From 503be3109035c0b3e8eb604a6f574e9fa53f1031 Mon Sep 17 00:00:00 2001 From: ConnorDonegan Date: Tue, 12 Nov 2024 15:07:21 -0600 Subject: [PATCH] predict.slm - approx inverse --- NAMESPACE | 1 + R/convenience-functions.R | 19 +- R/geostan_fit-methods.R | 105 ++++++-- R/impacts.R | 41 +-- R/moran.R | 15 +- R/stan_car.R | 41 +-- R/stan_esf.R | 11 +- R/stan_glm.R | 6 +- R/stan_icar.R | 3 +- R/stan_sar.R | 35 ++- README.Rmd | 120 ++++++++- README.html | 255 +++++++++++------- README.md | 236 +++++++++++----- docs/index.html | 217 ++++++++++----- docs/pkgdown.yml | 2 +- .../figures/README-unnamed-chunk-3-1.png | Bin 51917 -> 53067 bytes .../figures/README-unnamed-chunk-5-1.png | Bin 57590 -> 58415 bytes .../figures/README-unnamed-chunk-8-1.png | Bin 0 -> 60194 bytes .../figures/README-unnamed-chunk-9-1.png | Bin 0 -> 38008 bytes docs/reference/impacts.html | 17 +- docs/reference/index.html | 2 +- docs/reference/predict.geostan_fit.html | 73 ++++- docs/reference/sim_sar.html | 2 +- docs/reference/sp_diag.html | 4 +- docs/reference/stan_car.html | 14 +- docs/reference/stan_esf.html | 4 +- docs/reference/stan_glm.html | 2 +- docs/reference/stan_icar.html | 2 +- docs/reference/stan_sar.html | 4 +- man/figures/README-unnamed-chunk-3-1.png | Bin 51917 -> 53067 bytes man/figures/README-unnamed-chunk-5-1.png | Bin 57590 -> 58415 bytes man/figures/README-unnamed-chunk-8-1.png | Bin 0 -> 60194 bytes man/figures/README-unnamed-chunk-9-1.png | Bin 0 -> 38008 bytes man/stan_esf.Rd | 4 +- man/stan_icar.Rd | 2 +- tests/impacts.R | 121 +++++++++ tests/missing-y.R | 2 +- 37 files changed, 983 insertions(+), 377 deletions(-) create mode 100644 docs/reference/figures/README-unnamed-chunk-8-1.png create mode 100644 docs/reference/figures/README-unnamed-chunk-9-1.png create mode 100644 man/figures/README-unnamed-chunk-8-1.png create mode 100644 man/figures/README-unnamed-chunk-9-1.png create mode 100644 tests/impacts.R diff --git a/NAMESPACE b/NAMESPACE index c2289224..e0ed96a6 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -8,6 +8,7 @@ S3method(log_lik,geostan_fit) S3method(plot,geostan_fit) S3method(predict,geostan_fit) S3method(print,geostan_fit) +S3method(print,impacts_slm) S3method(print,prior) S3method(residuals,geostan_fit) S3method(sp_diag,geostan_fit) diff --git a/R/convenience-functions.R b/R/convenience-functions.R index 7c9c0b5a..5cb85377 100644 --- a/R/convenience-functions.R +++ b/R/convenience-functions.R @@ -327,7 +327,7 @@ sp_diag.geostan_fit <- function(y, plot = TRUE, mc_style = c("scatter", "hist"), style = c("W", "B"), - w, + w = y$C, rates = TRUE, binwidth = function(x) 0.5 * stats::sd(x, na.rm = TRUE), size = 0.1, @@ -336,7 +336,7 @@ sp_diag.geostan_fit <- function(y, if (inherits(y$C, "Matrix") | inherits(y$C, "matrix")) { w <- y$C } else { - w <- shape2mat(shape, style = match.arg(style)) + w <- shape2mat(shape, style = match.arg(style), quiet = TRUE) } } mc_style <- match.arg(mc_style, c("scatter", "hist")) @@ -344,11 +344,11 @@ sp_diag.geostan_fit <- function(y, outcome <- y$data[,1] fits <- fitted(y, summary = TRUE, rates = rates) if (rates && y$family$family == "binomial") { - message("Using sp_diag(y, shape, rates = TRUE, ...). To examine data as (unstandardized) counts, use rates = FALSE.") + #message("Using sp_diag(y, shape, rates = TRUE, ...). To examine data as (unstandardized) counts, use rates = FALSE.") outcome <- outcome / (outcome + y$data[,2]) } if (rates && y$family$family == "poisson" && "offset" %in% c(colnames(y$data))) { - message("Using sp_diag(y, shape, rates = TRUE, ...). To examine data as (unstandardized) counts, use rates = FALSE.") + #message("Using sp_diag(y, shape, rates = TRUE, ...). To examine data as (unstandardized) counts, use rates = FALSE.") log.at.risk <- y$data[, "offset"] at.risk <- exp( log.at.risk ) outcome <- outcome / at.risk @@ -365,8 +365,11 @@ sp_diag.geostan_fit <- function(y, labs(x = "Observed", y = "Fitted") + theme_classic() + # map of marginal residuals - marginal_residual <- apply(residuals(y, summary = FALSE, rates = rates, ...), 2, mean, na.rm = TRUE) + R <- residuals(y, summary = FALSE, rates = rates, ...) + marginal_residual <- apply(R, 2, mean, na.rm = TRUE) + map.y <- ggplot(shape) + geom_sf(aes(fill = marginal_residual), lwd = .05, @@ -374,8 +377,8 @@ sp_diag.geostan_fit <- function(y, scale_fill_gradient2(name = name, label = signs::signs) + theme_void() + # residual autocorrelation - R <- residuals(y, summary = FALSE, rates = rates, ...) R.mc <- apply(R, 1, mc, w = w, warn = FALSE, na.rm = TRUE) if (mc_style == "scatter") { g.mc <- moran_plot(marginal_residual, w, xlab = name, na.rm = TRUE) @@ -391,9 +394,11 @@ sp_diag.geostan_fit <- function(y, x = "Residual MC", subtitle = paste0("MC (mean) = ", round(R.mc.mu, 2))) } + if (length(unique(R.mc)) == 1) { g.mc <- moran_plot(R[1,], w, xlab = name, na.rm = TRUE) - } + } + if (plot) { return( gridExtra::grid.arrange(ovf, g.mc, map.y, ncol = 3) ) } else { diff --git a/R/geostan_fit-methods.R b/R/geostan_fit-methods.R index 9413bcff..d0e5bc2e 100644 --- a/R/geostan_fit-methods.R +++ b/R/geostan_fit-methods.R @@ -55,17 +55,18 @@ print.geostan_fit <- function(x, print(x$re$formula) pars <- c(pars, "alpha_tau") } - + cat("Likelihood: ", x$family$family, "\n") + cat("Link: ", x$family$link, "\n") + meth <- x$spatial$method if (meth == "SAR") meth <- paste0(meth, " (", x$sar_type, ")") - cat("Spatial method (outcome): ", as.character(meth), "\n") + cat("Spatial method: ", as.character(meth), "\n") if (x$spatial$method == "CAR") pars <- c(pars, "car_rho", "car_scale") if (x$spatial$method == "SAR") pars <- c(pars, "sar_rho", "sar_scale") if (x$spatial$method == "BYM2") pars <- c(pars, "rho", "spatial_scale") if (x$spatial$method == "BYM") pars <- c(pars, "spatial_scale", "theta_scale") if (x$spatial$method == "ICAR") pars <- c(pars, "spatial_scale") - cat("Likelihood function: ", x$family$family, "\n") - cat("Link function: ", x$family$link, "\n") + if (!is.null(x$diagnostic$Residual_MC)) cat("Residual Moran Coefficient: ", x$diagnostic$Residual_MC, "\n") cat("Observations: ", x$N, "\n") if (x$ME$has_me) { @@ -408,6 +409,9 @@ as.array.geostan_fit <- function(x, ...){ #' @param type By default, results from `predict` are on the scale of the linear predictor (`type = "link")`). The alternative (`type = "response"`) is on the scale of the response variable. For example, the default return values for a Poisson model on the log scale, and using `type = "response"` will return the original scale of the outcome variable (by exponentiating the log values). #' #' @param add_slx Logical. If `add_slx = TRUE`, any spatially-lagged covariates that were specified through the 'slx' argument (of the model fitting function, e.g., `stan_glm`) will be added to the linear predictor. The spatial lag terms will be calculated internally using `object$C`, the spatial weights matrix used to fit the model. Hence, `newdata` must have `N = object$N` rows. Predictions from spatial lag models (SAR models of type 'SLM' and 'SDLM') always include the SLX terms (i.e., any value passed to `add_slx` will be overwritten with `TRUE`). +#' @param approx For SAR models of type 'SLM' or 'SDLM' only; use an approximation for matrix inversion? See details below. +#' +#' @param K Number of matrix powers to use with \code{approx}. #' #' @param ... Not used #' @@ -415,21 +419,32 @@ as.array.geostan_fit <- function(x, ...){ #' #' The primary purpose of the predict method is to explore marginal effects of covariates. #' -#' The model formula will be taken from `object$formula`, and then a model matrix will be created by passing `newdata` to the \link[stats]{model.frame} function (as in: \code{model.frame(newdata, object$formula}). Parameters are taken from `as.matrix(object, pars = c("intercept", "beta"))`. If `add_slx = TRUE`, SLX coefficients will be taken from `as.matrix(object, pars = "gamma")`. +#' The model formula will be taken from `object$formula`, and then a model matrix will be created by passing `newdata` to the \link[stats]{model.frame} function (as in: \code{model.frame(object$formula, newdata)}. Parameters are taken from \code{as.matrix(object, pars = c("intercept", "beta"))}. #' -#' Spatially-lagged covariates added via the `slx` argument ('spillover effects') will be included if `add_slx = TRUE` or if a spatial lag model is provided (a SAR model of type 'SLM' or 'SDLM'). In either of those cases, `newdata` must have the same number of rows as were used to fit the original data. For details on these 'spillover effects', see LeSage and Pace (2009) and LeSage (2014). +#' ## Spatial lag of X +#' +#' Spatially-lagged covariates which were included via the `slx` argument will, by default, not be included. They will be be included in predictions if `add_slx = TRUE` or if the fitted model is a SAR model of type 'SLM' or 'SDLM'. In either of those cases, `newdata` must have the same number of rows as were used to fit the original data. +#' +#' ## Spatial lag of Y +#' +#' The typical 'marginal effect' interpretation of the regression coefficients does not hold for the SAR models of type 'SLM' or 'SDLM'. For details on these 'spillover effects', see LeSage and Pace (2009), LeSage (2014), and `geostan::impacts`. #' #' Predictions for the spatial lag model (SAR models of type 'SLM') are equal to: #' \deqn{ #' (I - \rho W)^{-1} X \beta #' } -#' where \eqn{X \beta} contains the intercept and covariates. (For intercept-only models, the above term is equal to the constant intercept.) Predictions for the spatial Durbin lag model (SAR models of type 'SDLM') are equal to: +#' where \eqn{X \beta} contains the intercept and covariates. Predictions for the spatial Durbin lag model (SAR models of type 'SDLM') are equal to: #' \deqn{ #' (I - \rho W)^{-1} (X \beta + WX \gamma) #' } -#' where \eqn{WX \gamma} are spatially lagged covariates multiplied by their coefficients. The SLM and SDLM differ from all other model types in that the spatial component of the model cannot be separated from the linear predictor and is, therefore, automatically incorporated into the predictions. +#' where \eqn{WX \gamma} are spatially lagged covariates multiplied by their coefficients. +#' +#' The inverse of the matrix \eqn{(I - \rho W)} can be time consuming to compute (especially when iterating over MCMC samples). You can use `approx = TRUE` to approximate the inverse using a series of matrix powers. The argument \eqn{K} controls how many powers to use for the approximation. As a rule, higher values of \eqn{\rho} require larger \eqn{K}. Notice that \eqn{\rho^K} should be close to zero for the approximation to hold. For example, for \eqn{\rho = .5} a value of \eqn{K=8} may suffice (eqn{0.5^8 = 0.004}), but larger values of \eqn{\rho} require higher values of \eqn{K}. +#' +#' +#' ## Generalized linear models #' -#' In generalized linear models (such as Poisson and Binomial models) marginal effects plots on the response scale may be sensitive to the level of other covariates in the model and to location. If the model includes a spatial autocorrelation component (for example, you used a spatial CAR, SAR (error model), or ESF model), by default these terms will be fixed at zero for the purposes of calculating marginal effects. If you want to change this, you can introduce spatial trend values by specifying a varying intercept using the `alpha` argument. +#' In generalized linear models (such as Poisson and Binomial models) marginal effects plots on the response scale may be sensitive to the level of other covariates in the model and to geographic location. If the model includes a spatial autocorrelation component (for example, you used a spatial CAR, SAR, or ESF model), by default these terms will be fixed at zero for the purposes of calculating marginal effects. If you want to change this, you can introduce spatial trend values by specifying a varying intercept using the `alpha` argument. #' #' @return #' @@ -441,16 +456,17 @@ as.array.geostan_fit <- function(x, ...){ #' #' fit <- stan_glm(deaths.male ~ offset(log(pop.at.risk.male)) + log(income), #' data = georgia, +#' re = ~ GEOID, #' centerx = TRUE, #' family = poisson(), #' chains = 2, iter = 600) # for speed only #' -#' # note: pop.at.risk.male=1 leads to log(pop.at.risk.male)=0 +#' # note: pop.at.risk.male=1 leads to offset of log(pop.at.risk.male)=0 #' # so that the predicted values are rates #' newdata <- data.frame( #' income = seq(min(georgia$income), #' max(georgia$income), -#' length.out = 100), +#' length.out = 200), #' pop.at.risk.male = 1) #' #' preds <- predict(fit, newdata, type = "response") @@ -465,12 +481,35 @@ as.array.geostan_fit <- function(x, ...){ #' newdata$pop.at.risk.male <- 10e3 #' preds <- predict(fit, newdata, type = "response") #' head(preds) +#' +#' # plot range +#' y_lim <- c(min(preds$`2.5%`), max(preds$`97.5%`)) +#' +#' # plot line #' plot(preds$income, #' preds$mean, -#' type = "l", +#' type = "l", #' ylab = "Deaths per 10,000", -#' xlab = "Income ($1,000s)") -#' +#' xlab = "Income ($1,000s)", +#' ylim = y_lim, +#' axes = FALSE) +#' +#' # add shaded cred. interval +#' x <- c(preds$income, rev(preds$income)) +#' y <- c(preds$`2.5%`, rev(preds$`97.5%`)) +#' polygon(x = x, y = y, +#' col = rgb(0.1, 0.2, 0.3, 0.3), +#' border = NA) +#' +#' # add axes +#' yat = seq(0, 300, by = 20) +#' axis(2, at = yat) +#' +#' xat = seq(0, 200, by = 10) +#' axis(1, at = xat) +#' +#' # show county incomes +#' rug(georgia$income) #' @source #' #' Goulard, Michael, Thibault Laurent, and Christine Thomas-Agnan (2017). About predictions in spatial autoregressive models: optimal and almost optimal strategies. *Spatial Economic Analysis* 12 (2-3): 304-325. @@ -490,6 +529,8 @@ predict.geostan_fit <- function(object, summary = TRUE, type = c("link", "response"), add_slx = FALSE, + approx = FALSE, + K = 15, ...) { type <- match.arg(type) if (missing(newdata)) return (fitted(object, summary = summary, ...)) @@ -511,11 +552,10 @@ predict.geostan_fit <- function(object, lag_y <- FALSE if (object$spatial$method == "SAR") { add_slx <- grepl("SDEM|SDLM", object$sar_type) - lay_y <- grepl("SLM|SDLM", object$sar_type) + lag_y <- grepl("SLM|SDLM", object$sar_type) } - if (add_slx) { - + if (add_slx) { stopifnot( nrow(newdata) == nrow(object$C) ) Gamma <- as.matrix(object, pars = "gamma") gnames <- gsub("^w.", "", colnames(Gamma)) @@ -524,8 +564,7 @@ predict.geostan_fit <- function(object, X_tmp <- as.matrix(X[, idx]) if (length(idx) != ncol(Gamma)) stop("Mis-match of SLX coefficient names and X column names.") WX <- W %*% X_tmp - for (m in 1:M) P[m,] <- as.numeric( P[m,] + WX %*% as.matrix(Gamma[m,]) ) - + for (m in 1:M) P[m,] <- as.numeric( P[m,] + WX %*% as.matrix(Gamma[m,]) ) } if (lag_y == TRUE) { @@ -537,10 +576,30 @@ predict.geostan_fit <- function(object, W <- object$C I <- Matrix::Diagonal(N) rho <- as.matrix(object, pars = "sar_rho")[,1] - - for (m in 1:M) { - IMRWI <- Matrix::solve(I - rho[m] * W) - P[m,] <- as.numeric( IMRWI %*% P[m,] ) + + if (approx) { + Q <- K + 1 + powers = 0:K + Mlist <- list() + Mlist[[1]] <- I + Mlist[[2]] <- W + W_k <- W + for (q in 3:Q) { + W_k <- W %*% W_k + Mlist[[q]] <- W_k + } + for (m in 1:M) { + rho_powers <- rho[ m ]^powers + Mpowers <- lapply(seq(Q), function(j) Mlist[[j]] * rho_powers[j]) + Multiplier <- Reduce(`+`, Mpowers) + P[ m, ] <- as.numeric( Multiplier %*% P[ m, ] ) + } + + } else { + for (m in 1:M) { + Multiplier <- Matrix::solve(I - rho[m] * W) + P[m,] <- as.numeric( Multiplier %*% P[m,] ) + } } } diff --git a/R/impacts.R b/R/impacts.R index 7ce67655..f84dfa54 100644 --- a/R/impacts.R +++ b/R/impacts.R @@ -87,13 +87,6 @@ spill <- function(beta, gamma = 0, rho, W, method = c('quick', 'proper'), K = 20 return( impacts_multiplier(beta, gamma, rho, T, K) ) } - # matrix powers: slower method of approximation - ## M_tmp <- I + rho * W - ## W_k <- W - ## for (j in 2:K) { - ## W_k <- W %*% W_k - ## M_tmp = M_tmp + rho^j * W_k - N <- nrow(W) I <- diag(rep(1, N)) imrw <- I - rho * W @@ -137,7 +130,6 @@ impacts <- function(object, method = c('quick', 'proper'), K = 20) { gamma_idx <- match( gsub("^w.", "", colnames(gamma)), Blabs ) for (j in seq_along(gamma_idx)) G[ , gamma_idx[j] ] <- gamma[ , j ] } - impax <- vector("list", length = M) @@ -145,8 +137,8 @@ impacts <- function(object, method = c('quick', 'proper'), K = 20) { for (m in 1:M) { impax[[m]] <- sapply(1:S, function(s) - spill(beta = B[s, m], - gamma = G[s, m], + spill(beta = as.numeric( B[s, m] ), + gamma = as.numeric( G[s, m] ), rho = rho[s], W = W, method, @@ -164,7 +156,7 @@ impacts <- function(object, method = c('quick', 'proper'), K = 20) { for (m in 1:M) { impax[[m]] <- sapply(1:S, function(s) - impacts_multiplier(B[s,m], G[s,m], rho[s], T, K)) |> + impacts_multiplier(as.numeric( B[s,m] ), as.numeric( G[s,m] ), rho[s], T, K)) |> t() } @@ -179,14 +171,31 @@ impacts <- function(object, method = c('quick', 'proper'), K = 20) { upr = as.numeric(apply(impax[[m]], 2, quantile, probs = 0.975)) res <- cbind(mean = est, median = est2, sd, lwr, upr) row.names(res) <- c('Direct', 'Indirect', 'Total') - summary[[m]] <- res - names(summary)[m] <- Blabs[m] - } + summary[[m]] <- res + } + + names(impax) <- Blabs + names(summary) <- Blabs + out <- list(summary = summary, samples = impax) + class(out) <- append("impacts_slm", class(out)) - return(list(summary = summary, samples = impax)) + return(out) } +#' @export +#' +#' @param x An object of class 'impacts_slm', as returned by `geostan::impacts` +#' +#' @param digits Round results to this many digits +#' +#' @param ... Additional arguments will be passed to `base::print` +#' +#' @rdname impacts +print.impacts_slm <- function(x, digits = 2, ...) { + print(x$summary, digits = digits, ...) +} + #' After LeSage and Pace 2009 pp. 114--115 #' @noRd impacts_multiplier <- function(beta, gamma, rho, T, K) { @@ -206,7 +215,7 @@ impacts_multiplier <- function(beta, gamma, rho, T, K) { # indirect indirect <- total - direct - return (c(direct = direct, indirect = indirect, total = total)) + retunr (c(direct = direct, indirect = indirect, total = total)) } #' diagonal entries of matrix powers e..g, diag( W^{20} ) diff --git a/R/moran.R b/R/moran.R index 4c835524..52887a27 100644 --- a/R/moran.R +++ b/R/moran.R @@ -40,13 +40,13 @@ mc <- function(x, w, digits = 3, warn = TRUE, na.rm = FALSE) { check_sa_data(x, w) na_idx <- which(is.na(x)) if (na.rm == TRUE && length(na_idx) > 0) { - if (warn) message(length(na_idx), " NA values found in x; they will be removed from the data before calculating the Moran coefficient. If matrix w was row-standardized, it may not longer be. You may want to use a binary connectivity matrix by using style = 'B' in shape2mat.") + if (warn) message(length(na_idx), " dropping NA values found in x (nb: this disrupts row-standardization of matrix w) ") x <- x[-na_idx] w <- w[-na_idx, -na_idx] } if (any(Matrix::rowSums(w) == 0)) { zero.idx <- which(Matrix::rowSums(w) == 0) - if (warn) message(length(zero.idx), " observations with no neighbors found. They will be removed from the data before calculating the Moran coefficient.") + if (warn) message(length(zero.idx), " dropping observations with zero neighbors ") x <- x[-zero.idx] w <- w[-zero.idx, -zero.idx] } @@ -102,11 +102,12 @@ moran_plot <- function(x, w, xlab = "x (centered)", ylab = "Spatial Lag", pch = if (length(na_idx) > 0) { if (na.rm == TRUE) { msg <- paste(length(na_idx), - "NA values found in x will be dropped from data x and matrix w" + "NA values found in x will be dropped from data x and from matrix w (nb: this disrupts row-standardization of w)" ) - if (!inherits(w, "ngCMatrix")) msg <- paste(msg, - "\n If you are using a row-standardized matrix: dropping the NA values means that some rows in matrix w do not sum to 1; you may want to remove missing observations manually and then make row-standardized w, or use a binary matrix (see ?shape2mat)." - ) + ## if (!inherits(w, "ngCMatrix")) msg <- paste(msg, + ## "\n If you are using a row-standardized matrix: dropping the NA values means that some rows in matrix w do not sum to 1; you may want to remove missing observations manually and then make row-standardized w, or use a binary matrix (see ?shape2mat)." + ## ) + message(msg) x <- x[-na_idx] w <- w[-na_idx, -na_idx] @@ -116,7 +117,7 @@ moran_plot <- function(x, w, xlab = "x (centered)", ylab = "Spatial Lag", pch = } if (any(Matrix::rowSums(w) == 0)) { zero.idx <- which(Matrix::rowSums(w) == 0) - message(length(zero.idx), " observations with no neighbors found. They will be dropped from the data before creating the Moran plot.") + message(length(zero.idx), " dropping observations with zero neighbors ") x <- x[-zero.idx] w <- w[-zero.idx, -zero.idx] } diff --git a/R/stan_car.R b/R/stan_car.R index 8714d49c..420e44e9 100644 --- a/R/stan_car.R +++ b/R/stan_car.R @@ -15,9 +15,9 @@ #' #' @param data A \code{data.frame} or an object coercible to a data frame by \code{as.data.frame} containing the model data. #' -#' @param car_parts A list of data for the CAR model, as returned by \code{\link[geostan]{prep_car_data}}. +#' @param car_parts A list of data for the CAR model, as returned by \code{\link[geostan]{prep_car_data}}. If not provided by the user, then \code{C} will automatically be passed to \code{prep_car_data} to create it. #' -#' @param C Optional spatial connectivity matrix which will be used to calculate residual spatial autocorrelation as well as any user specified \code{slx} terms; it will automatically be row-standardized before calculating \code{slx} terms. See \code{\link[geostan]{shape2mat}}. +#' @param C Spatial connectivity matrix which will be used internally to create \code{car_parts} (if \code{car_parts} is missing); if the user provides an \code{slx} formula for the model, the required connectivity matrix will be taken from the \code{car_parts} list. See \code{\link[geostan]{shape2mat}}. #' #' @param family The likelihood function for the outcome variable. Current options are \code{auto_gaussian()}, \code{binomial(link = "logit")}, and \code{poisson(link = "log")}; if `family = gaussian()` is provided, it will automatically be converted to `auto_gaussian()`. #' @@ -195,8 +195,12 @@ #' C <- shape2mat(georgia, style = "B") #' cars <- prep_car_data(C) #' +#' # MCMC specs: set for purpose of demo speed +#' iter = 500 +#' chains = 2 +#' #' fit <- stan_car(log(rate.male) ~ 1, data = georgia, -#' car_parts = cars, iter = 400, quiet = TRUE) +#' car_parts = cars, iter = iter, chains = chains) #' #' # model diagnostics #' sp_diag(fit, georgia) @@ -207,7 +211,7 @@ #' car_parts = cars, #' data = georgia, #' family = poisson(), -#' iter = 400, quiet = TRUE) +#' iter = iter, chains = chains) #' #' # model diagnostics #' sp_diag(fit, georgia) @@ -235,7 +239,7 @@ #' data = georgia, #' car = dcars, #' family = poisson(), -#' iter = 400, quiet = TRUE) +#' iter = iter, chains = chains) #' #' sp_diag(Dfit, georgia, dcars$C) #' dic(Dfit); dic(fit) @@ -278,15 +282,18 @@ stan_car <- function(formula, check_car_parts(car_parts) stopifnot(car_parts$n == nrow(data)) if (quiet) refresh <- 0 - if (!missing(C)) { - stopifnot(inherits(C, "Matrix") | inherits(C, "matrix")) - stopifnot(all(dim(C) == nrow(data))) - } else { - C <- car_parts$C + C <- car_parts$C + + ## C [CAR: always take C from car_parts] + ## if (!missing(C)) { + ## stopifnot(inherits(C, "Matrix") | inherits(C, "matrix")) + ## stopifnot(all(dim(C) == nrow(data))) + ## } else { + ## C <- car_parts$C # if (car_parts$WCAR == 0) { # message("Since you did not provide C, calculation of residual SA and any spatial-lag of X terms will use the matrix found in car_parts$C.") # } - } + #} # zero-mean constraint parameterization car_parts$ZMP <- ifelse(missing(zmp), 0, zmp) @@ -346,12 +353,12 @@ stan_car <- function(formula, x_full <- xraw } else { stopifnot(inherits(slx, "formula")) - W <- C - if (!inherits(W, "sparseMatrix")) W <- as(W, "CsparseMatrix") - xrs <- Matrix::rowSums(W) - if (!all(xrs == 1)) W <- row_standardize(W, warn = !quiet, msg = "Row standardizing matrix C for spatial lag of X calculations.") + ## W <- C + ## if (!inherits(W, "sparseMatrix")) W <- as(W, "CsparseMatrix") + ## xrs <- Matrix::rowSums(W) + ## if (!all(xrs == 1)) W <- row_standardize(W, warn = !quiet, msg = "Row standardizing matrix C for spatial lag of X calculations.") # efficient transform to CRS representation for W.list (via transpose) - Wij <- as(W, "TsparseMatrix") + Wij <- as(C, "TsparseMatrix") Tw <- Matrix::sparseMatrix(i = Wij@j + 1, j = Wij@i + 1, x = Wij@x, @@ -359,7 +366,7 @@ stan_car <- function(formula, W.list <- list(w = Tw@x, v = Tw@i + 1, u = Tw@p + 1) - Wx <- SLX(f = slx, DF = mod_frame, x = xraw, W = W) + Wx <- SLX(f = slx, DF = mod_frame, x = xraw, W = C) dwx <- ncol(Wx) wx_idx <- as.array( which(paste0("w.", colnames(xraw)) %in% colnames(Wx)), dim = dwx ) x_full <- cbind(Wx, xraw) diff --git a/R/stan_esf.R b/R/stan_esf.R index c3198f94..184ac3ed 100644 --- a/R/stan_esf.R +++ b/R/stan_esf.R @@ -12,13 +12,13 @@ #' alpha_tau ~ Student_t(d.f., location, scale). #' ``` #' -#' @param C Spatial connectivity matrix which will be used to calculate eigenvectors, if `EV` is not provided by the user. Typically, the binary connectivity matrix is best for calculating eigenvectors (i.e., using `C = shape2mat(shape, style = "B")`). This matrix will also be used to calculate residual spatial autocorrelation and any user specified \code{slx} terms; it will be row-standardized before calculating \code{slx} terms. See \code{\link[geostan]{shape2mat}}. +#' @param C Spatial connectivity matrix. This will be used to calculate eigenvectors if `EV` is not provided by the user. See \code{\link[geostan]{shape2mat}}. Use of row-normalization (as in `\code{shape2mat(shape, 'W')} is not recommended for creating \code{EV}. Matrix \code{C} will also be used ('as is') to create any user-specified \code{slx} terms. #' #' @param nsa Include eigenvectors representing negative spatial autocorrelation? Defaults to \code{nsa = FALSE}. This is ignored if \code{EV} is provided. #' #' @param threshold Eigenvectors with standardized Moran coefficient values below this `threshold` value will be excluded from the candidate set of eigenvectors, `EV`. This defaults to \code{threshold = 0.25}, and is ignored if \code{EV} is provided. #' -#' @param EV A matrix of eigenvectors from any (transformed) connectivity matrix, presumably spatial (see \code{\link[geostan]{make_EV}}). If `EV` is provided, still also provide a spatial weights matrix \code{C} for other purposes; `threshold` and `nsa` are ignored for user provided `EV`. +#' @param EV A matrix of eigenvectors from any (transformed) connectivity matrix, presumably spatial or network-based (see \code{\link[geostan]{make_EV}}). If `EV` is provided, still also provide a spatial weights matrix \code{C} for other purposes; `threshold` and `nsa` are ignored for user provided `EV`. #' #' @param data A \code{data.frame} or an object coercible to a data frame by \code{as.data.frame} containing the model data. #' @@ -273,12 +273,11 @@ stan_esf <- function(formula, x_full <- xraw } else { stopifnot(inherits(slx, "formula")) - W <- row_standardize(C, warn = !quiet, msg = "Row standardizing matrix C for spatial lag of X calculations.") - W.list <- rstan::extract_sparse_parts(W) - Wx <- SLX(f = slx, DF = mod_frame, x = xraw, W = W) + #W <- row_standardize(C, warn = !quiet, msg = "Row standardizing matrix C for spatial lag of X calculations.") + W.list <- rstan::extract_sparse_parts(C) + Wx <- SLX(f = slx, DF = mod_frame, x = xraw, W = C) dwx <- ncol(Wx) wx_idx <- as.array( which(paste0("w.", colnames(xraw)) %in% colnames(Wx)), dim = dwx ) - x_full <- cbind(Wx, xraw) } } diff --git a/R/stan_glm.R b/R/stan_glm.R index 1bb81128..69db18be 100644 --- a/R/stan_glm.R +++ b/R/stan_glm.R @@ -19,7 +19,7 @@ #' #' @param data A \code{data.frame} or an object coercible to a data frame by \code{as.data.frame} containing the model data. #' -#' @param C Optional spatial connectivity matrix which will be used to calculate residual spatial autocorrelation as well as any user specified \code{slx} terms; it will automatically be row-standardized before calculating \code{slx} terms. See \code{\link[geostan]{shape2mat}}. +#' @param C Spatial connectivity matrix which will be used to calculate residual spatial autocorrelation as well as any user specified \code{slx} terms. See \code{\link[geostan]{shape2mat}}. #' #' @param family The likelihood function for the outcome variable. Current options are \code{poisson(link = "log")}, \code{binomial(link = "logit")}, \code{student_t()}, and the default \code{gaussian()}. #' @@ -392,8 +392,8 @@ stan_glm <- function(formula, stopifnot(inherits(slx, "formula")) W <- C if (!inherits(W, "sparseMatrix")) W <- as(W, "CsparseMatrix") - xrs <- Matrix::rowSums(W) - if (!all(xrs == 1)) W <- row_standardize(W, warn = !quiet, msg = "Row standardizing matrix C for spatial lag of X calculations.") + ## xrs <- Matrix::rowSums(W) + ## if (!all(xrs == 1)) W <- row_standardize(W, warn = !quiet, msg = "Row standardizing matrix C for spatial lag of X calculations.") # efficient transform to CRS representation for W.list (via transpose) Wij <- as(W, "TsparseMatrix") Tw <- Matrix::sparseMatrix(i = Wij@j + 1, diff --git a/R/stan_icar.R b/R/stan_icar.R index eb0858cf..591a5cf2 100644 --- a/R/stan_icar.R +++ b/R/stan_icar.R @@ -15,7 +15,7 @@ #' #' @param data A \code{data.frame} or an object coercible to a data frame by \code{as.data.frame} containing the model data. #' -#' @param C Spatial connectivity matrix which will be used to construct an edge list for the ICAR model, and to calculate residual spatial autocorrelation as well as any user specified \code{slx} terms. It will automatically be row-standardized before calculating \code{slx} terms. \code{C} must be a binary symmetric \code{n x n} matrix. +#' @param C Spatial connectivity matrix which will be used to construct an edge list for the ICAR model, and to calculate residual spatial autocorrelation as well as any user specified \code{slx} terms. It will automatically be row-standardized before calculating \code{slx} terms (matching the ICAR model). \code{C} must be a binary symmetric \code{n x n} matrix. #' #' @param type Defaults to "icar" (partial pooling of neighboring observations through parameter \code{phi}); specify "bym" to add a second parameter vector \code{theta} to perform partial pooling across all observations; specify "bym2" for the innovation introduced by Riebler et al. (2016). See \code{Details} for more information. #' @@ -338,7 +338,6 @@ stan_icar <- function(formula, Wx <- SLX(f = slx, DF = mod_frame, x = xraw, W = W) dwx <- ncol(Wx) wx_idx <- as.array( which(paste0("w.", colnames(xraw)) %in% colnames(Wx)), dim = dwx ) - x_full <- cbind(Wx, xraw) } } diff --git a/R/stan_sar.R b/R/stan_sar.R index bcc3a85f..0ef00c06 100644 --- a/R/stan_sar.R +++ b/R/stan_sar.R @@ -15,9 +15,9 @@ #' #' @param data A \code{data.frame} or an object coercible to a data frame by \code{as.data.frame} containing the model data. #' -#' @param C Spatial weights matrix (conventionally referred to as \eqn{W} in the SAR model). Typically, this will be created using `geostan::shape2mat(shape, style = "W")`. This will be passed internally to \code{\link[geostan]{prep_sar_data}}, and will also be used to calculate residual spatial autocorrelation as well as any user specified \code{slx} terms. See \code{\link[geostan]{shape2mat}}. -#' #' @param sar_parts List of data constructed by \code{\link[geostan]{prep_sar_data}}. If not provided, then `C` will automatically be passed to \code{\link[geostan]{prep_sar_data}} to create `sar_parts`. +#' +#' @param C Spatial connectivity matrix which will be used internally to create \code{sar_parts} (if \code{sar_parts} is missing); if the user provides an \code{slx} formula for the model, the required connectivity matrix will be taken from the \code{sar_parts} list. See \code{\link[geostan]{shape2mat}}. #' #' @param family The likelihood function for the outcome variable. Current options are \code{auto_gaussian()}, \code{binomial()} (with logit link function) and \code{poisson()} (with log link function); if `family = gaussian()` is provided, it will automatically be converted to `auto_gaussian()`. #' @@ -262,7 +262,7 @@ #' ## fit models #' ## #' -#' # DSEM +#' # SDEM #' # y = mu + rho*W*(y - mu) + epsilon #' # mu = beta*x + gamma*Wx #' fit_sdem <- stan_sar(y ~ x, data = dat, @@ -358,13 +358,15 @@ stan_sar <- function(formula, Durbin <- grepl('SDEM|SDLM', type) if(grepl("SLM|SDLM", type) & family$family != "auto_gaussian") stop("SLM/SDLM are only available as auto-normal models (not Poisson or binomial models).") #### SAR type [stop] - # C - if (!missing(C)) { - stopifnot(inherits(C, "Matrix") | inherits(C, "matrix")) - stopifnot(all(dim(C) == nrow(data))) - } else { - C <- sar_parts$W - } + # C [SAR: always take C from sar_parts] + C <- sar_parts$W + + ## if (!missing(C)) { + ## stopifnot(inherits(C, "Matrix") | inherits(C, "matrix")) + ## stopifnot(all(dim(C) == nrow(data))) + ## } else { + ## C <- sar_parts$W + #} # zero-mean constraint parameterization sar_parts$ZMP <- ifelse(missing(zmp), 0, zmp) @@ -432,15 +434,12 @@ stan_sar <- function(formula, } slx = formula[-2] } - - W <- C - if (!inherits(W, "sparseMatrix")) W <- as(W, "CsparseMatrix") - xrs <- Matrix::rowSums(W) - if (!all(xrs == 1)) W <- row_standardize(W, warn = !quiet, msg = "Row standardizing matrix C for spatial lag of X calculations.") - - # nb: in stan_sar, W is taken from sar_parts, not calculated here. - Wx <- SLX(f = slx, DF = mod_frame, x = xraw, W = W, Durbin = Durbin) + ## xrs <- Matrix::rowSums(C) + ## if (!all(xrs == 1)) C <- row_standardize(C, warn = !quiet, msg = "Row standardizing matrix C for spatial lag of X calculations.") + # nb: in stan_sar, CSR rep of W is taken from sar_parts, not calculated here. + + Wx <- SLX(f = slx, DF = mod_frame, x = xraw, W = C, Durbin = Durbin) dwx <- ncol(Wx) wx_idx <- as.array( which(paste0("w.", colnames(xraw)) %in% colnames(Wx)), dim = dwx ) x_full <- cbind(Wx, xraw) diff --git a/README.Rmd b/README.Rmd index 166b4b88..d2b9627e 100644 --- a/README.Rmd +++ b/README.Rmd @@ -30,7 +30,7 @@ Features include: * **Observational uncertainty** Incorporate information on data reliability, such as standard errors of American Community Survey estimates, into any geostan model. * **Missing and Censored observations** Vital statistics and disease surveillance systems like CDC Wonder censor case counts that fall below a threshold number; geostan can model disease or mortality risk for small areas with censored observations or with missing observations. * **The RStan ecosystem** Interfaces easily with many high-quality R packages for Bayesian modeling. -* **Custom spatial models** Tools for building custom spatial models in Stan. +* **Custom spatial models** Tools for building custom spatial or network models in Stan. For public health research, geostan complements the [surveil](https://connordonegan.github.io/surveil/) R package for the study of time trends in disease incidence or mortality data. @@ -78,33 +78,47 @@ library(geostan) data(georgia) ``` -This has county population and mortality data by sex for ages 55-64, and for the period 2014-2018. As is common for public access data, some of the observations missing because the CDC has censored them. +This has county population and mortality data by sex for ages 55-64, and for the period 2014-2018. As is common for public access data, some of the observations missing because the CDC has censored them to protect privacy. -The `sp_diag` function provides visual summaries of spatial data, including a histogram, Moran scatter plot, and map. Here is a visual summary of crude female mortality rates (as deaths per 10,000): +The `sp_diag` function provides visual summaries of spatial data, including a histogram, Moran scatter plot, and map. The Moran scatter plot displays the values against a summary of their neighboring values, so that the slope of the regression line gives a measure of their degree of autocorrelation. + +Here is a quick visual summary of crude female mortality rates (as deaths per 10,000): ```{r fig.width = 8} -A <- shape2mat(georgia, style = "B") +# create adjacency matrix ("B" is for binary) +C <- shape2mat(georgia, style = "B") + +# crude mortality rate per 10,000 at risk mortality_rate <- georgia$rate.female * 10e3 -sp_diag(mortality_rate, georgia, w = A) + +# quick spatial diagnostics +sp_diag(mortality_rate, georgia, w = C, name = "Mortality") ``` -The following code fits a spatial conditional autoregressive (CAR) model to female county mortality data. These models are used for estimating disease risk in small areas like counties, and for analyzing covariation of health outcomes with other area qualities. The R syntax for fitting the models is similar to using `lm` or `glm`. We provide the population at risk (the denominator for mortality rates) as an offset term, using the log-transform. In this case, three of the observations are missing because they have been censored; per CDC criteria, this means that there were 9 or fewer deaths in those counties. By using the `censor_point` argument and setting it to `censor_point = 9`, the model will account for the censoring process when providing estimates of the mortality rates: +Mortality rates and other health statistics for counties are, in many cases, highly unstable estimates that cannot be relied upon for public advisories or inference (due to small population sizes). Hence, we need models to make inferences from small area data. + +The following code fits a spatial conditional autoregressive (CAR) model to female county mortality data. These models are used for estimating disease risk in small areas like counties, and for analyzing covariation of health outcomes with other area variables. The R syntax for fitting the models is similar to using `lm` or `glm`. We provide the population at risk (the denominator for mortality rates) as an offset term, using the log-transform. + +In our Georgia mortality data, three of the observations are missing because they have been censored; per CDC criteria, this means that there were 9 or fewer deaths in those counties. By using the `censor_point` argument and setting it to `censor_point = 9`, we can easily obtain estimates for the censored counties (along with all the others) using models account for the censoring process: ```{r} -cars <- prep_car_data(A) +# prepare a list of data for CAR models in Stan +cars <- prep_car_data(C) + +# fit the model to female mortality rates fit <- stan_car(deaths.female ~ offset(log(pop.at.risk.female)), censor_point = 9, data = georgia, car_parts = cars, family = poisson(), - cores = 4, # for multi-core processing - refresh = 0) # to silence some printing + iter = 1e3, # no. MCMC samples + quiet = TRUE) # to silence printing ``` Passing a fitted model to the `sp_diag` function will return a set of diagnostics for spatial models: ```{r fig.width = 8} -sp_diag(fit, georgia, w = A) +sp_diag(fit, georgia) ``` The `print` method returns a summary of the probability distributions for model parameters, as well as Markov chain Monte Carlo (MCMC) diagnostics from Stan (Monte Carlo standard errors of the mean `se_mean`, effective sample size `n_eff`, and the R-hat statistic `Rhat`): @@ -113,17 +127,97 @@ The `print` method returns a summary of the probability distributions for model print(fit) ``` -Applying the `fitted` method to the fitted model will return the fitted values from the model - in this case, the fitted values are the estimates of the county mortality rates. Multiplying them by 10,000 gives mortality rate per 10,000 at risk: +To extract estimates of the county mortality rates from this, we apply the `fitted` method - in this case, the fitted values from the model are the estimates of the county mortality rates. Multiplying them by 10,000 gives mortality rate per 10,000 at risk: ```{r} +# mortality rates per 10,000 at risk mortality_est <- fitted(fit) * 10e3 + +# display rates with county names county_name <- georgia$NAME head( cbind(county_name, mortality_est) ) ``` -The mortality estimates are stored in the column named "mean", and the limits of the 95\% credible interval are found in the columns "2.5%" and "97.5%". +The mortality estimates are stored in the column named "mean", and the limits of the 95\% credible interval are found in the columns "2.5%" and "97.5%". Here we create a map of estimates (with some help from `sf` package): + +```{r fig.width = 7, fig.height = 4.5} +library(sf) + +# put estimates into bins for map colors +x <- mortality_est$mean +brks <- quantile(x, probs = c(0, 0.2, 0.4, 0.6, 0.8, 1)) +est_cut <- cut(x, breaks = brks, include.lowest = TRUE) + +# assign colors to values +rank <- as.numeric( est_cut ) +pal_fun <- colorRampPalette( c("#5D74A5FF", "gray90", "#A8554EFF") ) +pal <- pal_fun( max(rank) ) +colors <- pal[ rank ] + +# set plot margins +og=par(mar=rep(1, 4)) + +# get boundaries +geom <- sf::st_geometry(georgia) + +# map estimates +plot(geom, + lwd = 0.2, + col = colors) + +# legend +legend("right", + fill = pal, + title = 'Mortality per 10,000', + legend = levels(est_cut), + bty = 'n' +) + +mtext('County mortality rates per 10,000, Georgia women ages 55-64', side = 3, font = 2) +# reset margins +par(og) +``` + +Using the credible intervals, we can complement our map with a point-interval plot: + +```{r fig.height = 6.5} +# order counties by mortality rate +index <- order(mortality_est$mean, decreasing = TRUE) +dat <- mortality_est[index, ] + +# gather estimate with credible interval (95%) +est <- dat$mean +lwr <- dat$`2.5%` +upr <- dat$`97.5%` +y <- seq_along(county_name) +x_lim <- c(min(lwr), max(upr)) |> + round() + +og=par(mar = c(3, 0, 0, 0)) + +# points +plot(est, + y, + pch = 5, + col = 'gray50', + bty = 'L', + axes = FALSE, + xlim = x_lim, + ylab = NA, + xlab = NA) + +# intervals +segments(x0 = lwr, x1 = upr, + y0 = y, y1 = y, + col = colors[ index ]) + +# x axis +axis(1, at = seq(x_lim[1], x_lim[2], by = 20)) +mtext('County mortality rates per 10,000, Georgia women ages 55-64', side = 1, line = 2) +par(og) +``` -Details and demonstrations can be found in the package [help pages](https://connordonegan.github.io/geostan/reference/index.html) and [vignettes](https://connordonegan.github.io/geostan/articles/index.html). +More details and demonstrations can be found in the package [help pages](https://connordonegan.github.io/geostan/reference/index.html) and [vignettes](https://connordonegan.github.io/geostan/articles/index.html). ## Citing geostan diff --git a/README.html b/README.html index ed8a0bf3..f1bae065 100644 --- a/README.html +++ b/README.html @@ -610,12 +610,12 @@

