-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
409 lines (335 loc) · 14.9 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# MIT License
# Copyright (c) [2023] [Anima-Lab]
import io
import os
import json
import zipfile
import lmdb
import numpy as np
from PIL import Image
import torch
from torchvision.datasets import ImageFolder, VisionDataset
def center_crop_arr(pil_image, image_size):
"""
Center cropping implementation from ADM.
https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126
"""
while min(*pil_image.size) >= 2 * image_size:
pil_image = pil_image.resize(
tuple(x // 2 for x in pil_image.size), resample=Image.BOX
)
scale = image_size / min(*pil_image.size)
pil_image = pil_image.resize(
tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
)
arr = np.array(pil_image)
crop_y = (arr.shape[0] - image_size) // 2
crop_x = (arr.shape[1] - image_size) // 2
return Image.fromarray(arr[crop_y: crop_y + image_size, crop_x: crop_x + image_size])
################################################################################
# ImageNet - LMDB
###############################################################################
def lmdb_loader(path, lmdb_data, resolution):
with lmdb_data.begin(write=False, buffers=True) as txn:
bytedata = txn.get(path.encode('ascii'))
img = Image.open(io.BytesIO(bytedata)).convert('RGB')
arr = center_crop_arr(img, resolution)
return arr
def imagenet_lmdb_dataset(
root,
transform=None, target_transform=None,
resolution=256):
"""
You can create this dataloader using:
train_data = imagenet_lmdb_dataset(traindir, transform=train_transform)
valid_data = imagenet_lmdb_dataset(validdir, transform=val_transform)
"""
if root.endswith('/'):
root = root[:-1]
pt_path = os.path.join(
root + '_faster_imagefolder.lmdb.pt')
lmdb_path = os.path.join(
root + '_faster_imagefolder.lmdb')
if os.path.isfile(pt_path) and os.path.isdir(lmdb_path):
print('Loading pt {} and lmdb {}'.format(pt_path, lmdb_path))
data_set = torch.load(pt_path)
else:
data_set = ImageFolder(
root, None, None, None)
torch.save(data_set, pt_path, pickle_protocol=4)
print('Saving pt to {}'.format(pt_path))
print('Building lmdb to {}'.format(lmdb_path))
env = lmdb.open(lmdb_path, map_size=1e12)
with env.begin(write=True) as txn:
for path, class_index in data_set.imgs:
with open(path, 'rb') as f:
data = f.read()
txn.put(path.encode('ascii'), data)
lmdb_dataset = ImageLMDB(lmdb_path, transform, target_transform, resolution, data_set.imgs, data_set.class_to_idx, data_set.classes)
return lmdb_dataset
################################################################################
# ImageNet Dataset class- LMDB
###############################################################################
class ImageLMDB(VisionDataset):
"""
A data loader for ImageNet LMDB dataset, which is faster than the original ImageFolder.
"""
def __init__(self, root, transform=None, target_transform=None,
resolution=256, samples=None, class_to_idx=None, classes=None):
super().__init__(root, transform=transform,
target_transform=target_transform)
self.root = root
self.resolution = resolution
self.samples = samples
self.class_to_idx = class_to_idx
self.classes = classes
def __getitem__(self, index: int):
path, target = self.samples[index]
# load image from path
if not hasattr(self, 'txn'):
self.open_db()
bytedata = self.txn.get(path.encode('ascii'))
img = Image.open(io.BytesIO(bytedata)).convert('RGB')
arr = center_crop_arr(img, self.resolution)
if self.transform is not None:
arr = self.transform(arr)
if self.target_transform is not None:
target = self.target_transform(target)
return arr, target
def __len__(self) -> int:
return len(self.samples)
def open_db(self):
self.env = lmdb.open(self.root, readonly=True, max_readers=256, lock=False, readahead=False, meminit=False)
self.txn = self.env.begin(write=False, buffers=True)
################################################################################
# ImageNet - LMDB - latent space
###############################################################################
# ----------------------------------------------------------------------------
# Abstract base class for datasets.
class Dataset(torch.utils.data.Dataset):
def __init__(self,
name, # Name of the dataset.
raw_shape, # Shape of the raw image data (NCHW).
max_size=None, # Artificially limit the size of the dataset. None = no limit. Applied before xflip.
label_dim=1000, # Ensure specific number of classes
xflip=False, # Artificially double the size of the dataset via x-flips. Applied after max_size.
random_seed=0, # Random seed to use when applying max_size.
