-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
40 lines (28 loc) · 1.37 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from flask import Flask, render_template, request
import pandas as pd
import numpy as np
import pickle
app=Flask(__name__)
car = pd.read_csv("Cleanded Car.csv")
model = pickle.load(open("LinearRegressionModel.pkl", "rb"))
@app.route('/')
def index():
companies = sorted(car['company'].unique())
car_model = sorted(car['name'].unique())
year = sorted(car['year'].unique(), reverse=True)
fuel_type = car['fuel_type'].unique()
companies.insert(0, 'Select Company')
return render_template('index.html', companies=companies, car_model=car_model, years=year, fuel_types=fuel_type)
@app.route('/predict', methods=["POST"])
def predict():
company = request.form.get('company')
car_model = request.form.get('car_model')
year = int(request.form.get('year'))
fuel_type = request.form.get('fuel_type')
kms_driven = int(request.form.get('kilo_driven'))
prediction = model.predict(pd.DataFrame([[car_model, company, year, kms_driven, fuel_type]], columns=['name', 'company',
'year', 'kms_driven',
'fuel_type']))
return str(np.round(prediction[0], 2))
if __name__=="__main__":
app.run(debug=True)