-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProject_Vf.py
464 lines (411 loc) · 16.4 KB
/
Project_Vf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
# -*- coding: utf-8 -*-
"""
Created on Sun Dec 20 19:33:42 2020
@author: Colin Vanden Bulcke
Hadrien Cools
"""
import pandas as pd
import numpy as np
from sklearn.model_selection import KFold
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
import seaborn as sn
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
# =============================================================================
# 1. Loading of the data
# =============================================================================
X1 = pd.read_csv("X1.csv")
Y1 = pd.read_csv("Y1.csv",header=None, names=['shares'])
X2 = pd.read_csv("X2.csv")
X1 = X1.values
Y1 = Y1.values
X2 = X2.values
# Booleans
figure = True # boolean to show the figures or not
reg_test = True # boolean to make the regression tests
cl_test = False # boolean to make the classification tests
imp_test = False # boolean to make the improvement tests
# =============================================================================
# 2. Preprocessing
# =============================================================================
# normalisation
scaler = preprocessing.StandardScaler()
X1_normalised = scaler.fit_transform(X1)
# nb FOlds
k=10
random_state = 12883823
kf = KFold(n_splits=10, random_state=random_state,shuffle=True)
#print("Param kfold:",kf)
#print("Nb split:", kf.get_n_splits(X1_normalised))
trial_matrix_data = np.zeros((17840, 58))
trial_matrix_target = np.zeros((17840, 1))
for train_index, test_index in kf.split(X1_normalised):
# print("train_index ",train_index , "test_index",test_index)
training_data = X1_normalised[train_index]
training_target = Y1[train_index]
validation_data = X1_normalised[test_index]
validation_target = Y1[test_index]
# print(np.shape(training_data))
# print(np.shape(training_target))
# print(np.shape(training_data))
# print(np.shape(validation_target))
trial_matrix_data = training_data
trial_matrix_target =training_target
# Covariance matrix
#print(np.shape(trial_matrix_data))
#print(np.shape(trial_matrix_target))
covX1 = np.cov(trial_matrix_data.T)
# Feature selection
## Apply PCA
pca = PCA(.95)
X1_normalised_copy = np.copy(X1_normalised)
pca.fit(X1_normalised_copy)
#print(pca.explained_variance_ratio_)
PCAed_X1 = pca.transform(X1_normalised_copy)
## Draw cor matrix pca datas
covX1_PCAed = np.cov(PCAed_X1.T)
## remove diagonal = remove autocovariance
if figure:
plt.figure()
x,y = np.shape(covX1_PCAed)
for i in range(x):
covX1_PCAed[i,i] = 0
sn.heatmap(covX1_PCAed, fmt='g')
plt.title("Covariance matrix selected features")
plt.show()
# Draw cor matrix raw datas
# Add output to matrix, last column
gg = np.copy(Y1[:,0])
dd = np.copy(X1)
cc = np.vstack((dd.T,gg))
print(np.shape(X1))
min_max_scaler = preprocessing.MinMaxScaler()
covX1_test_normalised = min_max_scaler.fit_transform(cc.T)
covX1_test = np.cov(covX1_test_normalised.T)
if figure:
plt.figure()
#print("drawing")
#print(np.shape(covX1_test))
x,y = np.shape(covX1_test)
for i in range(x):
covX1_test[i,i] = 0
sn.heatmap(covX1_test, fmt='g')
plt.title("Covariance matrix datas")
plt.show()
