-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
73 lines (64 loc) · 2.51 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import time
import torch
import torch.nn as nn
import torch.optim as optim
from tensorboardX import SummaryWriter
from alexnet import AlexNet
from utils import cifar10_loader, device
trainloader = cifar10_loader(train=True)
testloader = cifar10_loader(train=False)
writer = SummaryWriter("./logs")
epochs = 100
batch_size = 128
log_batch = 200
train_metrics = []
test_metrics = []
net = AlexNet()
net.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
def train():
for epoch in range(epochs):
running_loss = 0.0
correct_classified = 0
total = 0
start_time = time.time()
for i, data in enumerate(trainloader):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct_classified += (predicted == labels).sum().item()
running_loss += loss.item()
if i % log_batch == log_batch - 1:
avg_loss = running_loss / log_batch
print('Epoch: %d/%d Batch: %5d loss: %.3f' % (epoch + 1, epochs, i + 1, avg_loss))
writer.add_scalar('data/train_loss', avg_loss, epoch * len(trainloader) * batch_size + i)
running_loss = 0.0
print("Time/epoch: {} sec".format(time.time() - start_time))
train_acc = (100 * correct_classified / total)
train_metrics.append(train_acc)
print('Train accuracy of the network images: %d %%' % train_acc)
writer.add_scalar('data/train_acc', train_acc, epoch)
torch.save(net.state_dict(), "model.h5")
correct_classified = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
inputs, labels = images.to(device), labels.to(device)
outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct_classified += (predicted == labels).sum().item()
test_acc = (100 * correct_classified / total)
test_metrics.append(test_acc)
print('Test accuracy of the network: %d %%' % test_acc)
writer.add_scalar('data/test_acc', test_acc, epoch)
if __name__ == '__main__':
train()