_feature[torch.arange(tokens_feature.size(0)), sub_tail.squeeze()] # (batch_size, hidden_size) + sub_feature = (sub_head_feature + sub_tail_feature) / 2 # (batch_size, hidden_size) + + rel_feature = torch.relu(self.rel_dense(self.rel_embedding(rel).squeeze(1))) # (batch_size, hidden_size) + + # Ensure dimensions match for broadcasting + sub_feature = sub_feature.unsqueeze(1).expand(-1, tokens_feature.size(1), -1) # (batch_size, seq_len, hidden_size) + rel_feature = rel_feature.unsqueeze(1).expand(-1, tokens_feature.size(1), -1) # (batch_size, seq_len, hidden_size) + + obj_feature = tokens_feature + sub_feature + rel_feature # (batch_size, seq_len, hidden_size) + obj_feature = self.self_attention(obj_feature) # (batch_size, seq_len, hidden_size) + pred_obj_head = torch.sigmoid(self.pred_obj_head(obj_feature)) # (batch_size, seq_len, 1) + + return pred_obj_head.squeeze(-1) # (batch_size, seq_len) + +class TDEERModel(nn.Module): + def __init__(self, entity_model, rel_model, translate_model): + super(TDEERModel, self).__init__() + self.entity_model = entity_model + self.rel_model = rel_model + self.translate_model = translate_model + + def forward(self, input_ids, attention_mask, token_type_ids, gold_entity_heads, gold_entity_tails, gold_rels, sub_head, sub_tail, rel, gold_obj_head): + input_ids = input_ids.to(self.entity_model.bert.device) + attention_mask = attention_mask.to(self.entity_model.bert.device) + token_type_ids = token_type_ids.to(self.entity_model.bert.device) + gold_entity_heads = gold_entity_heads.to(self.entity_model.bert.device) + gold_entity_tails = gold_entity_tails.to(self.entity_model.bert.device) + gold_rels = gold_rels.to(self.entity_model.bert.device) + sub_head = sub_head.to(self.entity_model.bert.device) + sub_tail = sub_tail.to(self.entity_model.bert.device) + rel = rel.to(self.entity_model.bert.device) + gold_obj_head = gold_obj_head.to(self.entity_model.bert.device) + + pred_entity_heads, pred_entity_tails = self.entity_model(input_ids, attention_mask, token_type_ids) + pred_rels = self.rel_model(input_ids, attention_mask, token_type_ids) + pred_obj_head = self.translate_model(input_ids, attention_mask, token_type_ids, sub_head, sub_tail, rel) + + loss = self.compute_loss(pred_entity_heads, gold_entity_heads, pred_entity_tails, gold_entity_tails, pred_rels, gold_rels, pred_obj_head, gold_obj_head) + return loss + + def compute_loss(self, pred_entity_heads, gold_entity_heads, pred_entity_tails, gold_entity_tails, pred_rels, gold_rels, pred_obj_head, gold_obj_head): + entity_heads_loss = nn.functional.binary_cross_entropy(pred_entity_heads, gold_entity_heads, reduction='mean') + entity_tails_loss = nn.functional.binary_cross_entropy(pred_entity_tails, gold_entity_tails, reduction='mean') + rel_loss = nn.functional.binary_cross_entropy(pred_rels, gold_rels, reduction='mean') + pred_obj_head = pred_obj_head.squeeze(-1) + obj_head_loss = nn.functional.binary_cross_entropy(pred_obj_head, gold_obj_head, reduction='mean') + + total_loss = entity_heads_loss + entity_tails_loss + rel_loss + 5.0 * obj_head_loss + return total_loss + +def build_model(bert_model_name: str, learning_rate: float, relation_size: int, device): + hidden_size = BertModel.from_pretrained(bert_model_name).config.hidden_size + entity_model = EntityModel(bert_model_name).to(device) + rel_model = RelationModel(bert_model_name, relation_size).to(device) + translate_model = TranslateModel(bert_model_name, relation_size, hidden_size).to(device) + train_model = TDEERModel(entity_model, rel_model, translate_model).to(device) + + optimizer = optim.AdamW(train_model.parameters(), lr=learning_rate) + return entity_model, rel_model, translate_model, train_model, optimizer + +class Evaluator: + def __init__(self, infer, model, dev_data, save_weights_path, model_name, optimizer, device, learning_rate=5e-5, min_learning_rate=5e-6): self.infer = infer - self.train_model = train_model + self.model = model self.dev_data = dev_data self.save_weights_path = save_weights_path self.model_name = model_name + self.optimizer = optimizer + self.device = device self.learning_rate = learning_rate self.min_learning_rate = min_learning_rate - self.passed = 0 - self.is_exact_match = True if self.model_name.startswith('NYT11-HRL') else False - - def on_train_begin(self, logs=None): self.best = float('-inf') + self.passed = 0 + self.is_exact_match = model_name.startswith('NYT11-HRL') - def on_batch_begin(self, batch, logs=None): - if self.passed < self.params['steps']: - lr = (self.passed + 1.) / self.params['steps'] * self.learning_rate - K.set_value(self.train_model.optimizer.lr, lr) - self.passed += 1 - elif self.params['steps'] <= self.passed < self.params['steps'] * 2: - lr = (2 - (self.passed + 1.) / self.params['steps']) * (self.learning_rate - self.min_learning_rate) - lr += self.min_learning_rate - K.set_value(self.train_model.optimizer.lr, lr) - self.passed += 1 - - def on_epoch_end(self, epoch, logs=None): + def evaluate(self): + self.model.eval() precision, recall, f1 = compute_metrics(self.infer, self.dev_data, exact_match=self.is_exact_match, model_name=self.model_name) if f1 > self.best: self.best = f1 - self.train_model.save_weights(self.save_weights_path) - print("new best result!") - print('f1: %.4f, precision: %.4f, recall: %.4f, best f1: %.4f\n' % (f1, precision, recall, self.best)) + torch.save(self.model.state_dict(), self.save_weights_path) + print("New best result!") + print(f'f1: {f1:.4f}, precision: {precision:.4f}, recall: {recall:.4f}, best f1: {self.best:.4f}') + self.model.train() + + def adjust_learning_rate(self, step, total_steps): + if step < total_steps: + lr = (step + 1) / total_steps * self.learning_rate + else: + lr = (2 - (step + 1) / total_steps) * (self.learning_rate - self.min_learning_rate) + self.min_learning_rate + for param_group in self.optimizer.param_groups: + param_group['lr'] = lr + +# Example of usage: +device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') +entity_model, rel_model, translate_model, train_model, optimizer = build_model('bert-base-uncased', 2e-5, 10, device) +evaluator = Evaluator(None, train_model, None, 'model.pth', 'NYT11-HRL', optimizer, device) diff --git a/pretrained-bert/README.md b/pretrained-bert/README.md deleted file mode 100644 index c23a203..0000000 --- a/pretrained-bert/README.md +++ /dev/null @@ -1 +0,0 @@ -Click 👉[BERT-Base-Cased](https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-768_A-12.zip) to download the pretrained model and then decompress to this folder. \ No newline at end of file diff --git a/requirements.txt b/requirements.txt deleted file mode 100644 index f7a5fc4..0000000 --- a/requirements.txt +++ /dev/null @@ -1,6 +0,0 @@ -tokenizers -boltons -Keras==2.3.1 -tqdm -click -langml<0.2.0 diff --git a/run.py b/run.py index 1678ffb..bced37e 100644 --- a/run.py +++ b/run.py @@ -1,15 +1,15 @@ -#! -*- coding:utf-8 -*- +# -*- coding:utf-8 -*- import os import argparse - -from tokenizers import BertWordPieceTokenizer - -from dataloader import DataGenerator, load_data, load_rel +import torch +from torch.utils.data import DataLoader +from transformers import BertTokenizerFast +from tqdm import tqdm +from dataloader import DataGenerator, load_data, load_rel, collate_fn from model import build_model, Evaluator from utils import Infer, compute_metrics - parser = argparse.ArgumentParser(description='TDEER cli') parser.add_argument('--do_train', action='store_true', help='to train TDEER, plz specify --do_train') parser.add_argument('--do_test', action='store_true', help='specify --do_test to evaluate') @@ -18,7 +18,7 @@ parser.add_argument('--train_path', type=str, help='specify the train path') parser.add_argument('--dev_path', type=str, help='specify the dev path') parser.add_argument('--test_path', type=str, help='specify the test path') -parser.add_argument('--bert_dir', type=str, help='specify the pre-trained bert model') +parser.add_argument('--bert_model_name', type=str, default='bert-base-cased', help='specify the pre-trained bert model') parser.add_argument('--save_path', default=None, type=str, help='specify the save path to save model [training phase]') parser.add_argument('--ckpt_path', default=None, type=str, help='specify the ckpt path [test phase]') parser.add_argument('--learning_rate', default=2e-5, type=float, help='specify the learning rate') @@ -30,44 +30,76 @@ parser.add_argument('--verbose', default=2, type=int, help='specify verbose: 0 = silent, 1 = progress bar, 2 = one line per epoch') args = parser.parse_args() - print("Argument:", args) +device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + id2rel, rel2id, all_rels = load_rel(args.rel_path) -tokenizer = BertWordPieceTokenizer(os.path.join(args.bert_dir, 'vocab.txt'), lowercase=False) -tokenizer.enable_truncation(max_length=args.max_len) -entity_model, rel_model, translate_model, train_model = build_model(args.bert_dir, args.learning_rate, len(all_rels)) +tokenizer = BertTokenizerFast.from_pretrained(args.bert_model_name) +entity_model, rel_model, translate_model, train_model, optimizer = build_model(args.bert_model_name, args.learning_rate, len(all_rels), device) +train_model.to(device) if args.do_train: - assert args.save_path is not None, "please specify --save_path in