-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOneShot_NewAnalysis_N4.py
377 lines (304 loc) · 18.6 KB
/
OneShot_NewAnalysis_N4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
# -*- coding: utf-8 -*-
"""
Created on Fri Aug 17 11:16:03 2018
@author: Adam
"""
import numpy as np
import pandas as pd
from sklearn.ensemble.forest import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.feature_selection import RFE
from datetime import datetime
# Model and feature selection
from sklearn.model_selection import KFold
# Classification metrics
from sklearn.metrics import f1_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import accuracy_score
from PersonalClassifier import PersonalClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.svm import SVC
from sklearn.linear_model import logistic
from OneShotFeatureGenerator import OneShotStaticFeatureGenerator
from OneShotFeatureGenerator import OneShotDynamicFeatureGenerator
from OneShotDataPreperation import OneShotDataPreparation
from OrdinalClassifier import OrdinalClassifier
from ExpertModels import DecisionTreeBaseline
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
def _convert_prediction(X, column_name, n_candidates):
X.loc[X[column_name]==1,"Vote_"+column_name] = X.loc[X[column_name]==1,"Pref1"]
X.loc[X[column_name]==2,"Vote_"+column_name] = X.loc[X[column_name]==2,"Pref2"]
X.loc[X[column_name]==3,"Vote_"+column_name] = X.loc[X[column_name]==3,"Pref3"]
if n_candidates == 4:
X.loc[X[column_name] ==4, "Vote_" + column_name] = X.loc[X[column_name] == 4, "Pref4"]
return X
def _read_roy_folds(folds_file):
lines = folds_file.read().split('\n')
folds = list()
for index in range(0,len(lines)):
line = lines[index]
if not ('fold' in line) and line != '':
folds.append([int(ii) for ii in line[1:len(line)-1].split(',')])
return folds
def _get_loo_folds(X):
folds = list()
for x in X.iterrows():
fold = [x[1].RoundIndex]
folds.append(fold)
return folds
def _get_k_folds(X,k):
folds = list()
if k == 1:
folds.append(X.index.tolist())
else:
kf = KFold(k, shuffle=True, random_state=1) # 10 fold cross validation
for train_indices, test_indices in kf.split(X):
folds.append(X.iloc[test_indices].RoundIndex)
return folds
def _features_importance(features_ext_df, features_train, targets_train):
#feature importance
feature_importance = pd.DataFrame()
rf_for_fs = RandomForestClassifier(n_estimators=100)
transformed_features_train = OneShotDataPreparation._prepare_dataset(features_ext_df.loc[features_train.index, :])
rf_for_fs.fit(X=transformed_features_train.values, y=targets_train)
current_feature_importances = pd.DataFrame(rf_for_fs.feature_importances_,
index=features_ext_df.columns,
columns=['importance']).sort_values('importance',
ascending=False)
if len(feature_importance) == 0:
feature_importance = current_feature_importances
else:
feature_importance['importance'] = feature_importance['importance'] + current_feature_importances['importance']
feature_importance['importance_percentage'] = feature_importance['importance']/np.max(feature_importance['importance'])
return feature_importance
def _select_features(X, X_train, y_train, top_k=25):
cols = list(X.columns)
model = RandomForestClassifier(n_estimators=100, random_state=1)
# Initializing RFE model
rfe = RFE(model, top_k)
# Transforming data using RFE
# data_trans = X.loc[X_train.index].fillna( X.loc[X_train.index].mean())
# OneShotDataPreparation._prepare_dataset(X["VoterType"])
# OneShotDataPreparation._prepare_dataset(X["Scenario_type"])
X_rfe = rfe.fit_transform(OneShotDataPreparation._prepare_dataset(X.loc[X_train.index, :]), y_train)
# Fitting the data to model
model.fit(X_rfe, y_train)
temp = pd.Series(rfe.support_, index=cols)
selected_features_rfe = temp[temp == True].index
print(selected_features_rfe)
return selected_features_rfe
def _evaluation(raw_data, clfs, target, folds, scenario_filter, action_table_df, scenarios_df, n_candidates = 3):
data = raw_data.copy()
data = data.drop(["Vote"], axis=1)
