Skip to content

Files

Latest commit

b06ec98 · Jan 17, 2019

History

History

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Jan 17, 2019
Jan 17, 2019
Jan 17, 2019
Jan 17, 2019
Jan 17, 2019
Jan 17, 2019
Jan 17, 2019
Jan 17, 2019
Jan 17, 2019
Jan 17, 2019
Jan 17, 2019
Jan 17, 2019
Jan 17, 2019
Jan 17, 2019
Jan 17, 2019
Jan 17, 2019
Jan 17, 2019

Eye In The Sky

This is a submission for Eye In The Sky Competetion as a part of Inter-IIT tech meet hosted by IIT Bombay.

Prerequisites

torch
tensorboardX
tensorflow
scikit-image
scikit-learn
tifffile
skimage
numpy 
argparse
gflags

Installing

Basic dependencies stated in requirements.txt

To install dependencies: pip install -r requirements.txt

File Description

1.aug.py - applies augmentation to the training data and saves it in a folder named image

python aug.py --path=[train folder] --dest=[dest folder]
  1. Patches.py creates patches of the given shape and saves them to a specified location
python patches.py --source=[source folder] --dest=[destiantion folder] --height=256 --width=256 --stride=0.5 --mode=train
  1. train.py - trains model
python train.py --id=[experiment id] --epochs=25 --resume=[restart training(true/false)] --batch_size=16 --lr=0.001 --tag=[tag for tensorboard runs] --gpu=[true/false]

How to run with default parameters

A typical top-level directory layout

.
├── train                   # Contains original sat and gt files 
├── image                    # contains images after augmentation
├── data                     # contains patches 
.
.         
└── README.md

copy train folder as given and should have sat/ and gt/ folder

Then run the following process

process:

python aug.py
python channel9.py
python patches.py
python train.py --id=[] --tag=[]
python predict.py --id=[] --sub_id=[]
python stitch.py --id=[] --su_id=[]

For repeating the predictions(Final Model)

  1. Copy test folder as given
2. Run python patches.py --mode='test'
3. Then python predict.py --id=1 --sub_id=1
4. Then python stitch.py --id=1 --sub_id=1

Final Predictions will be saved in TestStichedid_1

Instrucions for binary Models (Not Our Final Model)

Note - Copy given dataset folder as The-Eye-in-the-sky-dataset, The-Eye-in-the-sky-test-dataset in the Binary folder

1. python patches.py
2. python create_binary_mask.py
3. python train.py --id=[] 
4. python predict.py --id=[] --sub_id=[]
5. python stich_mask.py --id=[] --su_id=[]