-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_utils.py
40 lines (26 loc) · 1.17 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import numpy as np
from torch.utils.data import Dataset
def subsample_instances(dataset, prop_indices_to_subsample=0.8):
np.random.seed(0)
subsample_indices = np.random.choice(range(len(dataset)), replace=False,
size=(int(prop_indices_to_subsample * len(dataset)),))
return subsample_indices
class MergedDataset(Dataset):
"""
Takes two datasets (labelled_dataset, unlabelled_dataset) and merges them
Allows you to iterate over them in parallel
"""
def __init__(self, labelled_dataset, unlabelled_dataset):
self.labelled_dataset = labelled_dataset
self.unlabelled_dataset = unlabelled_dataset
self.target_transform = None
def __getitem__(self, item):
if item < len(self.labelled_dataset):
img, label, uq_idx = self.labelled_dataset[item]
labeled_or_not = 1
else:
img, label, uq_idx = self.unlabelled_dataset[item - len(self.labelled_dataset)]
labeled_or_not = 0
return img, label, uq_idx, np.array([labeled_or_not])
def __len__(self):
return len(self.unlabelled_dataset) + len(self.labelled_dataset)