-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.py
580 lines (506 loc) · 24.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
import os
import time
import shutil
import random
import datetime
import numpy as np
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.nn.functional as F
from collections import defaultdict
from torch.nn.utils import clip_grad_norm_
from ops.dataset import TSNDataSet
from ops.models import TSN
from ops.transforms import *
from opts import parser
from ops import dataset_config
from ops.utils import AverageMeter, accuracy
from ops.temporal_shift import make_temporal_pool
best_prec1 = 0
def main():
print(datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
global args, best_prec1
args = parser.parse_args()
##asset check ####
if args.use_finetuning:
assert args.finetune_start_epoch > args.sup_thresh
num_class, args.train_list, args.val_list, args.root_path, prefix = dataset_config.return_dataset(args.dataset,args.modality)
full_arch_name = args.arch
if args.temporal_pool:
full_arch_name += '_tpool'
args.store_name = '_'.join(
['TCL', datetime.datetime.now().strftime("%Y%m%d-%H%M%S"), args.dataset, full_arch_name, 'p%.2f' % args.percentage,'th%.2f' % args.threshold,'gamma%0.2f' % args.gamma,'mu%0.2f'% args.mu,'seed%d' % args.seed,'seg%d' % args.num_segments, 'bs%d' % args.batch_size,
'e{}'.format(args.epochs)])
if args.dense_sample:
args.store_name += '_dense'
if args.non_local > 0:
args.store_name += '_nl'
if args.suffix is not None:
args.store_name += '_{}'.format(args.suffix)
print('storing name: ' + args.store_name)
check_rootfolders()
args.labeled_train_list, args.unlabeled_train_list=get_training_filenames(args.train_list)
model = TSN(num_class, args.num_segments, args.modality,
base_model=args.arch,
consensus_type=args.consensus_type,
dropout=args.dropout,
img_feature_dim=args.img_feature_dim,
partial_bn=not args.no_partialbn,
pretrain=args.pretrain,
second_segments = args.second_segments,
is_shift=args.shift, shift_div=args.shift_div, shift_place=args.shift_place,
fc_lr5=not (args.tune_from and args.dataset in args.tune_from),
temporal_pool=args.temporal_pool,
non_local=args.non_local)
print("==============model desccription=============")
print(model)
crop_size = model.crop_size
scale_size = model.scale_size
input_mean = model.input_mean
input_std = model.input_std
policies = model.get_optim_policies()
train_augmentation = model.get_augmentation(flip=args.flip)
model = torch.nn.DataParallel(model, device_ids=args.gpus).cuda()
optimizer = torch.optim.SGD(policies,
args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
if args.resume:
if args.temporal_pool: # early temporal pool so that we can load the state_dict
make_temporal_pool(model.module.base_model, args.num_segments)
if os.path.isfile(args.resume):
print(("=> loading checkpoint '{}'".format(args.resume)))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print(("=> loaded checkpoint '{}' (epoch {})"
.format(args.evaluate, checkpoint['epoch'])))
else:
print(("=> no checkpoint found at '{}'".format(args.resume)))
if args.tune_from:
print(("=> fine-tuning from '{}'".format(args.tune_from)))
sd = torch.load(args.tune_from)
sd = sd['state_dict']
model_dict = model.state_dict()
replace_dict = []
for k, v in sd.items():
if k not in model_dict and k.replace('.net', '') in model_dict:
print('=> Load after remove .net: ', k)
replace_dict.append((k, k.replace('.net', '')))
for k, v in model_dict.items():
if k not in sd and k.replace('.net', '') in sd:
print('=> Load after adding .net: ', k)
replace_dict.append((k.replace('.net', ''), k))
for k, k_new in replace_dict:
sd[k_new] = sd.pop(k)
keys1 = set(list(sd.keys()))
keys2 = set(list(model_dict.keys()))
set_diff = (keys1 - keys2) | (keys2 - keys1)
print('#### Notice: keys that failed to load: {}'.format(set_diff))
