-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathegnn.py
418 lines (381 loc) · 13 KB
/
egnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
from torch import nn
import torch
import math
class GCL(nn.Module):
def __init__(
self,
input_nf,
output_nf,
hidden_nf,
normalization_factor,
aggregation_method,
edges_in_d=0,
nodes_att_dim=0,
act_fn=nn.SiLU(),
attention=False,
):
super(GCL, self).__init__()
input_edge = input_nf * 2
self.normalization_factor = normalization_factor
self.aggregation_method = aggregation_method
self.attention = attention
self.edge_mlp = nn.Sequential(
nn.Linear(input_edge + edges_in_d, hidden_nf),
act_fn,
nn.Linear(hidden_nf, hidden_nf),
act_fn,
)
self.node_mlp = nn.Sequential(
nn.Linear(hidden_nf + input_nf + nodes_att_dim, hidden_nf),
act_fn,
nn.Linear(hidden_nf, output_nf),
)
if self.attention:
self.att_mlp = nn.Sequential(nn.Linear(hidden_nf, 1), nn.Sigmoid())
def edge_model(self, source, target, edge_attr, edge_mask):
if edge_attr is None: # Unused.
out = torch.cat([source, target], dim=1)
else:
out = torch.cat([source, target, edge_attr], dim=1)
mij = self.edge_mlp(out)
if self.attention:
att_val = self.att_mlp(mij)
out = mij * att_val
else:
out = mij
if edge_mask is not None:
out = out * edge_mask
return out, mij
def node_model(self, x, edge_index, edge_attr, node_attr):
row, col = edge_index
agg = unsorted_segment_sum(
edge_attr,
row,
num_segments=x.size(0),
normalization_factor=self.normalization_factor,
aggregation_method=self.aggregation_method,
)
if node_attr is not None:
agg = torch.cat([x, agg, node_attr], dim=1)
else:
agg = torch.cat([x, agg], dim=1)
out = x + self.node_mlp(agg)
return out, agg
def forward(
self,
h,
edge_index,
edge_attr=None,
node_attr=None,
node_mask=None,
edge_mask=None,
):
row, col = edge_index
edge_feat, mij = self.edge_model(h[row], h[col], edge_attr, edge_mask)
h, agg = self.node_model(h, edge_index, edge_feat, node_attr)
if node_mask is not None:
h = h * node_mask
return h, mij
class EquivariantUpdate(nn.Module):
def __init__(
self,
hidden_nf,
normalization_factor,
aggregation_method,
edges_in_d=1,
act_fn=nn.SiLU(),
tanh=False,
coords_range=10.0,
):
super(EquivariantUpdate, self).__init__()
self.tanh = tanh
self.coords_range = coords_range
input_edge = hidden_nf * 2 + edges_in_d
layer = nn.Linear(hidden_nf, 1, bias=False)
torch.nn.init.xavier_uniform_(layer.weight, gain=0.001)
self.coord_mlp = nn.Sequential(
nn.Linear(input_edge, hidden_nf),
act_fn,
nn.Linear(hidden_nf, hidden_nf),
act_fn,
layer,
)
self.normalization_factor = normalization_factor
self.aggregation_method = aggregation_method
def coord_model(self, h, coord, edge_index, coord_diff, edge_attr, edge_mask):
row, col = edge_index
input_tensor = torch.cat([h[row], h[col], edge_attr], dim=1)
if self.tanh:
trans = (
coord_diff
* torch.tanh(self.coord_mlp(input_tensor))
* self.coords_range
)
else:
trans = coord_diff * self.coord_mlp(input_tensor)
if edge_mask is not None:
trans = trans * edge_mask
agg = unsorted_segment_sum(
trans,
row,
num_segments=coord.size(0),
normalization_factor=self.normalization_factor,
aggregation_method=self.aggregation_method,
)
coord = coord + agg
return coord
def forward(
self,
h,
coord,
edge_index,
coord_diff,
edge_attr=None,
node_mask=None,
edge_mask=None,
