-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathown_icp_trunk.cpp
388 lines (315 loc) · 14.3 KB
/
own_icp_trunk.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
#include "ros/ros.h"
#include "sensor_msgs/PointCloud2.h"
#include "sensor_msgs/Imu.h"
#include <pcl/point_types.h>
#include <pcl/conversions.h>
#include <pcl/filters/passthrough.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/filters/approximate_voxel_grid.h>
#include <pcl_conversions/pcl_conversions.h>
#include <pcl/registration/icp.h>
#include <pcl/common/pca.h>
#include <pcl/common/common.h>
#include <pcl/registration/correspondence_estimation.h>
#include <pcl/registration/icp_nl.h>
#include <pcl/registration/correspondence_rejection_surface_normal.h>
#include <pcl/registration/correspondence_rejection_distance.h>
#include <pcl/registration/registration.h>
#include <pcl/registration/ia_kfpcs.h>
#include <pcl/search/kdtree.h>
#include <pcl/features/normal_3d.h>
#include <pcl/features/fpfh.h>
#include <pcl/registration/ia_ransac.h>
#include <Eigen/Dense>
#include <iostream>
#include <fstream>
using namespace Eigen;
void lidarOdomCallback(sensor_msgs::PointCloud2::ConstPtr inputCloud);
void imuCallback(sensor_msgs::Imu::ConstPtr inputImu);
int corrSize = 0;
double initialTime = 0;
float initialXVelo = 0;
float initialYVelo = 0;
float initialZVelo = 0;
float totalYaw = 0;
float totalPitch = 0;
float totalRoll = 0;
float initialYaw = 0;
float initialPitch = 0;
float initialRoll = 0;
float prevX = 0;
float totalX = 0;
float count = 0;
int scalingCount = 0;
pcl::PointCloud<pcl::PointXYZ>::Ptr prevCloud (new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointNormal>::Ptr prevCloudNormals (new pcl::PointCloud<pcl::PointNormal>);
pcl::PointCloud<pcl::FPFHSignature33>::Ptr prevCloudFeatures (new pcl::PointCloud<pcl::FPFHSignature33>());
Matrix4f imuTransform = Matrix4f::Identity();
Matrix4f initialPose = Matrix4f::Identity();
Matrix4f prevTransform = Matrix4f::Identity();
Matrix4f edgeTransform = Matrix4f::Identity();
std::list<Eigen::Matrix4f> imuBuffer;
std::list<float> xBuffer;
int divergeCount = 0;
ros::Publisher currentCloudPub;
ros::Publisher prevCloudPub;
ros::Publisher imuCloudPub;
ros::Publisher alignedCloudPub;
bool waitForImu = true;
// Define a new point representation for < x, y, z, curvature >
class MyPointRepresentation : public pcl::PointRepresentation <pcl::PointNormal>
{
using pcl::PointRepresentation<pcl::PointNormal>::nr_dimensions_;
public:
MyPointRepresentation ()
{
// Define the number of dimensions
nr_dimensions_ = 4;
}
// Override the copyToFloatArray method to define our feature vector
virtual void copyToFloatArray (const pcl::PointNormal &p, float * out) const
{
// < x, y, z, curvature >
out[0] = p.x;
out[1] = p.y;
out[2] = p.z;
out[3] = p.curvature;
}
};
int main(int argc, char **argv)
{
std::cout << "Starting Subscriber" << std::endl;
ros::init(argc, argv, "imu_lidar_fusion");
ros::NodeHandle n;
ros::Subscriber imuSub = n.subscribe("/kitti/oxts/imu", 1500, imuCallback);
ros::Subscriber pointCloudSub = n.subscribe("/kitti/velo/pointcloud", 1500, lidarOdomCallback);
