-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
507 lines (420 loc) · 20.2 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
import argparse
import shutil
from datetime import datetime
import copy
from threading import Thread, Lock
from collections import defaultdict
import yaml
from prompt_toolkit import prompt
from tqdm import tqdm
# noinspection PyUnresolvedReferences
from dataset.pipa import Annotations # legacy to correctly load dataset.
from helper import Helper
from utils.utils import *
logger = logging.getLogger('logger')
def train(hlpr: Helper, epoch, model, optimizer, train_loader, attack=True, ratio=None, report=True):
criterion = hlpr.task.criterion
model.train()
for i, data in enumerate(train_loader):
batch = hlpr.task.get_batch(i, data)
model.zero_grad()
loss = hlpr.attack.compute_blind_loss(model, criterion, batch, attack, ratio)
loss.backward()
optimizer.step()
if report:
hlpr.report_training_losses_scales(i, epoch)
if i == hlpr.params.max_batch_id:
break
return
def test(hlpr: Helper, epoch, backdoor=False):
model = hlpr.task.model
model.eval()
hlpr.task.reset_metrics()
with torch.no_grad():
for i, data in enumerate(hlpr.task.test_loader):
batch = hlpr.task.get_batch(i, data)
if backdoor:
batch = hlpr.attack.synthesizer.make_backdoor_batch(batch,
test=True,
attack=True)
outputs = model(batch.inputs)
hlpr.task.accumulate_metrics(outputs=outputs, labels=batch.labels)
metric = hlpr.task.report_metrics(epoch,
prefix=f'Backdoor {str(backdoor):5s}. Epoch: ',
tb_writer=hlpr.tb_writer,
tb_prefix=f'Test_backdoor_{str(backdoor):5s}')
return metric
def run(hlpr):
acc = test(hlpr, 0, backdoor=False)
for epoch in range(hlpr.params.start_epoch,
hlpr.params.epochs + 1):
train(hlpr, epoch, hlpr.task.model, hlpr.task.optimizer,
hlpr.task.train_loader)
acc = test(hlpr, epoch, backdoor=False)
test(hlpr, epoch, backdoor=True)
hlpr.save_model(hlpr.task.model, epoch, acc)
if hlpr.task.scheduler is not None:
hlpr.task.scheduler.step(epoch)
def fl_run(hlpr: Helper):
for epoch in range(hlpr.params.start_epoch,
hlpr.params.epochs + 1):
if epoch < hlpr.params.attack_start_epoch:
run_fl_round_benign(hlpr, epoch)
elif hlpr.params.ours:
run_fl_round_ours_parallel(hlpr, epoch)
elif hlpr.params.fltrust:
run_fl_round_fltrust(hlpr, epoch)
elif hlpr.params.defense == 'krum' or hlpr.params.defense == 'median':
run_fl_round_byzantine(hlpr, epoch)
else:
run_fl_round(hlpr, epoch)
metric = test(hlpr, epoch, backdoor=False)
test(hlpr, epoch, backdoor=True)
hlpr.save_model(hlpr.task.model, epoch, metric)
def run_fl_round_byzantine(hlpr, epoch):
global_model = hlpr.task.model
local_model = hlpr.task.local_model
round_participants = hlpr.task.sample_users_for_round(epoch)
local_updates = []
for user in round_participants:
hlpr.task.copy_params(global_model, local_model)
optimizer = hlpr.task.make_optimizer(local_model)
for local_epoch in range(hlpr.params.fl_local_epochs):
if user.compromised:
train(hlpr, local_epoch, local_model, optimizer,
user.train_loader, attack=True, report=False)
else:
train(hlpr, local_epoch, local_model, optimizer,
user.train_loader, attack=False, report=False)
local_update = hlpr.task.get_fl_update(local_model, global_model)
if user.compromised:
hlpr.attack.fl_scale_update(local_update)
local_updates.append(local_update)
local_update_final = globals()[hlpr.params.defense](local_updates, hlpr)
for name, value in local_update_final.items():
global_model.state_dict()[name].add_(value * hlpr.params.fl_eta)
def krum(w, hlpr):
distances = defaultdict(dict)
non_malicious_count = hlpr.params.fl_total_participants - hlpr.params.fl_number_of_adversaries
num = 0
for k in w[0].keys():
if num == 0:
for i in range(len(w)):
for j in range(i):
distances[i][j] = distances[j][i] = np.linalg.norm(w[i][k].cpu().numpy() - w[j][k].cpu().numpy())
num = 1
else:
for i in range(len(w)):
for j in range(i):
distances[j][i] += np.linalg.norm(w[i][k].cpu().numpy() - w[j][k].cpu().numpy())
distances[i][j] += distances[j][i]
minimal_error = 1e20
for user in distances.keys():
errors = sorted(distances[user].values())
current_error = sum(errors[:non_malicious_count])
if current_error < minimal_error:
minimal_error = current_error
minimal_error_index = user
