-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_det.py
481 lines (410 loc) · 19.5 KB
/
train_det.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
from __future__ import division
import os
import random
import argparse
import time
import datetime
import numpy as np
import torch
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import logging
from src.det.data.voc import VOCDetection
from src.det.data.coco import COCODataset
from src.det.data.transforms import TrainTransforms, ColorTransforms, ValTransforms
from tqdm import tqdm
from src.det.utils import distributed_utils
from src.det.utils.com_flops_params import FLOPs_and_Params
from src.det.utils.misc import ModelEMA
from src.det.utils.misc import CollateFunc
from src.det.utils import create_labels
from src.det.utils.criterion import build_criterion
from src.det.evaluator.cocoapi_evaluator import COCOAPIEvaluator
from src.det.evaluator.vocapi_evaluator import VOCAPIEvaluator
from src.utils import result2csv, seed_all, setup_default_logging
from src.clipquantization import replace_relu_by_cqrelu
def parse_args():
parser = argparse.ArgumentParser(description='YOLO Detection')
# basic
parser.add_argument('--device', default='4', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('-d', '--dataset', default='voc',
help='voc or coco')
parser.add_argument('--cuda', default=True, type=bool,
help='use cuda.')
parser.add_argument('--batch_size', default=16, type=int,
help='Batch size for training')
parser.add_argument('--lr', default=1e-3, type=float,
help='initial learning rate')
parser.add_argument('--max_epoch', type=int, default=200,
help='The upper bound of warm-up')
parser.add_argument('--lr_epoch', nargs='+', default=[120, 170], type=int,
help='lr epoch to decay')
parser.add_argument('--wp_epoch', type=int, default=2,
help='The upper bound of warm-up')
parser.add_argument('--start_epoch', type=int, default=0,
help='start epoch to train')
parser.add_argument('-r', '--resume', default=None, type=str,
help='keep training')
parser.add_argument('--num_workers', default=8, type=int,
help='Number of workers used in dataloading')
parser.add_argument('--eval_epoch', type=int,
default=10, help='interval between evaluations')
parser.add_argument('--tfboard', default=False, type=bool,
help='use tensorboard')
parser.add_argument('--debug', default=False, type=bool,
help='debug mode where only one image is trained')
parser.add_argument('--save_folder', default='./', type=str,
help='Gamma update for SGD')
parser.add_argument('--backbone', default='VGG16', type=str,
help='backbone used for ann', choices=['VGG16', 'ResNet50'])
# input image size
parser.add_argument('--img_size', type=int, default=640,
help='The size of input image')
# Loss
parser.add_argument('--loss_obj_weight', default=1.0, type=float,
help='weight of obj loss')
parser.add_argument('--loss_cls_weight', default=1.0, type=float,
help='weight of cls loss')
parser.add_argument('--loss_reg_weight', default=1.0, type=float,
help='weight of reg loss')
parser.add_argument('--scale_loss', default='batch', type=str,
help='scale loss: batch or positive samples')
# parser.add_argument('--cqrelu', action='store_true')
parser.add_argument('--cqrelu', type=bool, default=True)
parser.add_argument('--qlevel', type=int, default=4)
parser.add_argument('--seed', type=int, default=42, help='seed')
parser.add_argument('--saved_dir', type=str, default='/data/ly/casc_det')
parser.add_argument('--saved_csv', type=str, default='/data/ly/casc_det/results_det.csv')
# parser.add_argument('--save_log', type=bool, default=False)
parser.add_argument('--save_log', action='store_false')
# train trick
parser.add_argument('-ms', '--multi_scale', default=True, type=bool,
help='use multi-scale trick')
parser.add_argument('-no_wp', '--no_warm_up', default=False, type=bool,
help='yes or no to choose using warmup strategy to train')
parser.add_argument('--ema', default=True, type=bool,
help='use ema training trick')
parser.add_argument('--mosaic', default=False, type=bool,
help='use Mosaic Augmentation trick')
parser.add_argument('--mixup', default=True, type=bool,
help='use MixUp Augmentation trick')
parser.add_argument('--multi_anchor', default=False, type=bool,
help='use multiple anchor boxes as the positive samples')
parser.add_argument('--center_sample', default=False, type=bool,
help='use center sample for labels')
parser.add_argument('--accumulate', type=int, default=1,
help='accumulate gradient')
# DDP train
parser.add_argument('-dist', '--distributed', default=False, type=bool,
help='distributed training')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--sybn', default=False, type=bool,
help='use sybn.')
