|
| 1 | +import logging |
| 2 | + |
| 3 | +from cellprofiler_core.image import Image |
| 4 | +from cellprofiler_core.module.image_segmentation import ImageSegmentation |
| 5 | +from cellprofiler_core.object import Objects |
| 6 | +from cellprofiler_core.setting.choice import Choice |
| 7 | +from cellprofiler_core.preferences import get_default_output_directory |
| 8 | + |
| 9 | +LOGGER = logging.getLogger(__name__) |
| 10 | + |
| 11 | +__doc__ = f"""\ |
| 12 | +CrashDocker |
| 13 | +=========== |
| 14 | +
|
| 15 | +**CrashDocker** crashes docker |
| 16 | +
|
| 17 | +============ ============ =============== |
| 18 | +Supports 2D? Supports 3D? Respects masks? |
| 19 | +============ ============ =============== |
| 20 | +YES YES NO |
| 21 | +============ ============ =============== |
| 22 | +
|
| 23 | +""" |
| 24 | + |
| 25 | +class CrashDocker(ImageSegmentation): |
| 26 | + category = "Object Processing" |
| 27 | + |
| 28 | + module_name = "CrashDocker" |
| 29 | + |
| 30 | + variable_revision_number = 1 |
| 31 | + |
| 32 | + |
| 33 | + def create_settings(self): |
| 34 | + super(CrashDocker, self).create_settings() |
| 35 | + |
| 36 | + self.docker_or_python = Choice( |
| 37 | + text="Run in docker or local python environment", |
| 38 | + choices=["Docker", "Python"], |
| 39 | + value="Docker", |
| 40 | + doc="""\ |
| 41 | +If Docker is selected, ensure that Docker Desktop is open and running on your |
| 42 | +computer. On first run of the RunCellpose plugin, the Docker container will be |
| 43 | +downloaded. However, this slow downloading process will only have to happen |
| 44 | +once. |
| 45 | +
|
| 46 | +If Python is selected, the Python environment in which CellProfiler and Cellpose |
| 47 | +are installed will be used. |
| 48 | +""", |
| 49 | + ) |
| 50 | + |
| 51 | + self.do_crash = Choice( |
| 52 | + text="Crash the run", |
| 53 | + choices=["Yes", "No"], |
| 54 | + value="Yes", |
| 55 | + doc="""\ |
| 56 | +Cause this module to crash or succeed |
| 57 | +""", |
| 58 | + ) |
| 59 | + |
| 60 | + def settings(self): |
| 61 | + return [ |
| 62 | + self.x_name, |
| 63 | + self.docker_or_python, |
| 64 | + self.do_crash, |
| 65 | + ] |
| 66 | + |
| 67 | + def visible_settings(self): |
| 68 | + vis_settings = super.visible_settings() + [self.docker_or_python, self.do_crash] |
| 69 | + |
| 70 | + return vis_settings |
| 71 | + |
| 72 | + def run(self, workspace): |
| 73 | + x_name = self.x_name.value |
| 74 | + y_name = self.y_name.value |
| 75 | + images = workspace.image_set |
| 76 | + x = images.get_image(x_name) |
| 77 | + dimensions = x.dimensions |
| 78 | + x_data = x.pixel_data |
| 79 | + |
| 80 | + if self.docker_or_python.value == "Python": |
| 81 | + raise Exception("I am crashing") |
| 82 | + |
| 83 | + elif self.docker_or_python.value == "Docker": |
| 84 | + # Define how to call docker |
| 85 | + docker_path = "docker" if sys.platform.lower().startswith("win") else "/usr/local/bin/docker" |
| 86 | + # Create a UUID for this run |
| 87 | + unique_name = str(uuid.uuid4()) |
| 88 | + # Directory that will be used to pass images to the docker container |
| 89 | + temp_dir = os.path.join(get_default_output_directory(), ".cellprofiler_temp", unique_name) |
| 90 | + temp_img_dir = os.path.join(temp_dir, "img") |
| 91 | + |
| 92 | + os.makedirs(temp_dir, exist_ok=True) |
| 93 | + os.makedirs(temp_img_dir, exist_ok=True) |
| 94 | + |
| 95 | + temp_img_path = os.path.join(temp_img_dir, unique_name+".tiff") |
| 96 | + if self.mode.value == "custom": |