geostan: Bayesian spatial analysisIntroductions to the software can be found at r-spatial.org and in the package vignettes.

Features include:

For public health research, geostan complements the surveil R package for the study of time trends in disease incidence or mortality data.

Installation

@@ -642,103 +642,174 @@

Usage

Load the package and the georgia county mortality data set:

library(geostan)
 data(georgia)
-

This has county population and mortality data by sex for ages 55-64, and for the period 2014-2018. As is common for public access data, some of the observations missing because the CDC has censored them.

-

The sp_diag function provides visual summaries of spatial data, including a histogram, Moran scatter plot, and map. Here is a visual summary of crude female mortality rates (as deaths per 10,000):

-
A <- shape2mat(georgia, style = "B")
-#> Contiguity condition: queen
-#> Number of neighbors per unit, summary:
-#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
-#>   1.000   4.000   5.000   5.409   6.000  10.000
-#> 
-#> Spatial weights, summary:
-#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
-#>       1       1       1       1       1       1
-mortality_rate <- georgia$rate.female * 10e3
-sp_diag(mortality_rate, georgia, w = A)
-#> 3 NA values found in x will be dropped from data x and matrix w
-#> Warning: Removed 3 rows containing non-finite outside the scale
-#> range (`stat_bin()`).
- +

This has county population and mortality data by sex for ages 55-64, and for the period 2014-2018. As is common for public access data, some of the observations missing because the CDC has censored them to protect privacy.

+

The sp_diag function provides visual summaries of spatial data, including a histogram, Moran scatter plot, and map. The Moran scatter plot displays the values against a summary of their neighboring values, so that the slope of the regression line gives a measure of their degree of autocorrelation.

+

Here is a quick visual summary of crude female mortality rates (as deaths per 10,000):

+
# create adjacency matrix ("B" is for binary)
+C <- shape2mat(georgia, style = "B")
+#> Contiguity condition: queen
+#> Number of neighbors per unit, summary:
+#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
+#>   1.000   4.000   5.000   5.409   6.000  10.000
+#> 
+#> Spatial weights, summary:
+#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
+#>       1       1       1       1       1       1
+
+# crude mortality rate per 10,000 at risk
+mortality_rate <- georgia$rate.female * 10e3
+
+# quick spatial diagnostics
+sp_diag(mortality_rate, georgia, w = C, name = "Mortality")
+#> 3 NA values found in x will be dropped from data x and from matrix w (nb: this disrupts row-standardization of w)
+#> Warning: Removed 3 rows containing non-finite outside the scale range
+#> (`stat_bin()`).
+ -

The following code fits a spatial conditional autoregressive (CAR) model to female county mortality data. These models are used for estimating disease risk in small areas like counties, and for analyzing covariation of health outcomes with other area qualities. The R syntax for fitting the models is similar to using lm or glm. We provide the population at risk (the denominator for mortality rates) as an offset term, using the log-transform. In this case, three of the observations are missing because they have been censored; per CDC criteria, this means that there were 9 or fewer deaths in those counties. By using the censor_point argument and setting it to censor_point = 9, the model will account for the censoring process when providing estimates of the mortality rates:

-
cars <- prep_car_data(A)
-#> Range of permissible rho values: -1.661, 1
-fit <- stan_car(deaths.female ~ offset(log(pop.at.risk.female)),
-                censor_point = 9,
-        data = georgia,
-        car_parts = cars,
-        family = poisson(),
-        cores = 4, # for multi-core processing
-        refresh = 0) # to silence some printing
-#> 3 NA values identified in the outcome variable
-#> Found in rows: 55, 126, 157
-#> 
-#> *Setting prior parameters for intercept
-#> Distribution: normal
-#>   location scale
-#> 1     -4.7     5
-#> 
-#> *Setting prior for CAR scale parameter (car_scale)
-#> Distribution: student_t
-#>   df location scale
-#> 1 10        0     3
-#> 
-#> *Setting prior for CAR spatial autocorrelation parameter (car_rho)
-#> Distribution: uniform
-#>   lower upper
-#> 1  -1.7     1
+

Mortality rates and other health statistics for counties are, in many cases, highly unstable estimates that cannot be relied upon for public advisories or inference (due to small population sizes). Hence, we need models to make inferences from small area data.

+

The following code fits a spatial conditional autoregressive (CAR) model to female county mortality data. These models are used for estimating disease risk in small areas like counties, and for analyzing covariation of health outcomes with other area variables. The R syntax for fitting the models is similar to using lm or glm. We provide the population at risk (the denominator for mortality rates) as an offset term, using the log-transform.

+

In our Georgia mortality data, three of the observations are missing because they have been censored; per CDC criteria, this means that there were 9 or fewer deaths in those counties. By using the censor_point argument and setting it to censor_point = 9, we can easily obtain estimates for the censored counties (along with all the others) using models account for the censoring process:

+
# prepare a list of data for CAR models in Stan
+cars <- prep_car_data(C)
+#> Range of permissible rho values: -1.661, 1
+
+# fit the model to female mortality rates
+fit <- stan_car(deaths.female ~ offset(log(pop.at.risk.female)),
+                censor_point = 9,
+        data = georgia,
+        car_parts = cars,
+        family = poisson(),
+        iter = 1e3, # no. MCMC samples
+        quiet = TRUE) # to silence printing
+#> 3 NA values identified in the outcome variable
+#> Found in rows: 55, 126, 157

Passing a fitted model to the sp_diag function will return a set of diagnostics for spatial models:

-
sp_diag(fit, georgia, w = A)
-#> Using sp_diag(y, shape, rates = TRUE, ...). To examine data as (unstandardized) counts, use rates = FALSE.
-#> 3 NA values found in x will be dropped from data x and matrix w
-#> Warning: Removed 3 rows containing missing values or values
-#> outside the scale range (`geom_pointrange()`).
- +
sp_diag(fit, georgia)
+#> 3 NA values found in x will be dropped from data x and from matrix w (nb: this disrupts row-standardization of w)
+#> Warning: Removed 3 rows containing missing values or values outside the
+#> scale range (`geom_pointrange()`).
+

The print method returns a summary of the probability distributions for model parameters, as well as Markov chain Monte Carlo (MCMC) diagnostics from Stan (Monte Carlo standard errors of the mean se_mean, effective sample size n_eff, and the R-hat statistic Rhat):

print(fit)
 #> Spatial Model Results 
 #> Formula: deaths.female ~ offset(log(pop.at.risk.female))
-#> Spatial method (outcome):  CAR 
-#> Likelihood function:  poisson 
-#> Link function:  log 
-#> Residual Moran Coefficient:  0.0011525 
-#> WAIC:  1227.47 
-#> Observations:  156 
-#> Data models (ME): none
-#> Inference for Stan model: foundation.
-#> 4 chains, each with iter=2000; warmup=1000; thin=1; 
-#> post-warmup draws per chain=1000, total post-warmup draws=4000.
-#> 
-#>             mean se_mean    sd   2.5%    20%    50%    80%  97.5% n_eff  Rhat
-#> intercept -4.674   0.002 0.089 -4.849 -4.730 -4.674 -4.621 -4.505  2362 1.000
-#> car_rho    0.923   0.001 0.058  0.778  0.879  0.937  0.973  0.995  3319 1.000
-#> car_scale  0.458   0.001 0.036  0.395  0.428  0.456  0.488  0.534  3618 0.999
-#> 
-#> Samples were drawn using NUTS(diag_e) at Tue Sep 17 16:44:56 2024.
-#> For each parameter, n_eff is a crude measure of effective sample size,
-#> and Rhat is the potential scale reduction factor on split chains (at 
-#> convergence, Rhat=1).
-

Applying the fitted method to the fitted model will return the fitted values from the model - in this case, the fitted values are the estimates of the county mortality rates. Multiplying them by 10,000 gives mortality rate per 10,000 at risk:

-
mortality_est <- fitted(fit) * 10e3
-county_name <- georgia$NAME
-head( cbind(county_name, mortality_est) )
-#>           county_name      mean        sd      2.5%       20%       50%
-#> fitted[1]       Crisp 101.48785  9.604829  83.99009  93.31163 101.17610
-#> fitted[2]     Candler 136.99885 15.905146 109.27395 123.11823 136.31355
-#> fitted[3]      Barrow  94.25470  6.071597  82.80270  89.20105  94.16678
-#> fitted[4]      DeKalb  59.76214  1.579194  56.72962  58.44624  59.75766
-#> fitted[5]    Columbia  53.33958  3.257549  47.19615  50.56654  53.28387
-#> fitted[6]        Cobb  54.12983  1.498260  51.24933  52.85101  54.10133
-#>                 80%     97.5%
-#> fitted[1] 109.30723 121.16598
-#> fitted[2] 150.17348 169.77611
-#> fitted[3]  99.19399 106.44508
-#> fitted[4]  61.07091  62.86805
-#> fitted[5]  56.08790  59.78086
-#> fitted[6]  55.42278  57.02966
-

The mortality estimates are stored in the column named “mean”, and the limits of the 95% credible interval are found in the columns “2.5%” and “97.5%”.

-

Details and demonstrations can be found in the package help pages and vignettes.

+#> Likelihood: poisson +#> Link: log +#> Spatial method: CAR +#> Residual Moran Coefficient: -0.0031375 +#> Observations: 156 +#> +#> Inference for Stan model: foundation. +#> 4 chains, each with iter=1000; warmup=500; thin=1; +#> post-warmup draws per chain=500, total post-warmup draws=2000. +#> +#> mean se_mean sd 2.5% 20% 50% 80% 97.5% n_eff Rhat +#> intercept -4.677 0.003 0.092 -4.871 -4.734 -4.677 -4.619 -4.513 861 1.004 +#> car_rho 0.924 0.001 0.058 0.784 0.883 0.936 0.973 0.996 1606 0.999 +#> car_scale 0.456 0.001 0.036 0.391 0.424 0.454 0.486 0.532 1899 1.002 +#> +#> Samples were drawn using NUTS(diag_e) at Wed Nov 13 16:09:50 2024. +#> For each parameter, n_eff is a crude measure of effective sample size, +#> and Rhat is the potential scale reduction factor on split chains (at +#> convergence, Rhat=1). +

To extract estimates of the county mortality rates from this, we apply the fitted method - in this case, the fitted values from the model are the estimates of the county mortality rates. Multiplying them by 10,000 gives mortality rate per 10,000 at risk:

+
# mortality rates per 10,000 at risk
+mortality_est <- fitted(fit) * 10e3
+
+# display rates with county names
+county_name <- georgia$NAME
+head( cbind(county_name, mortality_est) )
+#>           county_name      mean        sd      2.5%       20%       50%
+#> fitted[1]       Crisp 101.89147  9.784748  83.87184  93.37621 101.37227
+#> fitted[2]     Candler 137.13841 15.643722 108.50033 123.57906 136.51359
+#> fitted[3]      Barrow  94.35971  6.364805  82.62612  88.73920  94.14574
+#> fitted[4]      DeKalb  59.74315  1.575741  56.77068  58.33325  59.71677
+#> fitted[5]    Columbia  53.34581  3.207432  47.33439  50.61504  53.26339
+#> fitted[6]        Cobb  54.12259  1.495041  51.24262  52.86109  54.12912
+#>                 80%     97.5%
+#> fitted[1] 110.47617 122.04006
+#> fitted[2] 150.26114 169.29720
+#> fitted[3]  99.74677 107.51136
+#> fitted[4]  61.13469  62.84502
+#> fitted[5]  56.05293  59.83064
+#> fitted[6]  55.38574  57.00559
+

The mortality estimates are stored in the column named “mean”, and the limits of the 95% credible interval are found in the columns “2.5%” and “97.5%”. Here we create a map of estimates (with some help from sf package):

+
library(sf)
+
+# put estimates into bins for map colors
+x <- mortality_est$mean
+brks <- quantile(x, probs = c(0, 0.2, 0.4, 0.6, 0.8, 1)) 
+est_cut <- cut(x, breaks = brks, include.lowest = TRUE)
+  
+# assign colors to values
+rank <- as.numeric( est_cut )  
+pal_fun <- colorRampPalette( c("#5D74A5FF", "gray90", "#A8554EFF") )
+pal <- pal_fun( max(rank) )
+colors <-  pal[ rank ]
+
+# set plot margins
+og=par(mar=rep(1, 4))
+
+# get boundaries
+geom <- sf::st_geometry(georgia)
+
+# map  estimates
+plot(geom,
+    lwd = 0.2,
+    col = colors)
+
+# legend
+legend("right",
+     fill = pal,
+     title = 'Mortality per 10,000',
+     legend = levels(est_cut),
+     bty = 'n'
+)
+
+mtext('County mortality rates per 10,000, Georgia women ages 55-64', side = 3, font = 2)
+ + +
# reset margins
+par(og)
+

Using the credible intervals, we can complement our map with a point-interval plot:

+
# order counties by mortality rate
+index <- order(mortality_est$mean, decreasing = TRUE)
+dat <- mortality_est[index, ]
+
+# gather estimate with credible interval (95%)
+est <- dat$mean
+lwr <- dat$`2.5%`
+upr <- dat$`97.5%`
+y <- seq_along(county_name)
+x_lim <- c(min(lwr), max(upr)) |>
+      round()
+
+og=par(mar = c(3, 0, 0, 0))
+
+# points
+plot(est,
+     y,
+     pch = 5,
+     col = 'gray50',
+     bty = 'L',
+     axes = FALSE,
+     xlim = x_lim,
+     ylab = NA,
+     xlab = NA)
+
+# intervals
+segments(x0 = lwr, x1 = upr,
+         y0 = y, y1 = y,
+     col = colors[ index ])
+
+# x axis
+axis(1, at = seq(x_lim[1], x_lim[2], by = 20))
+mtext('County mortality rates per 10,000, Georgia women ages 55-64', side = 1, line = 2)
+ + +
par(og)
+

More details and demonstrations can be found in the package help pages and vignettes.

Citing geostan

If you use geostan in published work, please include a citation.

Donegan, Connor (2022) “geostan: An R package for Bayesian spatial analysis” The Journal of Open Source Software. 7, no. 79: 4716. https://doi.org/10.21105/joss.04716.

diff --git a/README.md b/README.md index 7227b471..1cddde97 100644 --- a/README.md +++ b/README.md @@ -19,9 +19,9 @@ and in the package Features include: - - **Disease mapping and spatial regression** Statistical models for - data recorded across areal units like states, counties, or census - tracts. + - **Spatial regression and disease mapping** Statistical models for + data recorded across areal units (states, counties, or census + tracts) or networks, including spatial econometric models. - **Spatial analysis tools** Tools for visualizing and measuring spatial autocorrelation and map patterns, for exploratory analysis and model diagnostics. @@ -35,8 +35,8 @@ Features include: observations. - **The RStan ecosystem** Interfaces easily with many high-quality R packages for Bayesian modeling. - - **Custom spatial models** Tools for building custom spatial models - in Stan. + - **Custom spatial models** Tools for building custom spatial or + network models in Stan. For public health research, geostan complements the [surveil](https://connordonegan.github.io/surveil/) R package for the @@ -110,14 +110,21 @@ data(georgia) This has county population and mortality data by sex for ages 55-64, and for the period 2014-2018. As is common for public access data, some of -the observations missing because the CDC has censored them. +the observations missing because the CDC has censored them to protect +privacy. The `sp_diag` function provides visual summaries of spatial data, -including a histogram, Moran scatter plot, and map. Here is a visual -summary of crude female mortality rates (as deaths per 10,000): +including a histogram, Moran scatter plot, and map. The Moran scatter +plot displays the values against a summary of their neighboring values, +so that the slope of the regression line gives a measure of their degree +of autocorrelation. + +Here is a quick visual summary of crude female mortality rates (as +deaths per 10,000): ``` r -A <- shape2mat(georgia, style = "B") +# create adjacency matrix ("B" is for binary) +C <- shape2mat(georgia, style = "B") #> Contiguity condition: queen #> Number of neighbors per unit, summary: #> Min. 1st Qu. Median Mean 3rd Qu. Max. @@ -126,66 +133,64 @@ A <- shape2mat(georgia, style = "B") #> Spatial weights, summary: #> Min. 1st Qu. Median Mean 3rd Qu. Max. #> 1 1 1 1 1 1 + +# crude mortality rate per 10,000 at risk mortality_rate <- georgia$rate.female * 10e3 -sp_diag(mortality_rate, georgia, w = A) -#> 3 NA values found in x will be dropped from data x and matrix w -#> Warning: Removed 3 rows containing non-finite outside the scale -#> range (`stat_bin()`). + +# quick spatial diagnostics +sp_diag(mortality_rate, georgia, w = C, name = "Mortality") +#> 3 NA values found in x will be dropped from data x and from matrix w (nb: this disrupts row-standardization of w) +#> Warning: Removed 3 rows containing non-finite outside the scale range +#> (`stat_bin()`). ``` +Mortality rates and other health statistics for counties are, in many +cases, highly unstable estimates that cannot be relied upon for public +advisories or inference (due to small population sizes). Hence, we need +models to make inferences from small area data. + The following code fits a spatial conditional autoregressive (CAR) model to female county mortality data. These models are used for estimating disease risk in small areas like counties, and for analyzing covariation -of health outcomes with other area qualities. The R syntax for fitting +of health outcomes with other area variables. The R syntax for fitting the models is similar to using `lm` or `glm`. We provide the population at risk (the denominator for mortality rates) as an offset term, using -the log-transform. In this case, three of the observations are missing +the log-transform. + +In our Georgia mortality data, three of the observations are missing because they have been censored; per CDC criteria, this means that there were 9 or fewer deaths in those counties. By using the `censor_point` -argument and setting it to `censor_point = 9`, the model will account -for the censoring process when providing estimates of the mortality -rates: +argument and setting it to `censor_point = 9`, we can easily obtain +estimates for the censored counties (along with all the others) using +models account for the censoring process: ``` r -cars <- prep_car_data(A) +# prepare a list of data for CAR models in Stan +cars <- prep_car_data(C) #> Range of permissible rho values: -1.661, 1 + +# fit the model to female mortality rates fit <- stan_car(deaths.female ~ offset(log(pop.at.risk.female)), censor_point = 9, data = georgia, car_parts = cars, family = poisson(), - cores = 4, # for multi-core processing - refresh = 0) # to silence some printing + iter = 1e3, # no. MCMC samples + quiet = TRUE) # to silence printing #> 3 NA values identified in the outcome variable #> Found in rows: 55, 126, 157 -#> -#> *Setting prior parameters for intercept -#> Distribution: normal -#> location scale -#> 1 -4.7 5 -#> -#> *Setting prior for CAR scale parameter (car_scale) -#> Distribution: student_t -#> df location scale -#> 1 10 0 3 -#> -#> *Setting prior for CAR spatial autocorrelation parameter (car_rho) -#> Distribution: uniform -#> lower upper -#> 1 -1.7 1 ``` Passing a fitted model to the `sp_diag` function will return a set of diagnostics for spatial models: ``` r -sp_diag(fit, georgia, w = A) -#> Using sp_diag(y, shape, rates = TRUE, ...). To examine data as (unstandardized) counts, use rates = FALSE. -#> 3 NA values found in x will be dropped from data x and matrix w -#> Warning: Removed 3 rows containing missing values or values -#> outside the scale range (`geom_pointrange()`). +sp_diag(fit, georgia) +#> 3 NA values found in x will be dropped from data x and from matrix w (nb: this disrupts row-standardization of w) +#> Warning: Removed 3 rows containing missing values or values outside the +#> scale range (`geom_pointrange()`). ``` @@ -200,58 +205,149 @@ diagnostics from Stan (Monte Carlo standard errors of the mean print(fit) #> Spatial Model Results #> Formula: deaths.female ~ offset(log(pop.at.risk.female)) -#> Spatial method (outcome): CAR -#> Likelihood function: poisson -#> Link function: log -#> Residual Moran Coefficient: 0.0011525 -#> WAIC: 1227.47 +#> Likelihood: poisson +#> Link: log +#> Spatial method: CAR +#> Residual Moran Coefficient: -0.0031375 #> Observations: 156 -#> Data models (ME): none +#> #> Inference for Stan model: foundation. -#> 4 chains, each with iter=2000; warmup=1000; thin=1; -#> post-warmup draws per chain=1000, total post-warmup draws=4000. +#> 4 chains, each with iter=1000; warmup=500; thin=1; +#> post-warmup draws per chain=500, total post-warmup draws=2000. #> #> mean se_mean sd 2.5% 20% 50% 80% 97.5% n_eff Rhat -#> intercept -4.674 0.002 0.089 -4.849 -4.730 -4.674 -4.621 -4.505 2362 1.000 -#> car_rho 0.923 0.001 0.058 0.778 0.879 0.937 0.973 0.995 3319 1.000 -#> car_scale 0.458 0.001 0.036 0.395 0.428 0.456 0.488 0.534 3618 0.999 +#> intercept -4.677 0.003 0.092 -4.871 -4.734 -4.677 -4.619 -4.513 861 1.004 +#> car_rho 0.924 0.001 0.058 0.784 0.883 0.936 0.973 0.996 1606 0.999 +#> car_scale 0.456 0.001 0.036 0.391 0.424 0.454 0.486 0.532 1899 1.002 #> -#> Samples were drawn using NUTS(diag_e) at Tue Sep 17 16:44:56 2024. +#> Samples were drawn using NUTS(diag_e) at Wed Nov 13 16:09:50 2024. #> For each parameter, n_eff is a crude measure of effective sample size, #> and Rhat is the potential scale reduction factor on split chains (at #> convergence, Rhat=1). ``` -Applying the `fitted` method to the fitted model will return the fitted -values from the model - in this case, the fitted values are the -estimates of the county mortality rates. Multiplying them by 10,000 +To extract estimates of the county mortality rates from this, we apply +the `fitted` method - in this case, the fitted values from the model are +the estimates of the county mortality rates. Multiplying them by 10,000 gives mortality rate per 10,000 at risk: ``` r +# mortality rates per 10,000 at risk mortality_est <- fitted(fit) * 10e3 + +# display rates with county names county_name <- georgia$NAME head( cbind(county_name, mortality_est) ) #> county_name mean sd 2.5% 20% 50% -#> fitted[1] Crisp 101.48785 9.604829 83.99009 93.31163 101.17610 -#> fitted[2] Candler 136.99885 15.905146 109.27395 123.11823 136.31355 -#> fitted[3] Barrow 94.25470 6.071597 82.80270 89.20105 94.16678 -#> fitted[4] DeKalb 59.76214 1.579194 56.72962 58.44624 59.75766 -#> fitted[5] Columbia 53.33958 3.257549 47.19615 50.56654 53.28387 -#> fitted[6] Cobb 54.12983 1.498260 51.24933 52.85101 54.10133 +#> fitted[1] Crisp 101.89147 9.784748 83.87184 93.37621 101.37227 +#> fitted[2] Candler 137.13841 15.643722 108.50033 123.57906 136.51359 +#> fitted[3] Barrow 94.35971 6.364805 82.62612 88.73920 94.14574 +#> fitted[4] DeKalb 59.74315 1.575741 56.77068 58.33325 59.71677 +#> fitted[5] Columbia 53.34581 3.207432 47.33439 50.61504 53.26339 +#> fitted[6] Cobb 54.12259 1.495041 51.24262 52.86109 54.12912 #> 80% 97.5% -#> fitted[1] 109.30723 121.16598 -#> fitted[2] 150.17348 169.77611 -#> fitted[3] 99.19399 106.44508 -#> fitted[4] 61.07091 62.86805 -#> fitted[5] 56.08790 59.78086 -#> fitted[6] 55.42278 57.02966 +#> fitted[1] 110.47617 122.04006 +#> fitted[2] 150.26114 169.29720 +#> fitted[3] 99.74677 107.51136 +#> fitted[4] 61.13469 62.84502 +#> fitted[5] 56.05293 59.83064 +#> fitted[6] 55.38574 57.00559 ``` The mortality estimates are stored in the column named “mean”, and the limits of the 95% credible interval are found in the columns “2.5%” and -“97.5%”. +“97.5%”. Here we create a map of estimates (with some help from `sf` +package): + +``` r +library(sf) + +# put estimates into bins for map colors +x <- mortality_est$mean +brks <- quantile(x, probs = c(0, 0.2, 0.4, 0.6, 0.8, 1)) +est_cut <- cut(x, breaks = brks, include.lowest = TRUE) + +# assign colors to values +rank <- as.numeric( est_cut ) +pal_fun <- colorRampPalette( c("#5D74A5FF", "gray90", "#A8554EFF") ) +pal <- pal_fun( max(rank) ) +colors <- pal[ rank ] + +# set plot margins +og=par(mar=rep(1, 4)) + +# get boundaries +geom <- sf::st_geometry(georgia) + +# map estimates +plot(geom, + lwd = 0.2, + col = colors) + +# legend +legend("right", + fill = pal, + title = 'Mortality per 10,000', + legend = levels(est_cut), + bty = 'n' +) + +mtext('County mortality rates per 10,000, Georgia women ages 55-64', side = 3, font = 2) +``` + + + +``` r +# reset margins +par(og) +``` + +Using the credible intervals, we can complement our map with a +point-interval plot: + +``` r +# order counties by mortality rate +index <- order(mortality_est$mean, decreasing = TRUE) +dat <- mortality_est[index, ] + +# gather estimate with credible interval (95%) +est <- dat$mean +lwr <- dat$`2.5%` +upr <- dat$`97.5%` +y <- seq_along(county_name) +x_lim <- c(min(lwr), max(upr)) |> + round() + +og=par(mar = c(3, 0, 0, 0)) + +# points +plot(est, + y, + pch = 5, + col = 'gray50', + bty = 'L', + axes = FALSE, + xlim = x_lim, + ylab = NA, + xlab = NA) + +# intervals +segments(x0 = lwr, x1 = upr, + y0 = y, y1 = y, + col = colors[ index ]) + +# x axis +axis(1, at = seq(x_lim[1], x_lim[2], by = 20)) +mtext('County mortality rates per 10,000, Georgia women ages 55-64', side = 1, line = 2) +``` + + + +``` r +par(og) +``` -Details and demonstrations can be found in the package [help +More details and demonstrations can be found in the package [help pages](https://connordonegan.github.io/geostan/reference/index.html) and [vignettes](https://connordonegan.github.io/geostan/articles/index.html). diff --git a/docs/index.html b/docs/index.html index 3592e456..34cb49ad 100644 --- a/docs/index.html +++ b/docs/index.html @@ -85,7 +85,7 @@