parser.add_argument('--local_rank', default=0, type=int,
help='node rank for distributed training')
return parser.parse_args()
def train():
args = parse_args()
seed_all(args.seed)
args.logger = logging.getLogger('train')
now = (datetime.datetime.now() + datetime.timedelta(hours=8)).strftime("%Y%m%d-%H%M%S")
args.time = now
exp_name = '-'.join([
now,
"yolo",
args.backbone,
args.dataset,
str(args.cqrelu),
str(args.qlevel),
str(args.seed)])
args.saved_dir = os.path.join(args.saved_dir, exp_name)
if args.save_log: os.makedirs(args.saved_dir, exist_ok=True)
setup_default_logging(log_path=os.path.join(args.saved_dir, 'log.txt') if args.save_log else None)
os.environ["CUDA_VISIBLE_DEVICES"] = args.device
os.environ["OMP_NUM_THREADS"] = "1" # 设置OpenMP计算库的线程数
os.environ["MKL_NUM_THREADS"] = "1" # 设置MKL-DNN CPU加速库的线程数。
torch.set_num_threads(1)
if args.distributed:
distributed_utils.init_distributed_mode(args)
args_dict = "Namespace:\n"
for eachArg, value in args.__dict__.items():
args_dict += eachArg + ' : ' + str(value) + '\n'
args.logger.info(args_dict)
args.logger.info("----------------------------------------------------------")
# path_to_save = os.path.join(args.save_folder, args.backbone + '_' + args.dataset)
# os.makedirs(path_to_save, exist_ok=True)
# 是否使用cuda
if args.cuda:
args.logger.info('use cuda: '+ str(args.device))
cudnn.benchmark = True
device = torch.device("cuda")
else:
device = torch.device("cpu")
# 是否使用多尺度训练
if args.multi_scale:
args.logger.info('use the multi-scale trick ...')
train_size = val_size = args.img_size
# 构建dataset类和dataloader类
if args.dataset == 'voc':
# 加载voc数据集
data_dir = '/data/datasets/VOC_2007/VOCdevkit/'
num_classes = 20
dataset = VOCDetection(
data_dir=data_dir,
img_size=train_size,
transform=TrainTransforms(train_size),
color_augment=ColorTransforms(train_size),
mosaic=args.mosaic,
mixup=args.mixup)
evaluator = VOCAPIEvaluator(
data_dir=data_dir,
img_size=val_size,
device=device,
transform=ValTransforms(val_size))
elif args.dataset == 'coco':
# 加载COCO数据集
data_dir = '/data/datasets/COCO/'
num_classes = 80
dataset = COCODataset(
data_dir=data_dir,
img_size=train_size,
image_set='train2017',
transform=TrainTransforms(train_size),
color_augment=ColorTransforms(train_size),
mosaic=args.mosaic,
mixup=args.mixup)
evaluator = COCOAPIEvaluator(
data_dir=data_dir,
img_size=val_size,
device=device,
transform=ValTransforms(val_size)
)
else:
args.logger.info('unknow dataset !! Only support voc and coco !!')
exit(0)
if args.distributed:
# 2.使用DistributedSampler
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size,
shuffle=(train_sampler is None), collate_fn=CollateFunc(),
sampler=train_sampler,
num_workers=args.num_workers,
pin_memory=True
)
else:
# dataloader类
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
shuffle=True,
collate_fn=CollateFunc(),
num_workers=args.num_workers,
pin_memory=True
)
args.logger.info('Training model on: %s' % args.dataset)
args.logger.info('The dataset size: %d' % len(dataset))
args.logger.info("----------------------------------------------------------")
from src.det.models.yolo import YOLO
yolo_net = YOLO(device, img_size=train_size, num_classes=num_classes, trainable=True, center_sample=args.center_sample, backbone=args.backbone)
args.logger.info('Let us train yolo on the %s dataset ......' % (args.dataset))
# args.logger.info("our yolo")
args.logger.info(yolo_net)
model = yolo_net
model = model.to(device).train()
model_without_ddp = model
if args.distributed:
if args.sybn:
# 使用SyncBatchNorm后训练会更耗时
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
args.logger.info('using DDP....')