| 97 | + model_file = self.model_file_name.value |
| 98 | + model_directory = self.model_directory.get_absolute_path() |
| 99 | + model_path = os.path.join(model_directory, model_file) |
| 100 | + temp_model_dir = os.path.join(temp_dir, "model") |
| 101 | + |
| 102 | + os.makedirs(temp_model_dir, exist_ok=True) |
| 103 | + # Copy the model |
| 104 | + shutil.copy(model_path, os.path.join(temp_model_dir, model_file)) |
| 105 | + |
| 106 | + # Save the image to the Docker mounted directory |
| 107 | + skimage.io.imsave(temp_img_path, x_data) |
| 108 | + |
| 109 | + cmd = f""" |
| 110 | + {docker_path} run --rm -v {temp_dir}:/data |
| 111 | + {self.docker_image.value} |
| 112 | + {'--gpus all' if self.use_gpu.value else ''} |
| 113 | + cellpose |
| 114 | + --dir /data/img |
| 115 | + {'--pretrained_model ' + self.mode.value if self.mode.value != 'custom' else '--pretrained_model /data/model/' + model_file} |
| 116 | + --chan {channels[0]} |
| 117 | + --chan2 {channels[1]} |
| 118 | + --diameter {diam} |
| 119 | + {'--net_avg' if self.use_averaging.value else ''} |
| 120 | + {'--do_3D' if self.do_3D.value else ''} |
| 121 | + --anisotropy {anisotropy} |
| 122 | + --flow_threshold {self.flow_threshold.value} |
| 123 | + --cellprob_threshold {self.cellprob_threshold.value} |
| 124 | + --stitch_threshold {self.stitch_threshold.value} |
| 125 | + --min_size {self.min_size.value} |
| 126 | + {'--invert' if self.invert.value else ''} |
| 127 | + {'--exclude_on_edges' if self.remove_edge_masks.value else ''} |
| 128 | + --verbose |
| 129 | + """ |
| 130 | + |
| 131 | + try: |
| 132 | + subprocess.run(cmd.split(), text=True) |
| 133 | + cellpose_output = numpy.load(os.path.join(temp_img_dir, unique_name + "_seg.npy"), allow_pickle=True).item() |
| 134 | + |
| 135 | + y_data = cellpose_output["masks"] |
| 136 | + flows = cellpose_output["flows"] |
| 137 | + finally: |
| 138 | + # Delete the temporary files |
| 139 | + try: |
| 140 | + shutil.rmtree(temp_dir) |
| 141 | + except: |
| 142 | + LOGGER.error("Unable to delete temporary directory, files may be in use by another program.") |
| 143 | + LOGGER.error("Temp folder is subfolder {tempdir} in your Default Output Folder.\nYou may need to remove it manually.") |
| 144 | + |
| 145 | + |
| 146 | + y = Objects() |
| 147 | + y.segmented = y_data |
| 148 | + y.parent_image = x.parent_image |
| 149 | + objects = workspace.object_set |
| 150 | + objects.add_objects(y, y_name) |
| 151 | + |
| 152 | + if self.save_probabilities.value: |
| 153 | + if self.docker_or_python.value == "Docker": |
| 154 | + # get rid of extra dimension |
| 155 | + prob_map = numpy.squeeze(flows[1], axis=0) # ranges 0-255 |
| 156 | + else: |
| 157 | + prob_map = flows[2] |
| 158 | + rescale_prob_map = prob_map.copy() |
| 159 | + prob_map01 = numpy.percentile(rescale_prob_map, 1) |
| 160 | + prob_map99 = numpy.percentile(rescale_prob_map, 99) |
| 161 | + prob_map = numpy.clip((rescale_prob_map - prob_map01) / (prob_map99 - prob_map01), a_min=0, a_max=1) |
| 162 | + # Flows come out sized relative to CellPose's inbuilt model size. |
| 163 | + # We need to slightly resize to match the original image. |
| 164 | + size_corrected = skimage.transform.resize(prob_map, y_data.shape) |
| 165 | + prob_image = Image( |
| 166 | + size_corrected, |
| 167 | + parent_image=x.parent_image, |
| 168 | + convert=False, |
| 169 | + dimensions=len(size_corrected.shape), |
| 170 | + ) |
| 171 | + |
| 172 | + workspace.image_set.add(self.probabilities_name.value, prob_image) |
| 173 | + |
