-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
439 lines (366 loc) · 17.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import sys
sys.path.append("../..")
import matplotlib
matplotlib.use('agg')
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parallel import DistributedDataParallel as DDP
from dataset import *
from surrogate import *
from neuron import *
from snn_model import SpikeNet
from model import *
from utils import result2csv, seed_all, setup_default_logging, accuracy, AverageMeter
import matplotlib.pyplot as plt
import datetime, time, argparse, logging, math, os
import wandb
try:
from apex import amp
except:
print('no apex pakage installed')
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--remark', type=str, default='')
parser.add_argument('--model', type=str, default='vggnet', help="'cifarconvnet', 'vgg16', 'resnet18', 'resnet34', 'resnet50'")
parser.add_argument('--dataset', type=str, default='dvscifar10',
choices=['mnist', 'fashionmnist', 'cifar10', 'cifar100', 'imagenet', 'dvsgesture', 'dvscifar10', 'ncaltech101', 'ncars', 'nmnist'])
parser.add_argument('--data_path', type=str, default='/data/datasets', help='/Users/lee/data/datasets')
parser.add_argument('--epochs', type=int, default=120)
parser.add_argument('-bs', '--batch_size', type=int, default=64)
parser.add_argument('--num_workers', type=int, default=32)
parser.add_argument('--eval_every', type=int, default=1)
# Optimizer and lr_scheduler
parser.add_argument('--seed', type=int, default=42, help='seed')
parser.add_argument('--optim', type=str, default='adamW', choices=['adamW', 'adam', 'sgd'])
parser.add_argument('--loss', type=str, default='ce', choices=['ce', 'mse'])
parser.add_argument('--schedu', type=str, default='cosin', choices=['step', 'mstep', 'cosin'])
parser.add_argument('--step_size', type=int, default=30, help='parameter for StepLR')
parser.add_argument('--milestones', type=list, default=[150, 250])
parser.add_argument('--lr_gamma', type=float, default=0.1)
parser.add_argument('--warmup', type=float, default=0)
parser.add_argument('--warmup_lr_init', type=float, default=1e-6)
parser.add_argument('--init_lr', type=float, default=0.05)
parser.add_argument('--min_lr', type=float, default=1e-5)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight_decay', type=float, default=0.0)
parser.add_argument('--label_smoothing', type=float, default=0.)
# Path
parser.add_argument('--resume', type=str, default='')
parser.add_argument('--saved_dir', type=str, default='/data/ly/msg_nnr1')
parser.add_argument('--saved_csv', type=str, default='./results_ijcai.csv')
# parser.add_argument('--save_log', type=bool, default=False)
parser.add_argument('--save_log', action='store_true')
# Device
parser.add_argument('--device', type=str, default='0')
parser.add_argument('--use_cuda', type=bool, default=True)
parser.add_argument('--local_rank', default=-1, type=int, help='node rank for distributed training')
parser.add_argument('--apex', type=bool, default=False)
parser.add_argument('--amp', action='store_true', help='enabling apex amp.')
# parser.add_argument('--amp', type=bool, default=False)
parser.add_argument('--sync_bn', action='store_true', help='enabling apex sync BN.')
parser.add_argument('--distributed', action='store_true')
parser.add_argument('--dali', type=bool, default=False)
parser.add_argument('--channel_last', type=bool, default=False)
# SNN
parser.add_argument('--T', type=int, default=10)
parser.add_argument('--encode_type', type=str, default='direct')
## neuron
parser.add_argument('--neuron', type=str, default='LIF')
parser.add_argument('--tau', type=float, default=2.)
parser.add_argument('--threshold', type=float, default=.5)
# surrogate
parser.add_argument('--act_func', type=str, default='MixedPLGrad')
parser.add_argument('--alpha', type=float, default=2.)
