-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcertify_fairness.py
305 lines (252 loc) · 12.4 KB
/
certify_fairness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import argparse
import numpy as np
import random
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
import torch.nn as nn
from sklearn.metrics import (accuracy_score)
from datasets import AdultDataset,CompasDataset,CrimeDataset,GermanDataset,HealthDataset,LawschoolDataset
from utils import fairness_metric
from utils import Averagemeter
import distribution_shift.label_shifting as label_shifting
import plot.plot as plot
from fairness_bound_label_shifting_finite_sampling import fairness_certification_bound_label_shifting_finite_sampling
from fairness_bound_general_shifting_finite_sampling import fairness_upper_bound_general_shifting_finite_sampling
from fairness_bound_label_shifting_finite_sampling import fairness_certification_bound_label_shifting_finite_sampling_improve
parser = argparse.ArgumentParser(description='Fairness Certificate')
parser.add_argument('-dataset', type=str, choices=['adult','compas','crime','german','health','lawschool'],
default='adult')
parser.add_argument('-protected_att', type=str)
parser.add_argument('-load', type=str)
parser.add_argument('-label', type=str)
parser.add_argument('-transfer', type=bool, default=False)
parser.add_argument('-quantiles', type=bool, default=True)
parser.add_argument('-num_epochs', type=int, default=100)
parser.add_argument('-batch-size', type=int, default=256)
parser.add_argument('-balanced', type=bool, default=False)
parser.add_argument('-num_generated_distributions', type=int, default=0)
parser.add_argument('-num_points_bound', type=int, default=10)
parser.add_argument('-certificate_low', type=float, default=0.1)
parser.add_argument('-certificate_high', type=float, default=0.6)
parser.add_argument('-gamma_k', type=float, default=0.0)
parser.add_argument('-gamma_r', type=float, default=0.0)
parser.add_argument('-interval_kr', type=float, default=0.01)
parser.add_argument('-solve_label_shifting_finite_sampling', type=bool, default=True)
parser.add_argument('-solve_general_shifting_finite_sampling', type=bool, default=False)
parser.add_argument('-loss_function', type=str, default='JSD')
parser.add_argument('-use_loss', type=int, default=0)
parser.add_argument('-M', type=float, default=1.0)
parser.add_argument('-finite_sampling', type=bool, default=True)
parser.add_argument('-confidence', type=float, default=0.1)
parser.add_argument('-path_sampled_distances', type=str, default='./logs/Hellinger_Distance_Q_adult')
parser.add_argument('-path_sampled_loss', type=str, default='./logs/Losses_Q_adult')
parser.add_argument('-path_figure', type=str, default='./data/fig_german_sensitive_shifting_loss')
args = parser.parse_args()
# device
USE_CUDA = torch.cuda.is_available()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# init seed
SEED = 1
np.random.seed(SEED)
torch.manual_seed(SEED)
random.seed(SEED)
if USE_CUDA:
torch.cuda.manual_seed_all(SEED)
def get_dataset_loader(args):
if args.dataset == 'adult':
test_dataset = AdultDataset('test', args)
elif args.dataset == 'compas':
test_dataset = CompasDataset('test', args, test_size=0.9)
elif args.dataset == 'crime':
test_dataset = CrimeDataset('test', args, test_size=0.9)
elif args.dataset == 'german':
test_dataset = GermanDataset('test', args, test_size=0.9)
elif args.dataset == 'health':
test_dataset = HealthDataset('test', args, test_size=0.2)
elif args.dataset == 'lawschool':
test_dataset = LawschoolDataset('test', args)
loader_P = torch.utils.data.DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False)
return test_dataset, loader_P
test_dataset, loader_P = get_dataset_loader(args)
def run(model, loader):
predictions = []
targets = []
protects = []
loss_all = []
avg_loss = Averagemeter.AverageMeter('avg_loss')
for data, target, protected in loader:
data, target, protected = data.to(device), target.to(device), protected.to(device)
logits = model(data)