if args.dataset not in args.tune_from: # new dataset
print('=> New dataset, do not load fc weights')
sd = {k: v for k, v in sd.items() if 'fc' not in k}
model_dict.update(sd)
model.load_state_dict(model_dict)
if args.temporal_pool and not args.resume:
make_temporal_pool(model.module.base_model, args.num_segments)
cudnn.benchmark = True
# Data loading code
if args.modality != 'RGBDiff':
normalize = GroupNormalize(input_mean, input_std)
else:
normalize = IdentityTransform()
if args.modality == 'RGB':
data_length = 1
elif args.modality in ['Flow', 'RGBDiff']:
data_length = 5
labeled_trainloader = torch.utils.data.DataLoader(
TSNDataSet(args.root_path, args.labeled_train_list, unlabeled=False,
num_segments=args.num_segments,
new_length=data_length,
modality=args.modality,
image_tmpl=prefix,
second_segments = args.second_segments,
transform=torchvision.transforms.Compose([
train_augmentation,
Stack(
roll=(args.arch in ['BNInception', 'InceptionV3'])),
ToTorchFormatTensor(
div=(args.arch not in ['BNInception', 'InceptionV3'])),
normalize,
]), dense_sample=args.dense_sample),
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True,
drop_last=False) # prevent something not % n_GPU
unlabeled_trainloader = torch.utils.data.DataLoader(
TSNDataSet(args.root_path, args.unlabeled_train_list, unlabeled=True,
num_segments=args.num_segments,
new_length=data_length,
modality=args.modality,
image_tmpl=prefix,
second_segments = args.second_segments,
transform=torchvision.transforms.Compose([
train_augmentation,
Stack(
roll=(args.arch in ['BNInception', 'InceptionV3'])),
ToTorchFormatTensor(
div=(args.arch not in ['BNInception', 'InceptionV3'])),
normalize,
]), dense_sample=args.dense_sample),
batch_size=np.int(np.round(args.mu * args.batch_size)), shuffle=True,
num_workers=args.workers, pin_memory=True,
drop_last=False) # prevent something not % n_GPU
val_loader = torch.utils.data.DataLoader(
TSNDataSet(args.root_path, args.val_list, unlabeled=False,
num_segments=args.num_segments,
new_length=data_length,
modality=args.modality,
image_tmpl=prefix,
random_shift=False,
second_segments = args.second_segments,
transform=torchvision.transforms.Compose([
GroupScale(int(scale_size)),
GroupCenterCrop(crop_size),
Stack(
roll=(args.arch in ['BNInception', 'InceptionV3'])),
ToTorchFormatTensor(
div=(args.arch not in ['BNInception', 'InceptionV3'])),
normalize,
]), dense_sample=args.dense_sample),
batch_size=args.valbatchsize, shuffle=False,
num_workers=args.workers, pin_memory=True)
# define loss function (criterion) and optimizer
if args.loss_type == 'nll':
criterion = torch.nn.CrossEntropyLoss().cuda()
else:
raise ValueError("Unknown loss type")
for group in policies:
print(('group: {} has {} params, lr_mult: {}, decay_mult: {}'.format(
group['name'], len(group['params']), group['lr_mult'], group['decay_mult'])))
if args.evaluate:
validate(val_loader, model, criterion, 0)
return
log_training = open(os.path.join(
args.root_log, args.store_name, 'log.csv'), 'w')
with open(os.path.join(args.root_log, args.store_name, 'args.txt'), 'w') as f:
f.write(str(args))
default_start = 0
is_finetune_lr_set= False
for epoch in range(args.start_epoch, args.epochs):
if args.use_finetuning and epoch >= args.finetune_start_epoch:
args.eval_freq = args.finetune_stage_eval_freq
if args.use_finetuning and epoch >= args.finetune_start_epoch and args.finetune_lr > 0.0 and not is_finetune_lr_set:
args.lr = args.finetune_lr
default_start = args.finetune_start_epoch
is_finetune_lr_set = True
adjust_learning_rate(optimizer, epoch, args.lr_type, args.lr_steps,default_start, using_policy=True)
# train for one epoch
train(labeled_trainloader, unlabeled_trainloader, model,
criterion, optimizer, epoch, log_training)
# evaluate on validation set
if ((epoch + 1) % args.eval_freq == 0 or epoch == (args.epochs - 1) or (epoch+1)== args.finetune_start_epoch) :