traning phase" - # check save - train_model.save_weights(args.save_path) - + assert args.save_path is not None, "please specify --save_path in training phase" + + # 加载训练数据、验证数据和测试数据 train_data = load_data(args.train_path, rel2id, is_train=True) dev_data = load_data(args.dev_path, rel2id, is_train=False) - if args.test_path is not None: - test_data = load_data(args.test_path, rel2id, is_train=False) - else: - test_data = None - generator = DataGenerator( - train_data, tokenizer, rel2id, all_rels, - args.max_len, args.batch_size, args.max_sample_triples, args.neg_samples - ) + test_data = load_data(args.test_path, rel2id, is_train=False) if args.test_path is not None else None + + # 创建数据生成器和数据加载器 + train_generator = DataGenerator(train_data, tokenizer, rel2id, all_rels, args.max_len, args.max_sample_triples, args.neg_samples) + train_loader = DataLoader(train_generator, batch_size=args.batch_size, shuffle=True, collate_fn=collate_fn) + + # 创建优化器和评估器 + # optimizer = torch.optim.AdamW(train_model.parameters(), lr=args.learning_rate) infer = Infer(entity_model, rel_model, translate_model, tokenizer, id2rel) - evaluator = Evaluator(infer, train_model, dev_data, args.save_path, args.model_name, - learning_rate=args.learning_rate) - train_model.fit( - generator.forfit(random=True), - steps_per_epoch=len(generator), - epochs=args.epoch, - callbacks=[evaluator], - verbose=args.verbose - ) + evaluator = Evaluator(infer, train_model, dev_data, args.save_path, args.model_name, optimizer, device) + + # 训练模型 + for epoch in range(args.epoch): + train_model.train() + with tqdm(train_loader, desc=f'Epoch {epoch+1}/{args.epoch}', unit='batch') as t_loader: + for batch in t_loader: + batch = {k: v.to(device).float() if v.dtype == torch.float64 else v.to(device) for k, v in batch.items()} + # print(batch) + inputs = { + 'input_ids': batch['token_ids'], # Changed from 'input_ids' to 'token_ids' + 'attention_mask': batch['attention_mask'], # Assuming this key is correct + 'token_type_ids': batch['segment_ids'], # Changed from 'token_type_ids' to 'segment_ids' + 'gold_entity_heads': batch['entity_heads'], # Assuming this key is correct + 'gold_entity_tails': batch['entity_tails'], # Assuming this key is correct + 'gold_rels': batch['rels'], # Assuming this key is correct + 'sub_head': batch['sample_subj_head'], # Assuming this key is correct + 'sub_tail': batch['sample_subj_tail'], # Assuming this key is correct + 'rel': batch['sample_rel'], # Assuming this key is correct + 'gold_obj_head': batch['sample_obj_heads'] # Assuming this key is correct + } + + + optimizer.zero_grad() + loss = train_model(**inputs) + loss.backward() + optimizer.step() + t_loader.set_postfix({'loss': loss.item()}) + t_loader.update() + + # 每个 epoch 结束后进行评估 + evaluator.evaluate() + + # 保存训练好的模型 + torch.save(train_model.state_dict(), args.save_path) if args.do_test: assert args.ckpt_path is not None, "please specify --ckpt_path in test phase" + + # 加载测试数据和模型 test_data = load_data(args.test_path, rel2id, is_train=False) - train_model.load_weights(args.ckpt_path) + train_model.load_state_dict(torch.load(args.ckpt_path, map_location=device)) + train_model.to(device) + train_model.eval() + + # 进行测试并计算评估指标 infer = Infer(entity_model, rel_model, translate_model, tokenizer, id2rel) precision, recall, f1_score = compute_metrics(infer, test_data, model_name=args.model_name) print(f'precision: {precision}, recall: {recall}, f1: {f1_score}') diff --git a/utils.py b/utils.py index bfbdf9d..e21cba7 100644 --- a/utils.py +++ b/utils.py @@ -1,12 +1,10 @@ -#! -*- coding:utf-8 -*- - import json import time from typing import Dict, List, Set +import torch import numpy as np from tqdm import tqdm -from langml.tensor_typing import Models def rematch(offsets: List) -> List: @@ -15,77 +13,120 @@ def rematch(offsets: List) -> List: if offset[0] == 0 and offset[1] == 0: mapping.append([]) else: - mapping.append([i for i in range(offset[0], offset[1])]) + mapping.append(list(range(offset[0], offset[1]))) return mapping +device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class Infer: - def __init__(self, entity_model: Models, rel_model: Models, translate_mdoel: Models, + def __init__(self, entity_model: torch.nn.Module, rel_model: torch.nn.Module, translate_model: torch.nn.Module, tokenizer: object, id2rel: Dict): - self.entity_model = entity_model - self.rel_model = rel_model - self.translate_model = translate_mdoel + self.entity_model = entity_model.to(device) + self.rel_model = rel_model.to(device) + self.translate_model = translate_model.to(device) self.tokenizer = tokenizer self.id2rel = id2rel def decode_entity(self, text: str, mapping: List, start: int, end: int): - s = mapping[start] - e = mapping[end] - s = 0 if not s else s[0] - e = len(text) - 1 if not e else e[-1] + # print(f"Input text: {text}") + # print(f"Mapping: {mapping}") + # print(f"Start index: {start}, End index: {end}") + + if start >= len(mapping) or end >= len(mapping): + print("Start or end index out of range.") + return "" + + s = mapping[start] if start < len(mapping) else [] + e = mapping[end] if end < len(mapping) else [] + # print(f"Raw start mapping: {s}, Raw end mapping: {e}") + + # 取s和e的第一个和最后一个值来确保提取正确的子串 + s = s[0] if s else 0 + e = e[-1] if e else len(text) - 1 + # print(f"Adjusted start: {s}, Adjusted end: {e}") + + s = max(0, s) + e = min(len(text) - 1, e) + entity = text[s: e + 1] + # print(f"Extracted entity: {entity}") return entity + def __call__(self, text: str, threshold: float = 0.5) -> Set: - tokened = self.tokenizer.encode(text) - token_ids, segment_ids = np.array([tokened.ids]), np.array([tokened.type_ids]) - mapping = rematch(tokened.offsets) - entity_heads_logits, entity_tails_logits = self.entity_model.predict([token_ids, segment_ids]) - entity_heads, entity_tails = np.where(entity_heads_logits[0] > threshold), np.where(entity_tails_logits[0] > threshold) + # Tokenize text and prepare input tensors + tokened = self.tokenizer.encode_plus(text, add_special_tokens=True, return_offsets_mapping=True) # 确保添加了特殊标记 + token_ids = torch.tensor([tokened.input_ids], dtype=torch.long).to(device) + segment_ids = torch.tensor([tokened.token_type_ids], dtype=torch.long).to(device) + attention_mask = torch.tensor([tokened.attention_mask], dtype=torch.long).to(device) + mapping = rematch(tokened.offset_mapping) + + # Run entity model to get logits for entity heads and tails + with torch.no_grad(): + entity_heads_logits, entity_tails_logits = self.entity_model(token_ids, attention_mask, segment_ids) + + # Apply threshold to get entity indices + entity_heads = (entity_heads_logits > threshold).nonzero(as_tuple=True) + entity_tails = (entity_tails_logits > threshold).nonzero(as_tuple=True) subjects = [] entity_map = {} - for head, head_type in zip(*entity_heads): - for tail, tail_type in zip(*entity_tails): - if head <= tail and head_type == tail_type: - entity = self.decode_entity(text, mapping, head, tail) - if head_type == 0: - subjects.append((entity, head, tail)) + + # print(f"entity_heads_logits shape: {entity_heads_logits.shape}") + # print(f"entity_tails_logits shape: {entity_tails_logits.shape}") + # print(f"entity_heads: {entity_heads}") + # print(f"entity_tails: {entity_tails}") + + # Generate potential subjects and entities from heads and tails + for head_idx, head_type_idx in zip(entity_heads[1], entity_heads[2]): + for tail_idx, tail_type_idx in zip(entity_tails[1], entity_tails[2]): + if head_idx <= tail_idx and head_type_idx == tail_type_idx: + entity = self.decode_entity(text, mapping, head_idx.item(), tail_idx.item()) + # print(f"Extracted entity: {entity} from indices {head_idx.item()} to {tail_idx.item()}") + if head_type_idx == 0: # Assuming type 0 are subjects + subjects.append((entity, head_idx.item(), tail_idx.item())) else: - entity_map[head] = entity - break + entity_map[head_idx.item()] = entity + + print(f"Subjects: {subjects}") + print(f"Entity map: {entity_map}") triple_set = set() if subjects: - # translating decoding - relations_logits = self.rel_model.predict([token_ids, segment_ids]) - relations = np.where(relations_logits[0] > threshold)[0].tolist() - if relations: - batch_sub_heads = [] - batch_sub_tails = [] - batch_rels = [] - batch_sub_entities = [] - batch_rel_types = [] - for (sub, sub_head, sub_tail) in subjects: - for rel in relations: - batch_sub_heads.append([sub_head]) - batch_sub_tails.append([sub_tail]) - batch_rels.append([rel]) - batch_sub_entities.append(sub) - batch_rel_types.append(self.id2rel[rel]) - - batch_token_ids = np.repeat(token_ids, len(subjects) * len(relations), 0) - batch_segment_ids = np.zeros_like(batch_token_ids) - obj_head_logits = self.translate_model.predict_on_batch([ - batch_token_ids, batch_segment_ids, np.array(batch_sub_heads), np.array(batch_sub_tails), np.array(batch_rels) - ]) - for sub, rel, obj_head_logit in zip(batch_sub_entities, batch_rel_types, obj_head_logits): - for h in np.where(obj_head_logit > threshold)[0].tolist(): - if h in entity_map: - obj = entity_map[h] - triple_set.add((sub, rel, obj)) + with torch.no_grad(): + relations_logits = self.rel_model(token_ids, attention_mask=attention_mask, token_type_ids=segment_ids) + relations = (relations_logits > threshold).nonzero(as_tuple=True) + if relations[0].numel() > 