-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtest_semisup.py
146 lines (119 loc) · 5.25 KB
/
test_semisup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import argparse
import numpy as np
from torch.autograd import Variable
from torchvision import datasets, transforms
import torch.utils.data
from sklearn.svm import LinearSVC
from model import *
batch_size = 64
latent_size = 256
cuda_device = "0"
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', required=True, help='cifar10 | svhn')
parser.add_argument('--dataroot', required=True, help='path to dataset')
parser.add_argument('--use_cuda', type=bool, default=True)
parser.add_argument('--model_path', required=True)
parser.add_argument('--samples_per_class', type=int, default=100)
opt = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = cuda_device
def tocuda(x):
if opt.use_cuda:
return x.cuda()
return x
def get_random_uniform_batch(data, targets, num_classes=10, samples_per_class=100):
random_batch = np.zeros((num_classes*samples_per_class, data.shape[1]))
random_targets = np.zeros(num_classes*samples_per_class)
indices = np.random.permutation(data.shape[0])
batch_size = 0
label_counts = np.zeros(num_classes)
for i in indices:
if label_counts[targets[i]] < samples_per_class:
label_counts[targets[i]] += 1
random_batch[batch_size, :] = data[i, :]
random_targets[batch_size] = targets[i]
batch_size += 1
if batch_size >= num_classes*samples_per_class:
break
return random_batch, random_targets
if __name__ == "__main__":
encoder_state_dict = torch.load(opt.model_path)
netE = Encoder(latent_size, True)
netE.load_state_dict(encoder_state_dict)
netE = tocuda(netE)
print("Model restored")
if opt.dataset == 'svhn':
train_loader = torch.utils.data.DataLoader(
datasets.SVHN(root=opt.dataroot, split='extra', download=True,
transform=transforms.Compose([
transforms.ToTensor()
])),
batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
datasets.SVHN(root=opt.dataroot, split='train', download=True,
transform=transforms.Compose([
transforms.ToTensor()
])),
batch_size=batch_size, shuffle=True)
elif opt.dataset == 'cifar10':
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10(root=opt.dataroot, train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor()
])),
batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10(root=opt.dataroot, train=False, download=True,
transform=transforms.Compose([
transforms.ToTensor()
])),
batch_size=batch_size, shuffle=True)
else:
raise NotImplementedError
all_embeddings = []
all_targets = []
for (data, target) in train_loader:
temp, h1, h2, h3 = netE.forward(Variable(tocuda(data)))
temp = np.concatenate([temp.view(data.size()[0], -1)[:latent_size, ].cpu().data.numpy(), h1.cpu().data.numpy(),
h2.cpu().data.numpy(), h3.cpu().data.numpy()], axis=1)
all_embeddings.append(temp)
all_targets.append(target.numpy())
all_embeddings = np.concatenate(all_embeddings, axis=0)
all_targets = np.concatenate(all_targets, axis=0)
train_embeddings, validation_embeddings = all_embeddings[10000:, :], all_embeddings[:10000, :]
train_targets, validation_targets = all_targets[10000:], all_targets[:10000]
print("Embeddings calculated")
random_batch, random_targets = get_random_uniform_batch(train_embeddings, train_targets)
best_error_rate = 1.0
best_C = None
print(random_batch.shape)
for log_C in np.linspace(-20, 20, 50):
if log_C < -10 or log_C > 0:
continue
C = np.exp(log_C)
svm = LinearSVC(C=C)
svm.fit(random_batch, random_targets.ravel())
error_rate = 1 - np.mean([
svm.score(validation_embeddings[1000 * i:1000 * (i + 1), :],
validation_targets[1000 * i:1000 * (i + 1)].ravel())
for i in range(10)
])
if error_rate < best_error_rate:
best_error_rate = error_rate
best_C = C
print('C = {}, validation error rate = {} '.format(C, error_rate) +
'(best is {}, {})'.format(best_C, best_error_rate))
print("found best C : ", best_C)
error_rates = []
for j in range(1):
random_batch, random_targets = get_random_uniform_batch(train_embeddings, train_targets)
svm = LinearSVC(C=best_C)
svm.fit(random_batch, random_targets.ravel())
print(error_rates)
error_rates.append(1 - np.mean([
svm.score(validation_embeddings[1000 * i:1000 * (i + 1), :],
validation_targets[1000 * i:1000 * (i + 1)].ravel())
for i in range(10)
]))
print('Validation error rate = {} +- {} '.format(np.mean(error_rates),
np.std(error_rates)))