return w[minimal_error_index]
def median(w, hlpr):
number_to_consider = hlpr.params.fl_total_participants
w_avg = copy.deepcopy(w[0])
for k in w_avg.keys():
tmp = []
for i in range(len(w)):
tmp.append(w[i][k].cpu().numpy())
tmp = np.array(tmp)
med = np.median(tmp, axis=0)
new_tmp = []
for i in range(len(tmp)):
new_tmp.append(tmp[i] - med)
new_tmp = np.array(new_tmp)
good_vals = np.argsort(abs(new_tmp), axis=0)[:number_to_consider]
good_vals = np.take_along_axis(new_tmp, good_vals, axis=0)
k_weight = np.array(np.mean(good_vals) + med)
w_avg[k] = torch.from_numpy(k_weight).to(hlpr.params.device)
return w_avg
def run_fl_round_benign(hlpr, epoch):
global_model = hlpr.task.model
local_model = hlpr.task.local_model
round_participants = hlpr.task.sample_users_for_round(epoch)
weight_accumulator = hlpr.task.get_empty_accumulator()
for user in round_participants:
hlpr.task.copy_params(global_model, local_model)
optimizer = hlpr.task.make_optimizer(local_model)
for local_epoch in range(hlpr.params.fl_local_epochs):
train(hlpr, local_epoch, local_model, optimizer,
user.train_loader, attack=False, report=False)
local_update = hlpr.task.get_fl_update(local_model, global_model)
hlpr.task.accumulate_weights(weight_accumulator, local_update)
hlpr.task.update_global_model(weight_accumulator, global_model)
def run_fl_round(hlpr, epoch):
global_model = hlpr.task.model
local_model = hlpr.task.local_model
round_participants = hlpr.task.sample_users_for_round(epoch)
weight_accumulator = hlpr.task.get_empty_accumulator()
for user in round_participants:
hlpr.task.copy_params(global_model, local_model)
optimizer = hlpr.task.make_optimizer(local_model)
for local_epoch in range(hlpr.params.fl_local_epochs):
if user.compromised:
train(hlpr, local_epoch, local_model, optimizer,
user.train_loader, attack=True, report=False)
else:
train(hlpr, local_epoch, local_model, optimizer,
user.train_loader, attack=False, report=False)
local_update = hlpr.task.get_fl_update(local_model, global_model)
if user.compromised:
hlpr.attack.fl_scale_update(local_update)
hlpr.task.accumulate_weights(weight_accumulator, local_update)
hlpr.task.update_global_model(weight_accumulator, global_model)
def run_fl_round_fltrust(hlpr, epoch):
global_model = hlpr.task.model
local_model = hlpr.task.local_model
round_participants = hlpr.task.sample_users_for_round(epoch)
weight_accumulator = hlpr.task.get_empty_accumulator()
ref_global_model = hlpr.task.build_model().to(hlpr.params.device)
hlpr.task.copy_params(global_model, ref_global_model)
optimizer = hlpr.task.make_optimizer(ref_global_model)
for local_epoch in range(hlpr.params.fl_local_epochs):
train(hlpr, local_epoch, ref_global_model, optimizer,
hlpr.task.clean_loader, attack=False, report=False)
global_update = hlpr.task.get_fl_update(ref_global_model, global_model)
benign_ids, malicious_ids = [], []
for user in round_participants:
if user.compromised:
malicious_ids.append(user.user_id)
else:
benign_ids.append(user.user_id)
local_updates = {}
trust_scores = {}
for user in round_participants:
hlpr.task.copy_params(global_model, local_model)
optimizer = hlpr.task.make_optimizer(local_model)
for local_epoch in range(hlpr.params.fl_local_epochs):
if user.compromised:
train(hlpr, local_epoch, local_model, optimizer,
user.train_loader, attack=True, report=False)
else:
train(hlpr, local_epoch, local_model, optimizer,
user.train_loader, attack=False, report=False)
local_update = hlpr.task.get_fl_update(local_model, global_model)
if user.compromised:
hlpr.attack.fl_scale_update(local_update)
# compute trust score, normalize magnitude of local model updates
trust_score, norm_scale = ts_and_norm_scale(global_update, local_update)
# update local update with norm sacle
hlpr.attack.fl_scale_update(local_update, scale=norm_scale)
local_updates[user.user_id] = local_update
trust_scores[user.user_id] = trust_score
benign_average = [trust_scores[i] for i in benign_ids]
malicious_average = [trust_scores[i] for i in malicious_ids]
benign_average = sum(benign_average) / (len(benign_average) + 1e-9)
malicious_average = sum(malicious_average) / (len(malicious_average) + 1e-9)
logger.warning('Trust Scores: Benign Average: {:.5f}, Malicious Average: {:.5f}'.format(benign_average, malicious_average))