0: + batch_size = len(subjects) + for sub, sub_head, sub_tail in subjects: + for rel_idx in relations[0]: + rel = self.id2rel[rel_idx.item()] + batch_token_ids = token_ids.expand(batch_size, -1) + batch_segment_ids = segment_ids.expand(batch_size, -1) + batch_attention_mask = attention_mask.expand(batch_size, -1) + batch_subj_head = torch.tensor([sub_head], dtype=torch.long).expand(batch_size, 1).to(device) + batch_subj_tail = torch.tensor([sub_tail], dtype=torch.long).expand(batch_size, 1).to(device) + batch_rels = torch.tensor([rel_idx.item()], dtype=torch.long).expand(batch_size, 1).to(device) + + # Debugging shapes + # print(f"batch_token_ids shape: {batch_token_ids.shape}") + # print(f"batch_segment_ids shape: {batch_segment_ids.shape}") + # print(f"batch_attention_mask shape: {batch_attention_mask.shape}") + # print(f"batch_subj_head shape: {batch_subj_head.shape}") + # print(f"batch_subj_tail shape: {batch_subj_tail.shape}") + # print(f"batch_rels shape: {batch_rels.shape}") + + obj_head_logits = self.translate_model(batch_token_ids, batch_attention_mask, batch_segment_ids, batch_subj_head, batch_subj_tail, batch_rels) + for obj_head_idx in obj_head_logits.argmax(dim=1).tolist(): + if obj_head_idx in entity_map: + obj = entity_map[obj_head_idx] + triple_set.add((sub, rel, obj)) + return triple_set + + + def partial_match(pred_set, gold_set): pred = {(i[0].split(' ')[0] if len(i[0].split(' ')) > 0 else i[0], i[1], i[2].split(' ')[0] if len(i[2].split(' ')) > 0 else i[2]) for i in pred_set} gold = {(i[0].split(' ')[0] if len(i[0].split(' ')) > 0 else i[0], i[1], i[2].split(' ')[0] if len(i[2].split(' ')) > 0 else i[2]) for i in gold_set} @@ -104,11 +145,15 @@ def compute_metrics(infer, dev_data, exact_match=False, model_name='tmp'): orders = ['subject', 'relation', 'object'] correct_num, predict_num, gold_num = 1e-10, 1e-10, 1e-10 infer_times = [] + device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') + for line in tqdm(iter(dev_data)): start_time = time.time() pred_triples = infer(line['text']) infer_times.append(time.time() - start_time) gold_triples = set(line['triple_list']) + # print(f"Predicted triples: {pred_triples}") + # print(f"Gold triples: {gold_triples}") if exact_match: gold_triples = remove_space(gold_triples) @@ -116,6 +161,8 @@ def compute_metrics(infer, dev_data, exact_match=False, model_name='tmp'): pred_triples_eval, gold_triples_eval = partial_match(pred_triples, gold_triples) if not exact_match else (pred_triples, gold_triples) + print(f"Predicted triples (eval): {pred_triples_eval}") + print(f"Gold triples (eval): {gold_triples_eval}") correct_num += len(pred_triples_eval & gold_triples_eval) predict_num += len(pred_triples_eval) gold_num += len(gold_triples_eval) @@ -147,3 +194,4 @@ def compute_metrics(infer, dev_data, exact_match=False, model_name='tmp'): print(f'correct_num:{correct_num}\npredict_num:{predict_num}\ngold_num:{gold_num}') print("avg infer time:", sum(infer_times) / len(infer_times)) return precision, recall, f1_score + From 49695baabaccc239e5a0d6d8d0ec56bfcfc80a23 Mon Sep 17 00:00:00 2001 From: innovation64 Date: Sat, 27 Jul 2024 18:58:43 +0800 Subject: [PATCH 19/20] refactor: refactor the code to Pytorch --- README.md | 115 ++-------------------- dataloader.py | 265 ++++++++++++++++++++------------------------------ model .py | 117 ++++++++++++++++++++++ model.py | 170 -------------------------------- run.py | 176 ++++++++++++++++++++------------- utils.py | 186 ++++++++++++++--------------------- 6 files changed, 410 insertions(+), 619 deletions(-) create mode 100644 model .py delete mode 100644 model.py diff --git a/README.md b/README.md index bfd2d96..2184d52 100644 --- a/README.md +++ b/README.md @@ -45,127 +45,26 @@ Click 👉[BERT-Base-Cased](https://storage.googleapis.com/bert_models/2018_10_1 ### 4. Train & Eval -You can use `run.py` with `--do_train` to train the model. After training, you can also use `run.py` with `--do_test` to evaluate data. +we have already refactor this code to pytorch version, you could download the pretrain model directly from [huggingface](https://huggingface.co/bert-base-cased/tree/main). -Our training and evaluating commands are as follows: -1\. NYT - -train: - -```bash -CUDA_VISIBLE_DEVICES=0 nohup python -u run.py \ ---do_train \ ---model_name NYT \ ---rel_path data/NYT/rel2id.json \ ---train_path data/NYT/train_triples.json \ ---dev_path data/NYT/test_triples.json \ ---bert_dir pretrained-bert/cased_L-12_H-768_A-12 \ ---save_path ckpts/nyt.model \ ---learning_rate 0.00005 \ ---neg_samples 2 \ ---epoch 200 \ ---verbose 2 > nyt.log & -``` - -evaluate: +if you want to fast vaild the code -``` -CUDA_VISIBLE_DEVICES=0 python run.py \ ---do_test \ ---model_name NYT \ ---rel_path data/NYT/rel2id.json \ ---test_path data/NYT/test_triples.json \ ---bert_dir pretrained-bert/cased_L-12_H-768_A-12 \ ---ckpt_path ckpts/nyt.model \ ---max_len 512 \ ---verbose 1 -``` +please excuete the following command: -You can evaluate other data by specifying `--test_path`. - -2\. WebNLG - -train: +#### for training ```bash -CUDA_VISIBLE_DEVICES=0 nohup python -u run.py \ ---do_train \ ---model_name WebNLG \ ---rel_path data/WebNLG/rel2id.json \ ---train_path data/WebNLG/train_triples.json \ ---dev_path data/WebNLG/test_triples.json \ ---bert_dir pretrained-bert/cased_L-12_H-768_A-12 \ ---save_path ckpts/webnlg.model \ ---max_sample_triples 5 \ ---neg_samples 5 \ ---learning_rate 0.00005 \ ---epoch 300 \ ---verbose 2 > webnlg.log & -``` -evaluate: - -```bash -CUDA_VISIBLE_DEVICES=0 python run.py \ ---do_test \ ---model_name WebNLG \ ---rel_path data/WebNLG/rel2id.json \ ---test_path data/WebNLG/test_triples.json \ ---bert_dir pretrained-bert/cased_L-12_H-768_A-12 \ ---ckpt_path ckpts/webnlg.model \ ---max_len 512 \ ---verbose 1 +python run.py --do_train --model_name NYT_quick_test --rel_path data/data/NYT/rel2id.json --train_path data/data/NYT/train_triples.json --dev_path data/data/NYT/test_triples.json --bert_model bert-base-cased --save_path ckpts/nyt_quick_test.model --learning_rate 0.00005 --neg_samples 2 --epoch 5 --batch_size 32 --max_len 120 --max_sample_triples 100 --eval_steps 100 --num_workers 4 --use_amp --subset_size 1000 ``` -You can evaluate other data by specifying `--test_path`. - - -3\. NYT11-HRL - -train: +#### for testing ```bash -CUDA_VISIBLE_DEVICES=0 nohup python -u run.py \ ---do_train \ ---model_name NYT11-HRL \ ---rel_path data/NYT11-HRL/rel2id.json \ ---train_path data/NYT11-HRL/train_triples.json \ ---dev_path data/NYT11-HRL/test_triples.json \ ---bert_dir pretrained-bert/cased_L-12_H-768_A-12 \ ---save_path ckpts/nyt11hrl.model \ ---learning_rate 0.00005 \ ---neg_samples 1 \ ---epoch 100 \ ---verbose 2 > nyt11hrl.log & -``` - -evaluate: - -``` -CUDA_VISIBLE_DEVICES=0 python run.py \ ---do_test \ ---model_name NYT11-HRL \ ---rel_path data/NYT/rel2id.json \ ---test_path data/NYT11-HRL/test_triples.json \ ---bert_dir pretrained-bert/cased_L-12_H-768_A-12 \ ---ckpt_path ckpts/nyt11hrl.model \ ---max_len 512 \ ---verbose 1 +python run.py --do_test --model_name NYT_full_test --rel_path data/data/NYT/rel2id.json --test_path data/data/NYT/test_triples.json --bert_model bert-base-cased --ckpt_path ckpts/nyt_full_train.model --batch_size 32 --max_len 120 ``` - -### Pre-trained Models - -We released our pre-trained models for NYT, WebNLG, and NYT11-HRL datasets, and uploaded them to this repository via git-lfs. - -You can download pre-trained models and then decompress them (`ckpts.zip`) to the `ckpts` folder. - -To use the pre-trained models, you need to download our processed datasets and specify `--rel_path` to our processed `rel2id.json`. - -To evaluate by the pre-trained models, you can use above commands and specify `--ckpt_path` to specific model. - - In our setting, NYT, WebNLG, and NYT11-HRL achieve the best result on Epoch 86, 174, and 23 respectively. 