):
coord = self.coord_model(h, coord, edge_index, coord_diff, edge_attr, edge_mask)
if node_mask is not None:
coord = coord * node_mask
return coord
class EquivariantBlock(nn.Module):
def __init__(
self,
hidden_nf,
edge_feat_nf=2,
device="cpu",
act_fn=nn.SiLU(),
n_layers=2,
attention=True,
norm_diff=True,
tanh=False,
coords_range=15,
norm_constant=1,
sin_embedding=None,
normalization_factor=100,
aggregation_method="sum",
):
super(EquivariantBlock, self).__init__()
self.hidden_nf = hidden_nf
self.device = device
self.n_layers = n_layers
self.coords_range_layer = float(coords_range)
self.norm_diff = norm_diff
self.norm_constant = norm_constant
self.sin_embedding = sin_embedding
self.normalization_factor = normalization_factor
self.aggregation_method = aggregation_method
for i in range(0, n_layers):
self.add_module(
"gcl_%d" % i,
GCL(
self.hidden_nf,
self.hidden_nf,
self.hidden_nf,
edges_in_d=edge_feat_nf,
act_fn=act_fn,
attention=attention,
normalization_factor=self.normalization_factor,
aggregation_method=self.aggregation_method,
),
)
self.add_module(
"gcl_equiv",
EquivariantUpdate(
hidden_nf,
edges_in_d=edge_feat_nf,
act_fn=nn.SiLU(),
tanh=tanh,
coords_range=self.coords_range_layer,
normalization_factor=self.normalization_factor,
aggregation_method=self.aggregation_method,
),
)
self.to(self.device)
def forward(self, h, x, edge_index, node_mask=None, edge_mask=None, edge_attr=None):
# Edit Emiel: Remove velocity as input
distances, coord_diff = coord2diff(x, edge_index, self.norm_constant)
if self.sin_embedding is not None:
distances = self.sin_embedding(distances)
edge_attr = torch.cat([distances, edge_attr], dim=1)
for i in range(0, self.n_layers):
h, _ = self._modules["gcl_%d" % i](
h,
edge_index,
edge_attr=edge_attr,
node_mask=node_mask,
edge_mask=edge_mask,
)
x = self._modules["gcl_equiv"](
h, x, edge_index, coord_diff, edge_attr, node_mask, edge_mask
)
# Important, the bias of the last linear might be non-zero
if node_mask is not None:
h = h * node_mask
return h, x
class EGNN(nn.Module):
def __init__(
self,
in_node_nf,
in_edge_nf,
hidden_nf,
device="cpu",
act_fn=nn.SiLU(),
n_layers=3,
attention=False,
norm_diff=True,
out_node_nf=None,
tanh=False,
coords_range=15,
norm_constant=1,
inv_sublayers=2,
sin_embedding=False,
normalization_factor=100,
aggregation_method="sum",
):
super(EGNN, self).__init__()
if out_node_nf is None:
out_node_nf = in_node_nf
self.hidden_nf = hidden_nf
self.device = device
self.n_layers = n_layers
self.coords_range_layer = float(coords_range / n_layers)
self.norm_diff = norm_diff
self.normalization_factor = normalization_factor
self.aggregation_method = aggregation_method
if sin_embedding:
self.sin_embedding = SinusoidsEmbeddingNew()
edge_feat_nf = self.sin_embedding.dim * 2
else:
self.sin_embedding = None
edge_feat_nf = 2
self.embedding = nn.Linear(in_node_nf, self.hidden_nf)
self.embedding_out = nn.Linear(self.hidden_nf, out_node_nf)
for i in range(0, n_layers):
self.add_module(
"e_block_%d" % i,
EquivariantBlock(
hidden_nf,
edge_feat_nf=edge_feat_nf,
device=device,
act_fn=act_fn,
n_layers=inv_sublayers,
attention=attention,
norm_diff=norm_diff,
tanh=tanh,
coords_range=coords_range,
norm_constant=norm_constant,
sin_embedding=self.sin_embedding,
normalization_factor=self.normalization_factor,