# compute the final update as weighted average over local updates with genuine scores
weight_accumulator = hlpr.task.get_empty_accumulator()
hlpr.task.accumulate_weights_weighted(weight_accumulator, local_updates, trust_scores)
hlpr.task.update_global_model(weight_accumulator, global_model)
def run_fl_round_ours_parallel(hlpr, epoch):
global_model = hlpr.task.model
# Client Update
round_participants = hlpr.task.sample_users_for_round(epoch)
local_updates = {}
benign_users, malicious_users = [], []
benign_ids, malicious_ids = [], []
for user in round_participants:
if user.compromised:
malicious_users.append(user)
malicious_ids.append(user.user_id)
else:
benign_users.append(user)
benign_ids.append(user.user_id)
start = time.time()
remaining_clients = len(benign_users)
while remaining_clients > 0:
thread_pool_size = min(remaining_clients, hlpr.params.max_threads)
threads = []
for user in benign_users[len(benign_users) - remaining_clients: \
len(benign_users) - remaining_clients + thread_pool_size]:
thread = ClientThreadBenign(user, hlpr, global_model)
threads.append(thread)
thread.start()
for thread in threads:
update = thread.join()
local_updates.update(update)
remaining_clients -= thread_pool_size
end = time.time()
logger.info('Client time Bni: {}'.format(end - start))
genuine_scores_approx = {}
r_all_clients = {}
start = time.time()
remaining_clients = len(malicious_users)
while remaining_clients > 0:
thread_pool_size = min(remaining_clients, hlpr.params.max_threads)
threads = []
for user in malicious_users[len(malicious_users) - remaining_clients: \
len(malicious_users) - remaining_clients + thread_pool_size]:
thread = ClientThreadMalicious(user, hlpr, global_model)
threads.append(thread)
thread.start()
for thread in threads:
update, key, p_local_final, r_final = thread.join()
local_updates.update(update)
genuine_scores_approx[key] = p_local_final
r_all_clients[key] = r_final
remaining_clients -= thread_pool_size
end = time.time()
logger.info('Client time Mal: {}'.format(end - start))
if hlpr.tb_writer is not None:
hlpr.tb_writer.add_scalars('Client/Genuine_Scores_Approx', genuine_scores_approx, global_step=epoch)
hlpr.tb_writer.add_scalars('Client/r', r_all_clients, global_step=epoch)
hlpr.flush_writer()
# Server Update
start = time.time()
# get reference model
ref_global_model = hlpr.task.build_model().to(hlpr.params.device)
hlpr.task.copy_params(global_model, ref_global_model)
ref_weight_accumulator = hlpr.task.get_empty_accumulator()
for local_update in local_updates.values():
hlpr.task.accumulate_weights(ref_weight_accumulator, local_update)
hlpr.task.update_global_model(ref_weight_accumulator, ref_global_model)
# reverse engineer trigger
triggers, masks, norm_list = hlpr.task.reverse_engineer_trigger(ref_global_model, hlpr.task.clean_loader)
logger.warning(norm_list)
target_cls = int(torch.argmin(torch.tensor(norm_list)))
# compute genuine scores for each client
genuine_scores_output = {}
genuine_scores = {}
for user_id, local_update in local_updates.items():
# recover local model
local_model = hlpr.task.build_model().to(hlpr.params.device)
hlpr.task.copy_params(global_model, local_model)
for name, update in local_update.items():
model_weight = local_model.state_dict()[name]
model_weight.add_(update)
# compute genuine score for this local model
p_global = hlpr.task.compute_genuine_score_global(local_model,
hlpr.task.clean_loader,
triggers,
masks,
target_cls)
genuine_scores[user_id] = p_global
# Plotting (Part 1)
if user_id in malicious_ids:
key = 'Client {} (Malicious)'.format(user_id)
else:
key = 'Client {} (Benign)'.format(user_id)
genuine_scores_output[key] = p_global
# Plotting (Part 2) -- x-axis: global step, y-axis: genuine scores of all clients
if hlpr.tb_writer is not None:
hlpr.tb_writer.add_scalars('Server/Genuine_Scores', genuine_scores_output, global_step=epoch)
hlpr.flush_writer()
benign_average = [genuine_scores[i] for i in benign_ids]
malicious_average = [genuine_scores[i] for i in malicious_ids]
benign_average = sum(benign_average) / (len(benign_average) + 1e-9)
malicious_average = sum(malicious_average) / (len(malicious_average) + 1e-9)