1\. NYT diff --git a/dataloader.py b/dataloader.py index b49fd3a..1d32903 100644 --- a/dataloader.py +++ b/dataloader.py @@ -1,5 +1,3 @@ -# -*- coding:utf-8 -*- - import json from typing import Dict, List, Optional, Tuple from collections import defaultdict @@ -9,41 +7,35 @@ from torch.utils.data import Dataset, DataLoader from transformers import BertTokenizer -import log - -def find_entity(source, target): - """ Find the start index of the target sequence in the source sequence """ +def find_entity(source: List[int], target: List[int]) -> int: target_len = len(target) - for i in range(len(source) - target_len + 1): - if source[i:i+target_len] == target: + for i in range(len(source)): + if source[i: i + target_len] == target: return i return -1 -def to_tuple(sent): - """ Convert lists to tuples in place """ - sent['triple_list'] = [tuple(triple) for triple in sent['triple_list']] +def to_tuple(sent: dict): + """ list to tuple (inplace operation) + """ + triple_list = [] + for triple in sent['triple_list']: + triple_list.append(tuple(triple)) + sent['triple_list'] = triple_list -def filter_data(fpath: str, rel2id: dict): +def filter_data(fpath: str, rel2id: Dict): filtered_data = [] - try: - with open(fpath, 'r') as file: - data = json.load(file) - except FileNotFoundError: - print("File not found:", fpath) - return filtered_data - except json.JSONDecodeError: - print("Error decoding JSON from:", fpath) - return filtered_data - - for obj in data: - if 'NYT11-HRL' in fpath and len(obj.get('triple_list', [])) != 1: + for obj in json.load(open(fpath)): + filtered_triples = [] + if 'NYT11-HRL' in fpath and len(obj['triple_list']) != 1: continue - filtered_triples = [triple for triple in obj.get('triple_list', []) if triple[1] in rel2id] + for triple in obj['triple_list']: + if triple[1] not in rel2id: + continue + filtered_triples.append(triple) if not filtered_triples: continue obj['triple_list'] = filtered_triples filtered_data.append(obj) - return filtered_data def load_rel(rel_path: str) -> Tuple[Dict, Dict, List]: @@ -52,26 +44,24 @@ def load_rel(rel_path: str) -> Tuple[Dict, Dict, List]: id2rel = {int(i): j for i, j in id2rel.items()} return id2rel, rel2id, all_rels - def load_data(fpath: str, rel2id: Dict, is_train: bool = False) -> List: data = filter_data(fpath, rel2id) if is_train: text_lens = [len(obj['text'].split()) for obj in data] - log.info("train text insight") - log.info(f" max len: {max(text_lens)}") - log.info(f" min len: {min(text_lens)}") - log.info(f" avg len: {sum(text_lens) / len(text_lens)}") + print("train text insight") + print(f" max len: {max(text_lens)}") + print(f" min len: {min(text_lens)}") + print(f" avg len: {sum(text_lens) / len(text_lens)}") for sent in data: to_tuple(sent) - log.info(f"data len: {len(data)}") + print(f"data len: {len(data)}") return data -class DataGenerator(Dataset): +class TDEERDataset(Dataset): def __init__(self, datas: List, tokenizer: BertTokenizer, rel2id: Dict, all_rels: List, max_len: int, - batch_size: int = 32, max_sample_triples: Optional[int] = None, neg_samples: Optional[int] = None): + max_sample_triples: Optional[int] = None, neg_samples: Optional[int] = None): self.max_sample_triples = max_sample_triples self.neg_samples = neg_samples - self.batch_size = batch_size self.tokenizer = tokenizer self.max_len = max_len self.rel2id = rel2id @@ -86,7 +76,7 @@ def __init__(self, datas: List, tokenizer: BertTokenizer, rel2id: Dict, all_rels pos_datas = [] neg_datas = [] - text_tokened = tokenizer.encode_plus(data['text'], truncation=True, padding='max_length', max_length=max_len) + text_tokened = tokenizer(data['text'], max_length=max_len, truncation=True, padding='max_length', return_tensors='pt') entity_set = set() # (head idx, tail idx) triples_set = set() # (sub head, sub tail, obj head, obj tail, rel) subj_rel_set = set() # (sub head, sub tail, rel) @@ -96,12 +86,12 @@ def __init__(self, datas: List, tokenizer: BertTokenizer, rel2id: Dict, all_rels for triple in data['triple_list']: subj, rel, obj = triple rel_idx = self.rel2id[rel] - subj_tokened = tokenizer.encode_plus(subj, add_special_tokens=False) - obj_tokened = tokenizer.encode_plus(obj, add_special_tokens=False) - subj_head_idx = find_entity(text_tokened['input_ids'], subj_tokened['input_ids']) - subj_tail_idx = subj_head_idx + len(subj_tokened['input_ids']) - 1 - obj_head_idx = find_entity(text_tokened['input_ids'], obj_tokened['input_ids']) - obj_tail_idx = obj_head_idx + len(obj_tokened['input_ids']) - 1 + subj_tokened = tokenizer(subj, add_special_tokens=False) + obj_tokened = tokenizer(obj, add_special_tokens=False) + subj_head_idx = find_entity(text_tokened.input_ids[0].tolist(), subj_tokened.input_ids) + subj_tail_idx = subj_head_idx + len(subj_tokened.input_ids) - 1 + obj_head_idx = find_entity(text_tokened.input_ids[0].tolist(), obj_tokened.input_ids) + obj_tail_idx = obj_head_idx + len(obj_tokened.input_ids) - 1 if subj_head_idx == -1 or obj_head_idx == -1: continue entity_set.add((subj_head_idx, subj_tail_idx, 0)) @@ -117,13 +107,13 @@ def __init__(self, datas: List, tokenizer: BertTokenizer, rel2id: Dict, all_rels if not rel_set: continue - entity_heads = np.zeros((self.max_len, 2)) - entity_tails = np.zeros((self.max_len, 2)) + entity_heads = torch.zeros((self.max_len, 2)) + entity_tails = torch.zeros((self.max_len, 2)) for (head, tail, _type) in entity_set: entity_heads[head][_type] = 1 entity_tails[tail][_type] = 1 - rels = np.zeros(self.relation_size) + rels = torch.zeros(self.relation_size) for idx in rel_set: rels[idx] = 1 @@ -137,146 +127,97 @@ def __init__(self, datas: List, tokenizer: BertTokenizer, rel2id: Dict, all_rels neg_history = set() for subj_head_idx, subj_tail_idx, obj_head_idx, obj_tail_idx, rel_idx in triples_list: current_neg_datas = [] - sample_obj_heads = np.zeros(self.max_len) + sample_obj_heads = torch.zeros(self.max_len) for idx in trans_map[(subj_head_idx, subj_tail_idx, rel_idx)]: sample_obj_heads[idx] = 1.0 - # postive samples + # positive samples pos_datas.append({ - 'token_ids': text_tokened['input_ids'], - 'segment_ids': text_tokened['token_type_ids'], + 'token_ids': text_tokened.input_ids[0], + 'attention_mask': text_tokened.attention_mask[0], 'entity_heads': entity_heads, 'entity_tails': entity_tails, 'rels': rels, - 'sample_subj_head': subj_head_idx, - 'sample_subj_tail': subj_tail_idx, - 'sample_rel': rel_idx, + 'sample_subj_head': torch.tensor(subj_head_idx, dtype=torch.long), + 'sample_subj_tail': torch.tensor(subj_tail_idx, dtype=torch.long), + 'sample_rel': torch.tensor(rel_idx, dtype=torch.long), 'sample_obj_heads': sample_obj_heads, }) - # 1. inverse (tail as subj) - neg_subj_head_idx = obj_head_idx - neg_sub_tail_idx = obj_tail_idx - neg_pair = (neg_subj_head_idx, neg_sub_tail_idx, rel_idx) - if neg_pair not in subj_rel_set and neg_pair not in neg_history: - current_neg_datas.append({ - 'token_ids': text_tokened['input_ids'], - 'segment_ids': text_tokened['token_type_ids'], - 'entity_heads': entity_heads, - 'entity_tails': entity_tails, - 'rels': rels, - 'sample_subj_head': neg_subj_head_idx, - 'sample_subj_tail': neg_sub_tail_idx, - 'sample_rel': rel_idx, - 'sample_obj_heads': np.zeros(self.max_len), # set 0 for negative samples - }) - neg_history.add(neg_pair) - - # 2. (pos sub, neg_rel) - for neg_rel_idx in rel_set - {rel_idx}: - neg_pair = (subj_head_idx, subj_tail_idx, neg_rel_idx) - if neg_pair not in subj_rel_set and neg_pair not in neg_history: + # Generate negative samples + if self.neg_samples: + for _ in range(self.neg_samples): + neg_rel = np.random.choice(self.rels_set) + if neg_rel == rel_idx: + continue + if (subj_head_idx, subj_tail_idx, neg_rel) in neg_history: + continue + neg_history.add((subj_head_idx, subj_tail_idx, neg_rel)) + + neg_sample_obj_heads = torch.zeros(self.max_len) + for idx in trans_map.get((subj_head_idx, subj_tail_idx, neg_rel), []): + neg_sample_obj_heads[idx] = 1.0 + current_neg_datas.append({ - 'token_ids': text_tokened['input_ids'], - 'segment_ids': text_tokened['token_type_ids'], + 'token_ids': text_tokened.input_ids[0], + 'attention_mask': text_tokened.attention_mask[0], 'entity_heads': entity_heads, 'entity_tails': entity_tails, 'rels': rels, - 'sample_subj_head': subj_head_idx, - 'sample_subj_tail': subj_tail_idx, - 'sample_rel': neg_rel_idx, - 'sample_obj_heads': np.zeros(self.max_len), # set 0 for negative samples + 'sample_subj_head': torch.tensor(subj_head_idx, dtype=torch.long), + 'sample_subj_tail': torch.tensor(subj_tail_idx, dtype=torch.long), + 'sample_rel': torch.tensor(neg_rel, dtype=torch.long), + 'sample_obj_heads': neg_sample_obj_heads, }) - neg_history.add(neg_pair) - # 3. (neg sub, pos rel) - for (neg_subj_head_idx, neg_sub_tail_idx) in subj_set - {(subj_head_idx, subj_tail_idx)}: - neg_pair = (neg_subj_head_idx, neg_sub_tail_idx, rel_idx) - if neg_pair not in subj_rel_set and neg_pair not in neg_history: - current_neg_datas.append({ - 'token_ids': text_tokened['input_ids'], - 'segment_ids': text_tokened['token_type_ids'], - 'entity_heads': entity_heads, - 'entity_tails': entity_tails, - 'rels': rels, - 'sample_subj_head': neg_subj_head_idx, - 'sample_subj_tail': neg_sub_tail_idx, - 'sample_rel': rel_idx, - 'sample_obj_heads': np.zeros(self.max_len), # set 0 for negative samples - }) - neg_history.add(neg_pair) + neg_datas.extend(current_neg_datas) - np.random.shuffle(current_neg_datas) - if self.neg_samples is not None: - current_neg_datas = current_neg_datas[:self.neg_samples] - neg_datas += current_neg_datas current_datas = pos_datas + neg_datas self.datas.extend(current_datas) + print(f"Total number of samples: {len(self.datas)}") + print(f"Number of positive samples: {len(pos_datas)}") + print(f"Number of negative samples: {len(neg_datas)}") + def __len__(self): return len(self.datas) def __getitem__(self, idx): - sample = self.datas[idx] - - return { - 'token_ids': sample['token_ids'], - 'segment_ids': sample['segment_ids'], - 'entity_heads': sample['entity_heads'], - 'entity_tails': sample['entity_tails'], - 'rels': sample['rels'], - 'sample_subj_head': sample['sample_subj_head'], - 'sample_subj_tail': sample['sample_subj_tail'], - 'sample_rel': sample['sample_rel'], - 'sample_obj_heads': sample['sample_obj_heads'] - } - + item = self.datas[idx] + required_keys = ['token_ids', 'attention_mask', 'entity_heads', 'entity_tails', 'rels', 'sample_subj_head', 'sample_subj_tail', 'sample_rel', 'sample_obj_heads'] + for key in required_keys: + assert key in item, f"Required key '{key}' not found in item at index {idx}" + return item def collate_fn(batch): - print("Batch input:", batch) - batch_tokens = [item['token_ids'] for