# =============================================================================
# 3. Models
# =============================================================================
# 1. Metric
from sklearn.metrics import f1_score
def score_f1(y_true, y_pred, th):
return f1_score(y_true > th, y_pred > th)
def score_regression(y_true, y_pred):
scores = [score_f1(y_true,y_pred,th) for th in [500,1400,5000,10000]]
return np.mean(scores)
k = 4 # Kfold
# 2. Regression
if reg_test:
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Lasso
from sklearn.neighbors import KNeighborsRegressor
from sklearn.neural_network import MLPRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.svm import SVR
# 2.1. dataset generation
dataset = PCAed_X1
dataset_target = Y1
# 2.2. Model Evaluation
kfold = KFold(k)
count = 0
perf_LR = 0
perf_Lasso = 0
perf_KNN = 0
perf_MLP = 0
perf_DT = 0
perf_SVM = 0
for trn_idx, tst_idx in kfold.split(dataset):
training_data = dataset[trn_idx]
training_target = dataset_target[trn_idx]
validation_data = dataset[tst_idx]
validation_target = dataset_target[tst_idx]
# Linear Regression
model_LR = LinearRegression()
model_LR.fit(training_data,training_target)
score_LR = score_regression(validation_target, model_LR.predict(validation_data))
perf_LR = perf_LR + score_LR
# Lasso
model_Lasso = Lasso()
model_Lasso.fit(training_data,training_target)
score_Lasso = score_regression(validation_target, model_Lasso.predict(validation_data))
perf_Lasso = perf_Lasso + score_Lasso
# KNN
model_KNN = KNeighborsRegressor(n_neighbors=7,weights='distance')
model_KNN.fit(training_data,np.ravel(training_target))
score_KNN = score_regression(validation_target, model_KNN.predict(validation_data))
perf_KNN = perf_KNN + score_KNN
# MLP
model_MLP = MLPRegressor()
model_MLP.fit(training_data,np.ravel(training_target))
score_MLP = score_regression(validation_target, model_MLP.predict(validation_data))
perf_MLP = perf_MLP + score_MLP
# Decision Tree
model_DT = DecisionTreeRegressor()
model_DT.fit(training_data, training_target)
score_DT = score_regression(validation_target, model_DT.predict(validation_data))
perf_DT = perf_DT + score_DT
# SVM
model_SVM = SVR()
model_SVM.fit(training_data, training_target)
score_SVM = score_regression(validation_target, model_SVM.predict(validation_data))
perf_SVM = perf_SVM + score_SVM
count = count + 1
perf_LR = perf_LR/count
perf_Lasso = perf_Lasso/count
perf_KNN = perf_KNN/count
perf_MLP = perf_MLP/count
perf_DT = perf_DT/count
perf_SVM = perf_SVM/count
if figure:
plt.figure()
models_reg = ['LR','Lasso','KNN','MLP','DT','SVM']
plt.bar(models_reg,[perf_LR,perf_Lasso,perf_KNN,perf_MLP,perf_DT,perf_SVM])
plt.title("Accuracy of regression models")
plt.xlabel('Models')
plt.ylabel('Accuracy')
# 3. Classification
if cl_test:
# 3.1. dataset generation
Y1_cl = np.zeros(len(Y1))
for i in range(len(Y1)):
if Y1[i] < 500:
Y1_cl[i] = 0
elif Y1[i] < 1400:
Y1_cl[i] = 1
elif Y1[i] < 5000:
Y1_cl[i] = 2
elif Y1[i] < 10000:
Y1_cl[i] = 3
else:
Y1_cl[i] = 4
Y1_cl_num = np.zeros(5)
for i in range(len(Y1_cl)):
Y1_cl_num[int(Y1_cl[i])] = Y1_cl_num[int(Y1_cl[i])] + 1
if figure:
plt.figure()
plt.pie(Y1_cl_num)
plt.title("Imbalanced classes")
plt.legend(['class 0','class 1','class 2','class 3','class 4'])
dataset_cl = PCAed_X1
dataset_target_cl = Y1_cl
# 3.2. Model Evaluation
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
kfold = KFold(k)
count = 0
perf_KNN_cl = 0