geostan: Bayesian spatial analysisFeatures include:

For public health research, geostan complements the surveil R package for the study of time trends in disease incidence or mortality data.

@@ -142,10 +142,12 @@

Usage
 library(geostan)
 data(georgia)
-

This has county population and mortality data by sex for ages 55-64, and for the period 2014-2018. As is common for public access data, some of the observations missing because the CDC has censored them.

-

The sp_diag function provides visual summaries of spatial data, including a histogram, Moran scatter plot, and map. Here is a visual summary of crude female mortality rates (as deaths per 10,000):

+

This has county population and mortality data by sex for ages 55-64, and for the period 2014-2018. As is common for public access data, some of the observations missing because the CDC has censored them to protect privacy.

+

The sp_diag function provides visual summaries of spatial data, including a histogram, Moran scatter plot, and map. The Moran scatter plot displays the values against a summary of their neighboring values, so that the slope of the regression line gives a measure of their degree of autocorrelation.

+

Here is a quick visual summary of crude female mortality rates (as deaths per 10,000):

-A <- shape2mat(georgia, style = "B")
+# create adjacency matrix ("B" is for binary)
+C <- shape2mat(georgia, style = "B")
 #> Contiguity condition: queen
 #> Number of neighbors per unit, summary:
 #>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
@@ -154,94 +156,165 @@ 

Usage #> Spatial weights, summary: #> Min. 1st Qu. Median Mean 3rd Qu. Max. #> 1 1 1 1 1 1 + +# crude mortality rate per 10,000 at risk mortality_rate <- georgia$rate.female * 10e3 -sp_diag(mortality_rate, georgia, w = A) -#> 3 NA values found in x will be dropped from data x and matrix w -#> Warning: Removed 3 rows containing non-finite outside the scale -#> range (`stat_bin()`).

+ +# quick spatial diagnostics +sp_diag(mortality_rate, georgia, w = C, name = "Mortality") +#> 3 NA values found in x will be dropped from data x and from matrix w (nb: this disrupts row-standardization of w) +#> Warning: Removed 3 rows containing non-finite outside the scale range +#> (`stat_bin()`).

-

The following code fits a spatial conditional autoregressive (CAR) model to female county mortality data. These models are used for estimating disease risk in small areas like counties, and for analyzing covariation of health outcomes with other area qualities. The R syntax for fitting the models is similar to using lm or glm. We provide the population at risk (the denominator for mortality rates) as an offset term, using the log-transform. In this case, three of the observations are missing because they have been censored; per CDC criteria, this means that there were 9 or fewer deaths in those counties. By using the censor_point argument and setting it to censor_point = 9, the model will account for the censoring process when providing estimates of the mortality rates:

+

Mortality rates and other health statistics for counties are, in many cases, highly unstable estimates that cannot be relied upon for public advisories or inference (due to small population sizes). Hence, we need models to make inferences from small area data.

+

The following code fits a spatial conditional autoregressive (CAR) model to female county mortality data. These models are used for estimating disease risk in small areas like counties, and for analyzing covariation of health outcomes with other area variables. The R syntax for fitting the models is similar to using lm or glm. We provide the population at risk (the denominator for mortality rates) as an offset term, using the log-transform.

+

In our Georgia mortality data, three of the observations are missing because they have been censored; per CDC criteria, this means that there were 9 or fewer deaths in those counties. By using the censor_point argument and setting it to censor_point = 9, we can easily obtain estimates for the censored counties (along with all the others) using models account for the censoring process:

-cars <- prep_car_data(A)
+# prepare a list of data for CAR models in Stan
+cars <- prep_car_data(C)
 #> Range of permissible rho values: -1.661, 1
+
+# fit the model to female mortality rates
 fit <- stan_car(deaths.female ~ offset(log(pop.at.risk.female)),
                 censor_point = 9,
         data = georgia,
         car_parts = cars,
         family = poisson(),
-        cores = 4, # for multi-core processing
-        refresh = 0) # to silence some printing
+        iter = 1e3, # no. MCMC samples
+        quiet = TRUE) # to silence printing
 #> 3 NA values identified in the outcome variable
-#> Found in rows: 55, 126, 157
-#> 
-#> *Setting prior parameters for intercept
-#> Distribution: normal
-#>   location scale
-#> 1     -4.7     5
-#> 
-#> *Setting prior for CAR scale parameter (car_scale)
-#> Distribution: student_t
-#>   df location scale
-#> 1 10        0     3
-#> 
-#> *Setting prior for CAR spatial autocorrelation parameter (car_rho)
-#> Distribution: uniform
-#>   lower upper
-#> 1  -1.7     1
+#> Found in rows: 55, 126, 157

Passing a fitted model to the sp_diag function will return a set of diagnostics for spatial models:

-sp_diag(fit, georgia, w = A)
-#> Using sp_diag(y, shape, rates = TRUE, ...). To examine data as (unstandardized) counts, use rates = FALSE.
-#> 3 NA values found in x will be dropped from data x and matrix w
-#> Warning: Removed 3 rows containing missing values or values
-#> outside the scale range (`geom_pointrange()`).
+sp_diag(fit, georgia) +#> 3 NA values found in x will be dropped from data x and from matrix w (nb: this disrupts row-standardization of w) +#> Warning: Removed 3 rows containing missing values or values outside the +#> scale range (`geom_pointrange()`).

The print method returns a summary of the probability distributions for model parameters, as well as Markov chain Monte Carlo (MCMC) diagnostics from Stan (Monte Carlo standard errors of the mean se_mean, effective sample size n_eff, and the R-hat statistic Rhat):

 print(fit)
 #> Spatial Model Results 
 #> Formula: deaths.female ~ offset(log(pop.at.risk.female))
-#> Spatial method (outcome):  CAR 
-#> Likelihood function:  poisson 
-#> Link function:  log 
-#> Residual Moran Coefficient:  0.0011525 
-#> WAIC:  1227.47 
+#> Likelihood:  poisson 
+#> Link:  log 
+#> Spatial method:  CAR 
+#> Residual Moran Coefficient:  -0.0031375 
 #> Observations:  156 
-#> Data models (ME): none
+#> 
 #> Inference for Stan model: foundation.
-#> 4 chains, each with iter=2000; warmup=1000; thin=1; 
-#> post-warmup draws per chain=1000, total post-warmup draws=4000.
+#> 4 chains, each with iter=1000; warmup=500; thin=1; 
+#> post-warmup draws per chain=500, total post-warmup draws=2000.
 #> 
 #>             mean se_mean    sd   2.5%    20%    50%    80%  97.5% n_eff  Rhat
-#> intercept -4.674   0.002 0.089 -4.849 -4.730 -4.674 -4.621 -4.505  2362 1.000
-#> car_rho    0.923   0.001 0.058  0.778  0.879  0.937  0.973  0.995  3319 1.000
-#> car_scale  0.458   0.001 0.036  0.395  0.428  0.456  0.488  0.534  3618 0.999
+#> intercept -4.677   0.003 0.092 -4.871 -4.734 -4.677 -4.619 -4.513   861 1.004
+#> car_rho    0.924   0.001 0.058  0.784  0.883  0.936  0.973  0.996  1606 0.999
+#> car_scale  0.456   0.001 0.036  0.391  0.424  0.454  0.486  0.532  1899 1.002
 #> 
-#> Samples were drawn using NUTS(diag_e) at Tue Sep 17 16:44:56 2024.
+#> Samples were drawn using NUTS(diag_e) at Wed Nov 13 16:09:50 2024.
 #> For each parameter, n_eff is a crude measure of effective sample size,
 #> and Rhat is the potential scale reduction factor on split chains (at 
 #> convergence, Rhat=1).
-

Applying the fitted method to the fitted model will return the fitted values from the model - in this case, the fitted values are the estimates of the county mortality rates. Multiplying them by 10,000 gives mortality rate per 10,000 at risk:

+

To extract estimates of the county mortality rates from this, we apply the fitted method - in this case, the fitted values from the model are the estimates of the county mortality rates. Multiplying them by 10,000 gives mortality rate per 10,000 at risk:

-mortality_est <- fitted(fit) * 10e3
+# mortality rates per 10,000 at risk
+mortality_est <- fitted(fit) * 10e3
+
+# display rates with county names
 county_name <- georgia$NAME
 head( cbind(county_name, mortality_est) )
 #>           county_name      mean        sd      2.5%       20%       50%
-#> fitted[1]       Crisp 101.48785  9.604829  83.99009  93.31163 101.17610
-#> fitted[2]     Candler 136.99885 15.905146 109.27395 123.11823 136.31355
-#> fitted[3]      Barrow  94.25470  6.071597  82.80270  89.20105  94.16678
-#> fitted[4]      DeKalb  59.76214  1.579194  56.72962  58.44624  59.75766
-#> fitted[5]    Columbia  53.33958  3.257549  47.19615  50.56654  53.28387
-#> fitted[6]        Cobb  54.12983  1.498260  51.24933  52.85101  54.10133
+#> fitted[1]       Crisp 101.89147  9.784748  83.87184  93.37621 101.37227
+#> fitted[2]     Candler 137.13841 15.643722 108.50033 123.57906 136.51359
+#> fitted[3]      Barrow  94.35971  6.364805  82.62612  88.73920  94.14574
+#> fitted[4]      DeKalb  59.74315  1.575741  56.77068  58.33325  59.71677
+#> fitted[5]    Columbia  53.34581  3.207432  47.33439  50.61504  53.26339
+#> fitted[6]        Cobb  54.12259  1.495041  51.24262  52.86109  54.12912
 #>                 80%     97.5%
-#> fitted[1] 109.30723 121.16598
-#> fitted[2] 150.17348 169.77611
-#> fitted[3]  99.19399 106.44508
-#> fitted[4]  61.07091  62.86805
-#> fitted[5]  56.08790  59.78086
-#> fitted[6]  55.42278  57.02966
-

The mortality estimates are stored in the column named “mean”, and the limits of the 95% credible interval are found in the columns “2.5%” and “97.5%”.

-

Details and demonstrations can be found in the package help pages and vignettes.

+#> fitted[1] 110.47617 122.04006 +#> fitted[2] 150.26114 169.29720 +#> fitted[3] 99.74677 107.51136 +#> fitted[4] 61.13469 62.84502 +#> fitted[5] 56.05293 59.83064 +#> fitted[6] 55.38574 57.00559
+

The mortality estimates are stored in the column named “mean”, and the limits of the 95% credible interval are found in the columns “2.5%” and “97.5%”. Here we create a map of estimates (with some help from sf package):

+
+library(sf)
+
+# put estimates into bins for map colors
+x <- mortality_est$mean
+brks <- quantile(x, probs = c(0, 0.2, 0.4, 0.6, 0.8, 1)) 
+est_cut <- cut(x, breaks = brks, include.lowest = TRUE)
+  
+# assign colors to values
+rank <- as.numeric( est_cut )  
+pal_fun <- colorRampPalette( c("#5D74A5FF", "gray90", "#A8554EFF") )
+pal <- pal_fun( max(rank) )
+colors <-  pal[ rank ]
+
+# set plot margins
+og=par(mar=rep(1, 4))
+
+# get boundaries
+geom <- sf::st_geometry(georgia)
+
+# map  estimates
+plot(geom,
+    lwd = 0.2,
+    col = colors)
+
+# legend
+legend("right",
+     fill = pal,
+     title = 'Mortality per 10,000',
+     legend = levels(est_cut),
+     bty = 'n'
+)
+
+mtext('County mortality rates per 10,000, Georgia women ages 55-64', side = 3, font = 2)
+

+
+# reset margins
+par(og)
+

Using the credible intervals, we can complement our map with a point-interval plot:

+
+# order counties by mortality rate
+index <- order(mortality_est$mean, decreasing = TRUE)
+dat <- mortality_est[index, ]
+
+# gather estimate with credible interval (95%)
+est <- dat$mean
+lwr <- dat$`2.5%`
+upr <- dat$`97.5%`
+y <- seq_along(county_name)
+x_lim <- c(min(lwr), max(upr)) |>
+      round()
+
+og=par(mar = c(3, 0, 0, 0))
+
+# points
+plot(est,
+     y,
+     pch = 5,
+     col = 'gray50',
+     bty = 'L',
+     axes = FALSE,
+     xlim = x_lim,
+     ylab = NA,
+     xlab = NA)
+
+# intervals
+segments(x0 = lwr, x1 = upr,
+         y0 = y, y1 = y,
+     col = colors[ index ])
+
+# x axis
+axis(1, at = seq(x_lim[1], x_lim[2], by = 20))
+mtext('County mortality rates per 10,000, Georgia women ages 55-64', side = 1, line = 2)
+

+
+par(og)
+

More details and demonstrations can be found in the package help pages and vignettes.

Citing geostan @@ -249,16 +322,16 @@

Citing geostanIf you use geostan in published work, please include a citation.

Donegan, Connor (2022) “geostan: An R package for Bayesian spatial analysis” The Journal of Open Source Software. 7, no. 79: 4716. https://doi.org/10.21105/joss.04716.

DOI

-
@Article{,
-  title = {{geostan}: An {R} package for {B}ayesian spatial analysis},
-  author = {Connor Donegan},
-  journal = {The Journal of Open Source Software},
-  year = {2022},
-  volume = {7},
-  number = {79},
-  pages = {4716},
-  doi = {10.21105/joss.04716},
-}
+
@Article{,
+  title = {{geostan}: An {R} package for {B}ayesian spatial analysis},
+  author = {Connor Donegan},
+  journal = {The Journal of Open Source Software},
+  year = {2022},
+  volume = {7},
+  number = {79},
+  pages = {4716},
+  doi = {10.21105/joss.04716},
+}

diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml index 824e8eab..9ee08f28 100644 --- a/docs/pkgdown.yml +++ b/docs/pkgdown.yml @@ -8,7 +8,7 @@ articles: spatial-analysis: spatial-analysis.html spatial-me-models: spatial-me-models.html spatial-weights-matrix: spatial-weights-matrix.html -last_built: 2024-11-07T19:06Z +last_built: 2024-11-13T22:58Z urls: reference: https://connordonegan.github.io/geostan/reference article: https://connordonegan.github.io/geostan/articles diff --git a/docs/reference/figures/README-unnamed-chunk-3-1.png b/docs/reference/figures/README-unnamed-chunk-3-1.png index 927b4069baf617515642be85f74c1d7f77646cff..0c8b7c51fa151d7840b81ac932aefc84b4ad6158 100644 GIT binary patch literal 53067 zcmb@uWmHw)7d3p46e($Gm6Glb0cq*(knZjh1e6W|>Fx&Ul9ul7l5UWOcl-N~XN>pL z^XYNmxa7U(?7j9}Yt1>={U$Ffj*3ix3_%d8q{IhB2!aKl!jK_70}o-N0X^X1xt)ZD zBLty!{`(KpYg=FhL1d8R2O(v*l!GN#FQu(p=wv(PAeBv0yb;m*-A`l2#Hwgif20Dx z-|&ncI11W+S!%w>RYsv-slUn-xxISkUs9E6T$AgWV?FsDBEG&wJ$~=VB*vJeCO~wQ9c}tUqm2ilNw(~#xDjOWPWk0{qnAp`` zSgf~)h582uh?7@*?&u>nJX)3)d_ud0v&T4W7I$Xbyzg8f`9ftGPhqgDf;Hbs$l!#I zW_HH1Z5QjKlau!sW8>pF3_9R?En~>lz-`*Cb@=%~rm%&|jn)gbU%!6MTVkfAEzZg^ zygpfr7y_#R*0flyys>u8p#eOip`p20A;UdmNRZB-XgNfLkORSM6WwXh;YMWpCV)U% zE%+~x%(MLb{651X9xXM^FrztN?oAaH6=jM9^F-j{;_f*$>b7_^q_W$ucTuiXHa8P> zG9`ZeGmHK0gB3?pR#r!ijFHi%WqAt%BpyjJG&p#_S6nV|eFfb6p zz{Ff1ah8Z7N6K3BK@MDREL5fe!L~0;61i=?x7_M|_jtR{7|_0YaCutm3tr`LzGi>6 zGJC@xJkcW`t3TOq!Ox9JFLQ7Rd0ni;#Ke4j1fZPU+=jnLTs;li+aGw9)zq3IlDO}0 zw$mpOc${`tr$16-6QCf>$V(Paf#r%Esr7ldEh#CHN#>AA7ih`J>00m!7n=a9+ZRiv zrmCu{qVlk>_vEoxm_O=)1Sdqo1`eMDEhTO!A_{(m>+!Nyoed5S4!7wx^xnydEwr1* z@lV*oyK2)BpWWPqMHe(;o}X(d?fWz3P3$kw&?qIx8@zOir@$rD$>zPlW2i5a@%%ey z%1t!9JCWaVC}_9pr&y@nhI+Br= zCS*2*OCEAL>b3V;Zgx-ieROwru5mOK5^9frE1q)xB?XOCAdEdKCFNk6j+>jCiRt8b z^xKG`Z1Ko5x8^dPrpDU7!NC+>*RpOydn=kasepE}Xo+SJNySrpi?-EsgC?v&22Urw z0C(02k^L}ooC!H?7UO8uIBb^}?Oe{sbEP%tRP$w1r%Sb5@2^jt_oq?unaIe=H-|V^ zoGiKBPV|*v6BzYeEX8saw}(^j9`BCRd0mgzyF~p(-SddMY3cExdc+4@XvBly<8`)F zZW36n4{x}^VIj0_J{@Eok*EIt_;BZYcUbq4GPcjiW5E|JgzK`q>A`HJOH&I75h~df zy9*S6;(T2Ak};9DuOO&QuPrSm#sO?32tWQkQ+IhQj%49XJ386F=iuOBf`hRwO!6-o z2;G12@FS@$)v7ZwGP<5~1J4Qo(<5Uf;J;iz#)gRW@3*3;(7^uump#@qp#K-&%3&`o zESzh0cXW5Z$@cm864R*g?~%rnzQ@H4C9+acQEe*-f^;OYAM^|Wn`R|IN@8w@O$9-C zf3i~ae^+DP?Q$?{e{;4a{(z0-|5IQ{5A_iQ^V8*w9zCwKg~i_e&3WQSN@x+h%0^E( zL3o~Ax&W)`aF;!{+iRq8lue=?bg!Os#PqRZPJZ@cmItQPAPaupwL_sb#ux&;86 z%$|P_!0BBAz`WTPJLIYK->OC3jSs@ei;9XqJw8xiK2I1p1R-i{OaU1g8A*`GeE*J3 z8Ov=kSpYH)+p)~c|NiDknic)?0R~c0QBk%ykL-OdA#DfJE2-~&WnLa72Zzh!{f%NFc5~Q^?DloUujJBl z>9uBTnJu2IaQ@;CY#oei>E{nmC>dp!olUJ-8wEByK21g8c69p|q6L`uPna8j*yQ)HA=y$w_w0>CNqJ zaZyoX9;X6uL;s?}ypJf63|a-au~2KR_0#O-|DIc0N$I>DkreWi&5xBJM?b$IMK|!i zt+x?F!9OWT15uBgl?a<5;C=gh>kM7+e$|_6j;1s!P}ke-@hfGRfmQM_Lx-`h6DS2*oX};0aEB+##=XN`#dc-T|BcI zPB`Ly_HD>4jF`QMir|^Z-diN${E0a$j_fhBx`lVx$U+$8l8V&W$wL4{pZjMh7QTM{ zI`URB+GOJXMLDHh8lU@_QC;e{Z{I-Hvia-zT4KPoMiY-wHzg(I9suqq{6Dk1_S&<( z`jzt3_xI-`FslIjA_|?qiYO?&OdrAf_949XV=60^^KeS=i9{q!pz!Ho<9Wmkxj`Kk z2Tk1C?4%hE4?Svc0rYE~fXfOdyx)mGf&6*$l5jSQN>a$`FZsH-u(&vOw)vL7NzCHi6=lfQ?nE|c}OZ#e%A>B`aw_WuAz}ZzIfPI{N30| z%5UHKNH?6kL=_8S+OhH{w?moPi+dR@#6|$yYwu5HM`X&v%@x7ALuV@(zgb4)>*FC| z`B^pX?eBoNw6tNvN|WJ~-NuQHdL{xo8-I}6hLbsMcgJ%hZ-q!`op@4ZKQZrE)jhxo zDSx-*DuH?_;W-hJL|Sw{WGf-Tf41R`lj2XHcUkD$@>h2vE%pni^wvmhmid?;6zrz0 zkl5_sYu^?~Sgk>dNrQ|Qa`BYM(;`NWeBQ=CewGQ)mZW5HaS^1(FcSXx%D(M$-|IER z$c+xOiu&h&kCq5=g9PG}66L9Xs-vL7W{jU{(dBvOhl;BvzvDU)deHrW65nlc=7!W; z$dTNAwd>Mh(n<44gm-yHCR~g-vbU*RDGC=2K<}CUPzv`%>0NL8f4AAH=Y99rdouFG z?TzGBp@~W8vekMezE3Jc`Jhb5)u_k>9TSS2%u$T{hLpClMQ8Tws@0GXuV2vH1}B2h zZl_4ipLvUat(#V6h>MH1u=1Bz-boAu|ATUj9Q%;HXSki^N2Cza^NXmIZ)8?n(|mo~ z)YukHIg`!JyaunW7txq^4+_4zM9c(sb1pq2GqyIr+Z=ve`E64DbARv^?ozsN=6$EB zm?pt@Gg6SD>^YrXS{@0Lhm2SpTG(Bba_QC`_&-XQ7tk27T$9L>_1*b`sv7_E=kWY5 zWczw4wB+xwecNsskO)1oY%^lrQKW2;F=M+anjRh>JRL!GM^@LmK{o$`r&@7Empy>^V2 zViqc;=_n%yUans+$p?^u>Vf{vo1~E!W@n!e5yjPLm9>Xk%uryj;0>1xCZ|Tibp&m=3cj@q z8)tgJPVIpwh>}14s#&~x&Ub+m*I(UmpdWdKj1g4CrhZp@NJuhHIGJ!R>ni14wASz9 z%d~67YtNY7*jF-vUwr<;RtY__vFD*JuEU(r>`30|kJuwhfwKrppn}%4&kjb{(9fcn**dymo z?3cTG-W^g3*wcRA;1ZgDu#}8bGm3q$UXs^UAE8XsVvwxp&XKUe{t06gr)m{Vpsaj? z;F|Akz!;h6Ysq!&@-aDMm6vfnUn6bha!2?6ViU?};>HGVV26G)uUp_7My%2tQY@U@ zpLi4bg6%m0s99*9e4luEY;|Q^YH1jc2iLn3wQ8?@8N!ETQ&_qiUd=agQgL1P)LPF> zm%A3H?Acj&2EEYpGAJmS?AxMRao-+hY-8&rG+Wa){7~AnPp40*qhAL{OXGZq)#MrG z1NjZDFC3%|=;67cdO{6v8*fYQ>74_p^h&e#Dw%e8$ zOz*J`SqcAD((8L=Cnh65Td1fAeZExWjwQE0yxl!mv}7*|>4-@tstt~= zpDjS6xm*hI{3vB7>*6EYfQa1k>fDHHmdIrX&2kr4bWjK3XAivIot`;hb!T%Y3h zU?uXA&yUl$Z<`pjXE&u2E%q)M@Z+RrWJ1MauiBotIp3j(?X^8lZF<(=0y@Nm71qzu zywUZ?SJJI}k=!Lhq~a2q{(%wBop;)Dmko9)hSgdRUTL$x|FYM(^4dzo$SY4LKb4h4 zPndg|9$->mHm?s_P`*OZd!4XkGqLOBBY-(x^dDGEhfv@$ejgA&Tz&vc(rR~EM8?zD zmk>fCu;|QMR_2l%z(PCVJYn;fFLjF<3m@N%si@d8WcO#DsRRrDl$Q-zz|jpde$d<@ zhah9%hH{*gb>$BzBTx19iwI{DMav?3+>RPIjZVoUD1)_N*U6;wfni2L`S-4EOQRe^ z!rhIs#D3s^o7Qb+7J)5jbHqD$|3yyrsDxn4mZX>Fxur=&#K^79G%w-%sRBlGF_a{U~OkHqj>cL1ji z-&wgY48%xh_505d`qdc8tJI)=6L)HhHLb+vj|_~6P$C^1^ifsEeTtreceJ4drPD5k z+%BcxVCAY?g{G!2Co+6*v_icFOK7%vXoFcx1xib(Ck)fXJ-4w&MV5WK4P8K(=zG%Q zXCTYiEi8zRM*-OsBodmqkaqnFb&~j(yPId9&bJd%1?a=V58Dg_OH4<69kM669oMO3 zC$Vu6$jL|RA62_84j(T~62kR#dYDqAjOFbbS($&vrdD8nL4~Y1us}`2liiS~V~9r+ z2Lplcy~q851fjCxCVeERsr6^Pi1Xu}7E)XG zhe}sl*Lq?FgbY+!s>B6$*CB`4VCLwMqZp3zYp;YW?sAK|eK6B19Tt YbEG$7oTX zE@e=OzrIDP_YSlw7kLu<{vQAJgz=1e%b-9Dx_h2ny7T+xc3xh6{aJt9R~Xo&{Z?`z zq9pDKg^wcB)!WyCkNN@;uoM8$t;U#kyf~^)UGt|@B%ZC8en@