item in batch] - batch_attention_masks = [[1] * len(tokens) for tokens in batch_tokens] - batch_segments = [item['segment_ids'] for item in batch] - batch_entity_heads = [item['entity_heads'] for item in batch] - batch_entity_tails = [item['entity_tails'] for item in batch] - batch_rels = [item['rels'] for item in batch] - batch_sample_subj_head = [item['sample_subj_head'] for item in batch] - batch_sample_subj_tail = [item['sample_subj_tail'] for item in batch] - batch_sample_rel = [item['sample_rel'] for item in batch] - batch_sample_obj_heads = [item['sample_obj_heads'] for item in batch] - - # Convert lists to NumPy arrays - batch_tokens_np = np.array(batch_tokens) - batch_attention_masks_np = np.array(batch_attention_masks) - batch_segments_np = np.array(batch_segments) - batch_entity_heads_np = np.array(batch_entity_heads) - batch_entity_tails_np = np.array(batch_entity_tails) - batch_rels_np = np.array(batch_rels) - batch_sample_subj_head_np = np.array(batch_sample_subj_head) - batch_sample_subj_tail_np = np.array(batch_sample_subj_tail) - batch_sample_rel_np = np.array(batch_sample_rel) - batch_sample_obj_heads_np = np.array(batch_sample_obj_heads) - - # Convert NumPy arrays to PyTorch tensors - batch_tokens = torch.tensor(batch_tokens_np, dtype=torch.long) - batch_attention_masks = torch.tensor(batch_attention_masks_np, dtype=torch.long) - batch_segments = torch.tensor(batch_segments_np, dtype=torch.long) - batch_entity_heads = torch.tensor(batch_entity_heads_np, dtype=torch.float) - batch_entity_tails = torch.tensor(batch_entity_tails_np, dtype=torch.float) - batch_rels = torch.tensor(batch_rels_np, dtype=torch.float) - batch_sample_subj_head = torch.tensor(batch_sample_subj_head_np, dtype=torch.long) - batch_sample_subj_tail = torch.tensor(batch_sample_subj_tail_np, dtype=torch.long) - batch_sample_rel = torch.tensor(batch_sample_rel_np, dtype=torch.long) - batch_sample_obj_heads = torch.tensor(batch_sample_obj_heads_np, dtype=torch.float) + def stack_or_pad(key): + values = [d[key] for d in batch] + if isinstance(values[0], torch.Tensor): + return torch.stack(values) + elif isinstance(values[0], (int, np.int64)): + return torch.tensor(values, dtype=torch.long) + elif isinstance(values[0], list): + max_len = max(len(v) for v in values) + return torch.tensor([v + [0] * (max_len - len(v)) for v in values]) + else: + print(f"Warning: Unexpected type in collate_fn for {key}: {type(values[0])}") + return values + + result = {} + for key in batch[0].keys(): + try: + result[key] = stack_or_pad(key) + except Exception as e: + print(f"Error processing {key}: {e}") + result[key] = [d[key] for d in batch] # 退回到简单的列表 + + # 确保 'token_ids' 存在 + if 'token_ids' not in result: + print("Warning: 'token_ids' not found in batch. Keys present:", result.keys()) + if 'input_ids' in result: + result['token_ids'] = result['input_ids'] + print("Using 'input_ids' as 'token_ids'") + + return result - return { - 'token_ids': batch_tokens, - 'attention_mask': batch_attention_masks, - 'segment_ids': batch_segments, - 'entity_heads': batch_entity_heads, - 'entity_tails': batch_entity_tails, - 'rels': batch_rels, - 'sample_subj_head': batch_sample_subj_head, - 'sample_subj_tail': batch_sample_subj_tail, - 'sample_rel': batch_sample_rel, - 'sample_obj_heads': batch_sample_obj_heads - } \ No newline at end of file +def get_dataloader(dataset: TDEERDataset, batch_size: int, shuffle: bool = True) -> DataLoader: + return DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, collate_fn=collate_fn) \ No newline at end of file diff --git a/model .py b/model .py new file mode 100644 index 0000000..f2c610e --- /dev/null +++ b/model .py @@ -0,0 +1,117 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from transformers import BertModel, BertConfig + +class SelfAttention(nn.Module): + def __init__(self, input_size, is_residual=True, attention_activation='relu'): + super(SelfAttention, self).__init__() + self.is_residual = is_residual + self.attention = nn.Linear(input_size, 1) + self.activation = nn.ReLU() if attention_activation == 'relu' else nn.Tanh() + + def forward(self, inputs): + attention_weights = self.activation(self.attention(inputs)) + attention_weights = F.softmax(attention_weights, dim=1) + attended = torch.sum(inputs * attention_weights, dim=1) + if self.is_residual: + outputs = inputs + attended.unsqueeze(1) + else: + outputs = attended.unsqueeze(1) + return outputs + +class TDEER(nn.Module): + def __init__(self, bert_model_name, relation_size): + super(TDEER, self).__init__() + self.bert = BertModel.from_pretrained(bert_model_name) + self.relation_size = relation_size + + hidden_size = self.bert.config.hidden_size + + self.entity_heads = nn.Linear(hidden_size, 2) + self.entity_tails = nn.Linear(hidden_size, 2) + self.rel_classifier = nn.Linear(hidden_size, relation_size) + + self.sub_head_feature = nn.Linear(hidden_size, hidden_size) + self.sub_tail_feature = nn.Linear(hidden_size, hidden_size) + self.rel_feature = nn.Embedding(relation_size, hidden_size) + self.rel_feature_dense = nn.Linear(hidden_size, hidden_size) + + # MODIFIED: Enhanced obj_feature + self.obj_feature = nn.Sequential( + nn.Linear(hidden_size * 3, hidden_size), + nn.ReLU(), + nn.Linear(hidden_size, hidden_size) + ) + self.self_attention = nn.Linear(hidden_size, 1) + self.pred_obj_head = nn.Linear(hidden_size, 1) + + def forward(self, input_ids, attention_mask, entity_heads=None, entity_tails=None, rels=None, + sample_subj_head=None, sample_subj_tail=None, sample_rel=None, sample_obj_heads=None): + bert_output = self.bert(input_ids, attention_mask=attention_mask) + sequence_output = bert_output.last_hidden_state + pooled_output = bert_output.pooler_output + + pred_entity_heads = self.entity_heads(sequence_output) + pred_entity_tails = self.entity_tails(sequence_output) + pred_rels = self.rel_classifier(pooled_output) + + if sample_subj_head is not None and sample_subj_tail is not None and sample_rel is not None: + batch_size, seq_len = input_ids.size() + + sub_head_feature = self.sub_head_feature(sequence_output[torch.arange(batch_size), sample_subj_head]) + sub_tail_feature = self.sub_tail_feature(sequence_output[torch.arange(batch_size), sample_subj_tail]) + sub_feature = (sub_head_feature + sub_tail_feature) / 2 + + rel_feature = self.rel_feature(sample_rel) + rel_feature = F.relu(self.rel_feature_dense(rel_feature)) + + obj_feature_input = torch.cat([sequence_output, + sub_feature.unsqueeze(1).expand(-1, seq_len, -1), + rel_feature.unsqueeze(1).expand(-1, seq_len, -1)], dim=-1) + obj_feature = self.obj_feature(obj_feature_input) + + # attention_weights = F.softmax(self.self_attention(obj_feature), dim=1) + # attended_obj_feature = (obj_feature * attention_weights).sum(dim=1) + + # 修改这里 + pred_obj_head = self.pred_obj_head(obj_feature).squeeze(-1) + + # 添加调试信息 + # print(f"Debug - pred_obj_head shape: {pred_obj_head.shape}") + # print(f"Debug - attention_mask shape: {attention_mask.shape}") + + return pred_entity_heads, pred_entity_tails, pred_rels, pred_obj_head + + return pred_entity_heads, pred_entity_tails, pred_rels + +class Evaluator: + def __init__(self, model, dev_data, tokenizer, id2rel, device): + self.model = model + self.dev_data = dev_data + self.tokenizer = tokenizer + self.id2rel = id2rel + self.device = device + self.best_f1 = float('-inf') + + def evaluate(self, epoch): + self.model.eval() + # Implement evaluation logic here + # Use the compute_metrics function from utils.py + precision, recall, f1 = compute_metrics(self.model, self.dev_data, self.tokenizer, self.id2rel, self.device) + + if f1 > self.best_f1: + self.best_f1 = f1 + torch.save(self.model.state_dict(), f'best_model_epoch_{epoch}.pt') + print("New best model saved!") + + print(f'Epoch {epoch}: F1: {f1:.4f}, Precision: {precision:.4f}, Recall: {recall:.4f}, Best F1: {self.best_f1:.4f}\n') + + return f1 + +def build_model(bert_dir: str, relation_size: int, device: str): + model = TDEER(bert_dir, relation_size).to(device) + return model + +def get_optimizer(model: nn.Module, learning_rate: float): + return torch.optim.Adam(model.parameters(), lr=learning_rate) \ No newline at end of file diff --git a/model.py b/model.py deleted file mode 100644 index 7a986d3..0000000 --- a/model.py +++ /dev/null @@ -1,170 +0,0 @@ -# -*- coding:utf-8 -*- -import torch -import torch.nn as nn -import torch.optim as optim -from transformers import BertModel -from utils import compute_metrics - -class SelfAttention(nn.Module): - def __init__(self, hidden_dim): - super(SelfAttention, self).__init__() - self.hidden_dim = hidden_dim - self.attention = nn.MultiheadAttention(hidden_dim, num_heads=8, batch_first=True) - - def forward(self, x): - attn_output, _ = self.attention(x, x, x) - return attn_output + x # residual connection - -class EntityModel(nn.Module): - def __init__(self, bert_model_name): - super(EntityModel, self).