-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfgroup.py
176 lines (148 loc) · 5.91 KB
/
fgroup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
class Group:
def __init__(self, elements, operation):
self.elements = elements # Set of elements in the group
self.operation = operation # Operation that combines two elements
self.identity_element = None
self.inverse_elements = {}
self.why_not_group = None
def is_group(self):
# Check closure property
for a in self.elements:
for b in self.elements:
result = self.operation(a, b)
if result not in self.elements:
print(a, b)
self.why_not_group = [1, a, b]
return False
# Check associativity property
for a in self.elements:
for b in self.elements:
for c in self.elements:
if self.operation(self.operation(a, b), c) != self.operation(a, self.operation(b, c)):
self.why_not_group = [2, a, b]
return False
# Check identity element
# self.identity_element = None
for element in self.elements:
has_identity = True
for other_element in self.elements:
if self.operation(element, other_element) != other_element or self.operation(other_element, element) != other_element:
has_identity = False
break
if has_identity:
self.identity_element = element
break
if self.identity_element is None:
self.why_not_group = [3]
return False
# Check inverse element
for element in self.elements:
inverse = self.find_inverse(element)
if inverse is None:
self.why_not_group = [4]
return False
self.inverse_elements[element] = inverse
return True
def find_subgroups(self):
subgroups = []
for subset in self.get_all_subsets():
if self.is_group_subset(subset):
subgroups.append(Group(subset, self.operation))
return subgroups
def get_all_subsets(self):
subsets = [[]]
for element in self.elements:
subsets.extend([subset + [element] for subset in subsets])
return subsets
def is_group_subset(self, subset):
subgroup = Group(subset, self.operation)
return subgroup.is_group()
def find_inverse(self, element):
for other_element in self.elements:
if self.operation(element, other_element) == self.identity_element and self.operation(other_element, element) == self.identity_element:
return other_element
return None
def inverse(self, element):
return self.inverse_elements.get(element, None)
def generate_subgroup(self, element):
subgroup_elements = set()
current_element = element
while current_element not in subgroup_elements:
subgroup_elements.add(current_element)
current_element = self.operation(current_element, element)
return Group(subgroup_elements, self.operation)
def is_cyclic(self):
for element in self.elements:
subgroup = self.generate_subgroup(element)
if len(subgroup.elements) == len(self.elements):
return True
return False
def is_acyclic(self):
return not self.is_cyclic()
def get_order(self):
return len(self.elements)
def get_element_order(self, element):
current_element = element
power = 1
while current_element != self.identity_element:
current_element = self.operation(current_element, element)
power += 1
return power
def generate_multiplication_table(self):
table = {}
for a in self.elements:
row = {}
for b in self.elements:
result = self.operation(a, b)
row[b] = result
table[a] = row
return table
def generate_md_multiplication_table(self):
headers = list(self.elements)
table = []
# Generate header row
header_row = "| | "
for header in headers:
header_row += str(header) + " | "
table.append(header_row)
# Generate separator row
separator_row = "|---|"
for _ in headers:
separator_row += "---|"
table.append(separator_row)
# Generate table rows
for a in self.elements:
row = "| " + str(a) + " | "
for b in self.elements:
result = self.operation(a, b)
row += str(result) + " | "
table.append(row)
return "\n".join(table)
def find_normal_subgroups(self):
normal_subgroups = []
for subgroup in self.find_subgroups():
is_normal = True
for element in self.elements:
for subgroup_element in subgroup.elements:
conjugation = self.operation(self.operation(element, subgroup_element), self.inverse(element))
if conjugation not in subgroup.elements:
is_normal = False
break
if not is_normal:
break
if is_normal:
normal_subgroups.append(subgroup)
return normal_subgroups
def is_abelian(self):
for a in self.elements:
for b in self.elements:
if self.operation(a, b) != self.operation(b, a):
return False
return True
def to_permutation_list(self):
permutation_list = []
element_to_index = {element: index for index, element in enumerate(self.elements)}
for element in self.elements:
permutation = [element_to_index[self.operation(element, other_element)] for other_element in self.elements]
permutation_list.append(permutation)
return permutation_list