9ubz%JcVsk;#w> z6WeDz20O6nfa$~~Te)COiS_CgE)m&TbJ4!f8kelc9+9Fs_OrAZ0TPr>HM*wzBNh*{ zf-A3S3CjQvKTS5CR5a-C-G}SJok+6CSUg>~OvmkE)T<5UBCR448wm;4WzPNl^pxDL z&D~v7!N>YnjLQxc>U7CV>!zPLir;ltKkNP`?2{2iO1+AReEk`PCt23?`OW7yK4E@@ zugJb`Id+T1E?<6+!bp_W+rO*Qj`(df&AF(TOLwaN_~tEZ{+g^Bxw+P3Uo@a!dzLZA zEiyHN6M3NS-O@-00TI zCU9>3O8Ojfi|wzy`?d9zhUPr$?eSCy-tz#6#`#v0p?9CiqIynVr#MUT$b>v=6`R+9 z>Nzsbwj=iu`?9kKPVg43K&`qH5kud`m$IAt#YOnk&a@o1ACb)1P>qvI)5C&chKX00i4b#!*&q@bO$WY}=hjR*7mxqY_yogUK^ zqPa!UzKK3!c@3Xd6X(i)llfMuSTggD7fQBz2~Xw;%=eepC$w140}j4umlk54EZM4Q zrqRbCZ5VFw<=yu+#J(VdgTS>bC&^@v`h9_-yKFdNhrDf?+Letf_atJF&`|zVr5x7R zCsnMb(EG*e?Tfa@ES6)R`Di$M>xWz3w#R<#Z;dSvE=_p45_+`sDh1~n^tO|>PAGAExvx6yPgxq=1-dcxAa zij;&tjit1e35Py;lvxvwg(O#KGJ|envMTJI2&tY`_$CozliH1JaYaLExN1*6zHe<{T&fse7mkH-o zQRoh8qg>L<RkS82~{$NvRbvcczUPkXQM^&R8GmeVg>e=i!T!RKjvEr6MCZp z;g|_%>1=B>*(?<4kZn7{tvF(;$^B1oJJ^X(g^+`u32(Wxi>iTL<=dR*kCbHufc-i=0k|B6Yo5N^6kHnMhS zLHJmlIBWyIx#xuGa@iB=o5c9uMBDq;WIW$jSM$ii*D^=mz+$j{94Ip`_<# z*USOWGJ3<6X=*e}Y2x}v{*p^-mZ}2gp5C#U(@WsVM@}f}&-l&d3@spOyWaP)no^D= zIUkSuJ}Nn^f7z&^7HA!+x3A0=OZ9m2zL~3Dtf=rw_l=nFLXBo4myy{L|6mppN}T)> z7J-j@EK*$4n>(;03TcCYBuf!r85b5p5i>UXx}SnyuHi)lD?S!2$&nn`*NoSU31?4r z9JHUrf-rD_p5CmggY)L{WY*`6L{l&JIGQpt=n|O|Wy+I-_&^MJES|XWg^MZa>K>VT z67_yEGz4^&SoY~THbVj-5z*lGdGc)-(wUqBewad&EBaCue5bv*g-L*LbftN$LSYyo zyTyFqi-xv`9_(-PBPqK-Qey#Jt*vzi2BYDCh7H8{_qpnaHarnBHcyI$+%GCrRlROi)^Hc{`#pngMIvrTMfH}vAUu7&<^wW z#KfC9)AXCU9|K!}Lv#d!n7H=%pWA6b=7@&kvS03E+tqwT)RH?Y5Bq!6B-u(kTe9Y`057c(M zR}3hj;Z$BVWo5pv&~KH}M)_Zsd@s-*A<7@qlQdabUNWb=W;IuwnYJ9$(ez%Dw zez9Tayu>pT?^4~sk*}MkXRI2(5qN(vSFGo&<8ihr;hV{GcEHB{q)AG`0(fiD`5B>pPvs7KS;7mNZ=7pO2iB$_E`BECTq3%%}8ZQ z6scitLiDOLvzpO|x6!1beJfReY<-tsjALf}Q`U`j8GD!@*TI-tv*L zYB6h_)mTD;IO;1*b|*8eWlh%p;o(OhhP6IDdO|2kCaRr*xy_0x;b87-fX7?UYGmglcrDF9N3-h4KdAmj60^Bi40<2) zMN=!cMB#fvLNJ@<63!-!(0{B4(iErd(a!kRNr?tP=rfT729p)68_BBcS>_pHtKF8c zUy{x^OesOu3zP-PDa?kwXtl}~tOOH+kNA5QcDnax(zdQYUxhb$Ts?ZObx7-Z*SOAB zSVr2QjRK*oH|$j`;CSQXYk>v{{?TjI^6l*OewN*+`0<8ATKfvtGIP_RCUPggo-I@s z$B{ehyGu)m6ze9A28Xb5&D3PkF~dcteM)=P4$2gdNX>G_`LFGLqkX^r!dmj%M$OsZL&AkxXP*t!@>1rH z*rdli73>!awvN6x-37`$5hSU6pMtc`qimLRhx^9j;~o41-k~74^&{lGqob3S<1ALL z%ogX3@5fRt&Z}3Cj$YHe+25PdbN#`2OxiMaXH>T^F+L9JPoLBE?)v)r8p|0_LrWj@ zc>GRENQY-8Lh9(rU?$l)cXOgT&I3?;Xl8HDk^07fX%_PP&7ZyUf4l&n+?u+|hDF$t zit=jd-s2-f2-%d{lp9sYs;`Pw5(vW`NFu2)^Pua-*8TVe_<#d5k|~CF76p7 zye2Nj!`Z;1q2C)3QmjUtyx!IIpp-XhWE>6UFMA%(2|ndi%^~K=DBhzkhJ@Z?i zuNk0KOPbo_*yyeET!U|0UV8vtDd607YAjR?3=GP3TgJ!7dm@Mz&L-s4OM>*%X5MeY zRL;>+^6QXaq-18)vn9*Ei zWb)^jfY$EBeeNbiC)V<9J7Q0N=p;T0@qe8b(pYB@4iVqZVi*A*zQnlr+W3w^=N}bS z0b)`?!@bGJfdtOAh)=#ZTU}bVD!L7rKavO*OBV`VSKzn5&W7OZ`TGX}5`|pgskt#@ z^)7;#I2oY12`hop_MmwO>@``!zzpap>^H%7jufW_j8dC&6Tb8fH0*6cJ4epNwUq@D1r{u9(`8 z!HXYZJ$UWjZM)-$>0)g22bFl3n2HJt(Xp`;c|$Feu;h|K!NCb}amGMdA}7D*S^~li zPH6YKLyM|*<-(yd%_Tr|ph4)fB!UZ+mXW#iR+WCD{7m*6D{G_e>0wfw^xOQ;XmY9n zkBeD;yH%dTi$&k3{S9mv{nbh1fwVN1?yI;dc=%i@xumJ1OQP%O=HOsRTU(!L&zT^md($J-2RYPMf%$c8 zyZME#u#kMidPF1wZZS+J^&=lggi@($u^>IECw|c3Ty?MW2+*Y-MwGYNeD1G-9(OYl zBb?cMIjyBw_;ajU9{NHi5$d<*Hqsqxy0zIQa2|HQ$PF>k#O1H}ww;_9keUvq3$}qP z6Cgzd@qC2xP1qCmM@ zfp0R)$JlBbDY+YnL#3xJUKGV0P1T1C9E}zl;)ZT-pMU)VBk+e&`ol{anab1(b`N4S zX=UvMp8MxllS*=jz)ImPr>QxwB*(w?goA?6>Ae&!mHSUAW=Sj=i~p~3HIB~DZ?fSj zZsq)ZHeGt2?tA1`O8<_V!?(3A9+Zl)k))9%93Q8vO`o;~nwoF^0LBmJgD7_d+Dhw^ zhHmHQ{>B7`@{Qthj+^H&zbtBwK<6P6j3yF<^6uR`z&%SF7_5P`&WIbzUrS{b?hDo7 zx^(m#dJrcT6*1tQ9?4Kp5_~MFoGW3kse#DQkU~Pu@m^6BE1RgyeAg=ZlQbW4R-|R} zw$JdE@B#9Z$5&Q}+s_vIVCLz*6)u*4t&jhAf4C#2QSw2qYAjoPrQZH6=hdSZMw|LRsU znxcg)(PkjvK0b8bUAb}~9WHsQ%0@J1_z@CFZP+oCs;_wzp7=Zndt5LTPn~Y`27B!K z7d3m`0Jay@TAPWi8flnpzytvTxm2gA_UBKhUw$x8cPmdp=%f+u>3?(jhxkv{L(i&B z;hC9XXUf7~F=vgXzh`xzgPR~M4yVLHc>hc?8;KapN0Q7Qg-U`~k^ttHm^#dT5t2c* zX1#W1UA9G>5KV)cE}J&4>wQ;Wt@S7Jb$#)ru%f+?9|fKo(2tKUiiT7WHN%iK7O9%b zP!V0J5sO6wQFQw8nAP+-SK5Yb{*SL{Ar=i1qY{X);r+8M^mjK2?;f2*`Ffr`dxn5U zRPTDMEB@dI3Q6E%K`oWe6OGB)IKBr+39Y8OF279E%dwYA6%V7tT6%f;aFz%AJz6abJ!_~uS{7oi9NnqE-i!PR$T;-BE z{@DZk`J`^ZI<+=VX{D~Xefp)QH`Vxo9@Jk3>mRoBRPuSjs=59>g!R*vPWY=?wFxA9 z@S4lWOz_h(DlT8~xkhhpyZqtR+8*am8+UfbcGb$*KDK)r3#PHU=iDXmTu z1F7*1BI?;?D;m-4)gWucOky&p9KUbc)_As(vhq)l%RSrHn;tW^zbME_NEogUjTe7p z22DS1eD#6er>3_ZCz|S(mYKNkQg~oYTGVJNiDp;bgm+_^gi>zYq7vmR*cEkWNn0>} z8r6W4T*XI&;0&lF#>HrEv@-+c-xXbi6tNKHV|+;^hv_};@x@N**pkv=l+I_}$Wkhy zPoNA&}HXlfH{k5*4l# z)9NmNazh<6A0$pL8`AmZ-9ZanBV6`C;g5i*!HL`a9bM9hHre*{cnAC|H#avgU%rG+ z&PN1$dwPHXTxGk`3NZmcL!nZBqfR(^pGLJwIH{lj4-Ww(B`v+;bv`7Po(X&n;Q0M} z4q&da1&$%0UTvrQlAwNmjdVs$>?--!(S57`>;+zm^aKDLrpe_7PR7fFUQ*sHQi!X` z$-KQi02n6jTOY%S)S6FDq6HtiP*LF_jdER)IxBk;2jv*og1%t}LD%6cM+Xs+bV0|w znekjuL#Mc$W*zS!f}TZV!>bf{<_eP$>_J2UnCR;6wq9y<1_^sbE|sUTgbw?cy3WJZ zf^EY6VNKLCgKF+9()=RJ881PRb4(;Sy1cJa*3I+W0mIw&Mnv)7`!MF7OJ|S^|4Imf z6MELF3?9FGx2fo6pBcdU)O&JAN4<6PVL`4w^p3*qU3$-`arddnwGC4{)Iwa zX7QlJu%UT;ffYa812+I25*n{hvUmtzn6X)G%~PaRCI}qcbmnkXFprqpYxv{kY+b3T zq;ZA7?L<&E#t~Bp1F3&}EE;*V`Z>2@4FC?{8rU8v3V8d*wrGcd`zSj*n;4WYAAmtk zOboc%7Aoh!HU+75G965*>9x3>t|O9qF#$&r=rEVkO@A?20el6v23SAffh<%j2VN6} z0$}rr5)UTV*&u`pn%%}qzgbR=pPg^(p!ZEoFzPn%-0eHBZ}xqQrP4x0Fh!L6J0hsJ zP|;3*%$nQ&!Nl9$eJhT(V|LcB>q9SzjhR_Fg*1V$5(McN3p!3@O+1|TlG3V{aM`ba zaC5shP50*T{A>03{fWqo$A071?(W*dt$Q<>Y%X$EHmF91`Tc{n+_Y)pG)s7R4h8Zi z0rfUaGR=(zCzLx*z&~T51nZ`|APRW?x$LHyhMzzy|JAm@-DPwZkmvkNJVQWs_>NpHhY7QNNtd`VBSYy_Uica8%q`G$cN_kqgb9pI6UWWwsZ@_X$It zo4FK*3U8mIyAxGvGx)|Jc61q@`oX{gk)79J^LJKO)>>z<+7!iu1y?dKb7?KnaYhcz zIP>VF3wReO?*UV+uE%b!Lbe#lNm`G5Jzd|hf>B;&O0lW#fLb!p^-Q7^OiCJTgwHvcAD&+ImYMIoxqHFyxt0{}9E23q} znB3S{_8pa+3ok{ER$bK5lFrrQT-|Y9qk9s+z;(t|mGRZxFearO1HUseWCbO_)LP9( z#U{)EFD9^2eoW&_6l=OWWef{1wJT(0v|w86oBCB_nc5l1kH?7nL44&{=>dxlcfh1> zlrU23XpFE}eUJn7DwbUGG&{?}$SAo;D%VfX_G1XSWKG_@QK?1x=4+~`i9W0u;ec2^ zlJyEvqFRaKVwPl7F4-}{DM-I^r_;!lRD~P`C`bbX1579{P*J5nO1Q`lS}br(8I7~z zuSIlQUYO)lGJgH5nxbAC?Zp7Z~OcGJA;=%5?BokZu=3<%+CLi zJ2+_H_7tJC)Yj23++5f_#GvV^Uz$K(B- z_5efx?^GXuoB*F_PgfTapWEn$@Nb|Yt>vftB(Ylpe^`sa!^H$TIRBt{2elNB*R>sR zR3kAKBc_;gbAUV#Y+k8Y#R}-a-ya!MqEZI**;Aszbl2x6d= zRt4@nv2cQ|S*K+8PnJ=_^jmRi!@hqL9jiegp|tA)^$=dFg7UK!^BBtE1G3y8bEfe`)?#;1jga&qow?1PJ^nRT>*d9 zZ=5{F!HoOtC`%_`Ge z1L7Cn4da!W!uaWyZ=bpWQ?rXz)<0uTa6S!d^}&U?kFxUM$=WcFo_|3Bn&Y-bNT?1h znTF0OVyLR8@!>r1C}@nN^;MfRT;2j#Xnp)EsULhA3UwSIq%U8xTm4voMas(hqoTaH zTod|p0gF=ZPvBDVehxi7KZ~jC+*~y%fNWmiDehd1$5O#!Vj+4zum|=n^6S6vq|g-Y zjktt?Ab+xd4IvJ#YEFKBZ&z1|W{m}~bqeg^@~=^27folJFNrA>eh(3W`DLU4^9APp z!ga({KXPGCwBNX7b|L+{$@sX0FTsn%n{SY^8f)!-W#nYO-XQus`Kx`&!lIalW|Le} zSeEO2;!CAQW0h0a&2r=a6_lS+Y=mV#dp zSg~;E(c;q`f`di*(T<@*{NH2=df%mO8^89IHQm~rDex&AYVLn0eaXDHoi0bGoZWGU3 z_k1J9o}4odiJVx|s78Le$ASiFrgqT({jd4*zy>)RGl`FsJQ-tKS&OqmUGYS8y1sYhZWwr!t(MOm4Dt;i@A(vP~TDFIM$lXUrPM6|xgOZMQs~Lg=G%nexeR>E-@muhspw0LG{>79% z$l$9V)!5#5zcuK6wt}#6re-QZ=aEeBa|}sXFdyVcUhlr2q$vr+El}dHUW&yf46KO6 z80iYRd?=X7WSe22Md>7mS(}@i1MbU5SL4@Di@DMXz{2{HfZ*Tk%C_u3ThCck{WQkV za&`Wl=P|s?&gwiFSmC#6J{~J4YiEwzK0D(S=C>DRFL3KA+xlkf?N^i7ZLs2X46vp0 zZ_at$8Qs@VB{3p)dWDp1#w9KV=_HD9NBC;q09;sp|t{%C-?a(P2CvBbC~H@#rukjd+jPFoEcw6R_G?p*hm z2CY&#U@GLrneww%Y+!9o(yHp(bC^)sxQQrSB21fQC=8Iz?`yVClnN@Ij1v+HAMsL~ z?(Ysb*7TkaN z9fe$|eu$1^dh3~e+~aBQmUE$>&Ef28Ne8{YgGv-E^SXb@UotlYpUICRdX_#u$laTd zAItq=!S?*`vFW$&4vwP@yyg?n8y%y|(8}}PaNex313_Do8k>+&OD<7_3;Yt!ULi#~Y-^cYpJUbpsCn<U?ZhzBSMTKHw&4)39xo;U8R5-0o*PFCj^V1? zVJ*hT@z$35!z>Hto3&uInbIZ&B}WRngYohnEi94PL3m*6~ug5GD) z)3?;Uv&!MjecjZZRqqkkv&JQr&+imI3G=YsPfJ*sEt{)&v-m!eSzg0kLA0=2{KD}H z8JoZWS@62;yvmNR!FxN1)q$pX^G)V9H@_^LBsR`=-~gW~p@T8oZjRxV*Een1Ut=q@ zHH}(W`BcHdoG~&l-7!Y_=s@`p^IEHxd?e*vSa>){jTg%;D4#P72a9=HW8d?7+a4I%xZi`eN?FeV`1${>bBf`0a5SVpk}Ch;D7Z`*(7Z z)brw+f%_&wA)Ca<_?PP&~cXG+@QFwHNDbSHPUwKPKVH z=(*hZPjf&)ii$@%7*_#W<(xUaFS}YgVcN);TX!4ugNLcS3oR$lAZ6`FC-*I>VqH=} zdqeO?GCs|Jgbdq1KZo=ug#w#Dl&XE{>*9)&nmz7*r6@_=R+cViD^F`l(+wkZ6IjPR zNQTf^p2*B4i;5A{KM~M)jbx24EJ_-Va0mtlh zeX=!>fc}bQ6C8igwUvYWHUTp{zK=Jc0|&ga_s(dh;KN0%rL)R^R!hYnQx>N2#E`s^ z(fdy;9fJ2Koq+i8x&K2LDIUjZd&^a~(d<5KB-l}3FWDQ>HGx!EmERVd}@r-4s{(HAovwmV#tul={EQBAFfCJdHnrDwK z${lNKV^k5j!Tp$AR^@#m9Y!y4i@(X9?|;7G`_}wM9QVMz3_rGgsr7V`w){$@5bOQ| z6tE;*cE46*cEF6?CqNVdN*&Ixy!EyyFR!PP_0600-TZU}zZqT6Lr^!0{;L^eOzYHv z(vaPlK~`eB@>?hX7^L>@@1scgzf`v3{<-c{c-bMTq->;2qY>^+kG4B)J?pwcoWu-E zFc|sghE8BL2}ctjOT>W5jwf|^`|0BELNb_ZD=#x)Nn{*Jdq{t}r=p?he{wy&;yuS8=6cnh3B&e}5zl=RWzca@KSdFdS zo4ObtbAoNC-;=XzS$#wxgw{VPm76^3=yW0{+-N2m*J&|lOcbE>QU=r0P!H}#Ik@Vm ziyCX#n+qulyT&yZ6wU`e z8qgEf*DqgG{XzEwy8P8fq~P@AWLHlQV9{5Y#e6`JfmY9gEeXt@45n~nZTW$5%8;K6 z6G5o70zQkCyGhLMn`JuRoSo~BW`GwEjMU|-6jQ*YcnjQr{hCxlXRnAkp%h1|rVxO@ z4&2IQmwHcU_S1>op{eCBz?5v$_wU8X-I9L1ke6R36wtk{w(L3LoY**I)M2;Si^&>8 zX5({}>IjPIUBIyaiXd*OY10E-MA^_#OSLU2bfH;AZqkJWWia8FSr=S#l2Rt?SXUM` zx?ZRZR%JH(4}Phi%o7!a!zAPE17Sod5?>2h?>LQQo9CV_RIPd_{Z>IX zP<5dUTBD&DHmZOhgo7}UbA&%n8ZrN-Jz`4aizfTcO)ZA;!Q}`Zp>1AYzH-iI$O!KQ zcA&pnLF(-y1yG=12JPwL*!Os`0SpwLxw$sMy7Q$e7CQ0gCc={aZ{jLa@R94y z8$&P%1;!NBo82mxZ1gG(yL}(e)32|uDWv0500RpojUi7xkn$q>Y1RIDzPYjiY1&|> zF!3zoAElZ*lRAbTFfxOUcf7Ym2=zSt)jBX6akOP+VF6vGgdLL_>#~|sfhcIO)8ki<<0`l4*dyWH8DDzhlf(Z zx!hGL=0hKe&dGc{^J(f{Ux{pIWJ5FksF^fmlr?HL9FhA)GM1rSyO4p-$;zYT`1HMo zl~j|=5;OPbzOTT@sVsPznQ<-Vq}<^h?$uCKLW7DHV!t5SUT9GDS2I=7Ryh>z=)BO< zVrw0`QZi#R(T(6?pwyhz{~ao6D*lCX_JG6PJtCD1@)ORqn4H2b`O$5tG7~R)jRzUv z_ZU7$^0zyDHcF^Wmlh$M2_vbvI~zfd6B;jjvTZ@XQkMFvESc*_ZN2xC_`Wmj$d5JK zJo(S>N2^Wc#7irIwunx`hYx*tqaf72WJs-9I$f%7!FtuT*yv14K|uk$l6^)IuUIL0 zc?lsF78Y_$AR!^g_7SmLOoFNJq^mrjOt9gm&LATsWxc6-eDi{|tVHJy$UDi|S;KT1 zigv5-I}uF6dv0!bipxC?R$=@=XAdaySK0Ciwu?K1cYGdKM?j~(ivXv{Vp@Za;{SL7 zcI4mw(u2}r?or5~AE+k?@9`j0J-8Md*`973S|Sh!+8Wh=;`8@JAwLD`GRx!KckhN~ zA2vQ1v*-j*akaNAfx)F3C-a%QUq%P*;LGyzAi(b*$u z8KON8b2AhRUK&_uznvEq{~3xTW0roQ{3EBX&!|e_$jrIFF_bd~X56IuH*Ga>IjR`D zSh-m&#*go#?_M)-XUa$kYda(`d{ap~`&1*Q?s)R#5*>Y2r3&Wb#XCB8c6L%yn%XA7 zKyQ7xF{dNCJb<^xNtq)+C5DEF!$X0>YabmjNJx%u7byPCwEgSU#WxHkq_fN0*a(h% zf6N_EvzPB!RIH1 zT`{AW)@hls5d;bss;E``Xs!yOW8JJcAs0}iTb(H;6T|q@{3f}g`V~srlp!t6JC0=M z2SlgU^Tj7A*2IIhr@^F?=1t~n@t!u4bg^sSa1gj{z}2$5yZf(^1{yeVbtagN#;{{T4x_?BwT#@;}q7B$0(Qgpb|8)x0Jnetp|m=Hl} zVi*~EVlU1st_Z+l4E|vL)b0--CeAsxp4rgixc!tT3lHhKU7uJlyg@)qaoZW4ixg1Y z+7?H_$5?KAD!f`&!o&V@xyx#{#3NX);dD{3pEsqCB=OOy?8xRT1+MQ(Ay)Xn;ptJ+ zH>JEEQ+tl--tkv=$6SGL%x4%ZuWZDtfmEBu?=e}bX(6&blKu~S!FvPjkk18>dBAod z!1LdAq5}&IqwSMVo_Y$KHGx63y@+s(u3I~Ii|Sk7w1K7am<;=vp~-z7u~9LC!5SfmNU+3u*Q@36%>=d<7`5Or&KjItMP|aCL7Vc1H~#lZi2D+7mtT6oZQsPAP|M7K}QB_9W7CwZ8($Za0(%mWD-QC?FjS?y? z-5t{1B_JTu-5}j1-FNeSrUlusM5vuTN4(O+?!Z8b+$+JS>5 zF+O&93S|Zupb_}&FMEa`c-!i+NhUo!dY%~u z@VxohOom_rQrs{4l>5FKn4Atp5m7MdyZC<8SZzybw;ZjqU-ad7otP@-YIO9JBM2j8 zr!l{>iyp4IK9n|W7&_y1J-1NS)0+)>^LUq2M{H6(XEwvZ04XUhH)FOwTHt*5CXk+H z#EykEg^;ia_SD?BMQ;ap zI3gtS4lKYJ7mT})X9|J52dqKoAHCV&g*8gufiZ1hU;yOKJI;sUU%krU_nJ7b0#kDT&-PzLH%w`&1PwL{1zVdNjV_!aHPYp7rCz_J)X-U`1<68bKi^| zA2gU9E?a;8>oGk6ej|W4=!_!N-kp#zynZ)Kk*9Kd(BwQKJy|`FabU5x zHyLdRfrYFTnt25qe-t^Bf1U6e;)c(mHTUs3OwuNjod3|l049gDs_MpDR1Z)Gyu=0L z_H7?AL)S3N&d?bJHB~eWi1EW}Qw&u9CCkAjoF%&c>Y*r|{$onLcqCCP-k-f{=t07p zL7Na9za5)`Q+Y)YOLH2}*1lz%NLB@3l2Wt`=Cie0Wne1a66z1I2S8W>8ZN8|A&8GV z8g|xDk^ZJg%E~(7v}WYxz5BN{2tmWerK!|)o$|&jDXH-|VdVZermehoaeq>JfGxlI zbd|PP6%P_##uut?o4+dr{TklABT5r`?mu2u1YyYAQNjBh+u6@S@a@Z*)JdiL`=tk) zE`DA-5QsD}c&S~@Ho?H+BsNa=>8X{I+H&&zr5_;ho&k;JI)ecZhBL(S%*%D94B0+ncgqbB4FDqjFS#A(?)r!_=j%jBp-4R@voM`9p~{`o`4fL*ydfY`m=>eFLWzr7M`46=1w+U13z$mF??sdkv8 zulesa{XY$^wrjxlR0llmd=fMU&v|omGr)-8>RT?tcN#nkce_;@{^Hkx-PBqHXf zi=v0kpds#$0XFU~w?DE1w*Qzxenv+SuKW!$Oh{|B{2fy>S(MP|X!v+%yCY)ka)(&wL_4%`tlY-?&fu1`AayZF;Uy%1~Y^{()Vj#`e~IU_rdk)EI5 zR>Q;NDxJrboPwhBW<4B0OTe_v6`W8Nh}^vGS30ApLLew9wa`e?;pdY)%4G56xm^V2 z0YI3Enguf#fv2qYbCl@ZrKg*e`T3O^hBQ&{ybvWAXy|Um4`@}g%4+O5Z^WxUea&^M z#E~b5o_%j3R;eNm^_?6+MGP?p7>lGv3y&OX+DAqnp0sM_m+jtAQhtBr_xf1a#&+)@ zRbx5gGjiQ(ryYoMMZZ0AZDe+U1M+1j#d(F>-Wko^!Lvw&=@)Yws5N40BbFRG@4g(V zu#4rfz>-Z!S(6mxR#%IRZrxmeuR{N%Q-pZ4mN0FQ<-{DZe-`0xozQ9Q>^s#b@`WHM{Ac-LE%At}xjs2GD7sFw|4L8U!lu3q^(Zs{S+V zo*fv~-HeH$f^T}^9uLUGs;a8M^A2usAzyFej z`^QW_PLs{wq2V}0rsR^5VT2rX&I{}ra($6e4!VYVUYlPV?>FE^8IvKxTIKehewZSQ z#D8?gSn$vR}Q~AI(}_!03vH^3_y}A8)KwqDjBrjC1DU znUPOp#K8{rJC7u7p8g6E8CNFp=icu@bsT}}$I`5vXwr-Jo~e$bI@{QoX3#EWr|v}I z`awTardnh(nqI9<|2UW+@V78I&+0G*_yd+)20wmtmB>t(t~ZFxSC%zaV7+GY1{v1vp`-8&u`H16?qx*lt|Jxg#33BjT^ zjK={06=+{S77bHN#W(~5at*+x0K36UEfEnB0gzk(|HDX6e^}j5Tv}Y*yp!p}d$n~K zn*(etKxC$;rFB*tamV1o$<(PTMOe8X4WJUZqk&Y3iuDIvX>a~e2Ji3W?b#V|YpL%P z%w;Ceq*o)L^7sKyBd4v#^mv}1UYhceN9F{XKjtU~iGLF#HT6k2(_t%TZ3+=S@8K{P z3!GSTtSDp?sto3aDKK3^7hH{zpFayqM(c!!LkWBAPmRV=2MB#U1)6xCY~oxxVLp^F zb(|kSC0z%>`6VRZEJom&5pdu@_iHosozN=svz#Vqw#nBpQt$MmQ+NnmjNK{b7GI7x%FIvW2{yb1n5q;Ew?S? zhW5Gio>=<3{%enb(oEpU>|lY8KGL4bhr{r8_gE`sVB8rW*ANG_Tz7DKp_ zYpJ3+$pHQV$Tz$jA%w9x5N7xNDF90HEV1yu2u7^89N|8JhD7$KJ)MsRPvd9HdUa0~ zukG!*GpxoS9?Z@X3OQ($s%CoAO%FuLc>LSEI@>r}oNcsAaelZNilaX7xcOW)54cT{ z#6rZ7+`dQx;0>@o={wo~=hAvz6tul=0s-ZZq2qjw0(~MaW;KKja&IPXvSoY3mnsa85JCf@v}aG3Z&z2a4Le5ifzF&;%^9q@#= z{Ldr3djHbLa%fCV16ueN7#l1`Grj)h_g~lCSN9*T`g$2;@(Trw^oIM}8@6Hrb=Ydc zWe%!2X?9Td7?0=Iml-yR>vY?_RmZXMo?G8c${5YH^AEn6KMJoxhx>Arbc7b@HS*@m zB!4XA=Re_wLJ6;K8gtZhu@CbSH(riN#9{Xj+kozln;z;5gNk)qsG&{d(tc_$dy1T# zx1r<4dBqB@z|y0>l2TdC5dP%gPot(%*8Pjr)qvI^b6Fx`}lY7R29u3lL&n;B~ceNErFHzXu0p6%~`X(ciwE)F7(PJ0-&_ zQ7H!5m=*xH8x?xiqrt4uZ5+An2Ji9BL1m}Mp-ue)xGVLWoVuJ}43uC>==v1b4)}24 z&|TTL=ksf8pEoz*xf~5Zuq&Xx$u3uIAIOs1!)Zk-^@55os4542$IAArg)Rz7i*)X@ zv6=F>oOa1hyJI+-6-e5xS7$-+syidEVCTW*)_T(M1~Th^H*niMdD0nhy!uR4HnW?; z_FQlJMXbbq^Zq1U|6F1uIW@Ig?{N+f2A)y3fgViDKqX7j7bW0)vAZ=f@%-D24;;Bw zE?ZfklRwgUCG`BTe>l&ht$l0gZ*Ak?Ku6~yXlode2GCxhe?5}KcX7>tpYv=4j18A9 z83-w2?%iDVzsGyc_M2RRyJ`wP_x%DK0~%XxZkRxDh_#*d5rl@q?Tpo){WF)`O8_qh zmt&^u`;(VP(f`(bM|1SgpBka;1s42B@No?~|DyzDb_)1C15^0w>CWEGD1a;&dy(gD z$6T^c5N>uELJ^9Z>vOhQvr*29FRr_RYi%WLtdz_yk=K43ZrXqwF(bnnEwz^slg^Ch zDr0;VCKVBeUOeS)V{e*JRwbh$C1NcXN-7tNOC?Qf+Zcf(fRufVD`va7R%u#dM#i$}>ZNab~ zEd(@SOHZ0bBV(>`Qsm!(KNRSD$OIOv2pF4;W^3Ic^w{tD_&~fT1Rzp+ne7013;0d; z^OMfW@MO?}{bnmt4AxT-n*ATWKYR!_#pyp=TGHDoun7@;!4WMdxMyem{oswq>v!$x9ywf%e!kLmabXQL zUIdL>yj((jJOUup)S~%6QnL2Ch>J`JtP$k)wkv<^vE9+uP%k^%M8IV>f8o z#3enPgol8R7_cdw;;iq%iC3fu16i(TN@e`MxxK|BIRvydP{>blLZ{Uw3R;Hu#-^o} zYLpTc;S&%r@v56c2|GJiyBgLFTYxG33&C>Zt4i_E@NhlPd~B1Kum?g7FP@CG+u?fC zH_;p(8(X)#&|+08XPyCr3Xe}!Rd$?9JoXzAy*Ay532KB`zssla#r502NvKw9lfmT` z8VXfryw-~f>@64nro=hvN*pd?SvqZQVtn9;Egc(1rM;$3fn^FMj4)f!%M>i8@w=ir zy(ECp2p6Y+SooS$slx8>A6TsKYt>iFC8-ljwKANOwslGEcQ-`@mOgxo<-5nXB%R`8 zU?RemBFCCCboB9a5pNf%$dd&yc#W^{*7;mJRBQ2@|G|U{0wa^K7a^=~@HPes>vaea z#&{rl;5`2V(#p-QMdu;FBOG~NAx!F|@C^A0sxcslq4JU3UQ8-xcq(JMw{CXaAG`AX z1FWnj`8j(IUl2xgNTLV0ud}+kBf$g=p;Q5%)4v)VN#82lY8v06zk-~p7RDbf!b8U2 zQqAF%N5H^mHl1_`p^zj(w_QKoySuxi@}K?$Jg$tBX7GH(0+S%$p8S`BA__=UK}*%# z+(aS=le;$FV|D*Jl{}r069f|4c^C{&fvP|t@AO>N+xSVCGQ^P^>y)~DlRR^!Y;tKkzQBNpN1#NylR{K+-(b^qAG4;Xk8RY8sZ(4I=l`8aj1Q&u~ba{nC)ut$2=7Q zgDTOc?c>%KR(ymEPNRTA9_u;dKzG47O&E56l;fQ_NT#tFXSnE1?_2K#$|4 zTi`q7E>bzV$fnneA#Fs88>nj~08>0nY;1)T)^`E|ewnH*xu$1icnhwyE|Jp9I=M@iLiv{<7}f1Ae1<1uY+ zp1N;ia3L=)7^#|q4ymGywRCY!3l9gz_47F;3(F~ZlBoWj!ffuq9~^0q#jdr%L}bs{(eV^Hg3db| zU||P?U!VsA@f!