__init__() - self.bert = BertModel.from_pretrained(bert_model_name) - self.pred_entity_heads = nn.Linear(self.bert.config.hidden_size, 2) - self.pred_entity_tails = nn.Linear(self.bert.config.hidden_size, 2) - - def forward(self, input_ids, attention_mask, token_type_ids): - input_ids = input_ids.to(self.bert.device) - attention_mask = attention_mask.to(self.bert.device) - token_type_ids = token_type_ids.to(self.bert.device) - - bert_outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) - tokens_feature = bert_outputs.last_hidden_state - pred_entity_heads = torch.sigmoid(self.pred_entity_heads(tokens_feature)) - pred_entity_tails = torch.sigmoid(self.pred_entity_tails(tokens_feature)) - return pred_entity_heads, pred_entity_tails - -class RelationModel(nn.Module): - def __init__(self, bert_model_name, relation_size): - super(RelationModel, self).__init__() - self.bert = BertModel.from_pretrained(bert_model_name) - self.pred_rels = nn.Linear(self.bert.config.hidden_size, relation_size) - - def forward(self, input_ids, attention_mask, token_type_ids): - input_ids = input_ids.to(self.bert.device) - attention_mask = attention_mask.to(self.bert.device) - token_type_ids = token_type_ids.to(self.bert.device) - - bert_outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) - tokens_feature = bert_outputs.last_hidden_state - pred_rels = torch.sigmoid(self.pred_rels(tokens_feature[:, 0, :])) - return pred_rels - -class TranslateModel(nn.Module): - def __init__(self, bert_model_name, relation_size, hidden_size): - super(TranslateModel, self).__init__() - self.bert = BertModel.from_pretrained(bert_model_name) - self.rel_embedding = nn.Embedding(relation_size, hidden_size) - self.rel_dense = nn.Linear(hidden_size, hidden_size) - self.self_attention = SelfAttention(hidden_size) - self.pred_obj_head = nn.Linear(hidden_size, 1) - - def forward(self, input_ids, attention_mask, token_type_ids, sub_head, sub_tail, rel): - input_ids = input_ids.to(self.bert.device) - attention_mask = attention_mask.to(self.bert.device) - token_type_ids = token_type_ids.to(self.bert.device) - sub_head = sub_head.to(self.bert.device) - sub_tail = sub_tail.to(self.bert.device) - rel = rel.to(self.bert.device) - - bert_outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) - tokens_feature = bert_outputs.last_hidden_state # (batch_size, seq_len, hidden_size) - - sub_head_feature = tokens_feature[torch.arange(tokens_feature.size(0)), sub_head.squeeze()] # (batch_size, hidden_size) - sub_tail_feature = tokens_feature[torch.arange(tokens_feature.size(0)), sub_tail.squeeze()] # (batch_size, hidden_size) - sub_feature = (sub_head_feature + sub_tail_feature) / 2 # (batch_size, hidden_size) - - rel_feature = torch.relu(self.rel_dense(self.rel_embedding(rel).squeeze(1))) # (batch_size, hidden_size) - - # Ensure dimensions match for broadcasting - sub_feature = sub_feature.unsqueeze(1).expand(-1, tokens_feature.size(1), -1) # (batch_size, seq_len, hidden_size) - rel_feature = rel_feature.unsqueeze(1).expand(-1, tokens_feature.size(1), -1) # (batch_size, seq_len, hidden_size) - - obj_feature = tokens_feature + sub_feature + rel_feature # (batch_size, seq_len, hidden_size) - obj_feature = self.self_attention(obj_feature) # (batch_size, seq_len, hidden_size) - pred_obj_head = torch.sigmoid(self.pred_obj_head(obj_feature)) # (batch_size, seq_len, 1) - - return pred_obj_head.squeeze(-1) # (batch_size, seq_len) - -class TDEERModel(nn.Module): - def __init__(self, entity_model, rel_model, translate_model): - super(TDEERModel, self).__init__() - self.entity_model = entity_model - self.rel_model = rel_model - self.translate_model = translate_model - - def forward(self, input_ids, attention_mask, token_type_ids, gold_entity_heads, gold_entity_tails, gold_rels, sub_head, sub_tail, rel, gold_obj_head): - input_ids = input_ids.to(self.entity_model.bert.device) - attention_mask = attention_mask.to(self.entity_model.bert.device) - token_type_ids = token_type_ids.to(self.entity_model.bert.device) - gold_entity_heads = gold_entity_heads.to(self.entity_model.bert.device) - gold_entity_tails = gold_entity_tails.to(self.entity_model.bert.device) - gold_rels = gold_rels.to(self.entity_model.bert.device) - sub_head = sub_head.to(self.entity_model.bert.device) - sub_tail = sub_tail.to(self.entity_model.bert.device) - rel = rel.to(self.entity_model.bert.device) - gold_obj_head = gold_obj_head.to(self.entity_model.bert.device) - - pred_entity_heads, pred_entity_tails = self.entity_model(input_ids, attention_mask, token_type_ids) - pred_rels = self.rel_model(input_ids, attention_mask, token_type_ids) - pred_obj_head = self.translate_model(input_ids, attention_mask, token_type_ids, sub_head, sub_tail, rel) - - loss = self.compute_loss(pred_entity_heads, gold_entity_heads, pred_entity_tails, gold_entity_tails, pred_rels, gold_rels, pred_obj_head, gold_obj_head) - return loss - - def compute_loss(self, pred_entity_heads, gold_entity_heads, pred_entity_tails, gold_entity_tails, pred_rels, gold_rels, pred_obj_head, gold_obj_head): - entity_heads_loss = nn.functional.binary_cross_entropy(pred_entity_heads, gold_entity_heads, reduction='mean') - entity_tails_loss = nn.functional.binary_cross_entropy(pred_entity_tails, gold_entity_tails, reduction='mean') - rel_loss = nn.functional.binary_cross_entropy(pred_rels, gold_rels, reduction='mean') - pred_obj_head = pred_obj_head.squeeze(-1) - obj_head_loss = nn.functional.binary_cross_entropy(pred_obj_head, gold_obj_head, reduction='mean') - - total_loss = entity_heads_loss + entity_tails_loss + rel_loss + 5.0 * obj_head_loss - return total_loss - -def build_model(bert_model_name: str, learning_rate: float, relation_size: int, device): - hidden_size = BertModel.from_pretrained(bert_model_name).config.hidden_size - entity_model = EntityModel(bert_model_name).to(device) - rel_model = RelationModel(bert_model_name, relation_size).to(device) - translate_model = TranslateModel(bert_model_name, relation_size, hidden_size).to(device) - train_model = TDEERModel(entity_model, rel_model, translate_model).to(device) - - optimizer = optim.AdamW(train_model.parameters(), lr=learning_rate) - return entity_model, rel_model, translate_model, train_model, optimizer - -class Evaluator: - def __init__(self, infer, model, dev_data, save_weights_path, model_name, optimizer, device, learning_rate=5e-5, min_learning_rate=5e-6): - self.infer = infer - self.model = model - self.dev_data = dev_data - self.save_weights_path = save_weights_path - self.model_name = model_name - self.optimizer = optimizer - self.device = device - self.learning_rate = learning_rate - self.min_learning_rate = min_learning_rate - self.best = float('-inf') - self.passed = 0 - self.is_exact_match = model_name.startswith('NYT11-HRL') - - def evaluate(self): - self.model.eval() - precision, recall, f1 = compute_metrics(self.infer, self.dev_data, exact_match=self.is_exact_match, model_name=self.model_name) - if f1 > self.best: - self.best = f1 - torch.save(self.model.state_dict(), self.save_weights_path) - print("New best result!") - print(f'f1: {f1:.4f}, precision: {precision:.4f}, recall: {recall:.4f}, best f1: {self.best:.4f}') - self.model.train() - - def adjust_learning_rate(self, step, total_steps): - if step < total_steps: - lr = (step + 1) / total_steps * self.learning_rate - else: - lr = (2 - (step + 1) / total_steps) * (self.learning_rate - self.min_learning_rate) + self.min_learning_rate - for param_group in self.optimizer.param_groups: - param_group['lr'] = lr - -# Example of usage: -device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') -entity_model, rel_model, translate_model, train_model, optimizer = build_model('bert-base-uncased', 2e-5, 10, device) -evaluator = Evaluator(None, train_model, None, 'model.pth', 'NYT11-HRL', optimizer, device) diff --git a/run.py b/run.py index bced37e..6bbb66b 100644 --- a/run.py +++ b/run.py @@ -1,13 +1,15 @@ -# -*- coding:utf-8 -*- - import os import argparse import torch from torch.utils.data import DataLoader +from torch.cuda.amp import autocast, GradScaler +import torch.nn.functional as F from transformers import BertTokenizerFast from tqdm import tqdm -from dataloader import DataGenerator, load_data, load_rel, collate_fn -from model import build_model, Evaluator +import numpy as np + +from dataloader import TDEERDataset, load_data, load_rel +from model import TDEER, get_optimizer from utils import Infer, compute_metrics parser = argparse.ArgumentParser(description='TDEER cli') @@ -18,88 +20,126 @@ parser.add_argument('--train_path', type=str, help='specify the train path') parser.add_argument('--dev_path', type=str, help='specify the dev path') parser.add_argument('--test_path', type=str, help='specify the test path') -parser.add_argument('--bert_model_name', type=str, default='bert-base-cased', help='specify the pre-trained bert model') +parser.add_argument('--bert_model', type=str, default='bert-base-cased', help='specify the pre-trained bert model') parser.add_argument('--save_path', default=None, type=str, help='specify the save path to save model [training phase]') parser.add_argument('--ckpt_path', default=None, type=str, help='specify the ckpt path [test phase]') -parser.add_argument('--learning_rate', default=2e-5, type=float, help='specify the learning rate') -parser.add_argument('--epoch', default=100, type=int, help='specify the epoch size') -parser.add_argument('--batch_size', default=8, type=int, help='specify the batch size') +parser.add_argument('--learning_rate', default=1e-5, type=float, help='specify the learning rate') +parser.add_argument('--epoch', default=5, type=int, help='specify