currentCloudPub = n.advertise<sensor_msgs::PointCloud2>("currentCloud", 10, true);
prevCloudPub = n.advertise<sensor_msgs::PointCloud2>("prevCloud", 10, true);
imuCloudPub = n.advertise<sensor_msgs::PointCloud2>("imuCloud", 10, true);
alignedCloudPub = n.advertise<sensor_msgs::PointCloud2>("alignedCloud", 10, true);
while (ros::ok())
{
ros::spinOnce();
}
return 0;
}
void lidarOdomCallback(sensor_msgs::PointCloud2::ConstPtr inputCloud)
{
std::cout << "Starting ICP" << std::endl;
pcl::PointCloud<pcl::PointXYZ>::Ptr filteredCloud (new pcl::PointCloud<pcl::PointXYZ>);
pcl::fromROSMsg(*inputCloud, *filteredCloud);
double maxRange = std::numeric_limits<double>::max();
double minRange = -std::numeric_limits<double>::max();
std::vector<int> index;
pcl::removeNaNFromPointCloud(*filteredCloud, *filteredCloud, index);
pcl::VoxelGrid<pcl::PointXYZ> voxel_grid;
voxel_grid.setMinimumPointsNumberPerVoxel(20);
voxel_grid.setInputCloud (filteredCloud);
voxel_grid.setDownsampleAllData(false);
voxel_grid.setLeafSize (0.5, 0.5, 0.5);
voxel_grid.filter(*filteredCloud);
pcl::PassThrough<pcl::PointXYZ> pass_x;
pass_x.setFilterFieldName("x");
pass_x.setFilterLimits(minRange, maxRange);
pcl::PassThrough<pcl::PointXYZ> pass_y;
pass_y.setFilterFieldName("y");
pass_y.setFilterLimits(minRange, maxRange);
pcl::PassThrough<pcl::PointXYZ> pass_z;
pass_z.setFilterFieldName("z");
pass_z.setFilterLimits(minRange, maxRange);
pass_x.setInputCloud(filteredCloud->makeShared());
pass_x.filter(*filteredCloud);
pass_y.setInputCloud(filteredCloud->makeShared());
pass_y.filter(*filteredCloud);
pass_z.setInputCloud(filteredCloud->makeShared());
pass_z.filter(*filteredCloud);
pcl::PointCloud<pcl::PointNormal>::Ptr alignedCloud (new pcl::PointCloud<pcl::PointNormal>);
pcl::PointCloud<pcl::PointXYZ>::Ptr imuCloud (new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr kfpcsCloud (new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr sciaCloud (new pcl::PointCloud<pcl::PointXYZ>);
Eigen::Matrix4f currentPose;
Eigen::Matrix4f kfpcsTransform;
Eigen::Matrix4f sciaTransform;
std::cout << "Points in source: " << filteredCloud->size() << std::endl;
std::cout << "Points in target: " << prevCloud->size() << std::endl;
pcl::NormalEstimation<pcl::PointXYZ, pcl::PointNormal> normalEst;
normalEst.setInputCloud(filteredCloud);
//normalEst.useSensorOriginAsViewPoint();
normalEst.setViewPoint(0,0,0);
pcl::search::KdTree <pcl::PointXYZ>::Ptr searchTree (new pcl::search::KdTree <pcl::PointXYZ>());
normalEst.setSearchMethod(searchTree);
normalEst.setKSearch(10);
pcl::PointCloud<pcl::PointNormal>::Ptr filteredCloudNormals (new pcl::PointCloud<pcl::PointNormal>);
normalEst.compute(*filteredCloudNormals);
pcl::PointCloud<pcl::PointNormal>::Ptr sourceCloud (new pcl::PointCloud<pcl::PointNormal>);
pcl::copyPointCloud(*filteredCloud, *sourceCloud);
pcl::copyPointCloud(*filteredCloudNormals, *sourceCloud);
pcl::copyPointCloud(*filteredCloud, *filteredCloudNormals);
Vector3f worldTranslation;
Vector3f sensorTranslation;
// Instantiate our custom point representation (defined above) ...