oneshot_static_fg = OneShotStaticFeatureGenerator(action_table_df, scenarios_df, n_candidates)
oneshot_dyn_fg = OneShotDynamicFeatureGenerator(action_table_df, scenarios_df, n_candidates)
#static features generation
data = oneshot_static_fg._static_feature_generation(data)
n_folds = len(folds)
results_df = pd.DataFrame(columns=['Classifier','FOLD','PRECISION','RECALL','F_MEASURE','ACCURACY'])
prediction = pd.DataFrame(np.matrix([]))
features_importance = pd.DataFrame(np.matrix([]))
selected_features = pd.DataFrame(np.matrix([]))
features_train = pd.DataFrame()
# 10 fold cross validation
for i in range(0,len(folds)):
print(str(100*(i/len(folds)))+"%")
# Split into features and target
features_df, target_df = data.drop([target], axis=1),data[target]
if n_folds == 1: #Upperbound case
test_indices = data.index.tolist()
train_indices = data.index.tolist()
else:
test_indices = data.index[[(x[1].RoundIndex in folds[i].tolist()) for x in data.iterrows()]].tolist()
train_indices = data.index[[not (x[1].RoundIndex in folds[i].tolist()) for x in data.iterrows()]].tolist()
# Feature Generation
features_train = features_df.loc[train_indices]
targets_train = target_df[train_indices]
features_ext_df = oneshot_dyn_fg._dynamic_feature_generation(features_df, features_train, targets_train)
# features_ext_df = features_ext_df.drop(["Vote"], axis=1)
# Feature Selection
selected_features_rfe = _select_features(features_ext_df, features_train, targets_train)
current_selected_features = pd.DataFrame(selected_features_rfe)
current_selected_features.loc[:, "FOLD"] = str(i+1)
if len(selected_features) == 0:
selected_features = current_selected_features
else:
selected_features = pd.concat([selected_features, current_selected_features])
baseline_set = features_ext_df.loc[:, ["Scenario", "VoterType"]]
features_ext_df = features_ext_df.drop(
features_ext_df.columns[[not (x in selected_features_rfe) for x in
features_ext_df.columns]].tolist(),
axis=1)
#Feature Importance
current_feature_importance = _features_importance(features_ext_df, features_train, targets_train)
current_feature_importance.loc[:, "FOLD"] = str(i+1)
if len(features_importance) == 0:
features_importance = current_feature_importance
else:
features_importance = pd.concat([features_importance, current_feature_importance])
# encoding the dataframes
features_encoded_df = OneShotDataPreparation._prepare_dataset(features_ext_df.copy())
features_encoded_df.index = data.index
target_encoded_df = target_df
# make training and testing datasets
features_train = features_encoded_df.loc[train_indices]
features_test = features_encoded_df.loc[test_indices]
targets_train = target_encoded_df[train_indices]
targets_test = target_encoded_df[test_indices]
# select features
#selected_columns = _select_features(features_train, targets_train, features_ext_df)
for j in range(0,len(clfs)):
clf = clfs[j]
clf_name = str(clf).split("(")[0]
# if i == 0:
# #Initialize metrics
# results_df.loc[j] = [str(clf), i + 1,0, 0, 0, 0]
# Train
clf.fit(X=features_train.values, y=targets_train)
if "DecisionTreeBaseline" in clf_name:
features_ext_df.to_csv("datasets/oneshot/test_features.csv")
targets_test.to_csv("datasets/oneshot/test_target.csv")
predicated = clf.predict(baseline_set.loc[[ii for ii in test_indices],])
else:
# Test
predicated = clf.predict(features_test.values)
#aggregate results
if len(prediction) == 0:
prediction = pd.DataFrame(predicated)
else:
prediction = pd.concat([prediction, pd.DataFrame(predicated)])
raw_data.loc[test_indices,"Prediction" + "_" + clf_name] = predicated
raw_data = _convert_prediction(raw_data, "Prediction" + "_" + clf_name, n_candidates)
print(str(clf) +": F_score = " + str(f1_score(targets_test, predicated, average='weighted')))
# Measures
results_df.loc[i*len(clfs) + j] = [str(clf), i + 1, precision_score(targets_test, predicated, average='weighted'), recall_score(targets_test, predicated, average='weighted'), f1_score(targets_test, predicated, average='weighted'), accuracy_score(targets_test, predicated)]
