-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapp.py
95 lines (77 loc) · 3.25 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import streamlit as st
import threading
import os
import litellm
from litellm import completion
from dotenv import load_dotenv
# load .env, so litellm reads from .env
load_dotenv()
litellm.token = "5fdb5efa-9307-40ed-b824-1c73a1613030"
models = []
provider_models_map = litellm.models_by_provider
for provider in provider_models_map:
print(provider)
for model in provider_models_map[provider]:
print(provider_models_map[provider])
models.append(provider+"/" + model)
# Function to get model outputs
def get_model_output(prompt, model_name):
try:
messages = [
{"role": "user", "content": prompt},
]
response = completion(messages=messages, model=model_name)
return response['choices'][0]['message']['content']
except Exception as e:
return f"got error calling LLM API {e}"
# Function to get model outputs
def get_model_output_thread(prompt, model_name, outputs, idx):
output = get_model_output(prompt, model_name)
outputs[idx] = output
# Streamlit app
def main():
keys = {}
st.title("LiteLLM Playground")
st.markdown("[LiteLLM - one package for CodeLlama, Llama2 Anthropic, Cohere, OpenAI, Replicate](https://github.com/BerriAI/litellm/)")
st.markdown("View Request Logs + Manage keys (Optional) [here:](https://admin.litellm.ai/5fdb5efa-9307-40ed-b824-1c73a1613030)")
# Sidebar for user input
with st.sidebar:
st.header("User Settings")
# List of models to test
model_names = models # Add your model names here
# Dropdowns for model selection
selected_models = []
for i in range(4):
selected_model = st.selectbox(f"Select Model {i+1}", model_names, index=i)
selected_models.append(selected_model)
provider = selected_model.split("/")[0]
key_name = f"{provider.upper()}_API_KEY"
api_key = st.text_input(f"Enter your {key_name}", type="password", key=i)
keys[key_name] = api_key
set_keys_button = st.button("Set API Keys")
if set_keys_button:
for key in keys:
if os.environ.get(key) != None: # if key not set in .env
os.environ[key] = keys[key]
st.success("API keys have been set.")
st.header("User Input")
prompt = st.text_area("Enter your prompt here:")
submit_button = st.button("Submit")
# Main content area to display model outputs
st.header("Model Outputs")
cols = st.columns(len(selected_models)) # Create columns
outputs = [""] * len(selected_models) # Initialize outputs list with empty strings
threads = []
if submit_button and prompt:
for idx, model_name in enumerate(selected_models):
thread = threading.Thread(target=get_model_output_thread, args=(prompt, model_name, outputs, idx))
threads.append(thread)
thread.start()
for thread in threads:
thread.join()
# Display text areas and fill with outputs if available
for idx, model_name in enumerate(selected_models):
with cols[idx]:
st.text_area(label=f"{model_name}", value=outputs[idx], height=300, key=f"output_{model_name}_{idx}") # Use a unique key
if __name__ == "__main__":
main()