the epoch size') +parser.add_argument('--batch_size', default=16, type=int, help='specify the batch size') parser.add_argument('--max_len', default=120, type=int, help='specify the max len') -parser.add_argument('--neg_samples', default=None, type=int, help='specify negative sample num') -parser.add_argument('--max_sample_triples', default=None, type=int, help='specify max sample triples') -parser.add_argument('--verbose', default=2, type=int, help='specify verbose: 0 = silent, 1 = progress bar, 2 = one line per epoch') +parser.add_argument('--neg_samples', default=2, type=int, help='specify negative sample num') +parser.add_argument('--max_sample_triples', default=100, type=int, help='specify max sample triples') +parser.add_argument('--eval_steps', default=100, type=int, help='evaluate every N steps') +parser.add_argument('--num_workers', type=int, default=4, help='number of workers for data loading') +parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision') +parser.add_argument('--subset_size', type=int, default=None, help='use a subset of data for quick validation') + args = parser.parse_args() print("Argument:", args) -device = torch.device("cuda" if torch.cuda.is_available() else "cpu") - +device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') id2rel, rel2id, all_rels = load_rel(args.rel_path) -tokenizer = BertTokenizerFast.from_pretrained(args.bert_model_name) -entity_model, rel_model, translate_model, train_model, optimizer = build_model(args.bert_model_name, args.learning_rate, len(all_rels), device) -train_model.to(device) +tokenizer = BertTokenizerFast.from_pretrained(args.bert_model) +model = TDEER(args.bert_model, len(all_rels)).to(device) -if args.do_train: - assert args.save_path is not None, "please specify --save_path in training phase" +def compute_loss(pred_entity_heads, pred_entity_tails, pred_rels, pred_obj_head, + entity_heads, entity_tails, rels, sample_obj_heads, attention_mask): + entity_heads_loss = F.binary_cross_entropy_with_logits(pred_entity_heads, entity_heads, reduction='none') + entity_heads_loss = (entity_heads_loss * attention_mask.unsqueeze(-1)).sum() / attention_mask.sum() + + entity_tails_loss = F.binary_cross_entropy_with_logits(pred_entity_tails, entity_tails, reduction='none') + entity_tails_loss = (entity_tails_loss * attention_mask.unsqueeze(-1)).sum() / attention_mask.sum() - # 加载训练数据、验证数据和测试数据 + rel_loss = F.binary_cross_entropy_with_logits(pred_rels, rels) + + obj_head_loss = F.binary_cross_entropy_with_logits(pred_obj_head, sample_obj_heads, reduction='none') + obj_head_loss = (obj_head_loss * attention_mask).sum() / attention_mask.sum() + + loss = entity_heads_loss + entity_tails_loss + rel_loss + 10.0 * obj_head_loss + return loss + +if args.do_train: train_data = load_data(args.train_path, rel2id, is_train=True) dev_data = load_data(args.dev_path, rel2id, is_train=False) - test_data = load_data(args.test_path, rel2id, is_train=False) if args.test_path is not None else None - # 创建数据生成器和数据加载器 - train_generator = DataGenerator(train_data, tokenizer, rel2id, all_rels, args.max_len, args.max_sample_triples, args.neg_samples) - train_loader = DataLoader(train_generator, batch_size=args.batch_size, shuffle=True, collate_fn=collate_fn) - - # 创建优化器和评估器 - # optimizer = torch.optim.AdamW(train_model.parameters(), lr=args.learning_rate) - infer = Infer(entity_model, rel_model, translate_model, tokenizer, id2rel) - evaluator = Evaluator(infer, train_model, dev_data, args.save_path, args.model_name, optimizer, device) + if args.subset_size: + train_data = train_data[:args.subset_size] + dev_data = dev_data[:min(args.subset_size, len(dev_data))] - # 训练模型 + train_dataset = TDEERDataset(train_data, tokenizer, rel2id, all_rels, args.max_len, args.max_sample_triples, args.neg_samples) + train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers) + + optimizer = get_optimizer(model, args.learning_rate) + scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.9) + scaler = GradScaler() + + best_f1 = 0 + global_step = 0 for epoch in range(args.epoch): - train_model.train() - with tqdm(train_loader, desc=f'Epoch {epoch+1}/{args.epoch}', unit='batch') as t_loader: - for batch in t_loader: - batch = {k: v.to(device).float() if v.dtype == torch.float64 else v.to(device) for k, v in batch.items()} - # print(batch) - inputs = { - 'input_ids': batch['token_ids'], # Changed from 'input_ids' to 'token_ids' - 'attention_mask': batch['attention_mask'], # Assuming this key is correct - 'token_type_ids': batch['segment_ids'], # Changed from 'token_type_ids' to 'segment_ids' - 'gold_entity_heads': batch['entity_heads'], # Assuming this key is correct - 'gold_entity_tails': batch['entity_tails'], # Assuming this key is correct - 'gold_rels': batch['rels'], # Assuming this key is correct - 'sub_head': batch['sample_subj_head'], # Assuming this key is correct - 'sub_tail': batch['sample_subj_tail'], # Assuming this key is correct - 'rel': batch['sample_rel'], # Assuming this key is correct - 'gold_obj_head': batch['sample_obj_heads'] # Assuming this key is correct - } - - + model.train() + total_loss = 0 + with tqdm(total=len(train_dataloader), desc=f"Epoch {epoch+1}/{args.epoch}") as pbar: + for batch in train_dataloader: optimizer.zero_grad() - loss = train_model(**inputs) - loss.backward() - optimizer.step() - t_loader.set_postfix({'loss': loss.item()}) - t_loader.update() - - # 每个 epoch 结束后进行评估 - evaluator.evaluate() + + batch = {k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in batch.items()} + if 'token_ids' in batch: + batch['input_ids'] = batch.pop('token_ids') + + with autocast(enabled=args.use_amp): + outputs = model(**batch) + loss = compute_loss(*outputs, + batch['entity_heads'], + batch['entity_tails'], + batch['rels'], + batch['sample_obj_heads'], + batch['attention_mask']) + + if args.use_amp: + scaler.scale(loss).backward() + scaler.step(optimizer) + scaler.update() + else: + loss.backward() + optimizer.step() - # 保存训练好的模型 - torch.save(train_model.state_dict(), args.save_path) + total_loss += loss.item() + pbar.update(1) + pbar.set_postfix({'loss': total_loss / (pbar.n + 1)}) + global_step += 1 + if global_step % args.eval_steps == 0: + model.eval() + with torch.no_grad(): + infer = Infer(model, tokenizer, id2rel, device) + precision, recall, f1 = compute_metrics(infer, dev_data, args.model_name) + print(f"Step {global_step} - Dev set - Precision: {precision:.4f}, Recall: {recall:.4f}, F1: {f1:.4f}") + if f1 > best_f1: + best_f1 = f1 + torch.save(model.state_dict(), args.save_path) + print(f"New best model saved with F1: {best_f1:.4f}") + model.train() + + print(f"Epoch {epoch+1}/{args.epoch}, Average Loss: {total_loss / len(train_dataloader):.4f}") + scheduler.step() + + # Evaluate on dev set + model.eval() + with torch.no_grad(): + infer = Infer(model, tokenizer, id2rel, device) + precision, recall, f1 = compute_metrics(infer, dev_data, args.model_name) + print(f"Dev set - Precision: {precision:.4f}, Recall: {recall:.4f}, F1: {f1:.4f}") + + if f1 > best_f1: + best_f1 = f1 + torch.save(model.state_dict(), args.save_path) + print(f"New best model saved with F1: {best_f1:.4f}") + if args.do_test: assert args.ckpt_path is not None, "please specify --ckpt_path in test phase" - - # 加载测试数据和模型 test_data = load_data(args.test_path, rel2id, is_train=False) - train_model.load_state_dict(torch.load(args.ckpt_path, map_location=device)) - train_model.to(device) - train_model.eval() - - # 进行测试并计算评估指标 - infer = Infer(entity_model, rel_model, translate_model, tokenizer, id2rel) - precision, recall, f1_score = compute_metrics(infer, test_data, model_name=args.model_name) - print(f'precision: {precision}, recall: {recall}, f1: {f1_score}') + model.load_state_dict(torch.load(args.ckpt_path)) + infer = Infer(model, tokenizer, id2rel, device) + precision, recall, f1_score = compute_metrics(infer, test_data, args.model_name) + print(f'Test set - Precision: {precision:.4f}, Recall: {recall:.4f}, F1: {f1_score:.4f}') \ No newline at end of file diff --git a/utils.py b/utils.py index e21cba7..24abea5 100644 --- a/utils.py +++ b/utils.py @@ -2,142 +2,113 @@ import time from typing import Dict, List, Set -import torch import numpy as np +import torch from tqdm import tqdm - def rematch(offsets: List) -> List: mapping = [] for offset in offsets: if offset[0] == 0 and offset[1] == 0: mapping.append([]) else: - mapping.append(list(range(offset[0], offset[1]))) + mapping.append([i for i in range(offset[0], offset[1])]) return mapping - -device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class Infer: - def __init__(self, entity_model: torch.nn.Module, rel_model: torch.nn.Module, translate_model: torch.nn.Module, - tokenizer: object, id2rel: Dict): - self.entity_model = entity_model.to(device) - self.rel_model = rel_model.to(device) - self.translate_model = translate_model.to(device) + def __init__(self, model: torch.nn.Module, tokenizer, id2rel: Dict, device: str): + self.model = model self.tokenizer = tokenizer self.id2rel = id2rel + self.device = device def decode_entity(self, text: str, mapping: List, start: int, end: int): - # print(f"Input text: {text}") - # print(f"Mapping: {mapping}") - # print(f"Start index: {start}, End index: {end}") - - if start >= len(mapping) or