MyPointRepresentation point_representation;
// ... and weight the 'curvature' dimension so that it is balanced against x, y, and z
float alpha[4] = {1.0, 1.0, 1.0, 1.0};
point_representation.setRescaleValues (alpha);
if (prevCloud->size() > 0 && imuBuffer.size() > 0)
{
std::cout << "First buffer element : " << imuBuffer.front() << std::endl;
std::cout << "Element transferred" << std::endl;
bool pause = true;
while (pause)
{
if (!waitForImu)
{
break;
}
std::cout << "Waitinf for IMU" << std::endl;
}
Eigen::Matrix4f currentImuTransform = imuBuffer.front();
imuBuffer.pop_front();
std::cout << "Buffer size: " << imuBuffer.size() << std::endl;
Matrix4f icpTransform = Matrix4f::Identity();
pcl::registration::CorrespondenceEstimation<pcl::PointNormal, pcl::PointNormal> est;
//std::cout << sourceCloud->size() << std::endl;
pcl::PointCloud<pcl::PointNormal>::ConstPtr filteredCloudNormalsConstPtr (new pcl::PointCloud<pcl::PointNormal> (*filteredCloudNormals->makeShared()));
pcl::PointCloud<pcl::PointNormal>::ConstPtr prevCloudNormalsConstPtr (new pcl::PointCloud<pcl::PointNormal> (*prevCloudNormals->makeShared()));
est.setInputSource (filteredCloudNormalsConstPtr->makeShared());
est.setInputTarget (prevCloudNormalsConstPtr->makeShared());
pcl::CorrespondencesPtr cor (new pcl::Correspondences);
est.determineCorrespondences (*cor, 2.0);
pcl::registration::CorrespondenceRejectorDistance distRejector;
distRejector.setMaximumDistance(1.0);
pcl::PointCloud<pcl::PointXYZ>::ConstPtr filteredCloudConstPtr (new pcl::PointCloud<pcl::PointXYZ> (*filteredCloud->makeShared()));
pcl::PointCloud<pcl::PointXYZ>::ConstPtr prevCloudConstPtr (new pcl::PointCloud<pcl::PointXYZ> (*prevCloud->makeShared()));
distRejector.setInputSource<pcl::PointXYZ> (filteredCloudConstPtr->makeShared());
distRejector.setInputTarget<pcl::PointXYZ> (prevCloudConstPtr->makeShared());
distRejector.setInputCorrespondences (cor);
//pcl::CorrespondencesPtr dist_cor (new pcl::Correspondences);
//distRejector.getRemainingCorrespondences (*cor, *dist_cor);
pcl::registration::CorrespondenceRejectorSurfaceNormal normRejector;
normRejector.initializeDataContainer<pcl::PointNormal, pcl::PointNormal>();
normRejector.setThreshold(0.5);
normRejector.setInputSource<pcl::PointNormal>(filteredCloudNormalsConstPtr->makeShared());
normRejector.setInputTarget<pcl::PointNormal>(filteredCloudNormalsConstPtr->makeShared());
// pcl::CorrespondencesPtr final_cor (new pcl::Correspondences);
// normRejector.getRemainingCorrespondences (*dist_cor, *final_cor);
pcl::IterativeClosestPointWithNormals<pcl::PointNormal, pcl::PointNormal> icp;
icp.setEnforceSameDirectionNormals(true);
icp.setInputSource(filteredCloudNormals->makeShared());
icp.setInputTarget(prevCloudNormals->makeShared());
icp.setMaxCorrespondenceDistance(1.0);
MyPointRepresentation point_representation;
//icp.setPointRepresentation (boost::make_shared<const MyPointRepresentation> (point_representation));
pcl::registration::CorrespondenceEstimation<pcl::PointNormal, pcl::PointNormal>::Ptr corrEstPtr (new pcl::registration::CorrespondenceEstimation<pcl::PointNormal, pcl::PointNormal> (est));
icp.setCorrespondenceEstimation(corrEstPtr);
pcl::registration::CorrespondenceRejectorDistance::Ptr distRejectorPtr (new pcl::registration::CorrespondenceRejectorDistance (distRejector));
pcl::registration::CorrespondenceRejectorSurfaceNormal::Ptr normRejectorPtr (new pcl::registration::CorrespondenceRejectorSurfaceNormal (normRejector));
std::cout << "Normal Threshold: " << normRejectorPtr -> getThreshold() << std::endl;
icp.addCorrespondenceRejector (distRejectorPtr);
icp.addCorrespondenceRejector (normRejectorPtr);
icp.setTransformationEpsilon (0.01); //gives good score
icp.setMaximumIterations (100);
icp.setTransformationRotationEpsilon (0.9999995);
//icp.setEuclideanFitnessEpsilon(0.01);
