-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalibrate_n.py
242 lines (187 loc) · 8.06 KB
/
calibrate_n.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import argparse
import numpy as np
import os
import dataloader
import distortion
import distortion_improved
import distortion_improved2
import csv
import extrinsics
import homography
import intrinsics
import refinement
import refinement_improved
import refinement_improved2
import util
import visualize
import time
from scipy.optimize import curve_fit
import glob
import cv2 as cv2
import os
def K16P16_zhang_calibration(model, all_data):
homographies = []
for data in all_data:
H = homography.calculate_homography(model, data)
H = homography.refine_homography(H, model, data)
homographies.append(H)
# Compute intrinsics
K = intrinsics.recover_intrinsics(homographies)
model_hom_3d = util.to_homogeneous_3d(model)
# Compute extrinsics based on fixed intrinsics
extrinsic_matrices = []
for h, H in enumerate(homographies):
E = extrinsics.recover_extrinsics(H, K)
extrinsic_matrices.append(E)
# Form projection matrix
P = np.dot(K, E)
predicted = np.dot(model_hom_3d, P.T)
predicted = util.to_inhomogeneous(predicted)
data = all_data[h]
nonlinear_sse_decomp = np.sum((predicted - data)**2)
# Calculate radial distortion based on fixed intrinsics and extrinsics
k = distortion_improved2.calculate_lens_distortion(model, all_data, K, extrinsic_matrices)
# Nonlinearly refine all parameters(intrinsics, extrinsics, and distortion)
K_opt, k_opt, extrinsics_opt = refinement_improved2.refine_all_parameters(model, all_data, K, k, extrinsic_matrices)
return K_opt, k_opt, extrinsics_opt
def K1K2P1P2_zhang_calibration(model, all_data):
homographies = []
for data in all_data:
H = homography.calculate_homography(model, data)
H = homography.refine_homography(H, model, data)
homographies.append(H)
# Compute intrinsics
K = intrinsics.recover_intrinsics(homographies)
model_hom_3d = util.to_homogeneous_3d(model)
# Compute extrinsics based on fixed intrinsics
extrinsic_matrices = []
for h, H in enumerate(homographies):
E = extrinsics.recover_extrinsics(H, K)
extrinsic_matrices.append(E)
# Form projection matrix
P = np.dot(K, E)
predicted = np.dot(model_hom_3d, P.T)
predicted = util.to_inhomogeneous(predicted)
data = all_data[h]
nonlinear_sse_decomp = np.sum((predicted - data)**2)
# Calculate radial distortion based on fixed intrinsics and extrinsics
k = distortion_improved.calculate_lens_distortion(model, all_data, K, extrinsic_matrices)
# Nonlinearly refine all parameters(intrinsics, extrinsics, and distortion)
K_opt, k_opt, extrinsics_opt = refinement_improved.refine_all_parameters(model, all_data, K, k, extrinsic_matrices)
return K_opt, k_opt, extrinsics_opt
def K1K2_zhang_calibration(model, all_data):
'''Perform camera calibration, including intrinsics, extrinsics,
and distortion coefficients.
Args:
model: Nx2 collection of planar points in the world
all_data: M-length list of Nx2 point sets of sensor correspondences
Returns:
Intrinsic matrix, distortion coefficients, and M-length list of
extrinsic matrices
'''
# model_hom = util.to_homogeneous(model)
# Compute homographies for each image and run nonlinear refinement on each
# homography
homographies = []
for data in all_data:
H = homography.calculate_homography(model, data)
H = homography.refine_homography(H, model, data)
homographies.append(H)
# Compute intrinsics
K = intrinsics.recover_intrinsics(homographies)
model_hom_3d = util.to_homogeneous_3d(model)
# Compute extrinsics based on fixed intrinsics
extrinsic_matrices = []
for h, H in enumerate(homographies):
E = extrinsics.recover_extrinsics(H, K)
extrinsic_matrices.append(E)
# Form projection matrix
P = np.dot(K, E)
predicted = np.dot(model_hom_3d, P.T)