perf_MLP_cl = 0
perf_DT_cl = 0
perf_SVM_cl = 0
for trn_idx, tst_idx in kfold.split(dataset):
training_data = dataset_cl[trn_idx]
training_target = dataset_target_cl[trn_idx]
validation_data = dataset_cl[tst_idx]
validation_target = dataset_target_cl[tst_idx]
# KNN
model_KNN_cl = KNeighborsClassifier(n_neighbors=30,weights='distance')
model_KNN_cl.fit(training_data,np.ravel(training_target))
score_KNN_cl = model_KNN_cl.score(validation_data, validation_target)
perf_KNN_cl = perf_KNN_cl + score_KNN_cl
# MLP
model_MLP_cl = MLPClassifier()
model_MLP_cl.fit(training_data,np.ravel(training_target))
score_MLP_cl = model_MLP_cl.score(validation_data, validation_target)
perf_MLP_cl = perf_MLP_cl + score_MLP_cl
# Decision Tree
model_DT_cl = DecisionTreeClassifier()
model_DT_cl.fit(training_data, training_target)
score_DT_cl = model_DT_cl.score(validation_data, validation_target)
perf_DT_cl = perf_DT_cl + score_DT_cl
#SVM
model_SVM_cl = SVC()
model_SVM_cl.fit(training_data, training_target)
score_SVM_cl = model_SVM_cl.score(validation_data, validation_target)
perf_SVM_cl = perf_SVM_cl + score_SVM_cl
count = count + 1
perf_KNN_cl = perf_KNN_cl/count
perf_MLP_cl = perf_MLP_cl/count
perf_DT_cl = perf_DT_cl/count
perf_SVM_cl = perf_SVM_cl/count
if figure:
plt.figure()
models_cl = ['KNN','MLP','DT','SVM']
plt.bar(models_cl,[perf_KNN_cl,perf_MLP_cl,perf_DT_cl,perf_SVM_cl])
plt.title("Accuracy of classification models")
plt.xlabel('Models')
plt.ylabel('Accuracy')
# =============================================================================
# 4. Improvements
# =============================================================================
if imp_test:
# 4.1. Boosting regression
from sklearn.ensemble import GradientBoostingRegressor
kfold = KFold(k)
count = 0
perf_boos = 0
for trn_idx, tst_idx in kfold.split(dataset):
training_data = dataset[trn_idx]
training_target = dataset_target[trn_idx]
validation_data = dataset[tst_idx]
validation_target = dataset_target[tst_idx]
# Linear Regression
model_boos = GradientBoostingRegressor()
model_boos.fit(training_data,training_target)
score_boos = score_regression(validation_target, model_boos.predict(validation_data))
perf_boos = perf_boos + score_boos
count = count + 1
perf_boos = perf_boos/count
# 4.2. Bagging Classification
from sklearn.ensemble import BaggingClassifier
kfold = KFold(k)
count = 0
perf_bag = 0
for trn_idx, tst_idx in kfold.split(dataset):
training_data = dataset_cl[trn_idx]
training_target = dataset_target_cl[trn_idx]
validation_data = dataset_cl[tst_idx]
validation_target = dataset_target_cl[tst_idx]
# Classification
model_bag = BaggingClassifier()
model_bag.fit(training_data,np.ravel(training_target))
score_bag = model_bag.score(validation_data, validation_target)
perf_bag = perf_bag + score_bag
count = count + 1
perf_bag = perf_bag/count
#4.3. Combination of regression and classification
kfold = KFold(k)
count = 0
perf_reg_cl = 0
n = 0
for trn_idx, tst_idx in kfold.split(dataset):
training_data = dataset[trn_idx]
training_target_reg = dataset_target[trn_idx]
training_target_cl = dataset_target_cl[trn_idx]
validation_data = dataset[tst_idx]
validation_target_reg = dataset_target[tst_idx]
validation_target_cl = dataset_target_cl[tst_idx]
# Regression
model_reg = KNeighborsRegressor(n_neighbors=7, weights='distance')