parser.add_argument('--alpha_grad', type=bool, default=False)
parser.add_argument('--sub_func', type=str, default='DeltaGrad')
parser.add_argument('--sub_prob', type=float, default=0.5)
parser.add_argument('--mix_mode', type=str, default='rand')
parser.add_argument('--name', default='', type=str)
parser.add_argument('--attout', action='store_true')
parser.add_argument('--wandb', action='store_true')
parser.add_argument('--att_alpha', type=float, default=0.3)
parser.add_argument('--att_startepoch', type=int, default=5)
return parser.parse_args()
def count_output(net, y):
# outmax = torch.cumsum(net.outputs, dim=0).argmax(dim=2)
outmax = net.outputs.argmax(dim=2)
return (outmax.detach() == y).float().mean(1).cpu()
def train_net(net, train_iter, test_iter, optimizer, scheduler, criterion, device, args=None):
best = 0
net = net.to(device)
class_num = args.num_classes
plt.figure()
if args.amp:
scaler = torch.cuda.amp.GradScaler()
for epoch in range(args.epochs):
if args.attout:
if epoch <= args.att_startepoch:
net.att = torch.ones([args.T, 1, 1]).to(device)
else:
new = (time_tot.avg / time_tot.avg.mean(0)).reshape(args.T, 1, 1).to(device)
net.att = net.att * (1 - args.att_alpha) + new * args.att_alpha
loss_tot = AverageMeter()
acc_tot = AverageMeter()
time_tot = AverageMeter()
start = time.time()
net.train()
for ind, data in enumerate(train_iter):
if args.local_rank == int(args.device):
tim = int(time.time()-start)
pert = tim/(ind+1)
eta = pert * (len(train_iter)-ind)
print("Training iter:", str(ind)+'/'+str(len(train_iter)),
'['+ '%02d:%02d' % (tim//60, tim%60)+'<'+
'%02d:%02d,' % (eta // 60, eta % 60),
'%.2f s/it]' % pert,
end='\r'
)
if args.dali:
X = data[0]['data'].to(device, non_blocking=True)
y = data[0]['label'].squeeze(-1).long().to(device, non_blocking=True)
else:
X = data[0].to(device, non_blocking=True)
y = data[1].to(device, non_blocking=True)
output = net(X)
label = F.one_hot(y, class_num).float() if isinstance(criterion, torch.nn.MSELoss) else y
loss = criterion(output, label)
optimizer.zero_grad()
if args.apex:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
optimizer.step()
elif args.amp:
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
else:
loss.backward()
optimizer.step()
acc, = accuracy(output, y, topk=(1,))
if args.attout: time_tot.update(count_output(net, y), y.shape[0])
loss_tot.update(loss.item(), output.shape[0])
acc_tot.update(acc, output.shape[0])
scheduler.step()
if args.local_rank == int(args.device):
args.logger.info('-'*10+ 'Epoch:' + str(epoch + 1)+ '-'*10 + '\n' +
'<Train> acc:%.6f, loss:%.6f, lr:%.6f, time:%.1f s'
% (acc_tot.avg, loss_tot.avg, optimizer.param_groups[0]['lr'], time.time() - start))
if args.saved_dir is not None:
saved_dir = os.path.join(args.saved_dir, 'checkpoints.pth')
if epoch % args.eval_every == 0:
test_acc, test_loss = evaluate_net(test_iter, net, criterion, device, args)
if test_acc > best:
best = test_acc
if args.save_log:
torch.save(net.state_dict(), saved_dir)
args.logger.info("saved model on"+ saved_dir+"-"+ str(best))
if args.local_rank == int(args.device):
args.logger.info("<Best> acc:%.6f \n" % best)
if args.wandb:
wandb.log({"epoch": epoch,
"train_loss": loss_tot.avg,
"test_loss": test_loss,
"train_acc": acc_tot.avg.item(),
"test_acc": test_acc.item(),
"best": best,
})
if args.save_log:
dic = {"epoch": epoch,
"train_loss": loss_tot.avg,
"test_loss": test_loss,
"train_acc" : acc_tot.avg.item(),
"test_acc": test_acc.item(),
}
result2csv(os.path.join(args.saved_dir, 'result.csv'), dic)
# break
if args.local_rank == int(args.device):
args.logger.info("Best test acc: %.6f" % best)
args.acc = best.detach().cpu().item()
result2csv(args.saved_csv, args)
print("Write results to csv file.")