):
self._name = name
self._raw_shape = list(raw_shape)
self._label_dim = label_dim
self._label_shape = None
# Apply max_size.
self._raw_idx = np.arange(self._raw_shape[0], dtype=np.int64)
if (max_size is not None) and (self._raw_idx.size > max_size):
np.random.RandomState(random_seed % (1 << 31)).shuffle(self._raw_idx)
self._raw_idx = np.sort(self._raw_idx[:max_size])
# Apply xflip. (Assume the dataset already contains the same number of xflipped samples)
if xflip:
self._raw_idx = np.concatenate([self._raw_idx, self._raw_idx + self._raw_shape[0]])
def close(self): # to be overridden by subclass
pass
def _load_raw_data(self, raw_idx): # to be overridden by subclass
raise NotImplementedError
def __getstate__(self):
return dict(self.__dict__, _raw_labels=None)
def __del__(self):
try:
self.close()
except:
pass
def __len__(self):
return self._raw_idx.size
def __getitem__(self, idx):
raw_idx = self._raw_idx[idx]
image, cond = self._load_raw_data(raw_idx)
assert isinstance(image, np.ndarray)
if isinstance(cond, list): # [label, feature]
cond[0] = self._get_onehot(cond[0])
else: # label
cond = self._get_onehot(cond)
return image.copy(), cond
def _get_onehot(self, label):
if isinstance(label, int) or label.dtype == np.int64:
onehot = np.zeros(self.label_shape, dtype=np.float32)
onehot[label] = 1
label = onehot
assert isinstance(label, np.ndarray)
return label.copy()
@property
def name(self):
return self._name
@property
def image_shape(self):
return list(self._raw_shape[1:])
@property
def num_channels(self):
assert len(self.image_shape) == 3 # CHW
return self.image_shape[0]
@property
def resolution(self):
assert len(self.image_shape) == 3 # CHW
assert self.image_shape[1] == self.image_shape[2]
return self.image_shape[1]
@property
def label_shape(self):
if self._label_shape is None:
self._label_shape = [self._label_dim]
return list(self._label_shape)
@property
def label_dim(self):
assert len(self.label_shape) == 1
return self.label_shape[0]
@property
def has_labels(self):
return True
# ----------------------------------------------------------------------------
# Dataset subclass that loads latent images recursively from the specified lmdb file.
class ImageNetLatentDataset(Dataset):
def __init__(self,
path, # Path to directory or zip.
resolution=32, # Ensure specific resolution, default 32.
num_channels=4, # Ensure specific number of channels, default 4.
split='train', # train or val split
feat_path=None, # Path to features lmdb file (only works when feat_cond=True)
feat_dim=0, # feature dim
**super_kwargs, # Additional arguments for the Dataset base class.
):
self._path = os.path.join(path, split)
self.feat_dim = feat_dim
if not hasattr(self, 'txn'):
self.open_lmdb()
self.feat_txn = None
if feat_path is not None and os.path.isdir(feat_path):
assert self.feat_dim > 0
self._feat_path = os.path.join(feat_path, split)
self.open_feat_lmdb()
length = int(self.txn.get('length'.encode('utf-8')).decode('utf-8'))
name = os.path.basename(path)
raw_shape = [length, num_channels, resolution, resolution] # 1281167 x 4 x 32 x 32
if raw_shape[2] != resolution or raw_shape[3] != resolution:
raise IOError('Image files do not match the specified resolution')
super().__init__(name=name, raw_shape=raw_shape, **super_kwargs)
def open_lmdb(self):
self.env = lmdb.open(self._path, readonly=True, lock=False, create=False)
self.txn = self.env.begin(write=False)
def open_feat_lmdb(self):
self.feat_env = lmdb.open(self._feat_path, readonly=True, lock=False, create=False)
self.feat_txn = self.feat_env.begin(write=False)
def _load_raw_data(self, idx):
if not hasattr(self, 'txn'):
self.open_lmdb()
z_bytes = self.txn.get(f'z-{str(idx)}'.encode('utf-8'))
y_bytes = self.txn.get(f'y-{str(idx)}'.encode('utf-8'))
z = np.frombuffer(z_bytes, dtype=np.float32).reshape([-1, self.resolution, self.resolution]).copy()
y = int(y_bytes.decode('utf-8'))
cond = y
if self.feat_txn is not None:
feat_bytes = self.feat_txn.get(f'feat-{str(idx)}'.encode('utf-8'))
feat_y_bytes = self.feat_txn.get(f'y-{str(idx)}'.encode('utf-8'))
feat = np.frombuffer(feat_bytes, dtype=np.float32).reshape([self.feat_dim]).copy()
feat_y = int(feat_y_bytes.decode('utf-8'))
assert y == feat_y, 'Ordering mismatch between txn and feat_txn!'
