|
| 1 | +from cryptomite.dodis import Dodis |
| 2 | +from cryptomite.toeplitz import Toeplitz |
| 3 | +from cryptomite.utils import von_neumann |
| 4 | +from cryptomite.trevisan import Trevisan |
| 5 | +from numpy.random import randint |
| 6 | +import numpy as np |
| 7 | + |
| 8 | +from time import time |
| 9 | + |
| 10 | +import pandas as pd |
| 11 | + |
| 12 | + |
| 13 | +cache1 = dict() |
| 14 | +cache2 = dict() |
| 15 | + |
| 16 | +N_REPEATS = 5 |
| 17 | + |
| 18 | +seed_caches = [dict() for _ in range(N_REPEATS)] |
| 19 | +cache3 = dict() |
| 20 | +def get_random(cache, n): |
| 21 | + if n not in cache: |
| 22 | + cache[n] = randint(0, 2, size=n) |
| 23 | + |
| 24 | + return cache[n] |
| 25 | + |
| 26 | +# compare with naive |
| 27 | + |
| 28 | +inp_lens = [x * 10 ** n for x in [10, 18, 32, 56] for n in range(1, 10)] |
| 29 | +# inp_lens = [10 ** 8] |
| 30 | +names = ["Extractor", "Input Length", "Ratio"] |
| 31 | +#ratios = (0.5, 0.75) |
| 32 | +ratios = [0.5] |
| 33 | +columns = ["Wait (s)"] |
| 34 | +indices = [] |
| 35 | +rows = [] |
| 36 | + |
| 37 | +# Dodis |
| 38 | +print("\nDodis: ", end="", flush=True) |
| 39 | +for inp_len in inp_lens: |
| 40 | + inp1 = get_random(cache1, inp_len) |
| 41 | + inp2 = get_random(cache2, inp_len) |
| 42 | + |
| 43 | + for ratio in ratios: |
| 44 | + waits = [] |
| 45 | + for i in range(N_REPEATS): |
| 46 | + inp2 = get_random(seed_caches[i], inp_len) |
| 47 | + out_len = int(inp_len * ratio) |
| 48 | + ext = Dodis(inp_len, out_len) |
| 49 | + start = time() |
| 50 | + ext.extract(inp1, inp2) |
| 51 | + wait = time() - start |
| 52 | + waits.append(wait) |
| 53 | + print(".", end="", flush=True) |
| 54 | + print("|", end="", flush=True) |
| 55 | + rows.append(sum(waits) / len(waits)) |
| 56 | + indices.append(('Dodis', inp_len, ratio)) |
| 57 | + |
| 58 | +# VN |
| 59 | +print("\nVN: ", end="", flush=True) |
| 60 | +for inp_len in inp_lens: |
| 61 | + waits = [] |
| 62 | + for i in range(N_REPEATS): |
| 63 | + inp1 = get_random(seed_caches[i], inp_len) |
| 64 | + start = time() |
| 65 | + von_neumann(inp1) |
| 66 | + wait = time() - start |
| 67 | + waits.append(wait) |
| 68 | + print(".", end="", flush=True) |
| 69 | + print("|", end="", flush=True) |
| 70 | + rows.append(sum(waits) / len(waits)) |
| 71 | + indices.append(('Von Neumann', inp_len, np.nan)) |
| 72 | + |
| 73 | +# Toeplitz |
| 74 | +print("\nToeplitz", end="", flush=True) |
| 75 | +for inp_len in inp_lens: |
| 76 | + inp1 = get_random(cache1, inp_len) |
| 77 | + |
| 78 | + for ratio in ratios: |
| 79 | + out_len = int(inp_len * ratio) |
| 80 | + waits = [] |
| 81 | + for i in range(N_REPEATS): |
| 82 | + seed = get_random(seed_caches[i], inp_len + out_len - 1) |
| 83 | + ext = Toeplitz(inp_len, out_len) |
| 84 | + start = time() |
| 85 | + ext.extract(inp1, seed) |
| 86 | + wait = time() - start |
| 87 | + waits.append(wait) |
| 88 | + print(".", end="", flush=True) |
| 89 | + print("|", end="", flush=True) |
| 90 | + rows.append(sum(waits) / len(waits)) |
| 91 | + indices.append(('Toeplitz', inp_len, ratio)) |
| 92 | + |
| 93 | +# Trevisan |
| 94 | +print("\nTrevisan: ", end="", flush=True) |
| 95 | +for inp_len in inp_lens: |
| 96 | + if inp_len > 10000: |
| 97 | + continue |
| 98 | + inp1 = get_random(cache1, inp_len) |
| 99 | + |
| 100 | + for ratio in ratios: |
| 101 | + min_ent = int(inp_len * ratio) |
| 102 | + ext = Trevisan(inp_len, min_ent, 2 ** -20) |
| 103 | + seed_length = ext.ext.get_seed_length() |
| 104 | + waits = [] |
| 105 | + for i in range(N_REPEATS): |
| 106 | + seed = get_random(seed_caches[i], seed_length) |
| 107 | + start = time() |
| 108 | + ext.extract(inp1, seed) |
| 109 | + wait = time() - start |
| 110 | + waits.append(wait) |
| 111 | + print(".", end="", flush=True) |
| 112 | + rows.append(sum(waits) / len(waits)) |
| 113 | + indices.append(('Trevisan', inp_len, ratio)) |
| 114 | +print("") |
| 115 | + |
| 116 | +index = pd.MultiIndex.from_tuples(indices, names=names) |
| 117 | + |
| 118 | +df = pd.DataFrame(rows, index=index, columns=columns) |
| 119 | + |
| 120 | +print(df) |
| 121 | + |
| 122 | +ndf = df.copy().reset_index() |
| 123 | +ndf.loc[ndf["Extractor"] == "Von Neumann", "Ratio"] = 0.5 |
| 124 | +ndf["Rate"] = ndf["Input Length"] * ndf["Ratio"] / ndf["Wait (s)"] |
0 commit comments