model_without_ddp = model.module
# compute FLOPs and Params
if distributed_utils.is_main_process:
model_without_ddp.trainable = False
model_without_ddp.eval()
FLOPs_and_Params(model=model_without_ddp,
img_size=train_size,
device=device)
model_without_ddp.trainable = True
model_without_ddp.train()
# # keep training
# if args.resume is not None:
# args.logger.info('keep training model: %s' % (args.resume))
# model.load_state_dict(torch.load(args.resume, map_location=device))
if args.dataset=='voc' and args.backbone=="ResNet50":
args.resume = "/data/ly/casc/20221027-205350-yolo-ResNet50-voc-False-128-42/checkpoints.pth"
model.load_state_dict(torch.load(args.resume, map_location=device))
elif args.dataset=='coco' and args.backbone=="ResNet50":
args.resume = "/data/ly/casc/20221120-101435-yolo-ResNet50-coco-False-128-42/checkpoints.pth"
model.load_state_dict(torch.load(args.resume, map_location=device))
if args.cqrelu:
model = replace_relu_by_cqrelu(model, args.qlevel)
# 使用 tensorboard 可视化训练过程
if args.tfboard:
args.logger.info('use tensorboard')
from torch.utils.tensorboard import SummaryWriter
c_time = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
log_path = os.path.join('log/coco/', args.version, c_time)
os.makedirs(log_path, exist_ok=True)
writer = SummaryWriter(log_path)
# EMA
ema = ModelEMA(model_without_ddp) if args.ema else None
# optimizer setup
base_lr = args.lr
tmp_lr = args.lr
# optimizer
optimizer = optim.SGD(model_without_ddp.parameters(),
lr=tmp_lr,
momentum=0.9,
weight_decay=5e-4)
epoch_size = len(dataset) // (args.batch_size * torch.cuda.device_count()) # 每一训练轮次的迭代次数
best_map = -100.
best_map50 = -100.
warmup = not args.no_warm_up
# build_criterion
cfg = {} # 简单设为{}
criterion = build_criterion(args, cfg, num_classes)
# 开始训练
t0 = time.time()
for epoch in range(args.start_epoch, args.max_epoch):
if args.distributed:
train_sampler.set_epoch(epoch)
if epoch in args.lr_epoch:
tmp_lr = tmp_lr * 0.1
set_lr(optimizer, tmp_lr)
for iter_i, (images, targets) in enumerate(dataloader):
ni = iter_i + (epoch + 1) * epoch_size
# warmup
if epoch < args.wp_epoch and warmup:
nw = args.wp_epoch * epoch_size
tmp_lr = base_lr * pow(ni / nw, 4)
set_lr(optimizer, tmp_lr)
elif epoch == args.wp_epoch and iter_i == 0 and warmup:
# warmup is over
args.logger.info('Warmup is over !!')