cond = [y, feat]
return z, cond
def close(self):
try:
if self.env is not None:
self.env.close()
if self.feat_env is not None:
self.feat_env.close()
finally:
self.env = None
self.feat_env = None
# ----------------------------------------------------------------------------
# Dataset subclass that loads images recursively from the specified directory or zip file.
class ImageFolderDataset(Dataset):
def __init__(self,
path, # Path to directory or zip.
resolution=None, # Ensure specific resolution, None = highest available.
use_labels=False, # Enable conditioning labels? False = label dimension is zero.
**super_kwargs, # Additional arguments for the Dataset base class.
):
self._path = path
self._zipfile = None
self._raw_labels = None
self._use_labels = use_labels
if os.path.isdir(self._path):
self._type = 'dir'
self._all_fnames = {os.path.relpath(os.path.join(root, fname), start=self._path) for root, _dirs, files in
os.walk(self._path) for fname in files}
elif self._file_ext(self._path) == '.zip':
self._type = 'zip'
self._all_fnames = set(self._get_zipfile().namelist())
else:
raise IOError('Path must point to a directory or zip')
Image.init()
self._image_fnames = sorted(fname for fname in self._all_fnames if self._file_ext(fname) in Image.EXTENSION)
if len(self._image_fnames) == 0:
raise IOError('No image files found in the specified path')
name = os.path.splitext(os.path.basename(self._path))[0]
raw_shape = [len(self._image_fnames)] + list(self._load_raw_image(0).shape)
if resolution is not None and (raw_shape[2] != resolution or raw_shape[3] != resolution):
raise IOError('Image files do not match the specified resolution')
super().__init__(name=name, raw_shape=raw_shape, **super_kwargs)
@staticmethod
def _file_ext(fname):
return os.path.splitext(fname)[1].lower()
def _get_zipfile(self):
assert self._type == 'zip'
if self._zipfile is None:
self._zipfile = zipfile.ZipFile(self._path)
return self._zipfile
def _open_file(self, fname):
if self._type == 'dir':
return open(os.path.join(self._path, fname), 'rb')
if self._type == 'zip':
return self._get_zipfile().open(fname, 'r')
return None
def close(self):
try:
if self._zipfile is not None:
self._zipfile.close()
finally:
self._zipfile = None
def __getstate__(self):
return dict(super().__getstate__(), _zipfile=None)
def _load_raw_data(self, raw_idx):
image = self._load_raw_image(raw_idx)
assert image.dtype == np.uint8
label = self._get_raw_labels()[raw_idx]
return image, label
def _load_raw_image(self, raw_idx):
fname = self._image_fnames[raw_idx]
with self._open_file(fname) as f:
image = np.array(Image.open(f))
if image.ndim == 2:
image = image[:, :, np.newaxis] # HW => HWC
image = image.transpose(2, 0, 1) # HWC => CHW
return image
def _get_raw_labels(self):
if self._raw_labels is None:
self._raw_labels = self._load_raw_labels() if self._use_labels else None
if self._raw_labels is None:
self._raw_labels = np.zeros([self._raw_shape[0], 0], dtype=np.float32)
assert isinstance(self._raw_labels, np.ndarray)
assert self._raw_labels.shape[0] == self._raw_shape[0]
assert self._raw_labels.dtype in [np.float32, np.int64]
if self._raw_labels.dtype == np.int64:
assert self._raw_labels.ndim == 1
assert np.all(self._raw_labels >= 0)
return self._raw_labels
def _load_raw_labels(self):
fname = 'dataset.json'
if fname not in self._all_fnames:
return None
with self._open_file(fname) as f:
labels = json.load(f)['labels']
if labels is None:
return None
labels = dict(labels)
labels = [labels[fname.replace('\\', '/')] for fname in self._image_fnames]
labels = np.array(labels)
labels = labels.astype({1: np.int64, 2: np.float32}[labels.ndim])
return labels
# ----------------------------------------------------------------------------