-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrainer.py
81 lines (67 loc) · 2.67 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from gcn import GCNClassifier
from utils import torch_utils
class GCNTrainer(object):
def __init__(self, args, emb_matrix=None):
self.args = args
self.emb_matrix = emb_matrix
self.model = GCNClassifier(args, emb_matrix=emb_matrix)
self.parameters = [p for p in self.model.parameters() if p.requires_grad]
self.model.cuda()
self.optimizer = torch_utils.get_optimizer(args.optim, self.parameters, args.lr)
# load model_state and args
def load(self, filename):
try:
checkpoint = torch.load(filename)
except BaseException:
print("Cannot load model from {}".format(filename))
exit()
self.model.load_state_dict(checkpoint['model'])
self.args = checkpoint['config']
# save model_state and args
def save(self, filename):
params = {
'model': self.model.state_dict(),
'config': self.args,
}
try:
torch.save(params, filename)
print("model saved to {}".format(filename))
except BaseException:
print("[Warning: Saving failed... continuing anyway.]")
def update(self, batch):
# convert to cuda
batch = [b.cuda() for b in batch]
# unpack inputs and label
inputs = batch[0:8]
label = batch[-1]
# step forward
self.model.train()
self.optimizer.zero_grad()
logits, gcn_outputs = self.model(inputs)
loss = F.cross_entropy(logits, label, reduction='mean')
corrects = (torch.max(logits, 1)[1].view(label.size()).data == label.data).sum()
acc = 100.0 * np.float(corrects) / label.size()[0]
# backward
loss.backward()
self.optimizer.step()
return loss.data, acc
def predict(self, batch):
# convert to cuda
batch = [b.cuda() for b in batch]
# unpack inputs and label
inputs = batch[0:8]
label = batch[-1]
# forward
self.model.eval()
logits, gcn_outputs = self.model(inputs)
loss = F.cross_entropy(logits, label, reduction='mean')
corrects = (torch.max(logits, 1)[1].view(label.size()).data == label.data).sum()
acc = 100.0 * np.float(corrects) / label.size()[0]
predictions = np.argmax(logits.data.cpu().numpy(), axis=1).tolist()
predprob = F.softmax(logits, dim=1).data.cpu().numpy().tolist()
return loss.data, acc, predictions, label.data.cpu().numpy().tolist(), predprob, gcn_outputs.data.cpu().numpy()