-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdit.py
441 lines (362 loc) · 16.1 KB
/
dit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import argparse
import math
from typing import Dict, Any
import numpy as np
import torch
import torch.nn as nn
from timm.models.vision_transformer import Mlp, Attention, PatchEmbed
from routing_module import Router
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
class TimestepEmbedder(nn.Module):
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
class LabelEmbedder(nn.Module):
def __init__(self, num_classes, hidden_size):
super().__init__()
use_cfg_embedding = True
self.embedding_table = nn.Embedding(
num_classes + use_cfg_embedding, hidden_size
)
self.num_classes = num_classes
self._init()
def token_drop(self, labels, cond_drop_prob, force_drop_ids=None):
if force_drop_ids is None:
drop_ids = (
torch.rand(labels.shape[0], device=labels.device) < cond_drop_prob
)
else:
drop_ids = force_drop_ids == 1
labels = torch.where(drop_ids, self.num_classes, labels)
return labels
def forward(self, labels, class_drop_prob=0.1, force_drop_ids=None):
if labels.dim() == 2 and labels.size(1) == self.num_classes:
labels = labels.argmax(dim=1)
elif labels.dim() != 1:
raise ValueError(f"Expected labels to be of shape (batch_size,) or (batch_size, {self.num_classes}), but got {labels.shape}")
assert labels.max() <= 999
use_dropout = class_drop_prob > 0
if use_dropout or (force_drop_ids is not None):
labels = self.token_drop(labels, class_drop_prob, force_drop_ids)
embeddings = self.embedding_table(labels)
return embeddings
def _init(self):
nn.init.normal_(self.embedding_table.weight, std=0.02)
class TransformerBlock(nn.Module):
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, cond_mode=None, **block_kwargs):
super().__init__()
self.cond_mode = cond_mode
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs)
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
mlp_hidden_dim = int(hidden_size * mlp_ratio)
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
if cond_mode == "adaln":
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 6 * hidden_size, bias=True)
)
self._init_conditional()
else:
self._init_standard()
@torch.compile
def forward(self, x, c=None):
if self.cond_mode == "adaln" and c is not None:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1)
x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x), shift_msa, scale_msa))
x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
else:
x = x + self.attn(self.norm1(x))
x = x + self.mlp(self.norm2(x))
return x
def _init_standard(self):
pass
def _init_conditional(self):
nn.init.constant_(self.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.adaLN_modulation[-1].bias, 0)
class FinalLayer(nn.Module):
def __init__(self, hidden_size, patch_size, out_channels, cond_mode=None):
super().__init__()
self.cond_mode = cond_mode
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
if cond_mode == "adaln":
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
self._init_conditional()
else:
self._init_standard()
def forward(self, x, c=None):
if self.cond_mode == "adaln" and c is not None:
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
else:
x = self.norm_final(x)
x = self.linear(x)
return x
def _init_standard(self):
nn.init.constant_(self.linear.weight, 0)
nn.init.constant_(self.linear.bias, 0)
def _init_conditional(self):
nn.init.constant_(self.linear.weight, 0)
nn.init.constant_(self.linear.bias, 0)
nn.init.constant_(self.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.adaLN_modulation[-1].bias, 0)
class DiT(nn.Module):
def __init__(
self,
input_size=32,
patch_size=2,
in_channels=4,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4.0,
num_classes=1000,
learn_sigma=False,
cond_mode="adaln",
enable_routing=False,
routes=None,
use_x_T: bool = False,
use_x_D_last: bool = False,
):
super().__init__()
self.learn_sigma = learn_sigma
self.in_channels = in_channels
self.input_size = input_size
self.out_channels = in_channels * 2 if learn_sigma else in_channels
self.patch_size = patch_size
self.num_heads = num_heads
self.num_classes = num_classes
self.hidden_size = hidden_size
self.enable_routing = enable_routing
self.routes = routes if routes is not None else []
self.use_x_T = use_x_T
self.use_x_D_last = use_x_D_last
self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size)
self.t_embedder = TimestepEmbedder(hidden_size)
self.y_embedder = LabelEmbedder(num_classes, hidden_size) if num_classes else None
num_patches = self.x_embedder.num_patches
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, hidden_size), requires_grad=False)
self.blocks = nn.ModuleList([
TransformerBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, cond_mode=cond_mode)
for _ in range(depth)
])
self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels, cond_mode=cond_mode)
if enable_routing:
self.router = Router()
self.mask_token = None
self.initialize_weights()
def initialize_weights(self):
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5))
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
w = self.x_embedder.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.constant_(self.x_embedder.proj.bias, 0)
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
def unpatchify(self, x):
c = self.out_channels