def evaluate_net(data_iter, net, criterion, device, args=None):
class_num = args.num_classes
net = net.to(device)
loss_tot = AverageMeter()
acc_tot = AverageMeter()
with torch.no_grad():
start = time.time()
for ind, data in enumerate(data_iter):
if args is None:
print("Testing", str(ind) + '/' + str(len(data_iter)), end='\r')
elif args.local_rank == int(args.device):
print("Testing", str(ind) + '/' + str(len(data_iter)), end='\r')
X = data[0].to(device, non_blocking=True)
y = data[1].to(device, non_blocking=True)
net.eval()
output = net(X.to(device)).detach()
net.train()
label = F.one_hot(y, class_num).float() if isinstance(criterion, torch.nn.MSELoss) else y
loss = criterion(output, label)
acc, = accuracy(output, y.to(device), topk=(1,))
acc_tot.update(acc, output.shape[0])
loss_tot.update(loss.item(), output.shape[0])
if args is None:
print('<Test> acc:%.6f, time:%.1f s' % (acc_tot.avg, time.time() - start))
elif args.local_rank == int(args.device):
args.logger.info('<Test> acc:%.6f, time:%.1f s' % (acc_tot.avg, time.time() - start))
return acc_tot.avg, loss_tot.avg
if __name__ == "__main__":
args = parse_args()
seed_all(args.seed)
args.logger = logging.getLogger('train')
if args.wandb:
wandb.init(project='MSG_NNR1', resume="allow")
wandb.config.update(vars(args))
now = (datetime.datetime.now()+datetime.timedelta(hours=8)).strftime("%Y%m%d-%H%M%S")
args.time = now
exp_name = '-'.join([
now,
args.model,
args.dataset,
str(args.T),
args.act_func,
args.sub_func,
str(args.sub_prob),
args.mix_mode,
str(args.seed)])
args.saved_dir = os.path.join(args.saved_dir, exp_name)
if args.save_log: os.makedirs(args.saved_dir, exist_ok=True)
setup_default_logging(log_path=os.path.join(args.saved_dir, 'log.txt') if args.save_log else None)
CKPT_DIR = os.path.join(args.saved_dir, exp_name)
world_size = 1
if not args.distributed:
os.environ["LOCAL_RANK"] = args.device
local_rank = int(os.environ["LOCAL_RANK"])
args.local_rank = local_rank
if args.local_rank == int(args.device):
args_dict = "Namespace:\n"
for eachArg, value in args.__dict__.items():
args_dict += eachArg + ' : ' + str(value) + '\n'
args.logger.info(args_dict)
if args.use_cuda and torch.cuda.is_available():
device = torch.device("cuda", local_rank)
if args.distributed:
torch.cuda.set_device(local_rank)
torch.distributed.init_process_group(backend='nccl')
else:
device = torch.device("cpu")
if args.dataset in ['mnist', 'fashionmnist']:
train_loader = eval('get_%s_data' % args.dataset)(
args.data_path, args.batch_size, train=True, num_workers=args.num_workers)
test_loader = eval('get_%s_data' % args.dataset)(
args.data_path, args.batch_size, train=False, num_workers=args.num_workers)
in_channels = 1
elif args.dataset in ['cifar10', 'cifar100', 'imagenet']:
train_loader = eval('get_%s_data' % args.dataset)(
args.data_path, args.batch_size, train=True,
num_workers=args.num_workers, distributed=args.distributed)
test_loader = eval('get_%s_data' % args.dataset)(
args.data_path, args.batch_size, train=False,
num_workers=args.num_workers, distributed=args.distributed)
in_channels = 3
elif args.dataset in ['dvsgesture', 'dvscifar10', 'ncaltech101', 'ncars', 'nmnist']:
train_loader = eval('get_%s_data' % args.dataset)(
args.data_path, args.batch_size, T=args.T, train=True, num_workers=args.num_workers)
test_loader = eval('get_%s_data' % args.dataset)(
args.data_path, args.batch_size, T=args.T, train=False, num_workers=args.num_workers)
in_channels = 2
else:
raise NotImplementedError("Can't find the dataset loader")
args.num_classes = num_classes = cls_num_classes[args.dataset]