prec1 = validate(val_loader, model, criterion,
epoch, log_training)
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
output_best = 'Best Prec@1: %.3f\n' % (best_prec1)
print(output_best)
log_training.write(output_best + '\n')
log_training.flush()
if args.use_finetuning and (epoch+1) == args.finetune_start_epoch:
one_stage_pl=True
else:
one_stage_pl = False
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'best_prec1': best_prec1,
}, is_best,one_stage_pl)
def train(labeled_trainloader, unlabeled_trainloader, model, criterion, optimizer, epoch, log):
batch_time = AverageMeter()
data_time = AverageMeter()
total_losses = AverageMeter()
supervised_losses = AverageMeter()
contrastive_losses = AverageMeter()
group_contrastive_losses = AverageMeter()
pl_losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
model = model.cuda()
if args.no_partialbn:
model.module.partialBN(False)
else:
model.module.partialBN(True)
# switch to train mode
model.train()
if epoch >= args.sup_thresh or (args.use_finetuning and epoch >= args.finetune_start_epoch):
data_loader = zip(labeled_trainloader, unlabeled_trainloader)
else:
data_loader = labeled_trainloader
end = time.time()
for i, data in enumerate(data_loader):
# measure data loading time
data_time.update(time.time() - end)
#reseting losses
contrastive_loss = torch.tensor(0.0).cuda()
pl_loss = torch.tensor(0.0).cuda()
loss = torch.tensor(0.0).cuda()
group_contrastive_loss = torch.tensor(0.0).cuda()
if epoch >= args.sup_thresh or (args.use_finetuning and epoch >= args.finetune_start_epoch):
(labeled_data,unlabeled_data) =data
images_fast, images_slow = unlabeled_data
images_slow = images_slow.cuda()
images_fast = images_fast.cuda()
images_slow = torch.autograd.Variable(images_slow)
images_fast = torch.autograd.Variable(images_fast)
# contrastive_loss
output_fast = model(images_fast)
if not args.use_finetuning or epoch < args.finetune_start_epoch:
output_slow = model(images_slow, unlabeled=True)
output_fast_detach = output_fast.detach()
if epoch >= args.sup_thresh and epoch < args.finetune_start_epoch:
contrastive_loss = simclr_loss(torch.softmax(output_fast_detach,dim=1),torch.softmax(output_slow,dim=1))
if args.use_group_contrastive:
grp_unlabeled_8seg = get_group(output_fast_detach)
grp_unlabeled_4seg = get_group(output_slow)
group_contrastive_loss = compute_group_contrastive_loss(grp_unlabeled_8seg,grp_unlabeled_4seg)
elif args.use_finetuning and epoch >= args.finetune_start_epoch:
pseudo_label = torch.softmax(output_fast_detach, dim=-1)
max_probs, targets_pl = torch.max(pseudo_label, dim=-1)
mask = max_probs.ge(args.threshold).float()
targets_pl = torch.autograd.Variable(targets_pl)
pl_loss = (F.cross_entropy(output_fast, targets_pl,
reduction='none') * mask).mean()
else:
labeled_data = data
input, target = labeled_data
target = target.cuda()
input = input.cuda()
input = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
output = model(input)
loss = criterion(output, target_var)
total_loss = loss + args.gamma*contrastive_loss + group_contrastive_loss + args.gamma_finetune*pl_loss
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
if epoch >= args.sup_thresh:
total_losses.update(total_loss.item(), input.size(0)+args.mu*input.size(0))
else:
total_losses.update(total_loss.item(), input.size(0))
supervised_losses.update(loss.item(), input.size(0))
contrastive_losses.update(contrastive_loss.item(), input.size(0)+args.mu*input.size(0))
group_contrastive_losses.update(group_contrastive_loss.item(), input.size(0)+args.mu*input.size(0))
pl_losses.update(pl_loss.item(), input.size(0)+args.mu*input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
# compute gradient and do SGD step
total_loss.backward()
if args.clip_gradient is not None:
total_norm = clip_grad_norm_(
model.parameters(), args.clip_gradient)
optimizer.step()
optimizer.zero_grad()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
output = ('Epoch: [{0}][{1}], lr: {lr:.5f}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'TotalLoss {total_loss.val:.4f} ({total_loss.avg:.4f})\t'
'Supervised Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Contrastive_Loss {contrastive_loss.val:.4f} ({contrastive_loss.avg:.4f})\t'
'Group_contrastive_Loss {group_contrastive_loss.val:.4f} ({group_contrastive_loss.avg:.4f})\t'
'Pseudo_Loss {pl_loss.val:.4f} ({pl_loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, batch_time=batch_time,
data_time=data_time, total_loss=total_losses,loss=supervised_losses,
contrastive_loss=contrastive_losses,group_contrastive_loss=group_contrastive_losses,pl_loss=pl_losses, top1=top1, top5=top5, lr=optimizer.param_groups[-1]['lr'] * 0.1)) # TODO
print(output)
log.write(output + '\n')
log.flush()
def validate(val_loader, model, criterion, epoch, log=None):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
with torch.no_grad():
for i, (input, target) in enumerate(val_loader):
target = target.cuda()
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
output = ('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
print(output)
if log is not None:
log.write(output + '\n')
log.flush()
output = ('Testing Results: Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Loss {loss.avg:.5f}'
.format(top1=top1, top5=top5, loss=losses))
print(output)
if log is not None:
log.write(output + '\n')
log.flush()
return top1.avg
def get_group(output):
logits = torch.softmax(output, dim=-1)
_ , target = torch.max(logits, dim=-1)
groups ={}
for x,y in zip(target, logits):
group = groups.get(x.item(),[])
group.append(y)
groups[x.item()]= group
return groups
def compute_group_contrastive_loss(grp_dict_un,grp_dict_lab):
loss = []
l_fast =[]
l_slow =[]
for key in grp_dict_un.keys():
if key in grp_dict_lab:
l_fast.append(torch.stack(grp_dict_un[key]).mean(dim=0))
l_slow.append(torch.stack(grp_dict_lab[key]).mean(dim=0))
if len(l_fast) > 0:
l_fast = torch.stack(l_fast)
l_slow = torch.stack(l_slow)
loss = simclr_loss(l_fast,l_slow)
loss = max(torch.tensor(0.000).cuda(),loss)
else:
loss= torch.tensor(0.0).cuda()
return loss
def save_checkpoint(state, is_best, one_stage_pl=False):
filename = '%s/%s/ckpt.pth.tar' % (args.root_model, args.store_name)
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, filename.replace('pth.tar', 'best.pth.tar'))
if one_stage_pl:
shutil.copyfile(filename, filename.replace('pth.tar', 'before_finetune.pth.tar'))
def adjust_learning_rate(optimizer, epoch, lr_type, lr_steps,default_start,using_policy):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
if lr_type == 'step':
decay = 0.1 ** (sum(epoch >= np.array(lr_steps)))
lr = args.lr * decay
decay = args.weight_decay
elif lr_type == 'cos':
import math
lr = 0.5 * args.lr * (1 + math.cos(math.pi * (epoch - default_start) / args.epochs))
decay = args.weight_decay
else:
raise NotImplementedError
if using_policy:
for param_group in optimizer.param_groups:
param_group['lr'] = lr * param_group['lr_mult']
param_group['weight_decay'] = decay * param_group['decay_mult']
else:
for param_group in optimizer.param_groups:
param_group['lr'] = lr
param_group['weight_decay'] = decay
def check_rootfolders():
"""Create log and model folder"""
folders_util = [args.root_log, args.root_model,
os.path.join(args.root_log, args.store_name),
os.path.join(args.root_model, args.store_name)]
for folder in folders_util:
if not os.path.exists(folder):
print('creating folder ' + folder)
os.mkdir(folder)
def split_file(file, unlabeled, labeled, percentage, isShuffle=True, seed=123, strategy='classwise'):
"""Splits a file in 2 given the `percentage` to go in the large file."""