aggregation_method=self.aggregation_method,
),
)
self.to(self.device)
def forward(self, h, x, edge_index, node_mask=None, edge_mask=None):
# Edit Emiel: Remove velocity as input
distances, _ = coord2diff(x, edge_index)
if self.sin_embedding is not None:
distances = self.sin_embedding(distances)
h = self.embedding(h)
for i in range(0, self.n_layers):
h, x = self._modules["e_block_%d" % i](
h,
x,
edge_index,
node_mask=node_mask,
edge_mask=edge_mask,
edge_attr=distances,
)
# Important, the bias of the last linear might be non-zero
h = self.embedding_out(h)
if node_mask is not None:
h = h * node_mask
return h, x
class GNN(nn.Module):
def __init__(
self,
in_node_nf,
in_edge_nf,
hidden_nf,
aggregation_method="sum",
device="cpu",
act_fn=nn.SiLU(),
n_layers=4,
attention=False,
normalization_factor=1,
out_node_nf=None,
):
super(GNN, self).__init__()
if out_node_nf is None:
out_node_nf = in_node_nf
self.hidden_nf = hidden_nf
self.device = device
self.n_layers = n_layers
### Encoder
self.embedding = nn.Linear(in_node_nf, self.hidden_nf)
self.embedding_out = nn.Linear(self.hidden_nf, out_node_nf)
for i in range(0, n_layers):
self.add_module(
"gcl_%d" % i,
GCL(
self.hidden_nf,
self.hidden_nf,
self.hidden_nf,
normalization_factor=normalization_factor,
aggregation_method=aggregation_method,
edges_in_d=in_edge_nf,
act_fn=act_fn,
attention=attention,
),
)
self.to(self.device)
def forward(self, h, edges, edge_attr=None, node_mask=None, edge_mask=None):
# Edit Emiel: Remove velocity as input
h = self.embedding(h)
for i in range(0, self.n_layers):
h, _ = self._modules["gcl_%d" % i](
h, edges, edge_attr=edge_attr, node_mask=node_mask, edge_mask=edge_mask
)
h = self.embedding_out(h)
# Important, the bias of the last linear might be non-zero
if node_mask is not None:
h = h * node_mask
return h
class SinusoidsEmbeddingNew(nn.Module):
def __init__(self, max_res=15.0, min_res=15.0 / 2000.0, div_factor=4):
super().__init__()
self.n_frequencies = int(math.log(max_res / min_res, div_factor)) + 1
self.frequencies = (
2 * math.pi * div_factor ** torch.arange(self.n_frequencies) / max_res
)
self.dim = len(self.frequencies) * 2
def forward(self, x):
x = torch.sqrt(x + 1e-8)
emb = x * self.frequencies[None, :].to(x.device)
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb.detach()
def coord2diff(x, edge_index, norm_constant=1):
row, col = edge_index
coord_diff = x[row] - x[col]
radial = torch.sum((coord_diff) ** 2, 1).unsqueeze(1)
norm = torch.sqrt(radial + 1e-8)
coord_diff = coord_diff / (norm + norm_constant)
return radial, coord_diff
def unsorted_segment_sum(
data, segment_ids, num_segments, normalization_factor, aggregation_method: str
):
"""Custom PyTorch op to replicate TensorFlow's `unsorted_segment_sum`.
Normalization: 'sum' or 'mean'.
"""
result_shape = (num_segments, data.size(1))
result = data.new_full(result_shape, 0) # Init empty result tensor.
segment_ids = segment_ids.unsqueeze(-1).expand(-1, data.size(1))
result.scatter_add_(0, segment_ids, data)
if aggregation_method == "sum":
result = result / normalization_factor
if aggregation_method == "mean":
norm = data.new_zeros(result.shape)
norm.scatter_add_(0, segment_ids, data.new_ones(data.shape))
norm[norm == 0] = 1
result = result / norm
return result