if args.model == 'mnistconvnet':
model = MNISTConvNet()
model.fc = nn.Linear(model.fc.in_features, num_classes)
elif args.model == 'cifarconvnet':
model = CIFARConvNet()
model.fc = nn.Linear(model.fc.in_features, num_classes)
elif args.model == 'dvsconvnet':
model = DVSConvNet()
model.fc = nn.Linear(model.fc.in_features, num_classes)
elif args.model == 'vggnet':
model = VGGNet()
model.fc = nn.Linear(model.fc.in_features, num_classes)
elif args.model == 'vgg16':
model = VGG16('avg')
model.fc = nn.Linear(model.fc.in_features, num_classes)
elif args.model == 'resnet18':
model = ResNet18(pool='avg')
model.fc = nn.Linear(model.fc.in_features, num_classes)
elif args.model == 'resnet34':
model = ResNet34(pool='avg')
model.fc = nn.Linear(model.fc.in_features, num_classes)
elif args.model == 'resnet18v2':
model = ResNet18v2()
model.fc = nn.Linear(model.fc.in_features, num_classes)
elif args.model == 'sewresnet18':
model = sew_resnet18()
model.fc = nn.Linear(model.fc.in_features, num_classes)
elif args.model == 'sewresnet34':
model = sew_resnet18()
model.fc = nn.Linear(model.fc.in_features, num_classes)
elif args.model == 'sewresnet50':
model = sew_resnet18()
model.fc = nn.Linear(model.fc.in_features, num_classes)
else:
raise NotImplementedError
# if args.resume != '':
# args.logger.info('keep training model: %s' % args.resume)
# model.load_state_dict(torch.load(args.resume, map_location=device))
if args.act_func != 'ann':
surrofunction = eval(args.act_func)(
alpha=args.alpha,
requires_grad=args.alpha_grad,
sub_func=args.sub_func,
sub_prob=args.sub_prob,
mix_mode=args.mix_mode)
neuronmodel = eval(args.neuron)(
act_func=surrofunction,
threshold=args.threshold,
tau=args.tau
)
model = SpikeNet(model,
T=args.T,
encode_type=args.encode_type,
neuron=neuronmodel,
in_channels=in_channels
)
if args.resume != '':
args.logger.info('keep training model: %s' % args.resume)
model.load_state_dict(torch.load(args.resume, map_location=device))
args.logger.info(model)
args.init_lr = args.init_lr * args.batch_size * world_size / 1024.0
if args.optim == 'adam':
optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, weight_decay=args.weight_decay)
elif args.optim == 'adamW':
optimizer = torch.optim.AdamW(model.parameters(), lr=args.init_lr, weight_decay=args.weight_decay)
elif args.optim == 'sgd':
optimizer = torch.optim.SGD(model.parameters(), lr=args.init_lr, weight_decay=args.weight_decay,
momentum=args.momentum)
else:
raise NotImplementedError
if args.apex:
model, optimizer = amp.initialize(model, optimizer, opt_level="O1")
if args.distributed:
model = DDP(model.cuda(),device_ids=[local_rank], output_device=local_rank)
if args.loss == 'ce':
criterion = nn.CrossEntropyLoss(label_smoothing=args.label_smoothing)
elif args.loss == 'mse':
criterion = nn.MSELoss()
else:
raise NotImplementedError
if args.schedu == 'step':
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.step_size, args.lr_gamma)
elif args.schedu == 'mstep':
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, args.milestones, args.lr_gamma)
elif args.schedu == 'cosin':
# scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs, 0)
warm_up_with_cosine_lr = lambda epoch: epoch / args.warmup * (1 - args.warmup_lr_init) + args.warmup_lr_init if epoch < args.warmup \
else args.min_lr + 0.5 * (1.0 - args.min_lr) * (math.cos((epoch - args.warmup) / (args.epochs - args.warmup) * math.pi) + 1)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=warm_up_with_cosine_lr)
else:
raise NotImplementedError
train_net(model,
train_loader, test_loader,
optimizer, scheduler, criterion,
device,
args)