warmup = False
tmp_lr = base_lr
set_lr(optimizer, tmp_lr)
# 多尺度训练
if iter_i % 10 == 0 and iter_i > 0 and args.multi_scale:
# 随机选择一个新的尺寸
train_size = random.randint(10, 20) * 32
model_without_ddp.set_grid(train_size)
if args.multi_scale:
# 插值
images = torch.nn.functional.interpolate(images, size=train_size, mode='bilinear', align_corners=False)
# 制作训练标签
targets = [label.tolist() for label in targets]
# make labels
targets = create_labels.gt_creator(
img_size=train_size,
strides=model_without_ddp.stride,
label_lists=targets,
anchor_size=None,
multi_anchor=False,
center_sample=args.center_sample)
# to device
images = images.to(device)
targets = targets.to(device)
# inference
pred_obj, pred_cls, pred_iou, targets = model_without_ddp(images, targets=targets)
# compute loss
loss_obj, loss_cls, loss_reg, total_loss = criterion(pred_obj, pred_cls, pred_iou, targets)
# check loss
if torch.isnan(total_loss):
continue
loss_dict = dict(
loss_obj=loss_obj,
loss_cls=loss_cls,
loss_reg=loss_reg,
total_loss=total_loss
)
loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
#args.logger.info("iter %d: reduced not stuck" % iter_i)
total_loss = total_loss / args.accumulate
# Backward and Optimize
total_loss.backward()
#args.logger.info("iter %d: backward not stuck" % iter_i)
optimizer.step()
optimizer.zero_grad()
#args.logger.info("iter %d: optim step not stuck" % iter_i)
# ema
if args.ema:
ema.update(model_without_ddp)
#args.logger.info("iter %d: ema updata not stuck" % iter_i)
if distributed_utils.is_main_process() and iter_i % 20 == 0:
if args.tfboard:
# viz loss
writer.add_scalar('obj loss', loss_dict_reduced['loss_obj'].item(), iter_i + epoch * epoch_size)
writer.add_scalar('cls loss', loss_dict_reduced['loss_cls'].item(), iter_i + epoch * epoch_size)
writer.add_scalar('box loss', loss_dict_reduced['loss_reg'].item(), iter_i + epoch * epoch_size)
t1 = time.time()
args.logger.info(
"[Epoch %d/%d][Iter %d/%d][lr %.6f][Loss: obj %.2f || cls %.2f || reg %.2f || size %d || time: %.2f]" % (
epoch + 1, args.max_epoch, iter_i, epoch_size, tmp_lr,
loss_dict_reduced['loss_obj'].item(),
loss_dict_reduced['loss_cls'].item(),
loss_dict_reduced['loss_reg'].item(),
train_size,
t1 - t0))
t0 = time.time()
# evaluation
if (epoch + 1) % args.eval_epoch == 0 or (epoch + 1) == args.max_epoch:
if evaluator is None:
args.logger.info('No evaluator ... save model and go on training.')
args.logger.info('Saving state, epoch: {}'.format(epoch + 1))
weight_name = 'epoch_{}.pth'.format(epoch + 1)
torch.save(model_without_ddp.state_dict(), os.path.join(args.saved_dir, weight_name))
else:
args.logger.info('eval ...')
# check ema
if args.ema:
model_eval = ema.ema
else:
model_eval = model.module if args.distributed else model
# set eval mode
model_eval.trainable = False
model_eval.set_grid(val_size)
model_eval.eval()
# check evaluator
if distributed_utils.is_main_process():
# evaluate
evaluator.evaluate(model_eval)
cur_map = evaluator.map
if cur_map > best_map:
# update best-map
best_map = cur_map
best_map50 = evaluator.ap50
# save model
args.logger.info('Saving state, epoch: %d, map: %.2f' % (epoch + 1, best_map*100))
# weight_name = 'epoch_{}_{:.2f}.pth'.format(epoch + 1, best_map * 100)
torch.save(model_eval.state_dict(), os.path.join(args.saved_dir, 'checkpoints.pth'))
if args.distributed:
# wait for all processes to synchronize
dist.barrier()
# set train mode.
model_eval.trainable = True
model_eval.set_grid(train_size)
model_eval.train()
# close mosaic augmentation
if args.mosaic and args.max_epoch - epoch == 15:
args.logger.info('close Mosaic Augmentation ...')
dataloader.dataset.mosaic = False
# close mixup augmentation
if args.mixup and args.max_epoch - epoch == 15:
args.logger.info('close Mixup Augmentation ...')
dataloader.dataset.mixup = False
args.ap50_95 = best_map * 100
args.ap50 = best_map50 * 100
result2csv(args.saved_csv, args)
print("Write results to csv file.")
def set_lr(optimizer, lr):
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__ == '__main__':
train()