# if i == n_folds - 1:
# results_df.iloc[j, 1] = results_df.iloc[j, 1]/n_folds
# results_df.iloc[j, 2] = results_df.iloc[j, 2]/n_folds
# results_df.iloc[j, 3] = results_df.iloc[j, 3]/n_folds
# results_df.iloc[j, 4] = results_df.iloc[j, 4]/n_folds
#results_df.Result = results_df.Result.apply(lambda x: x / n_folds)
return results_df, raw_data, features_importance, selected_features
def _build_data_by_folds(data, folds):
transformed_data = pd.DataFrame()
for i in range(0,len(folds)):
# Split into features and target
fold_indices = data.index[[x[1].RoundIndex in folds[i] for x in data.iterrows()]].tolist()
fold_df = data.iloc[fold_indices,:]
if len(transformed_data) == 0:
transformed_data = fold_df
else:
transformed_data = pd.concat([transformed_data, fold_df])
return transformed_data
def _get_classifiers(df, n_candidates):
neural_net_cf = MLPClassifier(hidden_layer_sizes = (50), max_iter = 500, random_state=1)
two_layer_nn_cf = MLPClassifier(hidden_layer_sizes = (50,30), max_iter = 500, random_state=1)
three_layer_nn_cf = MLPClassifier(hidden_layer_sizes = (50,30,20), max_iter = 500, random_state=1)
nn_cf_2 = MLPClassifier(hidden_layer_sizes=(90), max_iter=500, random_state=1)
nn_cf_3 = MLPClassifier(hidden_layer_sizes=(20), max_iter=500, random_state=1)
rf_clf1 = RandomForestClassifier(n_estimators=20, random_state=1)
rf_clf2 = RandomForestClassifier(n_estimators=40, random_state=1)
rf_clf3 = RandomForestClassifier(n_estimators=60, random_state=1)
rf_clf4 = RandomForestClassifier(n_estimators=100, random_state=1)
rf_clf5 = RandomForestClassifier(n_estimators=300, random_state=1)
rf_clf6 = RandomForestClassifier(n_estimators=400, random_state=1)
dt_clf = DecisionTreeClassifier()
adaboost_clf = AdaBoostClassifier(n_estimators=30, random_state=1)
adaboost_clf2 = AdaBoostClassifier(n_estimators=50, random_state=1)
adaboost_clf3 = AdaBoostClassifier(n_estimators=80, random_state=1)
adaboost_clf4 = AdaBoostClassifier(n_estimators=300, random_state=1)
svm_clf = SVC(kernel="poly", degree=4, random_state=1)
svm_clf2 = SVC(kernel="sigmoid", degree=4, random_state=1)
svm_clf3 = SVC(kernel="rbf", degree=4, random_state=1)
logistics_clf = logistic.LogisticRegression(random_state=1)
extra_tree_clf = ExtraTreesClassifier(random_state=1)
gb_clf = GradientBoostingClassifier(random_state=1)
if n_candidates == 3:
ordered_class = [1,2,3]
else:
ordered_class = [1,2,3,4]
rfi1_clf = PersonalClassifier(id_index=df.columns.get_loc("VoterID"), classes=ordered_class,
n_upsample=10, base_classifier=RandomForestClassifier(n_estimators=20, random_state=1))
rfi2_clf = PersonalClassifier(id_index=df.columns.get_loc("VoterID"), classes=ordered_class,
n_upsample=10, base_classifier=RandomForestClassifier(n_estimators=40, random_state=1))
rfi3_clf = PersonalClassifier(id_index=df.columns.get_loc("VoterID"), classes=ordered_class,
n_upsample=10, base_classifier=RandomForestClassifier(n_estimators=60, random_state=1))
rfi4_clf = PersonalClassifier(id_index=df.columns.get_loc("VoterID"), classes=ordered_class,
n_upsample=10, base_classifier=RandomForestClassifier(n_estimators=80, random_state=1))
personal_nn_clf = PersonalClassifier(id_index=df.columns.get_loc("VoterID"), classes=ordered_class,
base_classifier=MLPClassifier(hidden_layer_sizes=(50), max_iter=500, random_state=1),
n_upsample=10,
general_base_classifier=True) # RandomForestClassifier(n_estimators=100) # MLPClassifier(hidden_layer_sizes = (92), max_iter = 500)
ordinal_clf = OrdinalClassifier(base_classifier = RandomForestClassifier, ordered_class=ordered_class)
#naive_bayes_clf = sklearn.naive_bayes()
# bayesrule_clf = BayesRuleClassifier()
# likelihood_clf = LHClassifier()
# maxlikelihood_clf = MLHClassifier()
if n_candidates == 3:
baseline_clf = DecisionTreeBaseline()
classifiers = [baseline_clf, extra_tree_clf, gb_clf, rfi1_clf, rfi2_clf, rfi3_clf, rfi4_clf, ordinal_clf ,personal_nn_clf,neural_net_cf,nn_cf_2, nn_cf_3, two_layer_nn_cf, three_layer_nn_cf, rf_clf1,rf_clf2, rf_clf3,rf_clf4,rf_clf5, rf_clf6, dt_clf,adaboost_clf,adaboost_clf2, adaboost_clf3,adaboost_clf4, svm_clf, svm_clf2, svm_clf3,logistics_clf]
