patrickvonplaten commited on
Commit
3857c45
·
1 Parent(s): bd73f2a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -9
README.md CHANGED
@@ -65,12 +65,6 @@ We recommend using [🤗's Diffusers library](https://github.com/huggingface/dif
65
  pip install --upgrade diffusers transformers scipy
66
  ```
67
 
68
- Run this command to log in with your HF Hub token if you haven't before:
69
-
70
- ```bash
71
- huggingface-cli login
72
- ```
73
-
74
  Running the pipeline with the default PNDM scheduler:
75
 
76
  ```python
@@ -81,7 +75,7 @@ model_id = "CompVis/stable-diffusion-v1-4"
81
  device = "cuda"
82
 
83
 
84
- pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16")
85
  pipe = pipe.to(device)
86
 
87
  prompt = "a photo of an astronaut riding a horse on mars"
@@ -97,7 +91,7 @@ If you are limited by GPU memory and have less than 4GB of GPU RAM available, pl
97
  ```py
98
  import torch
99
 
100
- pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16")
101
  pipe = pipe.to(device)
102
  pipe.enable_attention_slicing()
103
 
@@ -116,7 +110,7 @@ model_id = "CompVis/stable-diffusion-v1-4"
116
 
117
  # Use the Euler scheduler here instead
118
  scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
119
- pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16, revision="fp16")
120
  pipe = pipe.to("cuda")
121
 
122
  prompt = "a photo of an astronaut riding a horse on mars"
 
65
  pip install --upgrade diffusers transformers scipy
66
  ```
67
 
 
 
 
 
 
 
68
  Running the pipeline with the default PNDM scheduler:
69
 
70
  ```python
 
75
  device = "cuda"
76
 
77
 
78
+ pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
79
  pipe = pipe.to(device)
80
 
81
  prompt = "a photo of an astronaut riding a horse on mars"
 
91
  ```py
92
  import torch
93
 
94
+ pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
95
  pipe = pipe.to(device)
96
  pipe.enable_attention_slicing()
97
 
 
110
 
111
  # Use the Euler scheduler here instead
112
  scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
113
+ pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16)
114
  pipe = pipe.to("cuda")
115
 
116
  prompt = "a photo of an astronaut riding a horse on mars"