bce_loss = binary_cross_entropy(logits, target.unsqueeze_(-1))
loss_no_reduct = binary_cross_entropy_no_reduction(logits, target).squeeze_(-1)
loss_all.append(loss_no_reduct)
prediction = (0.5 <= nn.Sigmoid().to(device)(logits)).float().squeeze().detach().cpu()
target = target.squeeze().detach().cpu()
predictions.append(prediction)
targets.append(target)
protects.append(protected.cpu())
avg_loss.update(bce_loss.mean().item(), len(data))
predictions = torch.cat(predictions)
targets = torch.cat(targets)
accuracy = accuracy_score(targets, predictions)
print(f'Acc of distribution P: {accuracy}')
protects = torch.cat(protects)
loss_all = torch.cat(loss_all)
classification_acc = (predictions==targets).float()
print(f'Acc of distribution P: {torch.mean(classification_acc).item()}')
return avg_loss.avg, loss_all, predictions, protects, classification_acc
loss_Ps = []
distances = []
loss_Qs = []
hellinger_distances = None
upper_bounds = None
model = torch.load(f'logs/{args.dataset}_model')
binary_cross_entropy = nn.BCEWithLogitsLoss()
binary_cross_entropy_no_reduction = nn.BCEWithLogitsLoss(
reduction='none'
)
loss_P, loss_all, predictions, protects, classification_acc = run(model,loader_P)
print('loss of distribution P: {}'.format(loss_P))
parity = fairness_metric.statistical_parity(predictions, protects)
print(f'Demographic parity of distribution P: {parity}')
dists = []
dists_2 = []
losses = []
losses_2 = []
fairness = []
acc_Qs = []
acc_Qs_2 = []
group_00, group_01, group_10, group_11 = [], [], [], []
for i in range(len(test_dataset.labels)):
if test_dataset.protected[i] == False and test_dataset.labels[i] == 0:
group_00.append(i)
elif test_dataset.protected[i] == False and test_dataset.labels[i] == 1:
group_01.append(i)
elif test_dataset.protected[i] == True and test_dataset.labels[i] == 0:
group_10.append(i)
elif test_dataset.protected[i] == True and test_dataset.labels[i] == 1:
group_11.append(i)
print(f'The base rate gap of distribution P: {abs(1.0*len(group_01)/(len(group_00)+len(group_01)) - 1.0*len(group_11)/(len(group_10)+len(group_11)))}')
print(f'The number of instances in distribution P: {len(group_00)+len(group_01)+len(group_10)+len(group_11)}')
seeds = list(range(args.num_generated_distributions))
for i in tqdm(range(args.num_generated_distributions)):
# generate shifted distribution
indices_Q, dist = label_shifting.label_shifting_binary_label_binary_attr(seeds[i], test_dataset,group_00,group_01,group_10,group_11,args.gamma_k, args.gamma_r)
if dist > args.certificate_high - 0.02:
continue
loss_Q = torch.mean(loss_all[indices_Q]).item()
acc_Q = 1-torch.mean(classification_acc[indices_Q]).item()
acc_Qs.append(acc_Q)
dists.append(dist)
losses.append(loss_Q)
fairness.append(torch.mean(fairness_metric.statistical_parity(predictions[indices_Q], protects[indices_Q])).item())
loss_Ps = loss_P
distances = dists
loss_Qs = losses
acc_Ps = 1-torch.mean(classification_acc).item()
hellinger_distances = np.linspace(args.certificate_low, args.certificate_high, args.num_points_bound)
N = len(group_00) + len(group_01) + len(group_10) + len(group_11)
lambda_00 = 1.0 * len(group_00) / N
lambda_01 = 1.0 * len(group_01) / N
lambda_10 = 1.0 * len(group_10) / N
lambda_11 = 1.0 * len(group_11) / N
lambda_P = [lambda_00, lambda_01, lambda_10, lambda_11]
V1, V2 = [], []
N_P = []
N_P.append(len(group_00))
N_P.append(len(group_01))
N_P.append(len(group_10))
N_P.append(len(group_11))
V1.append(1-torch.mean(classification_acc[group_00]).item())
V1.append(1-torch.mean(classification_acc[group_01]).item())
V1.append(1-torch.mean(classification_acc[group_10]).item())
V1.append(1-torch.mean(classification_acc[group_11]).item())
V2.append(torch.var(classification_acc[group_00]).item())
V2.append(torch.var(classification_acc[group_01]).item())
V2.append(torch.var(classification_acc[group_10]).item())
V2.append(torch.var(classification_acc[group_11]).item())
V1_loss, V2_loss = [], []
V1_loss.append(torch.mean(loss_all[group_00]).item())
