|
| 1 | +import jax |
| 2 | +import jax.numpy as jnp |
| 3 | +from optax.contrib import MuonDimensionNumbers as mdn |
| 4 | + |
| 5 | +# deepseek2-16b, scanned, q_lora_rank=0 |
| 6 | +# NOTE: not compatible with deepseek2-236b (q_lora_rank: 1536) |
| 7 | +DEEPSEEK2_DIMENSION_NUMBER = { |
| 8 | + "params": { |
| 9 | + "decoder": { |
| 10 | + "dense_layers": { |
| 11 | + "mlp": { |
| 12 | + "wi_0": {"kernel": mdn((0,), (-1,))}, |
| 13 | + "wi_1": {"kernel": mdn((0,), (-1,))}, |
| 14 | + "wo": {"kernel": mdn((0,), (-1,))}, |
| 15 | + }, |
| 16 | + "self_attention": { |
| 17 | + "kv_norm": {"scale": None}, |
| 18 | + "wkv_a": {"kernel": mdn((0,), (-1,))}, |
| 19 | + "wkv_b": {"kernel": mdn((0,), (-2, -1))}, |
| 20 | + "out": {"kernel": mdn((0, -2), (-1,))}, |
| 21 | + "query": {"kernel": mdn((0,), (-2, -1))}, # ds2 |
| 22 | + }, |
| 23 | + "pre_self_attention_layer_norm": {"scale": None}, |
| 24 | + "post_self_attention_layer_norm": {"scale": None}, |
| 25 | + }, |
| 26 | + "moe_layers": { |
| 27 | + "DeepSeekMoeBlock_0": { |
| 28 | + "MoeBlock_0": { |
| 29 | + "wi_0": mdn((-2,), (-1,)), |
| 30 | + "wi_1": mdn((-2,), (-1,)), |
| 31 | + "wo": mdn((-2,), (-1,)), |
| 32 | + "gate": {"kernel": mdn((0,), (-1,))}, # ds2 |
| 33 | + }, |
| 34 | + "shared_experts": { |
| 35 | + "wi_0": {"kernel": mdn((0,), (-1,))}, |
| 36 | + "wi_1": {"kernel": mdn((0,), (-1,))}, |
| 37 | + "wo": {"kernel": mdn((0,), (-1,))}, |
| 38 | + }, |
| 39 | + }, |
| 40 | + "self_attention": { |
| 41 | + "kv_norm": {"scale": None}, |
| 42 | + "wkv_a": {"kernel": mdn((0,), (-1,))}, |
| 43 | + "wkv_b": {"kernel": mdn((0,), (-2, -1))}, |
| 44 | + "out": {"kernel": mdn((0, -2), (-1,))}, |
| 45 | + "query": {"kernel": mdn((0,), (-2, -1))}, # ds2 |
| 46 | + }, |
| 47 | + "pre_self_attention_layer_norm": {"scale": None}, |
| 48 | + "post_self_attention_layer_norm": {"scale": None}, |
| 49 | + }, |
| 50 | + "decoder_norm": {"scale": None}, |
| 51 | + "logits_dense": {"kernel": None}, |
| 52 | + }, |
| 53 | + "token_embedder": {"embedding": None}, |
| 54 | + } |
| 55 | +} |
| 56 | + |
| 57 | + |
| 58 | +# deepseek3, scanned |
| 59 | +DEEPSEEK3_DIMENSION_NUMBER = { |
| 60 | + "params": { |
| 61 | + "decoder": { |
| 62 | + "dense_layers": { |
| 63 | + "mlp": { |
| 64 | + "wi_0": {"kernel": mdn((0,), (-1,))}, |
| 65 | + "wi_1": {"kernel": mdn((0,), (-1,))}, |
| 66 | + "wo": {"kernel": mdn((0,), (-1,))}, |
| 67 | + }, |
| 68 | + "self_attention": { |
| 69 | + "kv_norm": {"scale": None}, |
| 70 | + "wkv_a": {"kernel": mdn((0,), (-1,))}, |
| 71 | + "wkv_b": {"kernel": mdn((0,), (-2, -1))}, |
| 72 | + "out": {"kernel": mdn((0, -2), (-1,))}, |
| 73 | + "q_norm": {"scale": None}, # ds3 |
| 74 | + "wq_a": {"kernel": mdn((0,), (-1,))}, # ds3 |
| 75 | + "wq_b": {"kernel": mdn((0,), (-2, -1))}, # ds3 |
| 76 | + }, |
| 77 | + "pre_self_attention_layer_norm": {"scale": None}, |
| 78 | + "post_self_attention_layer_norm": {"scale": None}, |
| 79 | + }, |
| 80 | + "moe_layers": { |
| 81 | + "DeepSeekMoeBlock_0": { |
| 82 | + "MoeBlock_0": { |
| 83 | + "wi_0": mdn((-2,), (-1,)), |
| 84 | + "wi_1": mdn((-2,), (-1,)), |
| 85 | + "wo": mdn((-2,), (-1,)), |
| 86 | + "gate": {"kernel": mdn((0,), (-1,)), "bias": None}, # ds3 |
| 87 | + }, |
| 88 | + "shared_experts": { |
| 89 | + "wi_0": {"kernel": mdn((0,), (-1,))}, |
| 90 | + "wi_1": {"kernel": mdn((0,), (-1,))}, |
| 91 | + "wo": {"kernel": mdn((0,), (-1,))}, |
| 92 | + }, |
| 93 | + }, |
| 94 | + "self_attention": { |
| 95 | + "kv_norm": {"scale": None}, |
| 96 | + "wkv_a": {"kernel": mdn((0,), (-1,))}, |
| 97 | + "wkv_b": {"kernel": mdn((0,), (-2, -1))}, |
| 98 | + "out": {"kernel": mdn((0, -2), (-1,))}, |
| 99 | + "q_norm": {"scale": None}, # ds3 |
| 100 | + "wq_a": {"kernel": mdn((0,), (-1,))}, # ds3 |
| 101 | + "wq_b": {"kernel": mdn((0,), (-2, -1))}, # ds3 |
| 102 | + }, |
| 103 | + "pre_self_attention_layer_norm": {"scale": None}, |