| 174 | + if self.show_window: |
| 175 | + workspace.display_data.probabilities = size_corrected |
| 176 | + |
| 177 | + self.add_measurements(workspace) |
| 178 | + |
| 179 | + if self.show_window: |
| 180 | + if x.volumetric: |
| 181 | + # Can't show CellPose-accepted colour images in 3D |
| 182 | + workspace.display_data.x_data = x.pixel_data |
| 183 | + else: |
| 184 | + workspace.display_data.x_data = x_data |
| 185 | + workspace.display_data.y_data = y_data |
| 186 | + workspace.display_data.dimensions = dimensions |
| 187 | + |
| 188 | + def display(self, workspace, figure): |
| 189 | + if self.save_probabilities.value: |
| 190 | + layout = (2, 2) |
| 191 | + else: |
| 192 | + layout = (2, 1) |
| 193 | + |
| 194 | + figure.set_subplots( |
| 195 | + dimensions=workspace.display_data.dimensions, subplots=layout |
| 196 | + ) |
| 197 | + |
| 198 | + figure.subplot_imshow( |
| 199 | + colormap="gray", |
| 200 | + image=workspace.display_data.x_data, |
| 201 | + title="Input Image", |
| 202 | + x=0, |
| 203 | + y=0, |
| 204 | + ) |
| 205 | + |
| 206 | + figure.subplot_imshow_labels( |
| 207 | + image=workspace.display_data.y_data, |
| 208 | + sharexy=figure.subplot(0, 0), |
| 209 | + title=self.y_name.value, |
| 210 | + x=1, |
| 211 | + y=0, |
| 212 | + ) |
| 213 | + if self.save_probabilities.value: |
| 214 | + figure.subplot_imshow( |
| 215 | + colormap="gray", |
| 216 | + image=workspace.display_data.probabilities, |
| 217 | + sharexy=figure.subplot(0, 0), |
| 218 | + title=self.probabilities_name.value, |
| 219 | + x=0, |
| 220 | + y=1, |
| 221 | + ) |
| 222 | + |
| 223 | + def do_check_gpu(self): |
| 224 | + import importlib.util |
| 225 | + torch_installed = importlib.util.find_spec('torch') is not None |
| 226 | + self.cellpose_ver = importlib.metadata.version('cellpose') |
| 227 | + #if the old version of cellpose <2.0, then use istorch kwarg |
| 228 | + if float(self.cellpose_ver[0:3]) >= 0.7 and int(self.cellpose_ver[0])<2: |
| 229 | + GPU_works = core.use_gpu(istorch=torch_installed) |
| 230 | + else: # if new version of cellpose, use use_torch kwarg |
| 231 | + GPU_works = core.use_gpu(use_torch=torch_installed) |
| 232 | + if GPU_works: |
| 233 | + message = "GPU appears to be working correctly!" |
| 234 | + else: |
| 235 | + message = ( |
| 236 | + "GPU test failed. There may be something wrong with your configuration." |
| 237 | + ) |
| 238 | + import wx |
| 239 | + |
| 240 | + wx.MessageBox(message, caption="GPU Test") |
| 241 | + |
| 242 | + def upgrade_settings(self, setting_values, variable_revision_number, module_name): |
| 243 | + if variable_revision_number == 1: |
| 244 | + setting_values = setting_values + ["0.4", "0.0"] |
| 245 | + variable_revision_number = 2 |
| 246 | + if variable_revision_number == 2: |
| 247 | + setting_values = setting_values + ["0.0", False, "15", "1.0", False, False] |
| 248 | + variable_revision_number = 3 |
| 249 | + if variable_revision_number == 3: |
| 250 | + setting_values = [setting_values[0]] + ["Python",CELLPOSE_DOCKER_IMAGE_WITH_PRETRAINED] + setting_values[1:] |
| 251 | + variable_revision_number = 4 |
| 252 | + if variable_revision_number == 4: |
| 253 | + setting_values = [setting_values[0]] + ['No'] + setting_values[1:] |
| 254 | + variable_revision_number = 5 |
| 255 | + if variable_revision_number == 5: |
| 256 | + setting_values = setting_values + [False] |
| 257 | + variable_revision_number = 6 |
| 258 | + return setting_values, variable_revision_number |
| 259 | + |
| 260 | + |
0 commit comments