V1_loss.append(torch.mean(loss_all[group_01]).item())
V1_loss.append(torch.mean(loss_all[group_10]).item())
V1_loss.append(torch.mean(loss_all[group_11]).item())
V2_loss.append(torch.var(loss_all[group_00]).item())
V2_loss.append(torch.var(loss_all[group_01]).item())
V2_loss.append(torch.var(loss_all[group_10]).item())
V2_loss.append(torch.var(loss_all[group_11]).item())
print(lambda_P)
print(V1)
print(V2)
upper_bounds_label_shifting_finite_sampling = None
upper_bounds_general_shifting_finite_sampling = None
CONFIDENCE_LEVEL = args.confidence
M = args.M
if args.solve_label_shifting_finite_sampling:
if args.use_loss:
V1_upper = list(V1_loss)
else:
V1_upper = list(V1)
lambda_P_upper = list(lambda_P)
if args.finite_sampling and args.dataset not in ['german']:
for i in range(len(V1_upper)):
V1_upper[i] = min(M, V1_upper[i] + M * np.sqrt(np.log(16 / CONFIDENCE_LEVEL) / (2 * N_P[i])))
for i in range(len(lambda_P_upper)):
lambda_P_upper[i] = min(1, lambda_P_upper[i] + np.sqrt(np.log(16 / CONFIDENCE_LEVEL) / (2 * N)))
upper_bounds_label_shifting_finite_sampling = fairness_certification_bound_label_shifting_finite_sampling(hellinger_distances,lambda_P_upper, V1_upper,gamma_k=args.gamma_k, gamma_r=args.gamma_r)
if args.finite_sampling and args.dataset in ['german']:
for i in range(len(V1_upper)):
V1_upper[i] = min(M, V1_upper[i] + M * np.sqrt(np.log(8 / CONFIDENCE_LEVEL) / (2 * N_P[i])))
for i in range(len(lambda_P_upper)):
lambda_P_upper[i] = min(1, lambda_P_upper[i] + np.sqrt(np.log(8 / CONFIDENCE_LEVEL) / (2 * N)))
upper_bounds_label_shifting_finite_sampling = fairness_certification_bound_label_shifting_finite_sampling_improve(
hellinger_distances, lambda_P_upper, V1_upper, gamma_k=args.gamma_k, gamma_r=args.gamma_r)
if args.solve_general_shifting_finite_sampling:
if args.use_loss:
V1_upper = list(V1_loss)
V1_lower = list(V1_loss)
V2_upper = list(V2_loss)
V2_lower = list(V2_loss)
else:
V1_upper = list(V1)
V1_lower = list(V1)
V2_upper = list(V2)
V2_lower = list(V2)
lambda_P_upper = list(lambda_P)
lambda_P_lower = list(lambda_P)
if args.finite_sampling:
for i in range(len(V1_upper)):
V1_upper[i] = min(M, V1_upper[i] + M * np.sqrt(np.log(2 * 12 / CONFIDENCE_LEVEL) / (2 * N_P[i])))
for i in range(len(V1_lower)):
V1_lower[i] = min(M, V1_lower[i] + M * np.sqrt(np.log(2 * 12 / CONFIDENCE_LEVEL) / (2 * N_P[i])))
for i in range(len(V2_upper)):
V2_upper[i] = (np.sqrt(V2_upper[i]) + M * np.sqrt(2 * np.log(2 * 12 / CONFIDENCE_LEVEL) / (N_P[i] - 1))) ** 2
for i in range(len(V2_lower)):
V2_lower[i] = (np.sqrt(V2_lower[i]) - M * np.sqrt(2 * np.log(2 * 12 / CONFIDENCE_LEVEL) / (N_P[i] - 1))) ** 2
for i in range(len(lambda_P_upper)):
lambda_P_upper[i] = min(1, lambda_P_upper[i] + np.sqrt(np.log( 2 * 12 / CONFIDENCE_LEVEL) / (2 * N)))
lambda_P_lower[i] = lambda_P_lower[i] - np.sqrt(np.log( 2 * 12 / CONFIDENCE_LEVEL) / (2 * N))
print(f'V1: {V1}')
print(f'V1_upper: {V1_upper}')
print(f'V2: {V2}')
print(f'V2_upper: {V2_upper}')
print(f'N_P: {N_P}')
upper_bounds_general_shifting_finite_sampling = fairness_upper_bound_general_shifting_finite_sampling(hellinger_distances,
lambda_P, V1_upper, V1_lower, V2_upper, V2_lower, args.gamma_k, args.gamma_r, args.interval_kr, lambda_P_lower, lambda_P_upper)
print(hellinger_distances)
print('upper bounds')
bound = None
if upper_bounds_label_shifting_finite_sampling is not None:
print('upper_bounds_label_shifting_finite_sampling: ')
print(upper_bounds_label_shifting_finite_sampling)
bound = upper_bounds_label_shifting_finite_sampling
if upper_bounds_general_shifting_finite_sampling is not None:
print('upper_bounds_general_shifting_finite_sampling: ')
print(upper_bounds_general_shifting_finite_sampling)
bound = upper_bounds_general_shifting_finite_sampling
if args.use_loss:
plot.make_plot(args.use_loss, hellinger_distances, bound, None, None, None, distances,
loss_Qs, loss_Ps, args.path_figure, None, None)
else:
plot.make_plot(args.use_loss, hellinger_distances, bound, None, None, None, distances,
acc_Qs, acc_Ps, args.path_figure, None, None)