$K}Cm z`4VJ|EAn?`f(+uc{_*L;dIBQ!s+kbT#Y6v@YK`!C_FB{$VQ$~t!;wNLA<)7_EE(l= zWg4{-vu>9%0%_ANE|iW4KZ1ss_$z`b2PSG{$W}W8IfAfF*l}u7GBvwg&MQ!Mlcb8A z2|bKFqyU9Sp9<@;m*y$$eAwO}zm;KG5Nfj$xuc=M19-^5MM|!DJhTa#I~~9kJ~%k= zJX+weUjQ&v@&p+mZ}E=S9XrzE?Qf?{126H8eyz;q`R0J-^P^+*EFi4DAb08LY{0!@ z+8;GMJS+g5+@Pv~d5{w?p4#jumQCXt1uwSrABBt-@UbZu%Yl5~gJss4o_gB*Xu^43 zkHb&Rt{Gc|P=S40ypq(hb?o0&$FNJTCS;{{`D<*`O4a7t++q*tG zsBdMGis@tlrZRxZrIaQ|aQU}604!c%A96uK5# zC7;1utEYt5Z9Pcf#Lc+M*iUVmn9a*@2 zbCwD?V~Sasu6r1LX3)~uM@!o0vxeY=c)0m^yET~G;U`(4_f1L97b&#uY60zp$dVXQ zTIz=fojV3NKMwvKL&9?NlM0Ixp>Rd!e36`jBusx}aT4|)9qDiq_&XUAWo)knVE1tA zMY!I{J)W*LfHPLh4LxY>xJ)6hCQUt3R0O_^V$n_`4VfB&?W4}33%m%FQ@>>?mZo-@ zytMNf{We-Gm1YbZ$2I&`Mf~!C8E6Xk_h|P)~enR;G|Iotz{@cMMA+H;!o3H3S zD<3y}Er4cJn425AwDfyCZ?w$7Z@>Ne5MB%(IW;40Qu)sag=R$=kJm(nDW;H@OV+$V zUS&T~Kz%l~qCtjWJrS0IiSn=dgCx~^)K`JFv*&y4*HwLZ5#79AHRSZ{&^`P(d`Z}8 z7`{5yd+fNQMIP+ZvAklc&eB-XMB+XC@h5d5B5#V>^i5fEhZFDSXb=E!bz(KI}LUJ)N5FjkmgZI!7-pGTctyzIRIimZh zE=7phb(eqTmSP|b7xE8Mkze-8slF6ed6VvRy09v++!YcwLyFMV(CvRy?)W0m(#6A z%$JSg3vUATWwe%M_ghqc6q^TP!OgB<6o@^2Ao~Uv7b{c$4VFucQ{0s{a7q$s>QN|! z@7KVay&(s0At-P*tIxa4Dc6O$w z8z3hEk zHY8kRXLcq@Jh&I0S6{QvyMR02(1)SNp0l>M#IhEHfB$bxzPzQ95vE}2uxC&&8eW79 zVdETw$gj_^UX#crmloxX31f4!>qHx~mYi*m#P7=p8quz9-Z5JWFk1Rj7X-l~{%g!% zP3HmR>I!>wI8{wG+)bA+(i*L3h51NYt(>5j0nJ*2*cT8qtOwpcFb!x$rf~ATrihMz zx*~ue#KvZF`zG%c;Qr=X_kSc_sM-4UZwpu}9VYUtNdgWzNu3w!+L$`32y%NBQiHQ; zAQzcDY>nc~(#f$H<0)H)0_aFRQn9BR?Y69?^dHX)29fX!nYE|T+nJXpbY@N1t&@>5 z7vBXV&*G^;+AkzhBCE1#LZnd(vNKDK_mil2=4-b36<1|39*@(S# zMgLJr>T6|vcSUYLyzoj#xd>4izzsqNzrT zFcFh>pap$@5Xlu=sE8^pN7!nCEJRhfzpHE@CwHgoc?S0-)o6qG+Lk@&w^c7BO0Rl$8 zMrD&nd+>1lgf*1FQQA;RJm$Ba)(*JNHEe)_!;h3$!P>gGGKjzeEj6yH52eF&?(y=CSjg{b#zef4V5_ldM}1696*Ze=A`- zHWmcCNgj?{8=!+46&EoGxoC+Xzd_jLWlq~DNpI+IT{(7ex$1Yl48kxvIyxZwatgZ8 z7c_D_1iJndog&?Hkx{f9e3BsS(uf98e>(fp2o6lj;^L$BHU04U+;<2|pSixhawZm! zS$qX86?pLGYPTPrMy6T|$sFqyCxJq*l^PuZBpFGe@>K8&>T}Et205(w96edm1|8Lh zoRF|}C{l7H1ZXDO(HzmN1|~CRT5nl>y-}0A2^)ei4m!FxbZ7{!M8C5TbSPD=&d*M) zG*A2lb4^9@R_#UgXhUdQSuHJG5wr~IPy$M+q>aPgWz{MxcKGd)dM>W%41v}Y;EHs< z{IZXh9|SKMg}-%*TyS>l(90e?y${01q&r#95#D!u@*orq%<1DxOZ;F)3$hLs`du=I zzrN*ZRtnx8w?bkbZZ;@Z16J*Sl04szeh+!Wmc$T_&*d;NYq&baj|7?W37@}lKM?iK zW>!o(b(8qBVjoE(1JjhCQq^EJt>)2R&TjC#o!fXRURdy(7ooA&EtXHy20CW%jo!B| z4oTD66tUp_xh8{=dOi>G`~kv5^5=bXx`f`1uL~$nL8MMY;aAa)R%$b-1hSFa;o(Wk zi{%fl|9zwAtj^xl<*5`4zIn-x93YefOe3HUJ6}%84f4Gm*i^{mHj_E(q1* zFDcCeC-AX@f%Un=@VB?%d7!A@KmyZv@BnN*KWXY~Sg4d1(`$6c)3#dk1w*%-x-Y2=x;0>T(zPC>_|SrwAib)CgNY@PbxmpC8RR&AbIyAitgChQCr4x2(0AO8nD*cX6~9zhk-n@5ui6Ru8; z<}tL71&xqI)Uq8!@n)rsnw7Oi?AXip;)dLcGfh5r695|krao%pBan(-;59@pw#!h> zdMl5;zk`+pBD6Z%t|Rb<-@Tg<3DWXxz!c6K2Q{NL=+OVm)qer}$J44V=*C))+bFhQ z8(dbKF8%m1UaBbz*HlUWAZV#zEIar(7cE45wVn2Gb5k=ncax}N;cmXQ1B{`+WA<7- zmQ(eVVy;BN-`s#Q_2uGnEtl=LSDWr_7dB$9E0bXh^>TE?+pPDo)0p9~1_3Ujy@-(P z>4A3S)2|;eRds!c#A)P0e=ZW_EAx0~qz~>@8S0i-7;jAk4QfV4+fNoc_3u9Ae9nSM z+8fmht&!hiZLi_WpRo{ zk^ocTZ)q`MAc}z@iovU5^@|B4J%NAq9{65?h;AA!&;SsZV4SeLP>uqo7i*|O5MfY# zhrQR_)@%9TIYFkHlz_#Hh>|fnLi1Z1#dS2aw5oF z*u#u<{wy$@@hA%|gExzms2gE+=AZ#KL>THXumynqJs^9WH@U~ucG?a0)p(?hrf%I| z^EFIkVb$~SILA@(MB%2Tro$896FA3x`(xsFIjsqCnpP*OCgZyHuz-dDSK-*)@90S6 zs@z=%i?zi(fP!0oZu&V!fH^DsUMb$BHbpsp`v$Fkeh9aZu9BwiB$iSk=H|ym7t{)N zo)ThrXs&;Eb}*;8FkD_qeqFH4mQykY?EY;dK1>b`6-HbmwcJsbg?oZXbWI8u3@vO| zi&IMOVrAg%o4_bSo*Ll5+f6icQB#|u&hq{D>#d^O6DXzkSe*z@_G#S=rDFMkOBIwP zU<5!;P7YS^^duR07mLN;6x%f@=Qtfsc=7xB3A|^YTEV82mdB!e$Mc5lsoAIt#xTHs z75maz*%G~3XSgxxjkb3G%10PT)A#Sicz6TRLX5|=Cms&Cl)}kKR|%zb*c5%wN|5*d zwfFRtfzX!5Quz|4NNe|{sA9nKuY~zdTGUZ(nWnYNSVo+Ts}*PKH4G^-(}D2i9|;@#U`T? z@Ln_m8H#|ogO;&k|2I16K$y^zl9f#zJF{WQ0_}0mFR*DeYbdHcVy1 zZ-vYUuYa2)C(S#Dk|gMvwQ_EXHo?>*b+4 zEElmmowT5rEdF_5lli%SN?}-lGgtOA74b7Q_cJY!D7DrYNSo#|pLd7zvbRT$#0XMe z%FALLf{@X;+#7Znt^+U!XPWNw^^0x@1edQLa)FUqquy#JiyQQ&931@ozTg^lSVabd zBgD5crAWVj$K)5x zhi6B3UM4ma!a>;8)$g->DrS>efI3)w^iEeI8XE=I=_HlI`0+j(L}Y&3R^nm3Ha=Nd znJJ$#H`hIGpY703iWB?$agmX^p!6msBksM%1xV;XR(~&tejsN_;UJno2qiUA{0Yk~ z$jU!(4I$*xoc%pFB!wTOqFEk+z{PB3U=FksI}I*Q+F{Q3Vt;$2t!Okw{}#}2jqpoZXO08aBL+Rt~5GkP1|IEy&^zG1=a7< zPZ(6Y|58iJ*)ATTfjtsW1P#oQrT_Ee?Cgv?suF;MTvs(>NSA|vqq0V;3~Wvz>}O+R z1I@(y?@}HhH8g$R;tJO3Fz7Wg^YVIw^y|xZoR=IE5idJnaX5}g*Hn!WKh72Ny8Jq> zJSGqq5qU~7)F9-=6tvR#;zG_^jss?=^58~6`wuSa9ZAg zhNhCj-zH}LnErV%Z zj;OH^dyuL0)i3KUc(_>khs|7A8m|%J7)u=KBN1A$v|Sxzgq0R=jA+!&^%Aqd95N?U z{Q7M*i`D0rmX^~~UA^X3^9M$wWfX7_Kp<4L>Wh0X<1r9U@w*2f766Aq1%hi;km1#5 zKzS;5xpcWYe;>JV1L9oeD#ab3;e|*kDw2RdU7}u!yIeR#ClxaiG+?%{^&WWcUcY%$ zB$pDKnJEZz5fz!5)S_s=fLF1mrbZ!?ACG|G<)a23WY}F_-=m_erM7k8L|Jt?X>aO^ z`L`K&?SJvTA9o!%KzJG|9hZ51_f({H7N(9CuLW=OAOCKW1n@sT-Iow>9kzm-TK;(} zsa_68xiy@CQ*WutSXiR(7gOg2OV6*p$==8N_Z0^3pwI%18O+5TkPPZ*E<G-=fOgdNF;xFl5{`h z-F^FH7hJ8ZY|}N29sWsV$0U9xi?Q5bAcvY|mpI7rm-39NN`A%L_|kYiDuE^9A6&&Y z4{!iz2d0zgYeAwQ2<#+q| z#*^ENW$lxOm_T`-?~`18bQcO7sM8R1Iwe0Tf;jeKNNS_Q@*SX{fll}>BwnUqV-zQ8 zP@OJeBnb$CFW7?@PRej9$JH`0ZULOcPm5Y}OG|j(Vp0)rdJ2gMt#)sBJv}|pW?NWT zNJ#VnAH{Qp!cU1jXD~zqBq3|C780=WfTiN!%|^88k+hGNUdYC6b+tP~n9L3v8y@-i zX@TrABN<{hg9R%)C$#XNw~D`tr%NU#VuE4uqj5ORet$C`ObrVomxv-fAD6@pV%ZNu zRcL<}+$(vX)M-7L%wdbWLIn9?cXgPaZY%TzI`g;0-cpCl|1$opQ7U9*a{GA)o;)&A zQ&Cav+iwULIEXz&kOJ#G%^Cid_hc%?*Dv`&EJ7cg}1gsF<4OP`46nY6Q{pN^-j< zWJ{RO7!4SLOn<(^tCY|^6b8r@QX!pFINE>djrna>W6=yrfh3vN;{WX>-vgboDCIHof|g>m_y2|?Y1ZDO^xwcyy-zIOmrCku;h z5TJn0Qi>rJNCJDk?(Xh@oDJed!zR^I1ry*40|_S2%QoKRzP>(i$O{1*ae}6Sw1R>l zpapusjGlOCQm-H$85AwFf z&cHpG4;(FK=)g>2*Us|;LJ+_JfrWqh4G$juy}ekCxWq~E@lEwrH@7fF(>9=eNsp$a zq~!L@c!l_ni;9J%x~gjI`10fb5xpJ}_OD4n+!qLpM=gb;{O1729)92SdcRJbIu7h9 z^w$IXIP1)Q1{OsTx5s4IPaoV5rAyD*6|{Qtjns7WzyB?8I<3i0T)BPY?60>3dOMFF zLb{iC?TP~Cj&4k=odK)hqEX0j>0n;Z^dScx>O;>}ZC#E2?#am@6kL7r4m+!ZV#MF?@OqZ2&>dm;}z+Jzpn)347^vfVT^HYpOso_rgfY zx_k=(=(ndJRKd9x_fq|RvC`=Z03HF76OrI0sYnYdKx|-qqXaF)=(OEZ1wv|4Qqp$n z;_kNxU{C{16cDiAz77FQr)_{Xrn|Hxkyx+;F1(HodjiOZDE!M^$IkJ^T@r~%0vry9 zbic*1xsQA2qga4>7HE>p&s6C)ni*_8xx{E3)*H7-GiYmTqd;$X9CHg5xG-5%?(L@= zeqTR4{EW*=nJSY2T;AXef%ZBP;f2AE=N*A%b(j1i#f9m;= zC1bWJu*?fge+R#_V}$p*G^fiH0P^MrNK64>k}3%5vsp%+zw?LA2HYq>Ykh17*7em+ zp%Bq#5by=~G+?cn*FGTycH5snKf%1f6+s7U2Eazd@E3XvN`(EO;@tr&N6&Xgso%Y` zpQ{2ikSz1+Ho81+)zio8S>41=^CE?fA2P^Oo53}qq2<3duAR4#g~`CS z3P(zMn>%BGe)`D%2n?tq#RL3|s3K^DjobPx>%rDTzd!lUO5QAu{R>NHu7=l#0fBS2 zaM~-arr{lF=cV9!>p>e?(L++k{&u9VBG-ABW#jMh*o6vaFykF4+yvqNaC{Vm^>J1Ku6jMO&fQ40db+L*%9PWMO?H zEBL%JL%^mBC7P?qicHxrIny@aJ2(JAi83(snEIg%oNOQl?cIvB2z=NrhX&2-_M4YS zi$_4~*d@SES5znBS?7cBwwOsTf^+ovahD>R_7cT;4Pk;ziV~yzidP@gsuhr_joBV? z(7EVjD7sCGaftx5m^nF$457>TK8gGT8hd#_i_Uu{1}5}>CMifsBnedV%~~<*XQEUB z`634NNYWP{XFm0o#J!K_)qe{av({t$GHP^V$gOIPZ>ElkbnZB^kRMyy9c+NKiHNyS zWZ&d{`<*GEDbFNx*^s3_fF>w+7g!sJjxI$$KO9vbgh9VJt=d)xa^6DJ=%&M&I;1uCs z&9f9nder3CTrzzkeaa8J^<+=VQ=sWwTx5_sT}E0+*UT`O5+Y02uwmDp`N>yFcYF$LFVW7Z91# zq8I8NyuD?m>dATs7MVKDDO1%h%!l`UQc>?i8Dbgk%0QL$Zo{*QA@wBV&3O4gK#V*e z-CnHAz(!MDk&-Cnls9fs%^iNP-|X`4{d?QNL`j_!)S<2eYyF$i#iXjRa-Dzy z_LKZCw@|96QWumoJPZ;)S9_iE%gO43NiKB_Iy^VBKyLE%J|q00?ZQy+ZWE5Xt79XU z;L9*_^i{EUF*>>_$#d^{ZVehY$R3#M3(*_3z4Q!w2gg~G+df^y&N@TA8j|=}A5D#r z7X7cdL5T$4A*HVK8WIa8 z226T$mExg26igjAAc*xg%T8JTP!#jktIM4c#MoGJ$>`(#W;Z;*5w(oUKu2`c?4SQ6 zF-wE)&A1K);e7vLUXKBzDNPC_l45P_#WIG5vKyZ^W#3gp(3amovUBfB6o${xzn;#S zeEyjcgjC-^$H~b~W}MA6ASuYC=BSpWp||P$4&(b5ZKyycG-ZAL!R%KT_g3}H?q&jM zc>51woM|c2ILyiFbXc=#ue5Xla>%uJh$!1MKAVs2>uWe+k6Fw^3p=}mxg64;PJ7@v?Olj{Z#$psfqzHI`P8VA#Wb_kTOCO3s^n|%fB8yPid)2r zHJ%FPzdW6x-g_*_GA)DHsK=3S%WF(=>Db+$1Yxf_G{Tu*58GWCF@|kyyW%Lyz{2>t z)n11k`W06POJCoe51EAFWA=*rlS6PL{{67>m$Nf0Iay(VaK?>B$+77ofnkIVn}n3^ zn{No+RHaN6#iB5P&Hxd&4vy5&*Th9nMG)4prxINKneAE-YX%`jc+hizN~1+)mTT&v zO>xMA{O9xexC7V)4w9I!d%>9kR+7%XJ3o`~b6|udLs+4vAjRArAdm;pqE)u4V^^mI zW7B?P^F4!6x-9kUf3PCDoPLwt6{Jm>@(_4$`hmUO0Eg2YIo(GrZ}-~oysu|Oa>!!2 zOdEBzyF7kaeJv;RoCf8i-nCJ;35y;BeQem04maX2cViSWmd?yV!iF&;8`hMx2^H17 z75mLa(W2^I_C$@!y1!KTeULy2adYMGVInvtTCD-^#hRoq!@_c4RGSEK_DC^%C%#;~ zFa5)2Me%SK6GLgBqvK88n?3G80`&?8h~I6opgaL2eU=rdSr3*iL^&Oo%WitvcysM*`6u9{du`- zlJY9%52bL9b9UIVl%itQRby)%JAX|bT*S4_v}ELu>Qim-gH{AL{+zY){jV2*nfmwU z2j@k9ABeCrJ&T8wmwQK{_GTXCZ zT1`%5;k{tBM4vN18=EUwc@8i^U}U5(z~p%+a9`Hm^pXDOUotTXdc&1zHk)_;|2BcU zlSP~yvdiXkb?Uj|Ob`PsuVAd}uv$1~^~ZMh)S)VWnvoff;;utOSaEq(@56u3t#?Yi{XiYcriT}EYE)h3`;)feEvQKGwCGYn8q zNL;6i`=LmZFR(A@8Hj$;@#4aQ?pH4PQsnhIl5=-jGu#tkl+t=ts=U}5H7m#MV>RGkD+0DG($ zRSV^$6&15U0z`9kkgc(KTXeyWvlQzfe~J6^#|Zz!DMF#+Hr-|7oKG)Lfq|Df7(F)f z)<%7Li_T)-A61bd)<`ZWxMKCk_;!lNF2*+HVk}upOfJ4PKT;UY_{A1ur~{_cmoml` z`m_CE1h{S;{b*4A^7ww20zCqon@X54)P80`%Cw21s|J1<{YJRMMzO0dkYD*<2yYL# zGq69CveQ`Sq{%y_B<#j!A^=g{dUnw`l?g^DcybhS>^DY1jdN z51OQRRCc^U)uN8{jarWnVF_vp**|2hr@BntZRCYHFS}#DUXb~{#b{bX-$p2|{6bEw z*=GHyTsn>a+ujih_9(DY;T9rTPF_Jfj}mX2u+7$n@tzHUj;GcaBw73xQ*KaPh{f}dUn0VOtoMa zI!D{>!-Eg2wD>b}RyJr?cQ54iJZy0Y!fDrBH^iC{-RR^kn?7x1ilZ=SAcstNjMS~7 z7;@pZ&)T(i@5neUbrOG)LaQb_7Y@9(W1{&CQZUrR!wOD_^ipV*lvGsM*x+FPM*175 zM}R>>hw)9KrGeuS`G@P#e&z7Mna{U>3mh48R7CvAYqg<&MLn+O1D+Q<9`Dn6fV|tF zZ}gI4%;NQ~+x~@EYOs2+;$y8>X)hw;jRyVcr^z&5V-Sy(N|I`|6omBC#Z@v>!mp|6 z+2B+DU?xiGc=h-%VQu&gsx)dSvT{YY(Gc={M2&-brRqv=khs+$s@(dotBD_y5i6xmQ1?;x zz(lZ0cbmSbNRR(geZa`uN$6B4^kj1LqUK+oSI{#@lSkCJlv1Izu)@X+>1n+as@;PrSy-f%i)s1KN@zNLOqx=Dbs}$1nnA|>>RT*f68$C zAi}mb34)263o1_KL)VLJ$(Xpk@_OIt%PS<%4b?*@Nf4$6k|iwHo1TgN@gwJ@8P166 zU}wHr=Nmy@F01X)EFqI$K!*zhEN1hakqodL23WUW{KT50r9mPz@z#8vf`&@WeAGMh zZTtpxm0OVdIC@HmRY{325;5p>dTw9bsE#9qJGHllehIbS^%V^oy83=V4$alw&-Fg* z#qoq)tZaGrIwZG4q(DVgP69m=Uo?Nj)uJp{n{DN_fJWprS*~g4Ou$=;p&mf zdZ~<&7VkpVTc^WMOK%QI)i6uPZ%^7RS-e*LoMR7z`OzlG+-~a95g0$coI+rrakAQ( zHPCj86Vqix5Aut^LZ;7GsvtTwEA}j_n_qzi0=d2d(P8)30aRR#>wiV)!m)(RU-wQY zl3c*If>sW(zhcVB=nBcKp^0WKYFKBn^#IRM~Md4O=x9(v`o&FLxq(DYSCVH~WO`8ORch`p|@zVMem%QAbWAX)@q=FX$plU67gLDV;V%_bqy z_W-Yh0DWqS?D7RbPo`TXr6!{1v182s+7iM_D^&@TEGWmX_axSf7>swW8uc?q_U)!k zjDCk_#pO`P!f)-4VKWiQl{he{pTw^16?Sh)q_oHPtJl#S*-oA(bVbOD#mvGdNWi2z zHf3*JVi2TDr1Trej>~5_MM8rx?-JJkPg`#t6=nNI{|+TXsI)_;NC}8Y=g{3HjdX*w zNDiHn(%s!%0s^9dq=0~QNq5P)dB4B2&N^qE`D@-+l$rZ^o;$8<@6Uc~)^M%UB8KB~ zaK7um#3d3SJ0==%YV;sA04+@9?q;V|$R7X)1o=9P%}#kg+)hUMf>z|V&K{Sku69F8KD(C)W>Gp3U?#e}rKN?E;vI_d z$K#qb!iY1!CH)`@R3`Xh+MJ&I6E-B%fmONryf0tBJ%J6^%N9*Uc6b=Q=!&Bl9ca%1 zHO;4^I3f7xk{SfvGGZu*>a7YyNDORBsxpKZn!gl%D--tz1b2{#qbTO7hBKA=)#osf zO6a4)iiH2@OpT!%=Qt5+T*+Yg_0U8muUjXXSH~xe6iOI=Rj|jEI zjG>o8c{MdP>y>D)d|&T4J3k0=!Q&m>@$dRO{tGe-2N2Z`Q55g1^YkPPd6ENrFsqEv zOoF|7x)c)@W&o11(t{8vS zM@(6AzI{~qq(K`yd_$J#b?qLkL$u!{l$Yg|3}>y5s??hCt6`YSa`z$)C<4;jzmB8x z>?ntceujR_ow#jxk3odc+tg!H%*;5`C4K`IaPqcPvidJjunRo_y~HaXIfuH!6K*jL z&5hdmxVUYRVq3Ry+878V)^wrey=I4y^O`hf1}iydae3v)E0)O*rzc-Y9U{s3xfmWT z*exG0sN(1}cDyPSU*PpYAW>g)Ra3Z-i##r@Hl6j3 zWnfbfM>Son-p{bFsD6t_L)&6E#gmT}N=dlnAP}-7D&;p+5Rxckc4F_CSFkta268id zt67Rzeu`N_fAoBl!oS$v+?#7}Z_m$v z5{JMT=UrP{gZTA()dhvq*}2851I9f!7gK32?M;10X=e>*L)T6C(->xf8AlL<0==T} zB7CVy8(5GWdi!|=m(Jfyi9csCkdR-mQQbkgMrZ#heb$79wS!>ZCR=)pgdz;?#h8}B zQYcpqa)FvK96!@k7%27YC2ekTcIKAwsgp4i{Qiq;qptq>r6jA|8h;fK$z-TjSaGI) zr}loz?2am`KCLIA@~v0t@$ttj-Rv7Se^*&5;L`)Wu}w!<&8#hGCIEZO|1c7~`_|rI zC%{c7EbI$Bmq5{m49QUBwi>5<$jS@*cQxwkCfQ|qAs(B4`)A|Fx$64X(dvtG!zCFu z^=i+$UPwbrKApvxHE7sr4ItYhQa+6UWn&;)yh{b4i1JzsSj)Qo>ky>AygO?zDgtQ5^dlRB(NkTFT!!J5;r zPfnP^Nb_$1Vx?}o?!9f&*oDdCh@qL!C!u`0Rfh?X1Nnk+1_Gy!+}P1DQ;tiB5p6k? zJ_dRcD`Sl%s{Qd)^;Jr`)4LF|8)mKUm@}?m(ap4%kN5!DPqR$M!jdb+HUQ@-Zkm)W z7gqfKl-O5K!tdOljAcmd@MGS;PNIRftEfoCaxn!BXNOe7DiY=8=|@f8{4B2M>gUt1 zo3$p0@S1g>mG@CoiytehQ~1zAYU8&E2*nV`N>V#p+em9%v54^SxZ(9^HB`|p7d{Bk zlIypzx?KoNqaO`}Yy}E%=>Z=V=zZe=8etXK!=JGkU_*!^%q9vI+=0QUNDVMJLmkfs zw%*JoM|i|ihF@)-g|I7wVU) z?n;orgl#pIlRcrsmr?l+B|BONdG|Zjjv|4mO~c!e1hV*{Nz1pc1Ei#+lwMoZH*U>k z41?s7c|W(#GCMp2f7=0s%RZQQ8ypNfy>$Sy5BVB|e1QJZ{Z4DiouG`zRt~5Tt^1s( zsN`(j|9-#i(6uo28q--9NRRC9HXa3|O+GiO)4@dr2WBE&C$ol^^riPd(h{^&uvz^U zo~>+j(aHSb;thBFi%g)-lqPG20!iCeavZ!Obo%WMG3DGoIoa)~P@VlW1gHhry;~%9 zc1vr^NS(7HR5JN{MV(DMVweG?lRL_v?kAJq)s#2>dlbWLUiTZTgTKAI=0;0?F$^-O zqcCF0>C97+iX%XA0Mf~jASv>Vfd0VGPE5(k&3zBt=>9QTz~r*2Krj7ld~EE`Ae4gF z87!0ERLpH^v|H~TTw}T?e|v*-{`LD!#K-H%w=K?nZ3odF7Yn*$M1ZcH35E&WBm7pG zqW1m=LS2K#O|+ZFA@H0((mJA^IX}$Ba8Qjz=3hYryy}y+1{raU{lERfp)*kVNREVn z_t)9Q7iL!AF8bg~My4#S7f*!wDe8FsWGQNqi^+h><%VR79}gl^penWe-p;OKQs!4? zzlk8w*+U#bMTS+W8y58ysA$lI{%O2eXr%IefrpO|lv4tL{sQ?0(n|sHi@XS^oNTJh zv7FQXroAZx-a$xg2A_uS{_pgNXSkT_MD;;LEZXdr$^+chs4e8u&HdrX1QL5e?hvCx zhj&w$@zmvZEc=Ah{INY;UmD*v&CRc1%5dfPU0IPdUl@bU5Ar@^Z-uFIQ&*wt(}sbp#gox;NiJg&A}q!3W-KLRdDz%?TVP+N2J z>x}yhhBg^Fxw5h{W@ctu=n814o{uJiCiY8U=~o3Du7~6-fKmY^3xK6WfdKvbV#kLE zp0Du9_t*M@J$}vSAh;fQzN=ycR9#OksaAm+c>aa_pm?l<*F`0dOR?If`A_RTpzHVa z={&xE$#le~U2Wu2ZC;%Asm8JSUX(nl9SQoyW-9tM-SQL-3IqpXpoe>GF=DpFt-_g% zaD2y(N!|-1dflO;v1*skPWKI{w$d-iiM1;zRP`WK@v{Pr!$IMBFB><)Q{jn)m3unq zsxs}5FV6f#i|P>6%O4sOZS`(8!vYm{r*D1Ibi$q-23*960|c7~P$6^zS!dk6!@Gke&KJ?Dw@?1 znoc=He;YKB9Q2i`g8X7}q~VPz-#as3TU^~aIl}1c=<9+6mcR}5`h|t31xLK+hJI#I zOG{G|FmN|ObBx%Vfff%4M4RgC{{ogM(2ry2evYD`3ZMcI>jpp(Ni775Fb**OEP4cf zNNu~7ZGYVW|EKG(3m=g18P{BIe+j~BvYU51=(u>WdCxqS|J(Lb_n*(a-O66l#nSyz z(-Qsn{M(=8Kr1*Ggi}i{cs(+uwX`tvg1b-7oga3$8z7@zQ}*01XJg%>OO+X);Ez0i z(Dz?c6MCAdeYUWKY6x+(a{EZ2(1$ureNmj1?{sv@JC=N7(@x{rT4f2J4oCvBud5K0 zke11@`5%o586JN9EeoGa;}a{R~!O|Fd<|N|fS)f`a^fQxN0=%>g(bz*Z8Lf_^+6dO=7?XcBTK zc=5Xqbfo4x?@3{Dg~-|Ni=HoT?e+B+fMNBu%S*^OR&TXNnWlt1vkp)WfcQ|tx1*mo zJ8yOkdk-k)8(;cB=p55wcZkmy2UWMC3C>7Xq5vQ6dlb=OGac$Kwd4|CSj!L%A+!;1%EnKOg72BsHDj@NV zL3INt8urB`zMjxvmIMn^3ygkRl2W`o5{NK9isSrN@aX1(P+f=h&)G#Z39oE%K^BE0dZf@>tBro|t0BA1k5ImY>UVFDyv@;#bu?n%Fn0Kv=3cN=AWcLzCs?I_^)UQ1x6<>4|rZc=>Jl zhu;zTR2GD>2H1hf^>P)FvofoW8F8|4I|8dbZ%d97V_>A2>Tlsp$Vk(xbtNWrRI$p= zWfe+HpN7qLOe+J7J^Tv~C%V$eE5$B^c(_x<;5%QlJgHp#Y-}1{yjS~iv_7gFS+)Ll44ks zhtn6aN{@|{i^?v8cEPJ>U1MgQo#H>*J>LXYE}z}LnUO!rQjD9wUHl+?y>#E7J+7#D zc6xew>sBBjTTrofBoH&O4-G@>b@W&2HNuB8SR*Da9DbI5Gm#Lcb}muG;au3rdmdDj z9G6Hio$_+QS_2m@jpGp)Ig8TgEE*@hgQl15uAVgIe$fbRf6L0R_EnC4;`IE@0LaFJ zKhpQy9TIydW%$|q>Ei)3hvw(&4t~qHPe-w23@VByg77WeIxM{s6fYhWFQ98%QBeWl z+%W>jgB4AS*8m-}<K>RsPJVFDeWG2RT>Qq2JP?#iiBP_Ik)<6&M$8l?taT(%#RgkG(nUt9Qqg)- z9e?TF$upF?dU#VHuyQ0?bhV(OI!Blcd#Kwp7H zdpCxFt|be8S#kI`xv$(Go813yVXaPzV;RHl31<>D3m2c0nU18|W}3G5J0TA|-^#iH z5S`8MDQf!qQ8=x@lnO*!aD*}d;8?D_2QSd{`eGvr2BT$&$37h}lGOObbyPVnSyOCR zS_Z3b$jEi1Fii1BPpSm&L5U`pAw`wq^zu7JRmYg4!B$|><}6}L5*H2&E}0a~nxTBN zt3-yGvS{z{daD$D{JJh}%tbF8|A*uP10r_Tt6oGc)AW=!S2|^8Gg+1#)6-x0&+X1U zK3z@^d)%{p0vVla<(f}e>|Dw7vMSCQ8>fA1M#_rx(K4uN)Me_KPb{Gvwd0|xIWdDh z(2Uavu1M1tc35IB^ID2)O2yLnikwlPt1=htyaV*5Ew0XJ{Ty{#MT`=pE|l`=U)$EU0m)a;?x(N;^NxFdk~piFZyV$Kady*#4;0gV$rT zJ!)HSmy+1DPU(G@BB>OQoep9ACHwhQP_$H8ro=5Nu)=tG@z3+mJL<`PDx$?B<0p3v zeZHcBNjv-sX)YLb?MSD?=b676UKss`4DK;n`8&BU92C!024v_}tlsoSKD)Eg&!@5zOx4AkfL^u;*lXaRyn1p4AU*W-`$Y^pfM8=# zYZ^AXnFjuNh3@MeH3XTe?z{QPYaoaOnqDn+_4ea$%nyPOKu-PU1mO6)AQY+-%)d*w z8{B~IoXPv%d@`!V-bWsJ;Nw}_68U_iLhet!c598ZH#2Mb#9AGvaXzP8m2913Q_}|R z)`W`vH+)ze;byZl2EU)xJR$3K42YE;`o&1t%#0hN-B~wCz`Ixei>Ea2#wb>0w8hJr z(g!YCv?