-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
49 lines (39 loc) · 1.88 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from interface.gui import GUI
from graph.distances import weighted_distance, cosine_score, manhattan_distance, euclidean_distance, best_of_the_best_distance, cosine_v_distance, l2__distance
from indexing.indexes import HyperGraph
T = 6
weighted_hyper_graph = HyperGraph(distance=weighted_distance, threshold=T, centroids=[], graphs=[])
weighted_hyper_graph.load_clusters("pickles/hyper_graphs", "weighted_6.p")
cosine_hyper_graph = HyperGraph(distance=cosine_score, threshold=T, centroids=[], graphs=[])
cosine_hyper_graph.load_clusters("pickles/hyper_graphs", "cosine_6.p")
manhattan_hyper_graph = HyperGraph(distance=manhattan_distance, threshold=T, centroids=[], graphs=[])
manhattan_hyper_graph.load_clusters("pickles/hyper_graphs", "manhattan_6.p")
euclidean_hyper_graph = HyperGraph(distance=euclidean_distance, threshold=T, centroids=[], graphs=[])
euclidean_hyper_graph.load_clusters("pickles/hyper_graphs", "euclidean_6.p")
l2_hyper_graph = HyperGraph(distance=l2__distance, threshold=1.5, centroids=[], graphs=[])
l2_hyper_graph.load_clusters("pickles/hyper_graphs", "l2_6.p")
cosine_v_hyper_graph = HyperGraph(distance=cosine_v_distance, threshold=0.055, centroids=[], graphs=[])
cosine_v_hyper_graph.load_clusters("pickles/hyper_graphs", "cosine_v_0_3.p")
best_hyper_graph = HyperGraph(distance=best_of_the_best_distance, threshold=10, centroids=[], graphs=[])
best_hyper_graph.load_clusters("pickles/hyper_graphs", "best_distance_1.5.p")
user_interface = GUI(
[
weighted_hyper_graph,
cosine_hyper_graph,
manhattan_hyper_graph,
euclidean_hyper_graph,
best_hyper_graph,
cosine_v_hyper_graph,
l2_hyper_graph
],
[
"weighted distance",
"cosine score",
"manhattan distance",
"euclidean distance",
"body distance",
"cosine v distance",
"l2 v distance"
]
)
user_interface.run()