//alignedCloud = filteredCloudNormals;
icp.align(*alignedCloud, currentImuTransform);
if (icp.hasConverged())
{
icpTransform = icp.getFinalTransformation();
currentPose.block(0,0,3,3) = initialPose.block(0,0,3,3) * currentImuTransform.block(0,0,3,3);
sensorTranslation[0] = icpTransform(0,3);//+currentImuTransform(0,3)*2;
sensorTranslation[1] = icpTransform(1,3);
sensorTranslation[2] = icpTransform(2,3);
worldTranslation = initialPose.block(0,0,3,3)*sensorTranslation;
currentPose(0,3) = worldTranslation[0] + initialPose(0,3);
currentPose(1,3) = worldTranslation[1] + initialPose(1,3);
currentPose(2,3) = worldTranslation[2] + initialPose(2,3);
}
// std::cout << "Initial Pose: " << initialPose << std::endl;
std::cout << "Current Pose: " << currentPose << std::endl;
// std::cout << "Fitness Score: " << icp.getFitnessScore() << std::endl;
std::ofstream file;
file.open ("2011_10_03_drive_0027_sync.txt", std::ios::app);
for (int i = 0; i <= currentPose.rows()-2; i++)
{
for (int j = 0; j <= currentPose.cols()-1; j++)
{
file << currentPose(i,j) << " ";
}
}
file << std::endl;
initialPose = currentPose;
}
sensor_msgs::PointCloud2 filteredCloudMsg;
sensor_msgs::PointCloud2 prevCloudMsg;
sensor_msgs::PointCloud2 imuCloudMsg;
sensor_msgs::PointCloud2 alignedCloudMsg;
pcl::toROSMsg(*filteredCloud.get(), filteredCloudMsg);
pcl::toROSMsg(*prevCloud.get(), prevCloudMsg);
pcl::toROSMsg(*kfpcsCloud.get(), imuCloudMsg);
pcl::toROSMsg(*alignedCloud.get(), alignedCloudMsg);
currentCloudPub.publish(filteredCloudMsg);
prevCloudPub.publish(prevCloudMsg);
imuCloudPub.publish(imuCloudMsg);
alignedCloudPub.publish(alignedCloudMsg);
prevCloud->clear();
prevCloudNormals->clear();
pcl::copyPointCloud(*filteredCloud,*prevCloud);
pcl::copyPointCloud(*filteredCloudNormals,*prevCloudNormals);
// pcl::copyPointCloud(*filteredCloudFeatures,*prevCloudFeatures);
waitForImu = true;
}
void imuCallback (sensor_msgs::Imu::ConstPtr inputImu)
{
float yawAngle, pitchAngle, rollAngle; //axis z,y,x
float accX, accY, accZ;
float x, y, z;
double currentTime = inputImu -> header.stamp.sec + inputImu -> header.stamp.nsec / pow(10,9);
if (initialTime != 0)
{
float interval = float(currentTime - initialTime);
// std::cout << "Interval = " << interval << std::endl;
yawAngle = inputImu->angular_velocity.z * interval; //z angle
pitchAngle = inputImu->angular_velocity.y * interval * -1; //y angle
rollAngle = inputImu->angular_velocity.x * interval; //x angle
Matrix3f yaw = Matrix3f::Identity();
Matrix3f pitch = Matrix3f::Identity();
Matrix3f roll = Matrix3f::Identity();
yaw(0,0) = cos(yawAngle);
yaw(0,1) = -sin(yawAngle);
yaw(1,0) = sin(yawAngle);
yaw(1,1) = cos(yawAngle);
pitch(0,0) = cos(pitchAngle);
pitch(0,2) = sin(pitchAngle);
pitch(2,0) = -sin(pitchAngle);
pitch(2,2) = cos(pitchAngle);
roll(1,1) = cos(rollAngle);
roll(1,2) = -sin(rollAngle);
roll(2,1) = sin(rollAngle);
roll(2,2) = cos(rollAngle);
Matrix3f rotationMatrix = yaw*pitch*roll;
accX = inputImu->linear_acceleration.x - sin(pitchAngle) * 9.81;
accY = inputImu->linear_acceleration.y + sin(rollAngle) * cos(pitchAngle) * 9.81;
accZ = inputImu->linear_acceleration.z + cos(rollAngle) * cos(pitchAngle) * 9.81;
x = (initialXVelo * interval + 0.5 * accX * pow(interval, 2));
y = (initialYVelo * interval + 0.5 * accY * pow(interval, 2));
z = (initialZVelo * interval + 0.5 * accZ * pow(interval, 2));
Vector4f translation;
translation[0] = 0.75;
translation[1] = 0;
translation[2] = 0;
translation[3] = 1;
imuTransform.block(0,0,3,3) = rotationMatrix;
imuTransform.col(3) = translation;
imuBuffer.push_back(imuTransform);
waitForImu = false;
initialXVelo += accX * interval;
initialYVelo += accY * interval;
initialZVelo += accZ * interval;
initialYaw = totalYaw;
initialPitch = totalPitch;
initialRoll = totalRoll;
prevX = x;
}
initialTime = currentTime;
}