p = self.x_embedder.patch_size[0]
h = w = int(x.shape[1] ** 0.5)
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p))
return imgs
def forward(self,
x: torch.Tensor,
t: torch.Tensor,
y: torch.Tensor,
**kwargs
) -> Dict[str, torch.Tensor]:
class_drop_prob = kwargs.get('class_drop_prob', 0.0)
x = self.x_embedder(x) + self.pos_embed
t = self.t_embedder(t)
y = self.y_embedder(y, class_drop_prob)
c = t + y
if self.enable_routing:
route_count = 0
x_T = x.clone()
masks = []
else:
route_count = None
masks = None
for idx, block in enumerate(self.blocks):
if self.training and self.enable_routing and self.routes:
if idx == self.routes[route_count]['start_layer_idx']:
x_D_last = x.clone()
mask_info = self.router.get_mask(x, mask_ratio=self.routes[route_count]['selection_ratio'])
masks.append(mask_info['mask'].to(torch.int))
x = self.router.start_route(x, mask_info)
x = block(x, c)
if self.training and self.enable_routing and self.routes:
if idx == self.routes[route_count]['end_layer_idx']:
x_combined = x_T * self.routes[route_count]['x_T'] + x_D_last * self.routes[route_count]['x_D_last']
x = self.router.end_route(x, mask_info, original_x=x_combined)
if route_count < len(self.routes) - 1:
route_count += 1
x = self.final_layer(x, c)
x = self.unpatchify(x)
out = {
'x': x,
'mask': masks,
}
return out
def forward_with_cfg(self,
x: torch.Tensor,
t: torch.Tensor,
y: torch.Tensor,
**kwargs
) -> Dict[str, torch.Tensor]:
cfg_scale = kwargs.get('cfg_scale', 0.0)
cond_logits = self.forward(
x.clone(), t.clone(), y.clone(), class_drop_prob=0.0, mask_ratio=0.0,
)['x']
uncond_logits = self.forward(
x.clone(), t.clone(), y.clone(), class_drop_prob=1.0, mask_ratio=0.0,
)['x']
logits = uncond_logits + cfg_scale * (cond_logits - uncond_logits)
out = {
'x': logits,
'mask': None
}
return out
def DiT_XL_2(**kwargs):
return DiT(depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs)
def DiT_XL_4(**kwargs):
return DiT(depth=28, hidden_size=1152, patch_size=4, num_heads=16, **kwargs)
def DiT_XL_8(**kwargs):
return DiT(depth=28, hidden_size=1152, patch_size=8, num_heads=16, **kwargs)
def DiT_L_2(**kwargs):
return DiT(depth=24, hidden_size=1024, patch_size=2, num_heads=16, **kwargs)
def DiT_L_4(**kwargs):
return DiT(depth=24, hidden_size=1024, patch_size=4, num_heads=16, **kwargs)
def DiT_L_8(**kwargs):
return DiT(depth=24, hidden_size=1024, patch_size=8, num_heads=16, **kwargs)
def DiT_B_2(**kwargs):
return DiT(depth=12, hidden_size=768, patch_size=2, num_heads=12, **kwargs)
def DiT_B_4(**kwargs):
return DiT(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs)
def DiT_B_8(**kwargs):
return DiT(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs)
def DiT_S_2(**kwargs):
return DiT(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs)
def DiT_S_4(**kwargs):
return DiT(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs)
def DiT_S_8(**kwargs):
return DiT(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs)
DiT_models = {
'DiT-XL/2': DiT_XL_2, 'DiT-XL/4': DiT_XL_4, 'DiT-XL/8': DiT_XL_8,
'DiT-L/2': DiT_L_2, 'DiT-L/4': DiT_L_4, 'DiT-L/8': DiT_L_8,
'DiT-B/2': DiT_B_2, 'DiT-B/4': DiT_B_4, 'DiT-B/8': DiT_B_8,
'DiT-S/2': DiT_S_2, 'DiT-S/4': DiT_S_4, 'DiT-S/8': DiT_S_8,
}
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0):
"""
grid_size: int of the grid height and width
return:
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
grid_h = np.arange(grid_size, dtype=np.float32)
grid_w = np.arange(grid_size, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size, grid_size])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token and extra_tokens > 0:
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.
omega = 1. / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
def get_model(backbone_type: str, params: Dict[str, Any], **kwargs) -> nn.Module:
"""
Factory function to instantiate a DiT model based on the backbone_type.
"""
if backbone_type not in DiT_models:
raise ValueError(
f"Backbone type '{backbone_type}' is not supported. "
f"Choose from {list(DiT_models.keys())}"
)
model_fn = DiT_models[backbone_type]
# Instantiate the model with provided parameters
model = model_fn(**params, **kwargs)
return model
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="DiT2D Model Test")
parser.add_argument("--model", type=str, default="DiT-XL/2", choices=DiT_models.keys(), help="Model type")
parser.add_argument("--input_size", type=int, default=32, help="Input size of the model")
parser.add_argument("--in_channels", type=int, default=4, help="Number of input channels")
parser.add_argument("--num_classes", type=int, default=1000, help="Number of classes")
args = parser.parse_args()
# Example: passing the new flags via kwargs
model_cls = DiT_models[args.model]
model = model_cls(
input_size=args.input_size,
in_channels=args.in_channels,
num_classes=args.num_classes,
enable_routing=True,
routes=[
{'selection_ratio': 0.5, 'start_layer_idx': 3, 'end_layer_idx': 6},
{'selection_ratio': 0.3, 'start_layer_idx': 7, 'end_layer_idx': 10}
],
use_x_T=True, # Set as desired via your config
use_x_D_last=True # Set as desired via your config
)
x = torch.randn(1, args.in_channels, args.input_size, args.input_size)
t = torch.randint(0, 1000, (1,))
y = torch.randint(0, args.num_classes, (1,))
output = model(x, t, y)
print("Output shape:", output['x'].shape)