| 104 | + "post_self_attention_layer_norm": {"scale": None}, |
| 105 | + }, |
| 106 | + "decoder_norm": {"scale": None}, |
| 107 | + "logits_dense": {"kernel": None}, |
| 108 | + }, |
| 109 | + "token_embedder": {"embedding": None}, |
| 110 | + } |
| 111 | +} |
| 112 | + |
| 113 | + |
| 114 | +def transform_logic(path): |
| 115 | + """ |
| 116 | + assume scan (i.e., dim 1 is layer num L), should work with unscan (without L) |
| 117 | + works for deepseek, llama2, gemma3 |
| 118 | + """ |
| 119 | + # moe: [0, L, -2, -1] |
| 120 | + if "MoeBlock_0" in path and ("wo" in path or "wi_0" in path or "wi_1" in path): |
| 121 | + return mdn((-2,), (-1,)) |
| 122 | + # attention out proj: [0, L, -2, -1] |
| 123 | + elif "self_attention" in path and "out" in path: |
| 124 | + return mdn((0, -2), (-1,)) |
| 125 | + # attention qkv proj: [0, L, -2, -1] |
| 126 | + elif "self_attention" in path and ( |
| 127 | + "query" in path or "key" in path or "value" in path or "wq_b" in path or "wkv_b" in path |
| 128 | + ): |
| 129 | + return mdn((0,), (-2, -1)) |
| 130 | + # do not apply muon: scalar, embedding, unembedding |
| 131 | + elif "scale" in path or "bias" in path or "embedding" in path or "logits_dense" in path: |
| 132 | + return None |
| 133 | + else: |
| 134 | + # all other: [0, L, -1] |
| 135 | + return mdn((0,), (-1,)) |
| 136 | + |
| 137 | + |
| 138 | +def get_transform_tree(tree, path=()): |
| 139 | + if isinstance(tree, dict): |
| 140 | + return {k: get_transform_tree(v, path + (k,)) for k, v in tree.items()} |
| 141 | + else: |
| 142 | + return transform_logic(path) |
| 143 | + |
| 144 | + |
| 145 | +def get_abstract_param(model, config): |
| 146 | + key = jax.random.PRNGKey(0) |
| 147 | + input_shape = (config.micro_batch_size_to_train_on, config.max_target_length) |
| 148 | + abstract_vars = jax.eval_shape( |
| 149 | + model.init, |
| 150 | + {"params": key, "dropout": key, "aqt": key}, |
| 151 | + jnp.ones(input_shape, dtype=jnp.int32), |
| 152 | + jnp.ones(input_shape, dtype=jnp.int32), |
| 153 | + encoder_images=None, |
| 154 | + ) |
| 155 | + return abstract_vars |
| 156 | + |
| 157 | + |
| 158 | +def test1(): |
| 159 | + assert get_transform_tree(DEEPSEEK2_DIMENSION_NUMBER) == DEEPSEEK2_DIMENSION_NUMBER |
| 160 | + assert get_transform_tree(DEEPSEEK3_DIMENSION_NUMBER) == DEEPSEEK3_DIMENSION_NUMBER |
| 161 | + |
| 162 | + |
| 163 | +def test2(): |
| 164 | + from MaxText import pyconfig, maxtext_utils |
| 165 | + from MaxText.globals import MAXTEXT_PKG_DIR |
| 166 | + from MaxText.layers import models, quantizations |
| 167 | + import os |
| 168 | + |
| 169 | + Transformer = models.transformer_as_linen |
| 170 | + |
| 171 | + def _test2(model_name): |
| 172 | + # init model |
| 173 | + argv = [None, os.path.join(MAXTEXT_PKG_DIR, "configs", "base.yml"), f"model_name={model_name}"] |
| 174 | + config = pyconfig.initialize(argv) |
| 175 | + rng = jax.random.PRNGKey(0) |
| 176 | + devices_array = maxtext_utils.create_device_mesh(config) |
| 177 | + mesh = jax.sharding.Mesh(devices_array, config.mesh_axes) |
| 178 | + quant = quantizations.configure_quantization(config) |
| 179 | + model = Transformer(config, mesh=mesh, quant=quant) |
| 180 | + # quickly get param structure without materialization |
| 181 | + abstract_param = get_abstract_param(model, config) |
| 182 | + print(abstract_param) |
| 183 | + # get muon dimension number |
| 184 | + transform_tree = get_transform_tree(abstract_param) |
| 185 | + return transform_tree |
| 186 | + |
| 187 | + assert _test2("deepseek2-16b") == DEEPSEEK2_DIMENSION_NUMBER |
| 188 | + assert _test2("deepseek3-test") == DEEPSEEK3_DIMENSION_NUMBER |
| 189 | + assert _test2("deepseek3-671b") == DEEPSEEK3_DIMENSION_NUMBER |
| 190 | + |
| 191 | + |
| 192 | +if __name__ == "__main__": |
| 193 | + # python -m MaxText.muon_dimension_number |
| 194 | + test1() |
| 195 | + test2() |
0 commit comments