model_reg.fit(training_data, np.ravel(training_target_reg))
predict_reg = model_reg.predict(validation_data)
# Classification
model_cl = SVC()
model_cl.fit(training_data, np.ravel(training_target_cl))
predict_cl = model_cl.predict(validation_data)
# Ensemble
predict = np.zeros(len(predict_reg))
for i in range(len(predict_reg)):
if predict_reg[i] < 500:
if predict_cl[i] == 0:
predict[i] = predict_reg[i]
elif predict_cl[i] == 1:
predict[i] = np.random.random_integers(500,1400)
n = n+1
elif predict_cl[i] == 2:
predict[i] = np.random.random_integers(1400,5000)
n = n+1
elif predict_cl[i] == 3:
predict[i] = np.random.random_integers(5000,10000)
n = n+1
else:
predict[i] = np.random.random_integers(10000,15000)
n = n+1
elif predict_reg[i] < 1400:
if predict_cl[i] == 0:
predict[i] = np.random.random_integers(0,500)
n = n+1
elif predict_cl[i] == 1:
predict[i] = predict_reg[i]
elif predict_cl[i] == 2:
predict[i] = np.random.random_integers(1400,5000)
n = n+1
elif predict_cl[i] == 3:
predict[i] = np.random.random_integers(5000,10000)
n = n+1
else:
predict[i] = np.random.random_integers(10000,15000)
n = n+1
elif predict_reg[i] < 5000:
if predict_cl[i] == 0:
predict[i] = np.random.random_integers(0,500)
n = n+1
elif predict_cl[i] == 1:
predict[i] = np.random.random_integers(500,1400)
n = n+1
elif predict_cl[i] == 2:
predict[i] = predict_reg[i]
elif predict_cl[i] == 3:
predict[i] = np.random.random_integers(5000,10000)
n = n+1
else:
predict[i] = np.random.random_integers(10000,15000)
n = n+1
elif predict_reg[i] < 10000:
if predict_cl[i] == 0:
predict[i] = np.random.random_integers(0,500)
n = n+1
elif predict_cl[i] == 1:
predict[i] = np.random.random_integers(500,1400)
n = n+1
elif predict_cl[i] == 2:
predict[i] = np.random.random_integers(1400,5000)
n = n+1
elif predict_cl[i] == 3:
predict[i] = predict_reg[i]
else:
predict[i] = np.random.random_integers(10000,15000)
n = n+1
else:
if predict_cl[i] == 0:
predict[i] = np.random.random_integers(0,500)
n = n+1
elif predict_cl[i] == 1:
predict[i] = np.random.random_integers(500,1400)
n = n+1
elif predict_cl[i] == 2:
predict[i] = np.random.random_integers(1400,5000)
n = n+1
elif predict_cl[i] == 3:
predict[i] = np.random.random_integers(5000,10000)
n = n+1
else:
predict[i] = predict_reg[i]
# Score evaluation
score_reg_cl = score_regression(validation_target_reg,predict)
perf_reg_cl = perf_reg_cl + score_reg_cl
count = count + 1
perf_reg_cl = perf_reg_cl/count
if figure:
plt.figure()
models_imp = ['Boosting','Bagging','Reg_Cl']
plt.bar(models_imp,[perf_boos,perf_bag,perf_reg_cl])
plt.title("Accuracy of improved models")
plt.xlabel('Models')
plt.ylabel('Accuracy')
# =============================================================================
# Final model
# =============================================================================
scaler = preprocessing.StandardScaler()
X2_normalised = scaler.fit_transform(X2)
PCAed_X2 = pca.transform(X2_normalised)
final_model = KNeighborsRegressor(n_neighbors=7,weights='distance')
final_model.fit(dataset, dataset_target)
Y2 = final_model.predict(PCAed_X2)
Y2_np = np.array(Y2)
Y2_round = np.zeros(len(Y2_np))
for i in range(len(Y2_np)):
Y2_round[i] = int(np.round(Y2_np[i]))
Y2_copy = np.copy(Y2_np)
pd.DataFrame(Y2_copy.astype('int32')).to_csv("Y2.csv", index=False, encoding='utf-8')