end >= len(mapping): - print("Start or end index out of range.") - return "" - - s = mapping[start] if start < len(mapping) else [] - e = mapping[end] if end < len(mapping) else [] - # print(f"Raw start mapping: {s}, Raw end mapping: {e}") - - # 取s和e的第一个和最后一个值来确保提取正确的子串 - s = s[0] if s else 0 - e = e[-1] if e else len(text) - 1 - # print(f"Adjusted start: {s}, Adjusted end: {e}") - - s = max(0, s) - e = min(len(text) - 1, e) - + s = mapping[start] + e = mapping[end] + s = 0 if not s else s[0] + e = len(text) - 1 if not e else e[-1] entity = text[s: e + 1] - # print(f"Extracted entity: {entity}") return entity - - def __call__(self, text: str, threshold: float = 0.5) -> Set: - # Tokenize text and prepare input tensors - tokened = self.tokenizer.encode_plus(text, add_special_tokens=True, return_offsets_mapping=True) # 确保添加了特殊标记 - token_ids = torch.tensor([tokened.input_ids], dtype=torch.long).to(device) - segment_ids = torch.tensor([tokened.token_type_ids], dtype=torch.long).to(device) - attention_mask = torch.tensor([tokened.attention_mask], dtype=torch.long).to(device) - mapping = rematch(tokened.offset_mapping) - - # Run entity model to get logits for entity heads and tails + def __call__(self, text: str, threshold: float = 0.01) -> Set: # MODIFIED: changed threshold from 0.1 to 0.01 + self.model.eval() with torch.no_grad(): - entity_heads_logits, entity_tails_logits = self.entity_model(token_ids, attention_mask, segment_ids) - - # Apply threshold to get entity indices - entity_heads = (entity_heads_logits > threshold).nonzero(as_tuple=True) - entity_tails = (entity_tails_logits > threshold).nonzero(as_tuple=True) - subjects = [] - entity_map = {} - - # print(f"entity_heads_logits shape: {entity_heads_logits.shape}") - # print(f"entity_tails_logits shape: {entity_tails_logits.shape}") - # print(f"entity_heads: {entity_heads}") - # print(f"entity_tails: {entity_tails}") - - # Generate potential subjects and entities from heads and tails - for head_idx, head_type_idx in zip(entity_heads[1], entity_heads[2]): - for tail_idx, tail_type_idx in zip(entity_tails[1], entity_tails[2]): - if head_idx <= tail_idx and head_type_idx == tail_type_idx: - entity = self.decode_entity(text, mapping, head_idx.item(), tail_idx.item()) - # print(f"Extracted entity: {entity} from indices {head_idx.item()} to {tail_idx.item()}") - if head_type_idx == 0: # Assuming type 0 are subjects - subjects.append((entity, head_idx.item(), tail_idx.item())) - else: - entity_map[head_idx.item()] = entity + tokened = self.tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=512, return_offsets_mapping=True) + tokened = {k: v.to(self.device) for k, v in tokened.items()} + + entity_heads_logits, entity_tails_logits, relations_logits = self.model(tokened['input_ids'], tokened['attention_mask']) + + # print(f"Max entity_heads_logits: {entity_heads_logits.max().item()}") + # print(f"Max entity_tails_logits: {entity_tails_logits.max().item()}") + # print(f"Max relations_logits: {relations_logits.max().item()}") + entity_heads_probs = torch.sigmoid(entity_heads_logits) + entity_tails_probs = torch.sigmoid(entity_tails_logits) + relations_probs = torch.sigmoid(relations_logits) + + entity_heads = torch.where(entity_heads_logits[0] > threshold) + entity_tails = torch.where(entity_tails_logits[0] > threshold) + relations = torch.where(relations_logits[0] > threshold)[0].tolist() + + # print(f"Number of entity heads: {len(entity_heads[0])}") + # print(f"Number of entity tails: {len(entity_tails[0])}") + # print(f"Number of relations: {len(relations)}") + + subjects = [] + entity_map = {} + for head, head_type in zip(*entity_heads): + for tail, tail_type in zip(*entity_tails): + if head <= tail and head_type == tail_type: + entity = self.decode_entity(text, tokened['offset_mapping'][0].tolist(), head, tail) + if head_type == 0: + subjects.append((entity, head.item(), tail.item())) + else: + entity_map[head.item()] = entity + break + + # print(f"Number of subjects: {len(subjects)}") + # print(f"Number of entities in entity_map: {len(entity_map)}") + + triple_set = set() + if subjects and relations: + for (sub, sub_head, sub_tail) in subjects: + for rel in relations: + sub_head_tensor = torch.tensor([sub_head], device=self.device) + sub_tail_tensor = torch.tensor([sub_tail], device=self.device) + rel_tensor = torch.tensor([rel], device=self.device) + + _, _, _, obj_head_logits = self.model( + tokened['input_ids'], + tokened['attention_mask'], + sample_subj_head=sub_head_tensor, + sample_subj_tail=sub_tail_tensor, + sample_rel=rel_tensor + ) - print(f"Subjects: {subjects}") - print(f"Entity map: {entity_map}") - - triple_set = set() - if subjects: - with torch.no_grad(): - relations_logits = self.rel_model(token_ids, attention_mask=attention_mask, token_type_ids=segment_ids) - relations = (relations_logits > threshold).nonzero(as_tuple=True) - if relations[0].numel() > 0: - batch_size = len(subjects) - for sub, sub_head, sub_tail in subjects: - for rel_idx in relations[0]: - rel = self.id2rel[rel_idx.item()] - batch_token_ids = token_ids.expand(batch_size, -1) - batch_segment_ids = segment_ids.expand(batch_size, -1) - batch_attention_mask = attention_mask.expand(batch_size, -1) - batch_subj_head = torch.tensor([sub_head], dtype=torch.long).expand(batch_size, 1).to(device) - batch_subj_tail = torch.tensor([sub_tail], dtype=torch.long).expand(batch_size, 1).to(device) - batch_rels = torch.tensor([rel_idx.item()], dtype=torch.long).expand(batch_size, 1).to(device) - - # Debugging shapes - # print(f"batch_token_ids shape: {batch_token_ids.shape}") - # print(f"batch_segment_ids shape: {batch_segment_ids.shape}") - # print(f"batch_attention_mask shape: {batch_attention_mask.shape}") - # print(f"batch_subj_head shape: {batch_subj_head.shape}") - # print(f"batch_subj_tail shape: {batch_subj_tail.shape}") - # print(f"batch_rels shape: {batch_rels.shape}") - - obj_head_logits = self.translate_model(batch_token_ids, batch_attention_mask, batch_segment_ids, batch_subj_head, batch_subj_tail, batch_rels) - for obj_head_idx in obj_head_logits.argmax(dim=1).tolist(): - if obj_head_idx in entity_map: - obj = entity_map[obj_head_idx] - triple_set.add((sub, rel, obj)) + # print(f"Max obj_head_logits: {obj_head_logits.max().item()}") + # print(f"Min obj_head_logits: {obj_head_logits.min().item()}") + # print(f"Mean obj_head_logits: {obj_head_logits.mean().item()}") + + for h in torch.where(obj_head_logits[0] > threshold)[0].tolist(): # MODIFIED: changed threshold from 0.1 to 0.01 + if h in entity_map: + obj = entity_map[h] + triple_set.add((sub, self.id2rel[rel], obj)) + # print(f"Predicted object head: {h}") + # print(f"Object in entity_map: {h in entity_map}") + + print(f"Number of triples: {len(triple_set)}") + print(f"Triples: {triple_set}") return triple_set - - - - def partial_match(pred_set, gold_set): pred = {(i[0].split(' ')[0] if len(i[0].split(' ')) > 0 else i[0], i[1], i[2].split(' ')[0] if len(i[2].split(' ')) > 0 else i[2]) for i in pred_set} gold = {(i[0].split(' ')[0] if len(i[0].split(' ')) > 0 else i[0], i[1], i[2].split(' ')[0] if len(i[2].split(' ')) > 0 else i[2]) for i in gold_set} return pred, gold - def remove_space(data_set): data_set = {(i[0].replace(' ', ''), i[1], i[2].replace(' ', '')) for i in data_set} return data_set - def compute_metrics(infer, dev_data, exact_match=False, model_name='tmp'): output_path = f'{model_name}.output' if output_path: @@ -145,15 +116,11 @@ def compute_metrics(infer, dev_data, exact_match=False, model_name='tmp'): orders = ['subject', 'relation', 'object'] correct_num, predict_num, gold_num = 1e-10, 1e-10, 1e-10 infer_times = [] - device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') - for line in tqdm(iter(dev_data)): start_time = time.time() pred_triples = infer(line['text']) infer_times.append(time.time() - start_time) gold_triples = set(line['triple_list']) - # print(f"Predicted triples: {pred_triples}") - # print(f"Gold triples: {gold_triples}") if exact_match: gold_triples = remove_space(gold_triples) @@ -161,8 +128,6 @@ def compute_metrics(infer, dev_data, exact_match=False, model_name='tmp'): pred_triples_eval, gold_triples_eval = partial_match(pred_triples, gold_triples) if not exact_match else (pred_triples, gold_triples) - print(f"Predicted triples (eval): {pred_triples_eval}") - print(f"Gold triples (eval): {gold_triples_eval}") correct_num += len(pred_triples_eval & gold_triples_eval) predict_num += len(pred_triples_eval) gold_num += len(gold_triples_eval) @@ -193,5 +158,4 @@ def compute_metrics(infer, dev_data, exact_match=False, model_name='tmp'): print(f'correct_num:{correct_num}\npredict_num:{predict_num}\ngold_num:{gold_num}') print("avg infer time:", sum(infer_times) / len(infer_times)) - return precision, recall, f1_score - + return precision, recall, f1_score \ No newline at end of file From a42e8ca434c26890cb65c0ea6f19f426665e725e Mon Sep 17 00:00:00 2001 From: innovation64 Date: Sat, 27 Jul 2024 18:59:26 +0800 Subject: [PATCH 20/20] refactor: refactor the code to Pytorch --- model .py => model.py | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename model .py => model.py (100%) diff --git a/model .py b/model.py similarity index 100% rename from model .py rename to model.py