((2%dBr1|)>B*-*Q-*n8Lm!(wx1Ct%fR(#Puq zxtUZ9g#`2s7Z*v?*XwI9kX;Sb>_BD4GX1r^0qlE5DLwnV|8$ouv^D+6n0G%kQcOL% zaorVAD`EvAz;KI9|DB^2;NUFzr{nmjq}>#m&1LqlAQGRGn|ah*C7gVNv}vy=&D1b? zJ-NN-y>j6ZwsYX~QfDP6-Z_xTRL@mqjARN@$z!VJPowpDo9#|OGD`Ai zwb@h(!!Ek>AL+2%0Hv@G0z=X*O~)>SR_d#~Lk2br`J)LxL^e7!zr3-Lh#H6%lIX&7 z`*O0D&A|tHrtk8};|3fFz@q}CuA3#3WmGpX00b}-I|5#^=%xFA7f|Y=iIm0gA1H3O z4!&3mL^#$9Efb$3mWzNX+lDihxvHJxCixLAS4Xv0o-9+3yzEF>=Awn01P%;44^G-;Yn%S+N|na#IMY#J^cs2k zTurpZ)Q?t*8WyajHR*Pdx?Vfs%WL&jMF&UcabA9Lb+uOZ2CY8!${UdR?7^|K5D(1n)h8k+1(Y z+`dVdRrsz$fi<~JuTq;-f^5Lm&5Z_e>m!`v)l)7X8&tv3Khl||08Ar4hFnEaGdIy2 z?U}8@_)*FmDQqb9HB@$w=0K(4mHV@_+)2*oja}Lye7^~-@BKM z=JB0;#@KzRf+1^faeQ;%y9ZUm(kIM|ik>^D?pCji^;VS6Q} z8bWw+Wu^TuU^k#{n(qL1Byb}SP<)WrQvifWxW1)Nmtlcw{~QAc4ErIB1Q!nIRq}Fg zG^OO^CP*Ei0qpw&!qZdJPyS%5QFtF-hERq#MXi3FT5ulzql*^IN;VLm5=ELw1x5Kh ziMM>>>-$!ROQs@$7BR_03zse#BNsYv$TgItNj*nY)#pkVu#FLML*QT`N!!hb7xv)L zCt5=VoQ>pgE@@xhueF?*#(fT=_n^+6(4;q{LzoM^nESy|GPKKIz|3AvCRpiWJ1Izr z8D(I!_oPhrlM!@$?+A~FxRZ{8n$tvF!jgiM?Qn)GT}v6~U{+eST-M+U1*`_+=0M}| z;C#4Dl87MEckDrn0Y-EL1~3+E<&4F;0Y=Y*`)6KXUmt|()Nq-@4b>)WRtF-Qy1ZAy z=1EBvO3*cESvy=j<>Ypk?pamJz!n<6K%GYPP=^IGo-t6uPlRF>ZDh5MX`N5>kJZ-! zXY7Gj{(kdHZBxe{tD*tjtAV=?IH(5HY@yn3WN`9D9bEWnLn38pI8b|(SG)!IToXNd zxB2>=>s52`)!txA<3vt|7#qDbk!O$_Hi#Hy-n9PuqIYNnP% zC-&$ROkxH6ahXjx_7GdU4&bO7-G5q7?6Pj*_4f<1R$50{t+Q-gR3zKPYmY|{E91C1 zi0K4fwwPbd0PWYJ*9icjhfyGr+xvXhLRVK8-_e^Qu%Pvxna$7)iP{>rCpa)LQFwi{@FOyoK;VSlOdEu z+MRqnG_;7l#~RLQ-hFcqa;s&KL!uA#(Jt0 z97`uS1*q>iORx-Ey{d307Q>q&v$Yyo(YwD7BXEd~|=r0iP2x=_y%& zDTrA1{Fy5O4k!*pm1uZhoZ816&9`wRhERG;IVep+XV5L1s9=(nE`z4nsdV?35vg7g4SMe$Ys3H*4X;6xyZS@rg+du&QQZj!x zH?`pXel_^9#r~q#E|t<2pQmc1kNAG{6Ri(zjb4Yd9{6d1j{2+S=L<={bhR?fg-Ri- z-}OE;CF1Yir?b2y`BTL)$blzg&6`(ORj14JDP5ge0nhqRh6dWs+mJG?qL*QHN;x^0 z)Gno)45Qz`L{!c$T}1AWb9`;N-M4Xd1`%o`N`7i4O_N_;8 z{ph56Qb=55D~F6dPC-;2f#u1@w>jRkC_D-i#uo@Dgl4?a!Uvrr%gjykOj^Ban*Gqv zKBnvHF->e8Kc5CrvqMCDN;@}FIXCR-^T&4^ZLbb*GV`w-x*ij!gyaCLX2>pc#(DYG z2+UZ5q2zBU9rejodvJM?8V+hE-3W4T2qk75emU)ESSU zhJk`sd!*+?G;qKCsb+>EUa74T4rW6sL$?Q6rP|xGQ2(<}IL)?(?=~ei@$ZuRq^f!O z2BNwS+wyL3(xUc%K~u`ml2~ydNRaXD{UqJe&F?i$^;?oran^Z1zCwDt1G`c#CgUl~ z5-f;lhVrfZ26&NkCiJBQqVWmdbZ=VG{Y%|x98 zZNJHnFiB{l7Azlc7U87kb|54Y7nd71F^UqLv&brr6E}vM9XWV$i4JBFkyL3c%y70= zh9e)Vsb9Y=IZ__!RpI6*>#=s7WR_HQc!=m3AaI;{bui4ZKEg1O*%n=RKxF|7ImVbL zm>v6tN9Lzt6e1gD_@GkTx`k3GD|@6P&&w^~ZFLfm!&^HdY8#&5cRLOGwD-x%3xx}N z0GN+dQ;R2R7*+Al>fSPiWnzV3w8{j~9r~lPQuBO?h-`4%WK0ofPNXwHEK$lZ=)R4e zznPjGdiQ3B0mXWw6aTE>9WIZ^bQ-LVJRi@C1VZCONYtiPy;Gy)2NfLSw9 zs}dYC0M4<+9?DZuT^(!Oo&zbabkn<3x_INGmR%_c-8L!b%Dsb9i%)3R9FLFbaBZrkX>$u~@>2 zJi|$4zF}W~vp>PjD1^hGvtE)UO6u$$Yfs7QSFM|xX)HgVV51(&C!&cYE2!uiELO%o zY;{`uh_3wCs|5mqbVGh0#rH%PLE)1>D^Gi!+VdUNb+$hbJ&RH!{2U~nLrU(F?-h1F zq88>3FV1(29G=*AaWC@n!Hr&B+PCR{e$J@I%EDSI&2cRXO(fEip_3tORU%A!l47Y1 z1(PKNkW2o3Fo6Fk$%&3t?kv~ZEM@5+GV7|ktx3P2xSJiBTKsiDuWLA+S|<)%nwr^( z?*>zW@w=*XYdQTyK9U|Y*!b~lQ$djb&&L4k0yX3tr9qVz{nW)d6(UxXJjHi(TZlFJ zc_J$Dz;k~;xuj|FH^_L!&HiZkr`y=&3AJ^4v2+XwtJUI-kuD#bzW5#VS~%X8$IoD;Dp=9{J~r3RIAI zN~G40E+o?ZA3t&ofJ;LkDQWp_dPZ*sh_c33+gTU%tnS9kyxUkXhWUCPA&P}-TH zzl$6h!>Hp4vJYZh`6`wLbp=**G-(9+-?xH=^nm-&TkCknM0=(WBaz5POGd@)O9q-K zk8i1HT1|a{)euU;PcS`EfxE+sw(n(kWo*iqgIe3}9jg?9?OOGsw#*$XCbo*F!rxZ; zQ@;D7RFZ7uRdB8fyr)QyRZc}hh{F_5XW!z&k-o~|KEgJZ^=xOY8DGImW-fU>5xI98 zMmx!rS24L^Zo|w>T-giscB^^Oa$Lo?2eohBlidW`46LN27scO);hgxy z;XxpN)HFCy91m-oQW@0|ry4y7@Jsd)AAzv zCh=t2z5O2POI$K&qlT*wnqfw}OWsB__>K!|f7aB<*JOfz0ikTrJ6b5WXtUGrZ7i1) z0YN+2kA23@DRXzXry1FPARpk{E3nwm*42~(gG;JTh zzB$=|XXZ0>Kab2!&;4Joq-I0?I;j?som=E-#o*gU}6W;9_tPyyj`Qdb?obMFr zA#t*t9siy%5`JtU5|w7_@OWGP&P+A2c}D??8Im@K>aSHyj4kHe@@?D2+#Ul4hbqZI z5{9V$_tIi^r;q<_ zf1;`$@JT4u>FV|)9U~#)Goz=6Vl)n=1*>fA*(=ekW{2SgiTT}Z*Q9iRWKhWL`FOE~7!n4Gk}I+tzQ}N(?jyFt-rC&-Tp``#8#aS> zST1F(vaW6#XufZc>vJMuD<_P$M;oMe_dc_ea1ltq*b_yfCZk@yb)wjtb@0N|!U=i@Zo@I`Y%jH)p(rRt~v(!1$w~;tW z@*lon1XMfDqA`+lKy;vf0u-ZwXmmc2^-sOM&0;i@5P(z8&cHeTB_RDPz?L(Hk;VX6 zZF(WY)@%XTcKO5zo%{#4UH*YisFKgUu6@h%_fbfjkw72)P>KEDCP`X2VlV$~;vVrn zkK(HykFs&HO8fB0ChfmBC$Shd!?XyTFQ)1#{d0CTZ!{u5OMg-&OFm7Vuiq)9BNgzm zU0D;uC9BNDrB&VMl+_4VnHBl%zVs2eH1SZf|JONuh`U$;`jqRPGJrPlnzw7}7rxbd z;s=3jwhP~FE4_Kc=nL_?wWw*3Ek;Hj{Tq_d>pzS)n#CI-{0H+jUlL>;1h`b0w?K#DAMFzO}~ju?GKOHs&PrxDui&M z&E@Cz4c6lHwdBDkm#QOg>Eeb7oKx@yc*5fbu3mg9=8cxQF8{1*(02q@{h;w81K*~p z#i5fSmp9aiSSskuU2$!-V|Dzuc>e;i@_2W5_bNd8y}Lfkd1+^7_wH*Xu0za28>~an z7%K<;VHNQLiPHaWXYjMG^e2oIR~%hQPmhSc7Ddch(1!Mvjp4#G1Vd7?m8jWpgyYft zla))UcJl^3h+{A(6BT206!WXig{Cl+Y{$60Cb8S{25h%WV7LzZje{FoWV{?3saK~= z6+H1Se#Sgyv&r98yyD?Z3heGuI0#@H2SL_fjd)IegE-Z(dXK7l0`eNg;R*gaNkJeE8P8F0G*A zk=|K9pYi<*^#6QXiWq>!d)^`(y^0wGXG(-aILjX*L4f?`YEn8wR%b70jpKtE0_XcP)K#eEAFV zEB!|uYnCidk#HYI0OywM8>YF{x)_EM7evwlfH$f|F&=p97 z{y8GF@44u7k~c&=4l|}ow}9vM*fH)86CVk}T~>@9V5b$0rI(Ff26c@GLu z#es-@p0!nM#~*ARxM#m;corSjRQ8P-Y`*4RYJRi`5X!Xh^3rK>kr!X2>Uu_vXx|4e zNy*MZocD=Y^GgPAwVyAZd&KR%B#J8i*;MaVyryz|X9Qbzu}lnC%y2^`ae4I!qrkic zB14x*l}2YuP=L+uma=vVeS)8_Jw1%|B;XKJ0B8+8gTAI<%s8qfxZHk@u#2|OOlB}8 z0Z(n8eht^D3c(qeHQ01&`!-L0fDQ|wYhgU~|8Jw0TB2U6{8IIkyq8x%Dc&~m*BPnP z#~k&4(4w(*=?qo%0;sD#Tjub%#H9`8uNn1OO!Fr!8@szp4IUV(IlcF~6AqbS3F46MVztd<;Oogeb zDuRv^m31WZC)Ve~v&Cth*PKjdD;TV>U}Bd7R`;xhp9Rbe9cDxM{=&iDZ|r~b)Z9pM z0=f^tmeBd~{O{}}Up4bul#MX&Hfdr)rr>i&p|JmEZ$zlo)KQY#2b9L6cX^TV)>A>r zifxm&jZAAQaLi~6-e?tu!^tIBkxSq`4jNngC zthA}Oc1f)xsv;iGP;93hzz?RMU6`!#+2k2EP@(5&#Bd4kEJViIR9K^-hSPW^O_Tx3Nh9NR6~b^_eT#U z=4vMJshutRM~gZ-LGBBQWf@_7Vcr+UXe(lRs!w$M9rT6Gw0f!~n7!WZ-ODh4924Hu z^Z2;QnH^e0eJMxs07o@fKs_l3(%5ou$o+X!*YlP-c#abLv{oc)Jf@kLyKTEyVs z8B;;YeT?eMXxs>J;MumRWKc*);uXs4{5`iBJDkg=StPB~XIiMaOMT~uOckq@O#}lw ze{jIQU4BtjK&;f~*3^_t^{A$F$Ce;7xc(|r_E6Bu|UmjO+9V3?Bq6qj-kJLmY~srfh>%O+x^}}Z2d@zgahokLEcI_ zwR);#!Pt>kWu3e4Csy+wmaHXuD1%5FvSqSr)u~rUxdjdUv#bhTA=Nh}gRBW7SjMjA zTE^{N5E4WL4!lZ$q(9=yEFyn*BV9gyDi4t@cr4)m;e23SvzMXZER*t<*ujis04<|O z-^(@OHi{>j6#G%rn#h=7qO5v6VQ;`c5h*`669$8gum1wdZ&Du5?4Dge6xJK-q~HbY zk);R3z_gDrvWY2A#`!WrhDx=X0u^PN%4Fk#%vPr^(WcDWa+ zxQx~YKYe@jyq7(Is=ezhR?{vr3uk=OojA(%NcW9^86(8n+Ip_qIB6JkNC_hm zhM@xv!$|Y);!v8Q5UA%~vOH-^ke9mNNH|1}8Hjdh_3Bh(WX8{W9_I8S@2BNn{ZPS> z`c*gPM1+X>5l!FnV=9u35lW!;l-2T@aX91m_>f-WFQD1W%mi9kzBr6 zeo5*N9dH6Nur?rK03G{Zzkj!bW*QKGfo+TsXjPqGvIva2yYNWU%*({$!UMVo!dg#T zIjYziWRGk9@UTu%WE0OAjRqPo7r-<1E&{)N`MhcdGyzydQCUt=+sC|;X?Y>5G{bJv zbeJ(OjzpH(6QUr+H8npiIj3i4hD~ch>=_6mw$N#2fEe-o0{NQ9yep!Le|Y|lIczq% z`a~J?^z!kr#;#AT3Q#&g<*8@3Trhp9X6ZzZtT;(rm#Hb|mc{tJeIjNYh`R&Vf7Q{m zyweWQQS<8P1giVo+?7njk&d0<@Zn9^-iSe4o%_b`FW^0x@8{DdkN+*xlj?smuWM;< z*K5~*XswFSI6_8nI~Nyy7u*d8D)rIcym>uS&N$@NkOL@wV5g0|A-c(1p?R~j5dtp% z=m!CcruiQyDojCw9tVm}#WLSHL%~PBTrj|jjwfI&V7Th0SH?nC`kKK}u1OqVYtg;= zNoFE;Nr&c>_mc6%*V^)he~;mz*dy74`CoH9GAZPj#AReK;FjxbBa?!6+icm7tX;H; zXn?HFXMWp-)v%L{+LS8|giibu23YBp7%wlc%C`O1u|2TBjedTWcTWt+aUMcJ32Hpi z?_gh@eq!Ag?gGlEsx@J-F;BF`wLcCjVDU@}vpPK??naSm(17N!2y{s1snEzsA+3A6 z9{%Y8j=qQf`40c{o5mj*A51nCj~WYWkI%nKmT0E^c*H~Yq(q%5x#(pb`=A)h@U^#4 z)BMYSk1_6?y4lOCszxn2JI{*lr2o=m+(d}tB&gH8kSUqBnJPZx$)uuHi76mlttTM7 zYgjuv|CEY!{^nS~VVCTAd}hk@JNHH=!k;fFcz+Mblnc0U54IY5t!jD%S-`ox{6J_~ z@%@j3i!yZ!xNXDR4iF-TP*zeJjaL#P-o*ybWr0Z4=9LjU!zXFHbF$!Smf;g`*{qBn zBb!hLYym5q&y4xJ^R1^LtL7#If6<7mRd%%~ucCk+o;fY^_8GS-{` zVn1;&wQ~3+FedTh9#>()zG?p80v%a0<*)oxoM2;JL%Y9*Bk&@|otpX;4~fYm4)nTV zp0V&FfzfxrW_`aoVpAhY?2hfs3pA5qqLSZN?}I84zNU!JvQ&8BDsqZ<*F?CkB4^E#Wx z%^(jAOF{syRLf{M!QTR z=eXEmvrs>1fOdoR6cAThrDk%NeJj_gt91maq(qT-M==pEl=iPzA_7uVYlqoJeNd9v z41K0Fv=&?@6lS|PVT}p0W|K}~fa)o3YYh9k?%c9qkKOwP{nYm&&G(fk|XYC z8Vw#rAR}<0lo3By#6|qxJ%d9M+;mdeRkXC4KvVv&9u_24;kuRYqyEV8ckr!e_lT={ zP`kSUcL>b4oRW$ZUd9u9IrC%#v$kAaOEJdU4hNynrZYl+>4?~t*9fq~*xwOA*byIZ zj|N)oks*O_9K?_*p2Pi)1^@E|RulA0EbtpKl;e=WnmmYgH&aNB@Suh^uy7##SN^18 zyWKCbK_zI}(iedrGmnTIKU9+;kYl)n1X^!?5d*q3L)Ql6Be)-Wj7+JyA&*8)ITX@) zUd>cUlX?^(emf12g9P}N^(0;Ah1hmC;8Pnlwr@(Ky4KhmwBN2@rX?+4k29{(wg-^j z3}YQLbU&)ll@$}FWH|hy)+^&CDtYrLU4kl;!dU`5I zXYJ!`hF*U1^gth;#>dZ({vI#w$9b9I-44hJw)^<;V=GA#2B1}fbfY>YJF^SuJ*D=Dn7%g~9!1 z`}nvj{Z@huc8mRBbu1ea4!pRzx!J?f^Ynw47Y-a~YMvQ*7^jjX;zmV9p^C0~(&EBF zev>K3x+j0Xizztejhqy7M_qTRNymZI+@UE4%t|4FswW(4T{AyCZKsmKzMvha%7GMH zk^)TxT%2xpEs%bBbLN~{_zD{zRWwKWbTkh-PGh(MDL@-=5)>4C6iD5E=s@AzwqW1X zR$tEv2DjUmOO7s1;6T6v_SK~3vwUIbbx^OYyL%IeEz~IVZoWQj=YxnX@DhUU5qQy| z9RK&m=ohcl1_TY+ALugI=4`4654iq6a=QK_P#ArX(yT^tdkZarR>=KBv572axJ>dP zW*+p-IV4n87TCIOoq-FTE3Kli&>RT*OfpivEgi-AKYaKA6u(!~(+_lNA#k0U5}B0d zQr@(Dd<1B${{Y44HTG*TEhI8)nO_BE#2dQUQ*yNbL6Uy4oPG$xp%-0e^jGYX%s`^x z_^)4E7dO6F!-n9h74h1o8a2&7W6^dz{3Dt?d20!Z_jgT@ct_6z6H3oyoC%chrt;DC>+6l z*NkHp6b5`xw|;^#yLaQ_;vym-0Fs0hx*_npe`N4;Q_iI*fFT3RwE0Ln*s^FaO#!N{ z*M|>vo@eQ|x$pnQhFoD$_??m*iy67KeFW$%_XXD(@L8DcU#0y3JE@hu<6~!#bJ;dc zjZg;8b1EDVQO*YTj6z^kfU6?g+jet3KiWw!gqv5~u;Ll!pnVvhvBgSs)>1|JKhuw$?40Ah;74 z=8xbOV_=(4;k`P<2DXRw7~k7f4K4i!fYAr{O-R?4p5U7Ir7MafEAgC|5n!7eg74Dx z?~E;T6UDz9D4<)xPv++40xLxXzl*CYI03FVegcxM_CEnwedcPhw965yqdJUp*z&0~Cc;1sqgSoQID=1X5E0LoBAZiREoQgUzVOWSP6G zE4XQDr0Rfb40P>?TfNkIuOzyF+=bVBuy+UTsR$AF9!2)eewzchb#xnTfp|s%U}3@g z`nP)k64nOpW?fy+%=@jpn1=@PZ?0Mp@^`SpDS=+eci$FdpEylt`WI_)lSDmOL%=;Y zv%3H!uE0(H+U2a+`8Z-^PmDs7%>z>VhinM-WfJN$^nP6U63C7LkFE5?DY#fkEIN4q zL^JUp_Ona>&bd>HUtD}11}*c{Wh8OV>&Tu3)R22alXO6U1#&X0;36b5n#-H?`C|>u6DrS zZJty2f+voXPwKy=7UH+|cn@e(z{?K_9Oxh3^gj8o%mRVA{cqXru0{b}AMgq$f2e#x zAnbodAPE{k2@eZ?!_6JyK!BQ4UJiB^HTzz1VEP$Y4XZ;LaDoLt1QKv6yn{{u`t|v{ z3dEGSoe=`zMM6?;G=`mn+Ej?c)lOMeYg?O|;3)7F^eV3mTtWjp{`jNI)2qo!A;rEq zEQCNzDN#jc-G-hgw}VsKvM%7#KKuur@1v~IIjBbBJ5MDREG1owFCInnUV?s&-M+og-P`|%{+-MN08&Kxt z>M#%n>(1E4!rjeMq%4yJqXFoC>^$K*G4S$DReFbAGI z$_qfW0qy!q{Wdp1*?{H%WgO6bg1_Jm;x_}RetT|asIZaysEdj9f_Vi_N%yd%fNY6` zo{+~Pw*U7?@d5%8&b4kAc=CaLNs%=({Tjxp160&|wl26WfxKiY6LD5Td?;h|ESSdb0qBoR84sh9qWSrNJ##j77734 z6a*1jL2%qTA@lE_<6kIc^0~_X9Y5IG;sJ>Z03ETCz5~2?g5H;oN=h+`MPg99#dh8y zEvh7XvTl~OsafG6v2)Nl0?TmrHuAw5P$unjOD?QLxV52*WtcQ$MES?VD1 zF2m7z6!+pKuw{&SIzb@Y!&dX*%E-ji+s)RlQ{G=nfhG8o zBc)g>%$<~kgeN+%(kJ%me?v!Ket*da69Su~PRpOUi;Ih6;iQmYUho;%<-5tUjl)-Y zs%F~k7h1tD?WXjC;DEURW^M$v{rtcP2eUPR=!0*Rqt}Gy*A8*Ogai}9kVy+YG99d} zN=izop)@mgNK|ZK6#b0R{x@}D^RuHq0@IP7@q-Kuys-HnBy13f(Xao?-2Zn1(p}Qs-Hmi3hzJM>NS8==cY{a?h;(;%H{8wdKi&`b zez@Zu0|sXt;EZSQz4lyd%{f=7qP!#;3O))1L1@xaV#*K%2VTOEBEf$O2)*m+8>Yu0-xPvKA!#vTRgcuYd3O&Lvs>)rIooEGtfF#|}E0!fih-ey+2A!5P{gD+wZZ0OB@Z~hX7!34hyBvl~% z|9i`d4o1<*>G*V5Fe52xdWJ~&+r=AZX3VbgCilZe{kKSDZ{NaqmGAA@o`g-?>et$8 zT^`Ig=-R8Qjun-)YOAT8D=dVsUY)EDkdu>(ii$3JZW1-k>$k}X3wKlv3(!SNnX*oQ zea)8YaOT!hTYC|wp&vc4{_yZnWj?4(js2J%0-i8pL>-niLgKUwLr_&iqs~ndGkd%|z_PGXU|A*^Mvw`?D0bj4Hqh*P#ifN|%wO9pC z+o^9cF_l)MxxTj-40?@YB`}ezv6OPkMdKmpL^nG{Wu^KpJT?>bB$F_P3(cMuL#fj( z-j|n){{E}KBa+xGIGenm9!IUAAgQvlay-4(%I4;#?b6|4oAc&Sd3pIp3kw}xQDxS4=1YB*e4!*2tmvHJdk36Do>iczD3nEHp-1V zvhcT%$cY&uA3+t|9W^+o^7;%};5W zoPVwpUtLyyA#3yNHMzOkP`(WPDv@QApFO%QMi$-EYByI8HrZw%o&m%!Ee*}Fn_kiQ z#r~}O&RBt(ni|-t$D7HvoAcd}3sG<}%QGP);Te`tF;>&wZ$XF{=H})&uU@^=*o1^k zP2Z*r3iv-X&q{6#rddt0l+)}Sko`N{dVQ9h3iKf*ppHi5~& zZ9e5<&Ux6WVGf+QXOrLF6ib{;jovr{GDSlqqKF5V9aAT1u=_iMp9|ifspKecH)|>?I-aaaZ}Pm!Tl9YA;VNi&^Kxf=phiwxdj?#4>l*Dol{gtQcKjUWg1TMEuxdJWa^J0~ z+qi>ykK~~ipw882SWoS}v^Wesz5pbsRxLS98Mic#v zij0b?+w4)HGXPF7Ww*g?KUoK?_yXKkzoQOBTqb?+fBi8O@AW;`Uoj>;hZcQK2SI>9 zhTs%Y5ln_s-)WTUzVm;$8!J#*U0Fdu#ar6H$ydtCR^EO>wd7PvOPOv~e;D83OkcIt~%9**?qUpcC_X^h6TTD#%)CH+$`0v5mT3PsN#Xx4b^O2nO3GVV zMWqVhOjuah6KIl3-ToH>3jO{4IP{v|Vq-@^a=`>Kp$L5_<|HMDw#Ecjf3-Wf4MlCD+dP!i@dF3$pyCQXhxi&!+ zYTNw&Bb@m)7gQjy?quW!qoSxx><~B9j76UswI{-*8z~%S7oOd^4 zo$lH~4XkDi7O8OCp8;EDx7eyj8EZFFjokd_c~;+wIi7&e71#rO+t0JMix>nK^X(r) zdLr*RS(M_Eu90p&lS=7aD8l|&TU!Iy^eY~V@#)4O)V_NB$DGY`z?AjagU{lTd`^x@rJ;DM^Ds{Xeu`_JI?e*E}>kYe_DBzkP% zAKf#vvT{nN&bQ_VPHv*+sCYC=@PQf=3FI9V==k^;Tn{)XNp|B-tG2m$&NVxv!|*K? z6&#c@SgT3TF#8(b>bVz4B2^X&C)`X-OgudJU~#vJ^b*b2E8$G|qp}*xD_(^Rv|ilv z!l0P2T!y4*Q(aOVLvWSRhXplxWWd2$0}>Rp%oMqBqLk7I$jMzK(n4sAd}LO zFb{+Rsw{>NK(PVPW64Z^s>jqxPHyn=e(@0|K))yKIUMGnl7viDTAxLD6*w6%Qw=Q{HEgH85$0th}+h^LSUpH;*!ZTk|F=(Ep zNUcg+Q*h6oBsJjYZ45B2k@16kj)qamI-JN~pSXPk^HH(}}Hvw${*H50sz zb|O`jIMM)8N0i{7gb*4Y^N;4{J5WkhYtkblBR{PV`ArAJ0e?@Y3V~M)2e)Uyn$V1c!vcK~X*Amr{WP&E-AeZ&8BDFp(foU=sF_ zoa6p|cy_+e>vOsh{&*cVZyH9-Rf>@ed)jBqS@yVx!TDYY6Fp^q$E&E2C#w8bg_<2D z*uK{CXO<{TfV_z^^}+IUVNACWiMObZEt<-HA#xbbHU)(Y+w)Y>63!S^K1J&BT7MG1 zF*!BqtLce7Q!+`<9j7BFGb4=LY*X|z#u!i@S#0f*9&l(*=5YmZsWQ*_yQim2r>?Yn zF__dYW6)fu)yGprq!W?EC%_2Lb7Zx-JgUz)TIy^&F9Y@oJ^ON8kqYwjrARTqbgv-j zP%>zKt2XQ)-}+|)Z~>eEWe^-hpYVc^ux{0jCS+YQeP&OhGD31)O^YR35C2jG7P3*s zP~(Vmqm%2!9dDyJ#bBake0c)5v-rV`c>oazr`z)q?8yXFyFtVnswmy zJv+4!ZJ8kbS~Of8S7lD@F9me$*t%mp*ijo76h!;W3#ah$-VL3cn9m8rO@-?5yc*kY zqF}yzAqo?h&dtr8ot=SCkIjSqXgHkCPrMmCV(P?3$mhZQ_HA~J_pw;{%%C}WNSF1P zVuZQ@!%GzWds|qW83+>+`oXu-Kki&H!oQO@5Qemm3a!UotEYs*!orjdRlW=9I`~2T zQ#1zukui|8FwSgvcqg1AD@#fz7+|+&J%Cd-P*2}X@((?sOs>ePDMsH{&-o}njUBHX zndku{4!1keA{B)Gz+D3>KD6m2?ntA-q{yx5ti$~?f@q_3s+qtwB}h>-21bzzVx2nS z?LN1@)1g;aF=pyW+%lrR@%-}xlv5yuB=+?#k4;NHgOA+A(a%(Q&8meO-r=g>QO$UI;6{JOHg(3mn-?GP(bbL}weJ)T4dzBb=4^J801wzP+(W%}Gn*Z1dE z)rD`!v*6(12p(T#w+Pt;fJBMuPLDINT>eg>==(MO=i4w7#-0r6&>YMc92~B{!(?b# zpZQ?);mgPz9@QVD)ItG+FTZ2&3{vujzj3=4&vHC4omZYvy_)iVg+15KL!9JaKT>=? z|C^ws)couhBUp*a|O%x*gGl1{^C0{1p`f^Zh3|{RWo^F`=+%kCT zdfZ)|`ad9BM)&yQeSSfVyLXkX_zFSFOgAz_yXuvir>=Z<9mWo7VRoYY!ohC|ca3pX znY%T)eGF)mgp5f-p1&Ib9 zXUC)UVF4R?gV~hVr;WT(dXsSDJ*&OeHeVtu_?yKAA)%ZUK7A^rRJ!sBg{?hGdhXiV z1;V6h<29%Gy!>MID(Ahh!55W@x|2<^2q6+wf6VzI<}G^H5{@=z^0Fm2KO+f!VJ|Z^ zmgzqXj~pkOBIH8g!8ESh9&UO%gV&C)*9RI{wN~z~Bkt(axv115WDpH8`aOCC;e%(E@7C03CWx{Nk6T_3T&!Dd2)TalvBd5xAcZ%}M7Cn>d z>hBNNq9=x~LU)QYYm?=)v>MdC$73+`txX@JFP=a9?}>w{wk_kBK7ncpW$W#YTHZVo(zijdM_NFYZT-Yt@qc^DP-?!UPA z?vC!$-K?l*9e%Fel3Ah2zv$;Z_YuxFo@to>!>6x)QW^q}b0rmBwr>3Ef-u{8pu6cS zeg+lm7q0&v-TCf$eJ#OHxzYW2$|x@Rw(!7Vo)xe9rBfQ(j@4`2)Da9wDkuGs&$3#E zgyIj>Zq2s2vGK4vL}o_>`dWCavKSota^%B%Y9=I%!x~fRDiX8O0w;cs0@czy^%Bm* zNrSXJRZ6yPgGcL&rWve2#qoG%OSxXct|63#(_rR=q!nb^xt!3^AgHtW)0~)^zr6x`M$4N-c;Ad{}`DX^n(o+$zmHc z4=>GW#D0mbqf%5pTjG9Tx-j^j+}~_7SBV)XNS`X9x~KmYHcGeqx+h3Z#$TAfb{btX z>3ftH_G^@qX6uPMr#{_17j&wF>&?e&=fIn@*ZxOKaZIh{DY8U)3WtE4DRmbg87a*R zEN9OBdrB75^Hqq{kR|ypZUx=Oe4+#~PsnjvHhf5`gBnlb4bq&U5*)NtFZH+DYcG3c z#V1P%mmqDg2&2BmFIqLGI~U=od6&3{sLlZw#lvWgCj5|f?wf+%7$ zl>f0}5cEqvosieFvPZ`@)bwg&km~WA30eyI^mVH7e8jC}{O`6)Y{NuD5n&go(}=qA z;g?Cdeq()t1Fx3w457s7!Wzw*HyuWPWEgRZX`dV&Tq7kktk^k9|=jFYZQ#)%)agm!NvzygftB3 zy*_Vhr4vfV;c}3a_ox50Z&OoK!Ow9^bsH)lN*49K3bxjyA!b_aw&tVGa4V}v#|03B zTNi#-{bkCIct*sDL>ghk~VzAQ{L;wHTX)vRr=sMXHS(y5>s1WzjJerLibdh8xW>s_Y)9Zv()k&`i+%RH5qCb{nvT7(vVVs#_@q?Cv#ydS zPdiRS*>Bb;>u6_iae9B^&mY!|mi8i>QC_ig%oDgp|I+~ZN#om@ZxeyJ?K9O=Q<{OK z$&DDX-Nx6~*D@|2NfiQNiZn=4IKuhlwaeR?TA#f1kJ*m$7}{Iapp%{cBW&#wOkoMk)wgXCLod45t$<{(SsPE=3@YSy)Vu5=R>uaqiJJ z`X}k50>4^%GHqn2lV(YR;O!qKMn?0yD;%w|)r{|JUOVbst4^JU%#L&Nne0b{fn67; zX$C#Jh+1Uf;)lEtEX1RxtgCBWyJf=b;-Y_sHNc^5rX=n4gZ_6CeEyF$^{O=ki4-y%-$swXS95#dgQRZGlFla$ z*e6;J{ox}Q=jx9SqRHtixUc8kd56=}ZjO646PTzD-ICuqpB>B(dYG)o(d{%hx38HR zsbWLF1Rs5lGyHSyW)YywAcXVlqptYt&Kcq)S@T*;Zd;OWIVW+s$P7|gXb(NSj#X!2 z%vwfN6knfRPTjXmP>T{<3XA8x>&;AMWfN?xYDvLP{P#Wb8yE;?Q6ZDQKzR%v!Nsv9 z(g>Sa!MG|hQ9uKB+!AFKj_>YUpV@Oj6KZN|-s?!sewuh$Zkq~BzbK#DoJ3p3Sy zp1U&%1`iFEO5pi62>I%%-f5+!