else:
classifiers = [extra_tree_clf, gb_clf, rfi1_clf, rfi2_clf, rfi3_clf, rfi4_clf, ordinal_clf,
personal_nn_clf, neural_net_cf, nn_cf_2, nn_cf_3, two_layer_nn_cf, three_layer_nn_cf, rf_clf1,
rf_clf2, rf_clf3, rf_clf4, rf_clf5, rf_clf6, dt_clf, adaboost_clf, adaboost_clf2, adaboost_clf3,
adaboost_clf4, svm_clf, svm_clf2, svm_clf3, logistics_clf]
return classifiers
def _load_and_run(datasets, load_folds, scenarios = ['NONE'], is_loo = False, fold_set = [10]):
for dataset in datasets:
file_path = "datasets/oneshot/" + dataset + ".xlsx"
xls = pd.ExcelFile(file_path)
for sheet in xls.sheet_names:
#Get sheet from xlsx
data = pd.read_excel(file_path, sheet_name=sheet)
#Take sample from data
#data = data.loc[data["VoterID"].isin(data["VoterID"].sample(frac=0.001, replace=False, random_state=1))]
d_df = data.fillna(data.mean())
n_candidates = d_df.iloc[0]["NumberOfCandidates"]
actions_table = pd.read_csv("datasets/oneshot/action_table_N" + str(n_candidates) + ".csv")
scenarios_table = pd.read_csv("datasets/oneshot/scenario_table_N" + str(n_candidates) + ".csv")
classifiers = _get_classifiers(d_df, n_candidates)
#Prepare folds
for n_folds in fold_set:
if load_folds == True:
folds = _read_roy_folds(open("datasets/oneshot/"+dataset+"_folds.txt", "r"))
else:
if is_loo == True:
folds = _get_loo_folds(d_df)
else:
folds = _get_k_folds(d_df, n_folds)
for scenario in scenarios: # ['A','B','C','D','E','F','NONE']:
raw_data = d_df.copy()
d_performance_df, d_pred, d_feature_importance, d_selected_features = _evaluation(raw_data, classifiers, 'Action', folds, scenario, actions_table, scenarios_table, n_candidates)
d_performance_df.to_csv("Results\\" + dataset + "_" + sheet + "_performance_df_" + scenario + "_" + str(n_folds) + ".csv")
d_pred.to_csv("Results\\" + dataset + "_" + sheet + "_pred_" + scenario + "_" + str(n_folds) + ".csv")
d_feature_importance.to_csv("Results\\" + dataset + "_" + sheet + "_feature_importance_" + scenario + "_" + str(n_folds) + ".csv")
d_selected_features.to_csv("Results\\" + dataset + "_" + sheet + "_selected_features_" + scenario + "_" + str(n_folds) + ".csv")
pass
#---------------------------------- Classifiers Definition ------------------------------------#
#---------------------------------- Classifiers Definition ------------------------------------#
#----------------------------------- Dataset definition ---------------------------------------#
# datasets: ["schram"]#["d36_2_folds","d36_4_folds","d36_6_folds","d32_2_folds","d32_4_folds","d32_6_folds"]
# datasets = ["schram"]
# n_candidates = 3
#
# _load_and_run(datasets=datasets, load_folds=True, classifiers=classifiers, n_candidates=n_candidates)
#
datasets = ['voter_sample_for_test']#["d36_updated_train","tal_train","d36_updated_train","schram_train","N4_first_90"]#["schram_train","tal_train","d36_updated_train","d32_updated_train","N4_first_90_train"] #["N4_first_90", "d32_updated", "d36_updated", "tal", "schram"]#["N4_first_90_sample", "d32_updated_sample", "d36_updated_sample", "tal_sample", "schram_sample"]#["N4_first_90", "d32_updated", "d36_updated", "tal", "schram"]
fold_set = [10]#, 10]
_load_and_run(datasets=datasets, load_folds=False,fold_set=fold_set)
#
# datasets = ["N4_first_90", "d32_updated", "d36_updated", "tal", "schram", "N4_first_90_train", "d32_updated_train", "d36_updated_train", "tal_train", "schram_train"]
# for dataset in datasets:
# file_path = "datasets/oneshot/PartionedDatasets/Original/" + dataset + ".xlsx"
# xls = pd.ExcelFile(file_path)
# for sheet in xls.sheet_names:
# #Get sheet from xlsx
# data = pd.read_excel(file_path, sheet_name=sheet)
# data_train, data_test = train_test_split(data, random_state=1, test_size=0.2)
# data_train.to_excel("datasets\\oneshot\\PartionedDatasets\\" + dataset + "_train.xlsx")
# data_test.to_excel("datasets\\oneshot\\PartionedDatasets\\" + dataset + "_test.xlsx")