predicted = util.to_inhomogeneous(predicted)
data = all_data[h]
nonlinear_sse_decomp = np.sum((predicted - data)**2)
# Calculate radial distortion based on fixed intrinsics and extrinsics
k = distortion.calculate_lens_distortion(model, all_data, K, extrinsic_matrices)
# Nonlinearly refine all parameters(intrinsics, extrinsics, and distortion)
K_opt, k_opt, extrinsics_opt = refinement.refine_all_parameters(model, all_data, K, k, extrinsic_matrices)
return K_opt, k_opt, extrinsics_opt
def create_vector_of_2d_points_for_each_chessboard_corner(CHECKERBOARD,chessboardsize):
x=np.array([x/1000 for x in range(0,CHECKERBOARD[0]*chessboardsize,chessboardsize)]).astype(np.float32)
y=np.zeros((1,CHECKERBOARD[0]),dtype=np.float32)
t=np.zeros((1,CHECKERBOARD[0]),dtype=np.float32)
z= np.append([x],y,axis=0).T
z= np.array([z])
for i in range(chessboardsize,CHECKERBOARD[1]*chessboardsize,chessboardsize):
y2= np.ones((1,CHECKERBOARD[0]),dtype=np.float32)*i/1000
z2= np.append([x],y2,axis=0).T
z2= np.array([z2])
z=np.append(z,z2,axis=0)
z=np.reshape(z,(CHECKERBOARD[1]*CHECKERBOARD[0],2)).astype(np.float32)
return z
def import_all_data(location,CHECKERBOARD):
cout=0
vector_of_2d_img_points=[]
images = glob.glob(location)
for item in images:
img = cv2.imread(item)
#img = img[:,280:1000]
#img = cv2.resize(img, (920,720), interpolation = cv2.INTER_AREA)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret, corners = cv2.findChessboardCorners(gray,CHECKERBOARD ,cv2.CALIB_CB_ADAPTIVE_THRESH+cv2.CALIB_CB_NORMALIZE_IMAGE )
if(ret==True):
cout+=1
corners2 = cv2.cornerSubPix(gray,corners, (11,11), (-1,-1),criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30,0.001))
corners2=corners2.reshape(CHECKERBOARD[0]*CHECKERBOARD[1],2)
vector_of_2d_img_points.append(corners2)
print("number of images", cout)
return np.array(vector_of_2d_img_points)
def main():
model=[]
chessboard=(8,6)
chessboardsize=108 # in millmeter
#in_location='very_close/*.png'
#in_location='mydata/*.png'
#in_location='small_test/*.png'
#in_location='chess_at_the_edge/*.png'
#in_location='all/*.png'
in_location='all_185/*.png'
test_in_location='right/*.png'
os.system("rm ./out/*")
os.system("rm ./out_comp/*")
out_location='out'
out_comp_location='out_comp'
model=create_vector_of_2d_points_for_each_chessboard_corner(chessboard,chessboardsize)
tic=time.time()
all_data=import_all_data(in_location,chessboard)
print("time taken to import images = ",time.time()-tic, " s" )
tic=time.time()
#K_opt, k_opt, extrinsics_opt = K1K2_zhang_calibration(model, all_data)
K_opt, k_opt, extrinsics_opt = K1K2P1P2_zhang_calibration(model, all_data)
#K_opt, k_opt, extrinsics_opt = K16P16_zhang_calibration(model, all_data)
print()
print("time taken to calibrate = ",time.time()-tic, " s" )
#'''
cameraMatrix=K_opt
print("cameraMatrix >> ",cameraMatrix)
distCoeffs=k_opt
print("distCoeffs >> ",distCoeffs)
#distCoeffs[2]=k_opt[3]
#distCoeffs[3]=k_opt[4]
#distCoeffs[4]=k_opt[2]
'''
cameraMatrix=np.array([[806.33763, 0.0, 642.513432],
[0.000000, 805.499873, 359.96411],
[0.000000, 0.000000, 1.000000]])
distCoeffs=np.array([[-0.391035 , 0.107098, 0.000320, 0.000612, 0.000000]])
'''
visualize.undistort_images(test_in_location,out_location, cameraMatrix,distCoeffs)
visualize.undistort_images_compare(test_in_location,out_comp_location, cameraMatrix,distCoeffs)
print(' Focal Length: [ {:.5f} {:.5f} ]'.format(K_opt[0,0], K_opt[1,1]))
print('Principal Point: [ {:.5f} {:.5f} ]'.format(K_opt[0,2], K_opt[1,2]))
print(' Skew: [ {:.7f} ]'.format(K_opt[0,1]))
#print(' Distortion: [ {:.6f} {:.6f} ]'.format(k_opt[0], k_opt[1]))
#visualize.visualize_camera_frame(model, extrinsics_opt)
#visualize.visualize_world_frame(model, extrinsics_opt)
if __name__ == '__main__':
main()