>^?P1&cnpuGO8F{P7*lmNy|T&%~acsjJRLy13s+$ zg-%^-uJV0Rwad=-sBCn8rbV>|C|Q?WhvQ_@ESSfy!dETXaiBy7?b?BKPlsa8Ecvpr zog!DSoN;sZBp2y?ep62!*Zx_Xo^b`K!fU$c&STG#9_ za0X>i{~MLX`fZAo2tn|{rAXg++!s9O1AB~)>0VI?pB(A;A&)iEMSL~)m6itN(=+Hq z59WhG+dg-sck$!8Oi@vR+O(&DI^lf~s;CS8s3kk+<7sbJFzk<>h_<%2L35QN0^USf z%uj$38L?d0+3+C8L`uGS0dGaazu=LzGsD4(Ad|>OWppryShwI)wRUE8qDe?F3+mo2 zr_~|9BjM}d=gr@~31|4pWO6Z!ulyFIk;cTyWniRyqGvpR{>-=;yQzfQxEJkYaa>&# zRZY?*vRKeQ(?UNcbSwsqj#qfbwDd|<)owhn0e7Y;+iK9W89FwzcQd<0fZXF0HjKC1 z)1u{!d!1=JvJZ$Qu87Sju&FAWq5|}n0&amFoAFx`WH}K>ExC(B2)c3ga zSUz4QueFy;s+D& zwKL1)MOMVcX`>IEwi$9SHw5BII~1cJ9dY>g8$IXBy*plzseYY9Bn0!CyjTb>`$!L*J>?SAfOe@6Xk7YHqeI^1-Box(cU>04rsz)nuuj%|vluU*9%Z zo0-{q7g7K`?8k9)QaI9*R^6S=cZWi!Q+qf9brl3Xmh6qH|Jon9b9PXKrF?DSu~6Pl zI_QNXU+T)H_w?AR$JTwHz$yAD@9+a1A&Oj`8XE>iKZrRyLP!M<6r=BFe*Qen@Z<5j zy{HrqXMETcG(8h-tS}0)c^}fPoD#e0B_0DpYD4L1xV{@@df0UD&IFBJ~## zo=_RZdj#K$q&jyk_T*~2S=3jrUXV+O@tw-DwN~SNPfKe7!W_`JVA=t3^F&BjWNq@x zF>KvO{cbD`vKIygR=0KE+Q&FE9)GLyx~5lZ!S!hrOV49@E{l{Bim+)Rq@#o)Ya7#l z-r@0`fmo*}RogD;4Z#t8OCwhFut+VL+KjO~Xf=GL^$)Rf=4m2YL&hhcd|uNDfrR?? z18j{GH6((WEvIO1N{G)PqoE87#Y7V28PqS)HJ}S)KVIkUK8tK?t7uH-J8)@({XE*6 z#_ONNDHof80cE)#Zd~2Y%H@u!6)ioaZ_s7Q$LfeMZy6 zWwgCWxK;ov0VM^+dV+!9i}3FE@$}c1ZIAQjHcUrXB`S>UbX0P0&l*>Ye-{2VGKnd` zXF-kq5=61$o%u4nn}K0C_Er*3$jY-(@fUK8cubu&$14OAn$Jcf(G}PzIoW(c11}ov zxkk4Ni{jS(Rxp#;lbZvLrb-z!N}b^j|Bn~o@em6esNygF1fc+p`Y^*_F-$-2ihxHG%vB=QIjCLL8 zOlN21m}hA6^ojP4Q|M{z%T}eU+ltw_=^gZsz1>#s}XsA}3-~D^0 zmN9$^+%FrinmkPR+=>P}my!9I3Q7wZD|BA-G3`cZ%Gx^`N?Bd&G3xZLhQVcHsPlve ze>6_`5hjy`8$Sn(4^U`to3`4U%P3@Im*EnjELJ&6tdxD5KF+6t49GeuON4C=?uCk1 z_K#fQBaQtWsRG6Ev1FcHQC~k9G{mTL zF&B!(j=nkdCn>p8q;7LcjuKLwYxdk9U}C_R3z3fH8BU+iFDu_Z^STEB1fW7kQ*)}$ zVG*oUE|ED??Vm#L`iJmyve*$GZ$YOyeRU;U_MLIV~1NG1-LDK zDJ!!-dv*@$oi7;zdMb+LMLJw3?3Z~Ndz32w0-p_T1z@bNukTKlEdoVLJ}-sYsI%4g z_DNK#EVF!x5M<=8Nig+r=7^oJ!DGw*vE85@jrBGEpJJ=(8lDJpMI7PfdJP5&n(q|q z@8L!;LI*bz)Um$=w_aRxk*Tr&6Zo%<PmdEcz|ZVLtwXk5;o)>> zHqh+*2@8{Xbv3GKK1#fK1RHxxM&>RyCb5%elqB%z=veShh}huvqkUT);sMuwQI_0u0VL zYiY>5^%4s!?7ee@S76tM^E=ni1%+y6IBan}R<;$jq@IZ**~{fE2Y)P>w?SrYIClG?#aWS(iY`q<0MpCz)a<1)bpNayfeb|8YZd9bPyj>E9C z*wz+>U;!K*I;vytK?uIF-q<`uDV`Zy8oHw?^3j z=W)RbX-diZ_#onhdCT)C+A;BclAEfPoj|`2)V}n9tX7ihf($kgl^s zNA-RgWjEutoLmq4y;=Wjo#Ri&R3}v|#xKnk&CK<0&Qwk`HIz>_e~K??-*opV@VnA} zSnCB{KZ5_U_;7c)#Vk$5aW zv$IWsBPBREn8fGkqZrxo6mgw*ul^~u*1m+99piP8x=Ma=i%t=Z3xB?9?rD8G@8VnT zgCB-I`1``!FEbUDwbTkn1T@?Ab&61*dt#C!Tp_xJ9TF2#s*J5&As&hQ*|rQBv2$<^ z@)vXj8nZr1m9+j@w!HHHq=|R69hN~DiBO5izktJ}&u7|;xw-BCaGC)UW{t6b>R)WU zK+=*wnrdoJ*Okny$}>5DzS_zC`>Oj_eT};&JvKgCmY4p~vJB`3ytLEeFP7e@@16rK z{hhBi-izpF7aGC0Z(WX-{&obVp#|PvW~9Vs(NHfvLmX|GE25z(jY1(}r!IGQ2$#U( zwNfrmc#~gfGkNfEMJ`GzmB<#dPa|9i{w9AUi{OsPQkXlks74JB7=4lh2)45*!i^Z{RgDwF_{Ir}0t36T zze;p46V?Isi`V`+I;wFwz05O6$li}966<9fMA%cHN*lSTW2&O0_7Y!{swOK#%AQR$ zLfKc&iH?y`83(giwLnbd5}6ezXq=^#4!UzXiJ22Tu(y{G*(5eq8b{bhvlfh=WEYX| zIJvr8A?T?5grIX18VKw+#yj^cejj9$Sl5BuK$$kqH2DM$5&ci{~gQj&G}6ME{#hg_l5p+$Q7=BeXCzfRl3A*-6A>( z=by<**S)D_7L(r9>Jl9b-Ns*TuSaNTX|;jg`1o)s7~3}{NtptR>3m!3FM+VZmiyEY z{$1N7A!gfHl%bd%pdRVMBqWs0VaBg|@m0pGya3}u!gX(r38!I`PT2;V=qDD>RqA4u zrYvVlaED=o-sY*8kG@9Jv&Y-RD#{{O%6{MHJbm_cBUZ8yQoQ@npGGvHPoLo7pa_}E z#J+E)th@E}Wz%uhUO55oOz{y&(#7g(U*KCOsG|L547hDRE`>5gj^rtjB*|U?2gz^} z8x=6Ok&~MMTrQcXf&Sx?cX`%h_BKKDs;=9*HHI9WrVd+IpCQ5tDK54S+st>_jhk9%=r(UPWi&4>ZEp@=f&-Y0 zpyTozSMg~{Ieu3^OfT(2?qZJaZL|3~ zIp|blog+plOgwPU+k0=ak5f9|Ic{@&_H}pr^`u(OfsOCkXYFvcJgx+F_00x-t|V8A z_1EaK4ACfrKT5|{we~kE`{_dk>#E7JI+#Amo7g>^pbC31mK{%ZG25Q3^@U)NAOsw? z-j+Hnw!XNeO3=Z@hXGaJIp!xDA2>)&qqLsGsYF}bX**`ORJ9uENo zWA_Y2OGr%BgAAJ5=ZuioDp6#{BaGD|z`>cOC`Y_@Lf2_G-z`yBNf_dXgxXI>Ut5QV z55V4$S+bXf!hZ76a&mI=s4qhmjjEtg$puCWk-X6-3r9FEll}g|T#&?*YQT@TQOlv1 z6t~`(TMq(5_d19M!D&7idj*}Sv#YCng=h5jIxb_XUhST>Oqflng~gf5Sr3V1o;<@l z-+3D2L%brHn2?w&muIMNDfa6|zn0Vb;gj`FDTC)u#GfzKQSFtzKXeZZdYZVH zCg8iqodQ}&-Rgr{vJdYVrJMZ43lP2SZ}jBM4F)n^yF|_#6)9;b7GN%sU=vM`C((V8 z$a??lpW?s9t_Sg>hk)EcHKgI>_zEn2#w zLv@I$%-K4!rKmxE5WA4eo~hUmAFd|NWIQ-^8Gs&yfNo#WQcM zq~FG`UlTMLoo*PNQx4tupGdEd7n#!BPW8p|$|kR^CMlWxrUw>GF8eP(f9{l_IRuS0 ziomp0q-^r{H+qw6PDp3c=O}G+9~e4?CYEPQ_)RDfVlH+oe>1s^=H+GJKQBlZz2Y05 zPAw{YPTq;%WFXz100n5irDGT#c|HEJO^Ap8dvneRjcRg}>Q{dtEfe#5v7da5!a@mV zbz1oa?!||*t&xRVE&(q~c%Uy#j6JSK?HaJFs=c~1An<_A3{o?>+iHP#sCeKsijaIS%Y$1AAq zG4%ShuM+Qk9f)7IHIoud27cMqE-TempiUQX+ta)U*eEtK!jzMz0PLALvvoZrd|xko9Evo{%vDS*kf_Oz#pTbW^i?aN%iYHjS3-p5AY^yH<4rfS1C_mkJTME2L>7ua9tGZ+>CK-IEtIG!g*iD zQ_ju$-2vw>A-~s{=cL_w#4HW;b|~Y}Yi7S@lCL?i!!e@eDl_vTG*k#PPNNJkt!_R; zgmQkZ(gm`!wGqWshdX!Ir@)FF79Kv^=Ko0G(5$4WSPty1LuvdDDr6&?#Y=woz1Wal zDsThMoJCmCyu1k)|4@0*$i;m?7ZnLtx9h4tSv`b}BBxixhEFgK^HLboNGY{{hld3- zl2?XqG$djVj~b(cS!Q?*52fm*iF!Uqn0CT8C-enrUs*+Gq}Sc5dOVC)TujRN-p&TJ z<=SfSkWczzDEX^J`_^pb0{llcK4Me^xQt;EK|dcG_cfTOMAw_8k`}M-c92R+MrJ)m zZIQ-gBqlbgVK9z^Yv5WS`NE~`EKV)2snyTdPF`LyLjc)%voYdkuF0hc|r#Qgxgm$|^Vm76OeE?%P7bOE~hjbo3&$299$ zZo;AYpQyCK!7#5NB*#yP!Nz!>u{@+bpUHCr)rQ(FWW;dnD$?&0td+2myi4{Za_(I7 z86;gi+x?^cOYvSx8ZQNF(t)squiKp8@f|}bHzn&_YD$K1&fm3%MCXhjoiM2E7OipUfC>S$Llkluwh3Ktk{GXVaM+>_QVW#e)p4q zwsa_UvT9!zfnOCpq|1;QEI~G%FKItUxO)6QfmU+uB9f?WIPE=g5C7#HpbT|w(oi}( zfBQb(Z`UnO#C?Z9KbXJFih=?hxzQsDrR^Vwt}b-C2UEJZ>^}Hz0IRN^!qfISH+Tv@ z{)v}~UGyI2XmwiYHRachzv8|ZaJL79FJ!1xGz>g!gN=UkNoJcMu@ZCTpNfj0B6M*9 zW9`#suCMc-kEsAJ@O`#)Z2m$l`wSpjq68UvJY(n*K!Kt>v7r8md7G7IU)T(}yX7M) zZMfEE-HdtFl^^2)p}VmnJOd?|8aBOEI8ywCaib; zCYoG-tbZGMlx+<)o^1A~abXBq%1un#XLEhACYOg8 zTQfDszT}RnK%NCgMbJ5<<|W_xV2~iA-00AvVPN>*pHE`Fd^wcP?|r<|y_xPkBni;d zzwP!QXS|56On>lpJt2cqj+GWW;?Pv5+2qeH?Fq+jWf0J-CxYERm@5-TO}|85;851h*ECnbUB2J(^jgipn>@1 zhx6VSz#0BDD6-rc{P56f9XHv7jpCYZq5{MeRaNa&Da!;(Ot+A+_8m+K+E@tc z(b!D&C0aB_zaluc5`o0VFEw|8q8y!Rvj=6J_U`_l8F{b<4}T zZZ@3PZSM7pif2Lt>-G!H4f*+&-C?ifB7kJ)xvd=F9Yi4Pd;7UTwa*?^&uY6)TH4$D z@`3Wra*xw0v9Fm&sMv~Q{b5Ow0yPr*wpKF!-Oc#`F#6O;I6Z3AXseV=P@kZbx_>36 zUz0eR&NTL0n{W1ZwLaXKH~%XZQJnrJHkdY!wkG#8Uy1Vf#pWcsm+YBq>Jg26Z<#x? zk^7rh^)=qo2U^r5`T94j>y1BkVpn|9;%cRJO=KT!2mPbGn!>N#w*I~eU+<`_3Iw^n z>$7yuKd?!Y3kqMnF7~EBefrei-VS1XVA&CRa_)GVPQC17o2_e$Nx20Cr{_%ys z?(7P(=7@`sT?krrgAignI+%-_6Mq&oNL?F=5m&;Oa2 zxcPWjb$93aL-A)%WR7z~PEL-2@A)`z>7yZZfn)^+E2fI<=NZe8$ab3!`-d`cyMKWy z&7iHf8AzX=!|B9=Go-HeX>Z^wW3=t$Bdc;X4-^EKIdu{e4D1(9bv|_$y3ArvkfNt# z#5yww)bd75RDZ#Qev$b%&6iH9%iR5f+BZW>=dRe=%h*E3g_dt(D*upPw^)fWO6n>m zj&d9ei(|Lw53C;*VtdNQ2MlAeZ4ry;T_bB-)a3du?PSAh4DEN*ntXC~#>|5kyI^4(8qKi1`u=RVy`%H8uvlPY1bDRGV)O zFBh6lt~b}5hB8H&QUxNe=Wr+90#n6$wwAnl_)C!q^q#djr$Y%P%6C zm6|?*q|GHI=6|&o{lNoY2KgLP*h+?lkK;08KX!$D`h;|I8Fl2b3nmF6X!3lup`k&! zzy&zS!RW%)eADGjjSb8XkT+NF)qII~-RKz^KZmfux`3PxhLk48#>6BgnY63Fq>>N+ ze`Zd6RL#L$0RuTuS;!@EGI+$(5iSn)3B_JF`TO79^XSUCf_8f#!{2^%8wuKUM-bN3 zlv9rfN}c-rhrDxfR04Iu8<>D>|NDWSydfro13pGRr(^W*=X(CW{u5c48PqA%c#OvpJ!$e zyCv*(nTG$^a-YMc$Yro!3!B5>R3TT$*xBua2@ns^pMqI2M(ygYno0fHI)@CIoR!54 zy3NyTQ_2Gz^Z;Nn1ZSpEqWua7rxu6}aw(h)2CZ|;j-Z@w26zL&1`K0y10-GQ2-3M| z0i_T=kYsp4W^3h;zb`f0e0;}~aJ!c&>Qzr8R+}IM(+GEW%oz)u+q|ZSqrK; z9U>HwrKIBdnNV08(`|a{>H7Oc_yB95DRGSA^JlC<6}t2%sdtLB$ni2eYhJ&PGsV>` zJo)s+$MqbrbnKZ?SIfn@BV*xUxDWpBe1Bk-*<{2xp~hLq=4U*{7%P;!y&Uhm63=A6 z3;AVS(d1WX@OXrbMW7Q06!eSjQ425_2bEin`~*1@Ek(!#6V9SN4LKBst6^Vz9 zjg5tcg_ASB+n65=V1caqp+Ge`F|pUU0*sTo17_~O$*ZWZYKJv1V{7xjI9~Pd z@9x~(oImdVHL?-=b^VGCC6cIUvHj;bPt@bpWg9>G5!8OP+yw~aFr|VnE(f;_Ut<5I z_9dp)BS4f2{bCzVgdSiu(T?~7Fb#>@bs&D2)KQGDx9jw!+1cNKH&^#@r${z|$h4H1 zcHH%_#oyTYIr<~_h$j7{6-TMA!2aDe$m17Yn`y6cnIt0d$5$L&C@_&wbA7TJ%2nvA zY!U*5eZ5Y(UkVJj6^tn4{OmOy2U5s3%Z<{w>cS$cx}I`;hQ_z_IOnX!MpS6e&09$t zeY&`?kzJ8k@3JD8@S^3I05$6>G!O}PfUbF2mak--hT^AVR7*GWAJd;#@?Bdp8zhXz z?(k3xe}wFru5!ATZv3*{ZQ@8i1LJ_A%~vhYf>&w{W^vOlZgPhL$RkRw55)*qA>W+Y zqhL_WaUi*?tXIUu2Yk6BmTRWQrlzLyLoI@A?uQE$R5dyt@cG~s{~^=Cz`#IwWF!KZ zQd`#j_X;0hd;ethMdYei3o$TF!zJU2&LrQw)@DI9shWPwZg=%IWy5o!py=$CqK$n$ zRg^%@Gt;0MGPKUa^-U6Z3CMAq)`<9TCU?tXdw}mCT9jU3OXfWTenijrcT@`L*^^_s z26d4H*k{UKjiuRQn8ZUztxSJt1O*?Fg!g_b+o4O66u8J3|J*NYo15uvbjN5j=xjOh z^O8{R&Uv3^K6G}qmPx?*Wp$;0DD_46Z-Mg#?+BT`tEl6^z?)LdVu5PQLx{J{23ugoA;o&2zxK>J$w&twed)`;%+Fiuups z!LASPlZCd%MrqPQjFP|Bznme|O#ejtCZTEP_GZxr1|?cZUpM~Mi<$i6&xJcLgZLBV z^PIU;|8yQ&vE#oRR?hA<7HQ@qooR5<)>5%%x3a`W&cJ#G(bGlAn-E0Q5dGx;w5>|Z zai6U0liW4`f4l%>(T)wRZV@#Yc&!*q~ zHzz$kMA|F3R*^{YpE1endOZQCH+JT`^tB$@2Ya)ZyI)^J?HFi8HO>}Oe=}7gN!pG^ zBzNxa%HN2JAYuqK*(T-wAT@0dFe2b&KS=_L&$5>_8~**uYFbm%uF3niO^xoLhHY8& z7xbH950`LuI^SsqbfIFwzoE1$bVAaUV08SmITHVRwf7}Y<{%mx8XyIjV~RNt9%5iJ z#PZi!3{RU4oJ10vNxuc>{A=G$-_S5`x+-nJ=9jCA_-%K$rxz#Go&)3}z)^ha>Oey` z=ZA?)PcGC}lgLt8S#9JxM?^+QQ`6R;=Xmq7iyBf?_0ysL_T`i7N_lgq%bP{#3lVUp zKdS6=Gxo4=tE1`+@ixkxQdLw1mbmp5ox<)kV1Wv6Z?wo~KF6V1bzWy^$CsB5ldpfWK>dObp%u~!hO9}z0+cN1@8{}z z-u@8|440xpE@3d+@oQ{TJ@}gQk4-9aoDHq&rWkvNyQxivNsHurB za3sl=E~<)=jpSwcp+Mc;-DUipo;L7SU%|9Eqh|Tiy!)c>PC*_ucK`Z70-%|zz0R$( zMy?(o79U5qU5Yfy?Dqv~`BFL*ovvBmzeU-a7%Uu*0dNOo{K(-n-nMc@Y%DgfOM46N zO+4vUr*+qt=TD^4!D5EPd{o7v`&7TV`2>DbQCXt%rPlQp1B3xI+|jFbzYrG)L# z;E@p^rng-^SVq`vY{j%aGCu5vms>rm|A~LjHLIACfz`mtCD%jxFe-|F-EfN%K3}-%}&irzFh2 z;VFFBvC?=ZUZ>ZVHttU!(lxTncDS%L@#eF59>;YEg};@dQzZGmjKpN#+MD$Ln_ApQ zpWfz<;S^cQ$x-1Tg!xwA*%G-9R*ASfph-Vb4thp3f{7vxraC4_SbN_8@pchR!?xZYG=Tw9d@z+f>(F)&Mi1?$ zE7yVJ{O+LX@ToPKA+q)4n4VsI`_||2Y!qA}K~^J?!Fw&|mkmtwJv|X9-8l+^{7tr6 zpvMzPreM${4Qs4}OTxt-v*~-ulQ4VTjhivu>e~<8B~e5K&E|5T1wDQKoQjCoyy%vx zYrZQaeE0t$>MWzOin=X)=u{BtkdPMX?gr`Z?h+7?ElGf56egvYbx8=p~LewEyKe7JLVc9xQ+ELn*` zzw(nl>;0)hlEgh$Z^i35h+mM<-db_Cqpv7?lAGr{IOtJqZR;|GsIZ;dG|1<{<*;Pq zdTv^S4-XsZ{F*o6by*V0O%Q=+U~-d+npWQiXPI$y0LOk~S~~5u!Z6NC_^0o;>?;@` ztbH>V18M0cr#Q7zr|xq@>)AMguL_BCo#P-+R}>Gsncl0N)RsKlpQc+HK+gzVhqTls3|H z?EA}<%B+rh48hUGl{YbFDjf)%FNeNLv&#Y8zHaeblS6I#E?j1tV42Ld}!C zslwITm8ND*LxYkQLqmN-1N*!@a7u@)>Vvz3+@aWeW1E_)3h4;XM|ot#disi#|jMD!0_5hZwQ1s*z9C_H3iW1|6J3y!P8 z;1B{|ZAxnD8ds#Jn0?*a=TSsb8deyGOJ4i=s_eJ}7YqE*?!Z6~c-Z+|E0YNcXdRtW zQ+M5^!$S{ikKbc~hk8bLW~TJ2hJ?;^2Eu2iuZ?xGQM4K@dKv2Isl7tADA&xBv2L@!NrMW%N zcaMQgd%Sovz|>lGO+;$mKZ*uwFL3Is=`|(#tP1bo8KUnm)b8JYv`hiAQo!9sIDwFX zp++|bT48HT-R_7`v%re|xen{g+PVGoTP=9`^?tJnRn;fYjc2U4nXF0cb#=pRmae*0 zd8hqxC&yCEH_(ci<;cNg-^hqV``L(;L6g-&&5?ygj(5-V4~KzrZ}Ef19i|F=3pJJw z0+&kU6fOVUygJjC`btdqHEev5v|7d~e`YOscuh{ouZ5pu%D5Ww>fp+%#$UkGqtahYr9C+qP&NA&yPR7Y!YIAdUY-h< zVbn#14m5IGo>-*l->dzat;q%-Ky^R%Y@Vl38<4+&5YPX;g-n`gN zIRaJ?n9H1jD|pN42H3=aW9aTb9=+G9!NcH~1=ZQV^4fV@Za{Els5vzEu9qPI4n$MH zR0_l@k=;F)8o&nu`S+WlW@qsqmz*l+f&nc1%*48Cu5T*K2DoX%6;t=QeHspmhbt}N z{A*A16j)wTgAdf*_RQjR(zx6a4%YLnwy0_O{rbA2zb<45V+WgO!8~1Rn4S_d_IHv_ z7lbXprwaL5o$u-|H9CZU<*#-x-*~EYTV7NCZcF56S#xDD?iCoVB=$2w>;?Rx3O3G` zQD!(2<_qpWBpAu!!jWOS%ICBs2;yO6%`Zi_EyZ<$<9WToi#dr zI2vqWJ3Ib%$bTm|;=B^Ck&omfKZMcj^)#A0!c|`0DxVrwoqsR;Le#$XFOJ3{3 zE)tFOF*Wk)UwGL3--?zKWzpApA-!bvKg;XemdscpYR0~*At9h`j)#O;Sywi6M>gaa zl+Vi%>Ss&NXlbivjImdfta>XX2zbo7)Pk48UlN5adGh_$8TV$XN02CsamQz1T5;(PBL0>M`M-;$CK2*&QstQFl!_{8b|3S22?=jG@OH_3{2}pUskiP`*Q!>B6ZZyMV{dekRYWxhH6$R#Cv&V!qzF-q0s# z{s`DAQAs&aAxut_u8gTdrXqu*J)PtVR;e^JsgFA#epNc-*XVOcU0x@d83MohHvhcS z&=-Y(efPFIB9e-6)r>vQAvrqpfP z(wi%z=I`apz2m9pAJhmXqS8X`)3H#frgRFQ-m0n5>oZ0$?^b`srBRF3wyjRiN0${f z!RYx$A3Ln@Zco|eiuda~e3z2GqDrlEdimFozsOEl&>95cihU-FZwNjm(>7Z`qf55s zxIhs$*wk9~Cqpjxx>x*ce5K8d9Pmaq2D3hR$hA1KLEk0&XSDdQDy$8%SgRHL1~yBU zq=5_Li+TAv8nbJEn!O*`iFY_;v3=*jc;VEedrt05yd5P``cKz?D- zP*70J7raJ9W%`zBQ|?9Y&<~7zfEjCfxYX^*0d8FYJmAO`ECQ|A zP!e0u_ILOBCXcg^pE5=k>x+QYg zEi}>cb_OUR&}JY)MzlH~_toasI&D|HUq<;l+6<@rflP{wE|w(-Z6iHr(5~p39bF~% zqiqIoH!y|!aJ(u2tS6uzKJva89F)69qmS$}O9sz@ibnC9Yy#uI2WQv9Bu)Y{d z#CD@25+oeZH{+n!nPAD@KwbVlY4SBAHGTbiQ6BOVrhq9;4Ll=SqspJg?S0^{`+1-k z^#nU%%78L{FbAEj{T5LodcHi{WWlR|CoQ!=(~dhLxnFH?^{+hJwd9Po%?n*+u_c^N z89~7OoAj}2Uiw2i7u)7)FWcHxP*j+YQ~tB4;zv)GN_?4zh`7C z0BWbQGWCL?pr8O~a@tLPe%7{?XkSva)`nBvye=n4lANF9|19d#kTMGcbKGMeO|Iaz za1hy?)6MVBFEJ~=;ZadEv3-rMM^1}tfR6Nrmi~0y{_{6!We^=a-bsgn5@t%H@HzVH zeMm4Wot&JAgTDiFarY169>`b)3(BadI0Z6H$Xt`{`R+U#9t2h4QfUz1kjqP@YG&Q}MW>2G}C-+j0;_Y~*)$cONLIYeW9P3-rhR%J9dM{mAfe8moDjX_QL- z;P7w_-`qFa<}f@LbjAc*R$c?9rEPjaVa21jFHskF0`-hoxg)AM$nAeQvY-cKR1_?} zLdk!wZhoRy=l)uHUbi?O?@yq#nn2XS80ITTIGZJKYnk1BkG)1_f^2oki`rZMaS9#W^q<4p~%+{q7O@+Q=&c8_lrok6710m`tPFnlf2HtHvcSBfbvOkeigauV(!fjr=sxML z%V&V@#N*JxeCX5*xPJPVMcS3!<{gZ4e*pWfp18vO@A{6as+)(p%)NW}R}diJXo+0MPlv9?_9`Ye3%Lv$rgCOY>0?m}rR!yZ5HvNV(`7FYd_^81ZoBNRVy5I@-crQ& zY82l5DOY7xc3|4DR%`jK)0cot;e$ zC-PXAe#rv;#vkenHQPG(2~swSR>Xa~-=M&~F!}`x1VS zzq~Ehy`P<}@zHfH;0dowo&Vn&;Ah;{F2I|;zd zU@7hmhvkS04{^MvdA5DHI7RvVIr=xLQVd+xf{8*92JZjNO^G#UZ=O6TiP)^3HeknT zU8O@mRhu0$Wih>{?%}~f98V0OA~FR9g(|9WtG|BlP{zlrf0Mq|MTihhlS0Eraw=EL zc7B?SNckN&4$r(PS(w}tV_4@dr_E$M`rz5~3WtoAOy5X<46)T^ZybEdJ%^GxC`OuJ z!NdEhk55d@6zk&Q-~e<|a!d@1*X1D?GpXRo1Ei*abj<&q;XC!L@yRFHEVN588ivLC3bA zO5%|Oo#9{*-c`d8_**VbugS0V?7HEN=CIH88n)Ywd_p`6K!9JNxM;a;-kIHmy z>7cdzz+1eTl42e&T%oBO^+NDuU21~7ELR0yh-Et!akhSbbOeTjvDEuzI=ECfQOfJf z_xdnaHFHiZ{vuEZbXgmdj}Kr=-f7rR@<4sjEX6tFCjWOUQQevEZDHuublI3rS`71@gpnq7d%A4|{k*m8u@oN;Q$;vVTiYO3hfwTtTaqh0Jm!U6d zsO1t@cVnC}f|Lh_eX${?+{l2?O`QC3(X%R7B7qg&KUBBKHO49j-G>Jo2 z)!?`(y?>2cissv-T8!!_E(;hBjtH6}Ah2|;e{X#fc)zFOx2@sU$72J_@%D{+6n+aU z%+B!AIZGCYoQlq9F8%uays-+8(e2?!AkF;<2AU2uZ1NsSal|pRE)*!Syk7I6UG$HDo z{`|>zmTIqb#3Cm!P7; z#!3;1ee>Oh@eMqPOyP9u;X8OrVOIXmp=rnF9Wtd8O6`7fok-={4&24nZMK&Yo?mUG zg#IN+K#dI;lOVUV^TYnhmSOlM<~7`7ZI4AIjeN42lF}&PXAK7HVEqxm&0c z3n^r&ycBRN=3AAJ%qi7cnH9uVg9 zy0qJg%&h^e-_=yNW$hzv0p#4n-WU9Ud$3zjFbveE^}ib;dwX#44E4z|Ypiv^2}RDw z2j*qr2h*ufyRW@-s}$1-5*QI=<~&CCr>1s>*LWqzUQ$yICBBHB5H$0~4P@Pet(@ES zgWw^|KffYvc1^z=?5UBWAknLLT@WXHU##xpPb4BTsoj4z6o*4k&a`~BdnZh5!=k%y zN+D)lh0L0-UQQU-u^*Rc!VFv-&k{a5_=@@#wNIK=6TDCx$#6#SPEuGgs*5J7i3+FgVGBS5!<|Mg)&WL?&7XmlGo8KOljx&sY zuo*ST8yg6J{}$lhq-RvIhYT$@e6$7U2{;i>mYYH0(gOm2ed!oi0$!J&gM)90a~z6m z4l$*PANO(}a2eS-*$)YXmUk(eKG*te@m}b1Y;R5)G~wfBocR7IE1NkzB`h(_Wls90 z##O8s1+PYrBk`j4+1m5rv>`uF8NPz1KC>`&se$WrGV~Z)v&fOZtf7Mgrw}}#&PwOH zHEB@u?G!{Ov}M$eV1HHEkfoCMws%n6dSekjZN`f1UYx~-D`rxwOE%eU+y_C#HFB0# zWm?tj`wz%iok~O|;?Z7H(tyPI{BIffk~Ot8P(l>2B(SisNQ|(YlboKMzOXUUBgEW} z`^{I_H#dWmlM8?Uf+=)FLmgV^R7I0*E+xwf|F(Gfw)_9y3i!_KDUL|$Yt@%La` z%x?)J!RmO9vd89-W?D|O?%>xMh&A|52C1r?*-KcOUB@wFN$nM@O8%tD6zlG?P8Aux zy#@za$g^N$ti4B)9utm&g_Bl8tUsQxLc)g@_@}OTrlSbe7v^IzzNy7; z@q=Ufj@Y~rpjphoXDsD&=!#=eV?c2I+VkOMU9>cN<%RF!h;g4wFk(dJptT@2uGpZ3 z>|X(|C(XW{vtKH7joE%*Q=ehuGnJJ{f8sg#z_a0_ob2zv%JdGzpPXB-MQ13`bLg13 zI5~LaD&~Wj$;r(-gNuraKwM%jiX;VqP}hHl$HvC$2WKKzJSADm_})DOlk{+}wd)V| zUlz-L3wQ}u``pdpykW5UIC=fIQ|PA4T=;Oa@86JvC`%%e6j;|GvJdlBhq&#O#-gH* zmhpZ9VQtKd)M&xAmN4jI^4k_E`mfi&V6T+JLWFS$ndDgYlgecsW$t++1mBmLb|mBE zI*JPlKVIjl(%JD&U2qMVmFzfeQdgov{xI0EWdp73s6Dag&m#?Fw>=|?T@Voxw!D1C zK27D|y&Hs0`#KPsU()>E?Ip7*uh?sXZRXuq<`H^!q}&VyEo7Ux^g$OJ@mR52w~JJJ zj|@Ss2um}lol;QOP9u}>YZrfHZ4ny_MGc2(F%e-|Fa8ugl9jXG(V@#MRRH`yxW5?