if strategy == 'classwise':
if os.path.exists(unlabeled) and os.path.exists(labeled):
print("path exists with this seed and strategy")
return
random.seed(seed)
#creating dictionary against each category
def del_list(list_delete,indices_to_delete):
for i in sorted(indices_to_delete, reverse=True):
del(list_delete[i])
main_dict= defaultdict(list)
with open(file,'r') as mainfile:
lines = mainfile.readlines()
for line in lines:
video_info = line.strip().split()
main_dict[video_info[2]].append((video_info[0],video_info[1]))
with open(unlabeled,'w') as ul,\
open(labeled,'w') as l:
for key,value in main_dict.items():
length_videos = len(value)
ul_no_videos = int((length_videos* percentage))
indices = random.sample(range(length_videos),ul_no_videos)
for index in indices:
line_to_written = value[index][0] + " " + value[index][1] + " " +key+"\n"
ul.write(line_to_written)
del_list(value,indices)
for label_index in range(len(value)):
line_to_written = value[label_index][0] + " " + value[label_index][1] + " " +key+"\n"
l.write(line_to_written)
if strategy == 'overall':
if os.path.exists(unlabeled) and os.path.exists(labeled):
print("path exists with this seed and strategy")
return
random.seed(seed)
with open(file, 'r') as fin, \
open(unlabeled, 'w') as foutBig, \
open(labeled, 'w') as foutSmall:
# if didn't count you could only approximate the percentage
lines = fin.readlines()
random.shuffle(lines)
nLines = sum(1 for line in lines)
nTrain = int(nLines*percentage)
i = 0
for line in lines:
line = line.rstrip('\n') + "\n"
if i < nTrain:
foutBig.write(line)
i += 1
else:
foutSmall.write(line)
def get_training_filenames(train_file_path):
labeled_file_path = os.path.join("Run_"+str(int(np.round((1-args.percentage)*100))),args.dataset+'_'+str(args.seed)+args.strategy+"_labeled_training.txt")
unlabeled_file_path = os.path.join("Run_"+str(int(np.round((1-args.percentage)*100))),args.dataset+'_'+str(args.seed)+args.strategy+"_unlabeled_training.txt")
split_file(train_file_path, unlabeled_file_path,
labeled_file_path,args.percentage, isShuffle=True,seed=args.seed, strategy=args.strategy)
return labeled_file_path, unlabeled_file_path
def simclr_loss(output_fast,output_slow,normalize=True):
out = torch.cat((output_fast, output_slow), dim=0)
sim_mat = torch.mm(out, torch.transpose(out,0,1))
if normalize:
sim_mat_denom = torch.mm(torch.norm(out, dim=1).unsqueeze(1), torch.norm(out, dim=1).unsqueeze(1).t())
sim_mat = sim_mat / sim_mat_denom.clamp(min=1e-16)
sim_mat = torch.exp(sim_mat / args.Temperature)
if normalize:
sim_mat_denom = torch.norm(output_fast, dim=1) * torch.norm(output_slow, dim=1)
sim_match = torch.exp(torch.sum(output_fast * output_slow, dim=-1) / sim_mat_denom / args.Temperature)
else:
sim_match = torch.exp(torch.sum(output_fast * output_slow, dim=-1) / args.Temperature)
sim_match = torch.cat((sim_match, sim_match), dim=0)
norm_sum = torch.exp(torch.ones(out.size(0)) / args.Temperature )
norm_sum = norm_sum.cuda()
loss = torch.mean(-torch.log(sim_match / (torch.sum(sim_mat, dim=-1) - norm_sum)))
return loss
if __name__ == '__main__':
main()