logger.warning('Genuine Scores: Benign Average: {:.5f}, Malicious Average: {:.5f}'.format(benign_average, malicious_average))
# compute the final update as weighted average over local updates with genuine scores
weight_accumulator = hlpr.task.get_empty_accumulator()
hlpr.task.accumulate_weights_weighted(weight_accumulator, local_updates, genuine_scores)
hlpr.task.update_global_model(weight_accumulator, global_model)
end = time.time()
logger.info('Server time: {}'.format(end - start))
class ClientThreadBenign(Thread):
def __init__(self, user, hlpr, global_model):
super().__init__()
self.user = user
self.hlpr = hlpr
self.global_model = global_model
self.local_model = hlpr.task.build_model().to(hlpr.task.params.device)
self._return = None
def run(self):
# print('This is Client {}'.format(self.user.user_id))
self.hlpr.task.copy_params(self.global_model, self.local_model)
optimizer = self.hlpr.task.make_optimizer(self.local_model)
for local_epoch in range(self.hlpr.params.fl_local_epochs):
train(self.hlpr, local_epoch, self.local_model, optimizer,
self.user.train_loader, attack=False, report=False)
# print('Client {} Epoch {}'.format(self.user.user_id, local_epoch))
local_update = self.hlpr.task.get_fl_update(self.local_model, self.global_model)
self._return = {self.user.user_id: local_update}
def join(self, *args):
Thread.join(self, *args)
return self._return
class ClientThreadMalicious(Thread):
def __init__(self, user, hlpr, global_model):
super().__init__()
self.user = user
self.hlpr = hlpr
self.global_model = global_model
self.local_model = hlpr.task.build_model().to(hlpr.task.params.device)
self._return = None
def run(self):
# print('This is Client {}'.format(self.user.user_id))
self.hlpr.task.copy_params(self.global_model, self.local_model)
optimizer = self.hlpr.task.make_optimizer(self.local_model)
pr_sum_max = 0
p_local_final, r_final = 0, 0
r = 0
local_model_best = self.hlpr.task.build_model().to(self.hlpr.params.device)
if self.hlpr.params.static:
r = 1 # do not optimize r in static attack, always set to 1
while r <= 1:
for local_epoch in range(self.hlpr.params.fl_local_epochs):
train(self.hlpr, local_epoch, self.local_model, optimizer,
self.user.train_loader, attack=True, ratio=r, report=False)
# print('Client {} Epoch {}'.format(self.user.user_id, local_epoch))
p_local = self.hlpr.task.compute_genuine_score(self.local_model,
self.user.test_loader,
self.hlpr.attack.synthesizer)
pr_sum = p_local + self.hlpr.params.ours_lbd * r
if pr_sum > pr_sum_max:
pr_sum_max = pr_sum
p_local_final, r_final = p_local, r
self.hlpr.task.copy_params(self.local_model, local_model_best)
if r == 1:
break
r = min(r + self.hlpr.params.r_interval, 1)
self.hlpr.task.copy_params(self.global_model, self.local_model)
self.hlpr.task.copy_params(local_model_best, self.local_model)
key = 'Client {} (Malicious)'.format(self.user.user_id)
local_update = self.hlpr.task.get_fl_update(self.local_model, self.global_model)
self.hlpr.attack.fl_scale_update(local_update)
self._return = {self.user.user_id: local_update}, key, p_local_final, r_final
def join(self, *args):
Thread.join(self, *args)
return self._return
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Backdoors')
parser.add_argument('--params', dest='params', default='utils/params.yaml')
parser.add_argument('--name', dest='name', required=True, help='Tensorboard name')
parser.add_argument('--commit', dest='commit',
default=get_current_git_hash())
args = parser.parse_args()
with open(args.params) as f:
params = yaml.load(f, Loader=yaml.FullLoader)
params['current_time'] = datetime.now().strftime('%b.%d_%H.%M.%S')
params['commit'] = args.commit
params['name'] = args.name
helper = Helper(params)
logger.warning(create_table(params))
try:
if helper.params.fl:
fl_run(helper)
else:
run(helper)
except (KeyboardInterrupt):
if helper.params.log:
answer = prompt('\nDelete the repo? (y/n): ')
if answer in ['Y', 'y', 'yes']:
logger.error(f"Fine. Deleted: {helper.params.folder_path}")
shutil.rmtree(helper.params.folder_path)
if helper.params.tb:
shutil.rmtree(f'runs/{args.name}')
else:
logger.error(f"Aborted training. "
f"Results: {helper.params.folder_path}. "
f"TB graph: {args.name}")
else:
logger.error(f"Aborted training. No output generated.")