|OuqYR_Ln5PO3SRw$xa83|hm0t>`V z)k@Y&cl$SZIS&;rUX^yREAdWWIb_MCnh>*b%EZ=)`8py3g2fCK$3Ovn0Xyw+Fhb*p zm$pjS*?F~8#PH?T7xEBzWXJ)`=&xh*(Rno;luYoa^NN^t>mUdZ)+KuYk23@&6M%)rCn0GDQXCKf%C(k%?h`-H;byeRgZu#ky9uz8#dO?e z?gHOs&a$}{$@Vk`=G=Sx+A+vwp6i!ooCF{o3EXUSev9jD?X5$BgfS~|SVr@(aaEg@i zcoxi{aq%w_Q_r4L^T=rOg0HLMEobw{ZjZ^-hdGiL-G?GmDKsmXS z?k5QPmFMunIKTry2kt&;AV8m>kSYR@?O0J&whm$30rTKKKkw?NsZp(8DqQPp&*9ru zl&fg0#d#wD`pJVhNpGM2ieVK21{0eS0rJ(m2aPluIo392s-`mH#lLee2@kkOrv!w=SQeR{!1aPNC3N`A{uQ!CAcmS%T`*h3r zwdB{QOWm}UWZJSF+)CvX&cCGc#%W(LzI3iRQ(Yhx# z!gjJ;syxgKVj4vbA}5YdiS(&wM-;Kw)KFLIb>XwYxx*?F{Zyj9JnBG(yj`)C?&q{s zEa3wWD^iOU`ds*Yoa&8mto->AKOy-_bjSs?>1-4hl{Vd6^pcD!0rd# zT31-bUNhEM?M^fJ!Iplr@o#-;M{^5?KJ*D)`YqnRy+*ArQ>LaJ5x$zMM))=rw6C+d zRg}XLj5FKcg$Q7jU*jr^D}NTXcAH3IGs8Mckw>7eye*c1(_)DKDfSHY69VjLU~PM+ zz6$)3YqcSL+#@gpr?TL{!UjC=j0kaDHv94!p8vL;oDJV+X9(_WyWS_BE=Kz9ygoYC znb02uF)7E91`=BN+)A_#OS@Zj!DUJWKKEoN=Txr3ku-_-oJ_KO!%FpwAZxpFeJU$& zov)pp$(+Oj`Wc1PdF?GkKV@l3tl&AHC^TXcD`Zr(y{RG_Ow@awoKtJkU}M+7{7+1* zXS3kyDOJnY!q!kOag9Iw5I&dnA{=(K?{~&ot&hh{aH2(X%Hjp@*eBY6<76DN=4B52 zOM~)j@Ya2HTXu(qeKJNu;!}};{Krx_1@3u(bOi)GOYP!%05{*{GBwqFIPoKYxJ5XG z#n*7!jou$l&G-Z-hKPX()m3$!QBVxh<4l|oA_r^TclF1?q`VR#8?~lo7?~qNciB|M z4(_|SAjAso+PFpT^3eO>AYx$4$NC}kdk>~j2n=ZiD6V3)&rrsPHw zEVMMSUG6o29Tk52N4%l_*djVaagAgN$bZ+ZPoL?FIbaT;&e1;qm1Y@5N;2 z=l9wBFDlHJ_ar>)@EidvTrMMvewa( zCsM5OV3T{%w71j64tQWOO-Pp2~Ohpys|vURfx0`fRL6_ zJ)_vx$nznHZ(0yLUL>tDjV4 zq%hH7CbFPuCw)lULg~fFREaa-rb5B8un+86kTxK>}0a-P!!e);s(5C?QbB zI4mk{?u-ofW%BGrTg%9z{eb^cVqtdfcOrlsT%0Y1ba9vj-|1H~8^dX4`BZPzK2faC zhy0418C?vM%^&&|fy$OT?B(A`_nC;uixm6iOXJD?EUkx{4;W7o0lS(4 z*xb-fNLx!Swfav1f9tP0!#zAr1Q@tfJfheF3F{xgO~0 zBYRmG7!D^Ch5k7^c+DB%;g{gxtyk7BO%Z~Pr6P&@KW2$iM7JteJOX zMwu3MP)GT@4X0-p7jpU7Zoi_>_o+g{opD9)otK+FfT_C>E)^9|y3FLfO-r-hz#xCM z84Be85^LP{^6+{m9q;NeBWZHOUyhnBiHUg^=9&b8zH3afSdD=??2k>IIBZ6$p#(a0 z+*rshx<97@Df@fdPJmnt!o(hZe+DMUp<>o$YkY1aL=q>i*!j;xc z{@|;1>-e0W=DvQ~Lz;a|v9z5<@t@Y)#)h%T;K9e~bSU!Hf&V#xabQ1Nbql^+inG~w z;G~mn#*@mX)zNo*SzZ=l;nr6?EsSYaoy5@)oPtoV!y(@l<<{4Qa`S;xm(RCcKU&sw z5I5?JSAFyR5$>-By-a%L0>Zcg$q0p^pFu?EIrH7#izjl~h1PZ|D(}Xa4+$Uc&jN*b z`PY!(JMLCVuY2y)FOQdO%e9D8fUamOBNHY~Nyz7FXCChU08}Bbi+vny>?*41dUI4eFPmV%4_ds!pMz;{-^u?D z<JiAZ^&Uf&6PKPQi5!X2`C0JLwCrDtvk|jb-{rFAlc)`Z}jePih@A-(_M_Q+xL7 zf+MIFgCtC-q|pUMBDzN3sDFChl6yy^M9%l&qmUtTdmyuuRjI7z{0jr|pj=NRYX*{{k%v$_fJraAZ$y9{ zPor^z! zcL&@QzV7bVfXWF%H_qTkfxtG1=1i-eXEV^YWt0Bse@Wx$_wj@lEEBrBJvcS(2|z^u z*OvuMO#IzNlG4;a;=FB7FSvfVB9)BnQo@GXP*Jh2_P2i7T$ z!C{{ej_kP2^u87+l*WoZ{&&tFfnlM^dCwrx0gL`WUbLzGZyA*0H5Q9XnoVm6^%1$~ zY#;eO_FO-G>O{Tt)uGnc(lwm?Ywb~&zF>!l+gaV-Yo#$pt3oX%p6k(%BFaur6dXWj z7Ug4r3IAlfWt}~CK_vuF1|h&J?)ZUI4Vdz?Kj_$jjYRigWRCcp7(7$(fW7y|sh~D+ zZv)zdR0QE~lk)A6bbt*If=z!TY*PLYlLY2%AOiqFlvGp^06Dav5806PL1T zeetcE6+f37HW1$Po)HlXm~(?^Tid295t4x5u1kZ3eA3yg!lAEO8oWo3ME2!YJl<%~ z=urSGq?9QBJpOn6j~*Ki4)*w;)C2a*DlvT|)-_H!E#=4(@aQ^k;%s;$a)AU@R&dJ7 z7xq~~<+W(69AJ^Ce<}#=-1y8+FN?59Yq%4PEw7Xp#hm|8clL=3e~=+K>e#2aCHP(V zAHiVBt*MzAw@-`|@ZQvA-szoZD4(^|<>m0nBL-1KZoS-hfatDk>^a z&l2O~If0+7Bu$ehAZr(_G-73A1AbsU0)nKNn7`nLzTWfp2Iql((|RD{^F=`yS`&8a zrt9_5C?QuOu^(W3*|X6>!iUJHOZ`qhwaRv;9nY}KP2qYk7g){m!^8g$<^A2ry+0j5 zlq{_HdXU0pxYER9etB4K=yzluT&|iE5*v%d<*+Uw3#Zc`thd`}BvQ(?oX7ovg71y2 zz78R;U1CBO1uP^C7RmL-@CuGFHJ@aPZ2`7uIoL2N^JB3(qVH8;%}>yIHegLaxWm!g9TcKVM~WP0f8DqKVL934HarXP?E+H z!%FQQ8G3^ic0_*K6}i=+2L^xqC57l!3M<0DuBT5veKPdRB(P)VA6U9is29$TL5d1-u|t(O!elWi*Qzr)14qj;$i{3raM;l9?d=^*7Xzx84A7-|dlSKr0FcY4 z0);jJz6592zb!uCw7b1JX$8?H(0ZpWrkP{d+OD}9n3?H^XN^yNMQ@O1cbsEQ5M##v z7@G7I%yIlb;~9jETTN0?-6!JHC%ieCIXOJt8j_G`2VUg6Yg5)#LHD8LGtkVQ8|=Ja z;|ZBtU}>N5Yfzu+40GiYs1t^r7W#V1A#S^1_jwzcFFz zr@ks=4`Z{_W-7!=1alVe#XETmoY2h#KANDx@jVv|9%%gFZSEuOhvkhZ=BgnJH^BnS zFuPG^QdzxW+PHo&2m(9UNO+un0uL?(eG*>H+jeO}5nP`J**-IK^JV~kZ`m`$g8or#ut z6664-5qU+s_%go}hU8b%Vd#hD~z{S8Zl#ng|;*Dp&TQQb89Pg#0Z&hE9q8itgA`BTuEyQVpWTQqx`0 zGtk!l_g8&SalhBhIw$&}I&VJ=HGa4l#s;h?BLD@Bp57t|@_AO@CrL?2ELndLZ1K8c zTpn28fK$kwkdUbE5AN>j;^s?OGx?Z|%;pe_M zUG}E6B`-}_y5xtpycPK3iT4S^wdEKi`oqv=yP1pX4te8bdYHeC#74jS-dm;-cR_v% zkN$Qt55~lDJip|EQmy}CJ=a2>U_uinI{k*}NA(*8?}tv?$0$EXGSXw}PnIBTK>QpK z#X3E9KtZ?yYMUQFet=~7TiqHtpwC^S`%6X;Rs)zK_|~qfkn*P5gI$K;v_EOee~IbB z1DtADp_JU*+_lwn+{@z0DJdz*``KqTch2An2TlS2!$b+{0CE->DzC)dRA6)-UW&0< zU>`4{K*$9A*K;er+0|o0=tL|Oc3sH#ATi0Z6V8O~;Q>L3a`yd0Z+RTaEKbc5#PCi2 ze&*~yZP?$he51i_1`@Q@c#N~?!8N#7L}~@CR|j|sncxFMEY;o^v8CCil#G<^t=8cmj#5TCWH9eaV>EkOopty9gc)Y+ zS}C!!d~w>qd-QJ-v8!HJs>lIZ6e`lpa{~<$R*n>5OKSN(?%&7r_=!wxY*E&QE%UOY zAM{K2v4D}lBJYS>3`o)-RZrs3qQziuW0R#s3$~Z~0!Rml;DB7X1>o6vBMJkf?kiA0 zTUl8-IkAR{H+Y;`0J$*T?{RJ|K?EE|dms@E_6!O>oKFCtNF&LgU7Jr7$Q8iZ3mz+Y z>$`vde!tvw0}9ZK397%-7(&=JKU-~w(_7C={hmE-zPu7+IqYik;CZ?MW>czI0zyJ1 zcx7Ddd$7>*00DubG+ZvYp&^i|SLBe>|1V}8vNnKUwCGp|RqHyTmTk$oT z+ffHd;reH0w%_D~vbhOK7|f#oGo1_ey)R#gJNK`1#Dou{krc;XL3gA;hm;nS@QISb zR;1o@R{qwBpJob^ywJaf6;Vo`Y)8y)sHpfRxxu#a@nL*mw#4>9M*mvf(q?9`5wwpGGewi9Aw0Tz#m!r5gR$+9c9Iso%J;KrJT%| zwUHh(rU(OiFn$2PFOtzH0)W=yDT@b|lk@5j;t0&g+?$Xs_9yGEkqiFVP)lx@*P#zO zeEszCUIj2RVxw+>p%##{jOFCyzKpDFY$X&b zrVl@z_`yIgOuNy+H8vrg`Gq5Gl_u@aq*h5`Nw?B>qF0Pxquit)S1FtRz`l6krw{pU zlKRLQvF(71e%UG3VxUY+GEM(;wM+s;WhGujl#Jc2>G-I6Xvg{!Jrk}{65jgo-ZML^ z{FT*5P{Y-td+=blloidx znbQ3p`fTEgUg;IOwg@BOUAY4lK{tQB#$iIB5dSuu{~CkWqew8ozCG7olaH^N54-Mf zcv86FAQNguUz@v2RnRD!nE|Prlr`xvJ4(Ne&{`&0Mk22<+cGvK&HZ-R1#QZ>K0KMvL4=EQO zPQI)R1bzGdz2$7@$}VQjaUjK^g~#=97Ef30Wh3VAV%-aXMqFPP4Tc}Y3jpd7u5|OF zNIrJ(*iU2DMLbyBkMbPVlDKD&rG?V?6j;IHpJ5?S`V?FGHxUNJlvZjb8k#-EOHn&T zoXyipvE!Awxo=cxt1vwB>SBoQZ6nZ#KgdslN$S_+tUFiuUp&&mZn~GUVrJI?;2g7ykc5h*dJ)@v~#uGV*!pXv?Uc4{G8}=ekdjE-aA;lx{#kHN=mzlx4ufTbc0`f0%9}EmJo#lbafjvU zvXtm_jP-j|5JjvN`+PG#g2a1XF?kbF^zglGfmZ=WxTP!eA z^>bO?J6sFeP?0O{9if@nd(I=C?h@0SlU8ZW`^)P8 z%WLmVm@pCJ^s%|+9mTn_O6OKxiM>uy@Zvpx{-`51$XoRDCnYWIZswGT7^XkzbzpD0nl%y`EEz0p)aLd!fMYF?XFP|P2_s^B z8D#m*#6v>?F%1%f2|+MA9ZY)NC_f|WXuH%K-5#iqSU0WV75!>=n9QOwvt`*MDzoLW z{Fy%(I#{zarpy&E-}J_WQ_jj;awo|41W5{{%G3TyUCdNYw0TdG?!}~R&RlSes~LX% zm$4JGOOCoee(9Ql5g3i+N~o#ULtW$N>*~AmD>ai`2qNa&&y4WtSNlDPxg3zuJIiAp zYz|InleI86|JFnrhe#IyiQa8vJVtW|-B&sdABIKD=MS%qn~Q=;1ZcC{!IT25P0`T6 z4Im=`v`0?6XlcrS=I(uu`th?V&A;pGYtZ@843p3Au#&VfpDY?V{0i5%VwA8D@cpp- z3B=Gt{MmA$aep?l5%o^3;PmqSPokey^9V@_7^FPo<$d8_y|Fv%gkeNRlNECk2aC~} zr~=%{nF@|DY&H@HOWrVR6e{OB6j(QzROZjht#DcMrpo8CCQnrZkCuqG!PsHV#{nZ7 zGZy`n?w|m&!l4KxKB&!1S>$`g=4Nl%s(9t^RcAtjHi5Y8>_if+@738FvGsi>>biC| z^^>}4Bn(k_A?&V`&FX=_bK;OvvO83FU2399t2P>cfYN_guk*S_q%(a1oCRb4ECiO!o8JZbR)PB+MZ$)>sbJrNDNi!@Pesr~S0Ak>Z^pn2>20jap#jyfymx4PzqA+si!(@;3vLMc%)4zK9O{T`R`@4Ey$yrc9!qU$Q zii^!g7uLAf&{L??*fm3g$eBaUYS{1So+emdetf6?EQtZB&8!*+L*`&l;4>=Pu}H3Z zd>mb#+H(|F>?dPMRaKi4#}ZXKtnfa*3$NHY6~V`(-ao_a(Vrk}e{6hZIC0@W(Z<%f#<=D0Pzp_`PzzF#G zc0gUDFpY*aC{%QAkb8&44An-A0ozIH7R4yh<#j23aKE*hVBB~lZNG`S=HyVvGniwPs4w@3MG#BR;wt&aqAGspLo1Hf+F) zBA3T%d}^5Cl7J1cm+U9Rz~OZfS*?%z)`3(h=vs)ScQ z%i-b-mMVYU`E5>ahJ!Mna@07A7ee&*FACpxBYfq>D3RYC%)F)uuwm!wlJqPDD6=^)-$Bj7DT8i)WK0P2zD+2# z5>^~u7#{vrUw?l=Y3T}}rGlIx`0vY6r+_&T@C`M38o=bNM+p(j%TXa=q#0JzD_Kgu z*aX8K-R$gEMFm%DBxh>t`KnRl&ObeiAt541+QUga&K9k{M+ZaX?%a;`dhjeBo*Ma# zzm)&pzPjS#0=C!++NK{XMrvpE#q7VV)Ns>ZVv)w-lE!r#Pe_~jXu-4EbdlwAFAh+A z*2Bu=;#ASTc(|oT;V&(nRcaKaUPj4BO~0dGvVs`O%PqyF`7swqvR4JA?r+~5oVGqi2tE32%K^D~ zfsq-4LM6TSHv9G~E#D)G?T%)uDIkTv1?eudc#IDz2$l2byd*&~f5*^l=mxOI%$8TJ^0TgPv2WSR%kFkqs)L zP+0-Lig4kSJxGLQWI!U(fX$0e!dq2niS2$}4t6qixX(Nq<2~xt{Q;OMp51sf$m zlio4W3uFa7&Lu?P;6x7Y492)}?tqU%eShMOY@%^cpfsrP>$)a;{R7pnty%(?=i%+n zEUBY=I0jjyNbiIE7CSP$uw~&PEr#wNL|h0>y?`Z+veel<3$SN%oqqySbDgmmhrZP?DuTy})z_o4m<*c|oG} zVTwM#=x=eeXQ778Qho5;#+G!CFVhh4-(519ODfa9j_9 zL7St*wF(sG!^QqM!=TT0C>X8d%7HOJxVgW0lzKEtES|TJ2ZZ{fs*0+LoN1dF3Jt#@ zZaTH-M0_dpL{Or1`6?Re6z6N^zkeh?*4^&0shRyQ8Qasq75>{@fX1*b93B#f#~3B> z{!YbX%4|K$P=CcDshS;5haa42KE+{xS7M}+;>xKQf{=-rt(h+cu(HJQWepAUBhEEw z$nca1(*&xo|5Y&~gQo)Xn5%=30EW;>fGH_C7MR@bpK>71GLM*4EUEu@Zc z=%(~-Dv<`>M~>a8fPIpc?l3zk(%m%1^9p8E@9Jdc5WP3GRK*X(%#+#TrM%_B;@ zsV#PM6=0LJ+fflOiZaHPd19>@ipG>Dx<~{2z;Q(uYRKq%u6-% z{2wTQmPDN5TBxqB*7aScnFvtpJ>v#Gs@J~WeGVv5_&F-`q%iIj?A$d;b4Dy)vYI@m zwXfxZYYVyP3Oy-*!9sazo>8AS1F}+HWL~}J8pQ3q_~HFRX#NKC71yMZTKRpnWtCP$ z8g{6o+%|Q%{1+2OTOKX#k2pz(N3zHPla)#D3=r!u3BTu!asK6JZ|5^6>tSq=+&mKU5UOQWN!O}UwwgsQB`S)9vCUs z+uOQ-@!|!>yRr0)R9b9Qnzt>CP(VgJt{azDkz`DWqOCSXhiOLtK5UOam@3ta10N`T zlD5lLiI652A%~n~VPdDvgzdRGp$|d$d*kxAPW9|suNbhH4_z&fEP5@y_z~wdC&Z{# zBP6qhOs4rG0SmeNiS6zk^gSc=zuiXq)BO%8R6%sKP>nuLW($n7c7SXLy4MBW-F*~S z-kueotA)>>K`z5D{l}pdZaBzrv}&p`)XW+1f9Qx=+lPiDGqYX^+&0~nY~%~!F(~2T zZA38@>&`encz!7r9aR^Xknm|TuA16zgnq?lOw<|hb{8HTpL!I-V$;W^eII=p^~vSd zB6m>pO(J^c+&Z6nmjwz@+{};$PFR*&Lwq}H=GitG3Gvs{i9EBCiO^J@5 zybv>Xb@E%8N(lnIzA#jY_tG3DrIN~Azu&2L*XUk}P$JX4ZQY|H?jn!rtvk0RYyXu& zT7^v87TZCtVgxSG8(=O4L(z1H4+R}bqw8#h1O(dC4P@I)l1sm2xmvDa{fdf<_yI_2 zVt5%3?Gx#&d@>2~y^X#7O}Qy^5;2R#*GlB-Q`f>}>#btliWVQzKThx%r1g4_7Z_|7 zt*3Ai^t-dQ*BKcaTjP|8W@6{q6;b`Ky6itm%QJAQ>3O~^U$DZa?%SJDr^HSfx&=dV z>N7QZ0dm3oU3-y_za%LgnTm%^LWXeRQnz2fw5-@w`Gy1wc3d|1iJP$fW`tu#r-}s- zlB6oB?5ybD*zlEqgKt9SgOdf{`M^M&UH)Vi$N}~V@nV>va;Ty#fg>H%wc=l{lx>Nc zkx4#cxxY9MO#3_v^FNinbySpH)HghIh%g`_Nb1la-Q5h*9n#&1w3MWv)X?2s(nupB zAl)J*0@4lA@E-2x`PTa0KVKGW!MYgWnsc4A&pvzq;yGB&54~}ttipzYt(#ueh^KK9a$P3r*!EvPorf6HlQ#X(;U zH>?94E6$lEhl3g>_e@O?kbxmFU-^l}A89tZIkjg1&-bHUYe01lIUhc1(u`%c$z7xi zW4CD|O48EdtNC+57xw z(DM&xaDudK%jV=D7ESZMWpo~a5PnlsGcw1m3drWy z&_@7Ll~dn*4;06D0Hkxmt^pLlGl2@Lbz3hgDv~uookjNvW=4Z<(Tuu7lk`$&=ZTd| zF{Ah|)+CYDzExtApypd=f_xZ3qO$qXm-B?D zJ7lkRKP2`-V+S;~pB+RuK8?~(EW!;ma>}0GPUKA|3KEz9(9{@)3z2}Hb{Q4n`J*?v zDNuuSxz2WyE`2XcIT-XDhlYSE(?1{{0=T^IiW-h+kRTLxCKqt!-CLB!p`{oSZF2BH{6_Qbi_r`1Ss|7naWienc<-U z@75}(xZVlRJ72cGI}lJ7XR?xj_XcOGHrpa?a(u{hio2c_9;^_un;KoSNNf_L_M_H$ za~e!feR^@Eh>XL03L~zycW}dUMzVyf^@pJ8obN574FQ;vXb!4MqCGr2#1d z$Q4DT3}>zr;6ZHiS=Z#-Yt}@i*DzZI05inc!U&4x+dQu?KkKyIo&cR(o@|Ncf}&zw z*4pcoahOoYF=+k}d4h#wLR`Sj)OH@M0_@6To-Q3sZIL65nhUk)Li5LYz;qyf@4)+U zBnS1WRF~%@v3N1(UP%c>M!Ty@Hir}nN`8XK}|(C1JuD`VAu68bGyT@Tr* zz`S#ypis?V&S`3fYcu%ZAF+H zxz6yZ2}24MZuywmsh}@x*^5!xJTmfe590R&e>dFU*YUb z8u{x?Rtt1;#|ySo`N#HDDf#5*Doi-_dl`JBxPt$VD~vi4R}}rCoRO7ES15X>$^*J4 z_=RP}64W?#C;Xgri|4oP6`X9KqDM}!cP$XmJt2-R?nUx5I4l3{^PF%s)XK>%a&=em zzRTN}XJ>!@yqMBBw@3~Ox^d;*g4OF+cKelP}!eh#}6pbsex8}(|AjZpr{HuL|m=D zf{9JI03&tnphZ&->qC6+i)Rpl@_|%EI^Jvl6_Mn@2Sx@2!o$Nen9LS{8GjT6j@)2z z-%^QzM)*iNjsyVEj{Ux<7X&CrUEP%Yp&7ddQEm6J%y7NJmSzvf+eGHC1qI#ZI>iAO zrdQ!qd6*MR`&Sni7oaB(`kEE-f8k?DK%C$g(QVg|5acsRxp9j>ACugu3|ZC1{T5y7 zO~|yh3zEEbe`=2wL@nsY1raaS$uC)SYC7^JU`iaZyzcKp3}}9gU?RXwOYr=Yr*YF@ zeU8_J^aLj!`fVE%N+BIWH#@C$ov#vQ-jJ3yeWqsGzAz*(_65oS#j22_Lz^K^Rs74~ zTUA+^D1bH3l{#dd?MDoW&CXt4e*_!}wg7Vi^k`?{O;NwAr5zl0LFx-o%jl2?gF%3Z zB3A+UcG7CA7hdAHO4&vaMEIP)HupP6-4ELqkJbTgJ#d0Br3(UW#t$z++A+815555u2H~I+8Xsz^1iGBJXz|^&WMQhzG(OD zg$h9m%G=-E>+6h<9tnArd7u1!Ok)?;LJCDSMKXpTqNOTUm$>X@93!LFP=COXAjkY8 z4t*SC!}=iLqoz*lpi1Z^LFpU3FQb^N+dwtEj8ia2ebYLI*ZF$;kM+Ia#k4g&uix=CieQ1{@AsBD zBFqwe+}v&de%XVyy$B%r&&bF)IXNNVojQW%I_Qf6h3F2Svu%I@5+2?&t$@VI7XXDA z$A#u`vzmg!LSPJeO!GP+FsJ7RAoz7kH9=UMw&8xzZ`t=31oG!VR{BBJ5wy<^wy~~? zT&^El^S@(00z-+!U59LiA96wb<#n?E!pm>SZ zBBtAlt&5D2_*J`f2i13Zy?`O|iitUQfr)oO_&XK^qFUX|NObmXR4Tug)yh0-t4JOy zQGEF?ph4IDb##-rk3tFQ8I4Zu#{%__u~fU{ec(`niD_Y0(_Mm`Vy}_HrDl4ondVb7 zmcAnValq5&k>CA#=!P*o&a;`83+lIe{tnBmva3i}!;EWoWC1 zfb-H^>+Cy7$lRXS>1qxK{R3HYCt(0dJWm~??f!0BMXZ%ql)tQ=P(XI&C(6 zitatqW%Kx~8B#AqO%__N_P$7#D3S*m!j8jZkoMy1R{<6P!tN#9#8HA)SaAp^1C#TH z#_`U&_F0_I2^(DndG1QZAp6B7cl zzoiR&XSKAoeFPazLnXw2lZc3X#P^h9P%KIwZWMyqf;^Qc^6KI^29U zPyH*)^oM*1A~yU!tq!Y|J$kb0BS1d|cy6*fct{@xTmlG~LUSFo$81>yhc!~xIkS}4 z$785UCO40Z+Lw%(&X`@l=5qB%44mI8rjg+=6%K5uSzwb>cm@DDYR~MKYe!zdY}fnW zoHb~f0IOE}>UMO9>RrG)PfAKHzn8c-B0Cv#T&byw#I>Cx%P2PP2C5LMveVUUX9NN<1|}mbBp%xc&a@{C=Hn zrLQF|Ey=zL?%n^T^LlZR#F*S)_?}*jW38h@x~EL*@sp~RvrRM-mP5RI(LJE+>U_U^ z->XFR>3HiLug$sl#&9pH1qdbj-Q%ylOracH}7v6}Ity`-hPLB+p z(00T6EeeJEB!R4&tkhYz)H`e5;a6h%w3w3JOfTS$6NG<4Ul>OBYtX<7-%6;(=Eani zL}zDTfw(@`=KWSjM+X3(4Luj#dx><~0QwC*m`1(m*Ph2S94wMPQ%J}dyu@_?aj>^I zfA{rKz51N%UPIcCsh!|w+SPXwDk{s?*;_k1@l#7oOtlQMc~p>1{|$=kyW9A}BYG}{ z{hEEQ#F-km$SOGqG$e;rSKT3%Ejl z?Wz7e^N+B2EG_*sJgV#DIrc{o^j$-8z7p-kvS$8x_X$NZ7+i9iyQsb(uO77}`sP)& zEi8XReu8l4_-9@`==c6Zs{; zzTpKfffx?(#>xOw1-V-lyE6y+S`c;+g!{j3L`O%rw6sVkcZnrJ1qD*|^*fI0vRT_! zquuhd*#Z0%Jok8pz}Rm;1=Gwl@hLT-?d|R8hST+t#A-PIbkDtgu`s9+=6W-u^af)I zm`ZO&vtL|_B3O#vT)+4w$k1wDkl!!(xq65{n0msHSQ&~+la5X<7skc}Cxi!Ft>3A1 z-u$wg{rAs4bKhM1UF-Zj)msyW1Z}og)SD#?LIBBWsl{QMI<7i6h8{T~cPI91e&zU+ zrWrLHK@-J$J?{30HGA28CGG0!iqO#B93M3n#&HzzMy11LwwBU=t%3lej}6DXo?4w6lele1dzJp;^Ojhb1(Rw00kpb2!Oco zIxp?IegOxA7N^CQ!-Rq6XKK$02S=K>%We&t!m`sgMtDY}jRD_xcoi=oXEFgPP~TFu z90zG>^++$%iCKx!Lhm^y=ZzR7gv!g;V_$lG*9LXjf|CgY!!RlYjzgn1IK$jc|2n4i3!Ai`|_SSv`S*UC+Iga0SiBA zb3U_F($d=cs~Z{Dx=>TDT`B1Dy9*@oexl2OxZXp0LmK7{%(6kxatG*vR_ePe{lS7f zh0r7zXqTUPg19j1|E~@x($E7&3P_BB(^IRAn(tHHlO#BJV7b*K7kYU*TMF6{gF(57W&&MzZ7F^H}G z{h1Qks4W-l$Hikf0^VU!V)r`vEbjBj5=)jfpA;+4FfwQbx%zB_bMuX2bfCUm)>}w{ zc<6+?hr;Lmt0o_;Q&&vcvd)56m+Ts*_2X05Em8-_l>3ioHq(Ay%Io2Blh- zM`k&7i?1|%!lIX}r6#di9g!fFzn;T`M#U^xw9ZcPM$Jq~Dj{(nWw0|uElVgC?>C1YOfzuaSt5pD?1H#FJ z3B|n-OiPxVI)*{lqG`t>EBpw6X?|#J*3{rbUUppkacTHHGou|pK&Z^rZZ}=lwCw-x ze@3rmV%co9%ou*fIYjdr4V3d#KxdaxdMKumVIh`A#`6!A*)Hy7V7*b{U`+U@nZ&^s3-I>}^A9@!L zgC~hV$RSYaZTKWrlSh__v78zswvzM-MwlS3fz|@!78OCVf-NRi`}o`WuWz%>%Z$cg zPjD`E>CP(NYHYbxk8(7+=(?|0_!$TA+W*bl^y=N;EUi}IJN*mnqiFH@nUr*^GfkH|jQrE$` zO2L>q@f)>|uOh}(PPRb9h_&B+TsP+aA4(-1eZbmg!@7^7Hv^&K7y8j_Awj$??!Th; zY>)&pJ3T=sJBF=Kr0z7`c+@8n$qeBP&*dlW)UY|t&4B;4=~Hu+`>gFBToYf2!b7^2 z{)s5a@Vx3XSV7BUXi>?auQZ~~{6692$U2Re40(h~L1bBH_K%UR{9x|@Cyd$>M|$$L z{D=E;1H#bFP3wNk_Dgz_qRFo?Oo;1O3jQZzQm(g~Gh0ZFT)C(f)?M*8jBlZ3~C zkgh!sXCRwqV)7gCR>~_Y(I8Q>Pqrjau5Zbr=*GXZ199Ztx>4jV;15@;9_3zASGSjH zZK3CMx$pTn>Wv+9QT^}6dEAaWpNpE(!othrLHZ>oZXh%#{QqGAN)0_HgYNydRkv?l zzps0^Q3`Wbn$bZv>#ZOzUmRaHX%yFd+htTBkYQwqM1d%)VM98);?(`5Zcegv&le{< zo9YX~G+^YT2v|4C)7|YxMxx0ldoLpQ(Ta!V?`0woV=V_yVi{?zb(lWUbkDol-7wUB zb^UR)On%(Ni)_Jt&&4WXZeXGL0dLg(+E5ck;Pc z*v{y)vc1Q)6)<2z!fw9H++A; zX3=MT@V}a-x^KRTll%TA3lSE^<$uw0xcUNU!N=@Wy><88v9o9M+AiIGp4AcMDvf}Z z-v+9iVlGz)b<=<-KpUpbVQV3sK^@SQKid}}j2X1{vm$Dgv%XeSjNJT7yPtA$qG?z; z95bj|`d#GYV)_k^`!wl-he!ufr4=l>-e}UM$(!7A0J}q5XNceTl)0gn*BeLE$;s9G zDwxJN!s$YjP$pc14!J8Qzo~4y{&YSSHEz(XphH!&3B&UuAH0y%YVx) zgYY?UpMHB)VdyVbs7)HrVl-*X5(E|gd8-xrMZ0h+J*t7STB?|%WdUXRx|^?#f0kX1 ztmkyy28{z<9CLjJ^a{*c0=|Ma5#S1@jC`-K@7S%K8BUkWq8mv_qnlmnS=po?@;fal zZ#57TS>gV`q7Np*P%77n3rzw69DyM3w2&a{n=lf4hJ&VC#J=u8tEc(-#rh=5s)A%D zg5_f#VS0zK26yGln15I0>@+Q2XB>LtyZ=6i$3Q_w7Q1o_9=2yze5B3k8z&%(x)^ZhpM* z&xUf6B8?(O_aVqEv^q!Ka>m$_k>@jJSw>uy-$^$Ad0`-Szt{ZwRp!lYxw$Loa z_sRe3*L;&FSILX$nSmnWm`XB}Y|YdkzoavU{>gKkHxe6jM)L533)gpo~%$A_kebQXMW0fZ1t-2sTJElxlNl2%bR~Xoq;Rtq!d_nR&Wdh-v zW|6sXlv(7v;P;G7YtP`Iz18(HGQm1UTOinCFTB-3-@O(-%ss5F?}~p5t5{3yhSPOK zvrvLaB&j#%d$|szHQn4i$dpC2a#i>aSOrsKVP96Fi8=#ZiWLMnlejBu3+u{XResVK zGGz(VzC`hxdmP9R8KFt_DyT@dQ2#Gsp;7ka-X0BHpJ1ABfFWhmNjY@`Mf5(_=-K?a zp8j(berXQsK~6uj78Uk2UQ+j=Lj*_Asv9hpyXS1~U%CRB4U;?F_hz^4qJW!|%ynxv zrH=hYtAi|_);JA*K|KD%3`z)cn*r2|)S^&QPLAT0nj&>0-Mj_l28=3ZW52?kivTXgD@qsXX4j zhKM6@ig9e@l8J<7?CA%BA=DwroRB9xhWdzaE!&~FvDOZd0<~njvrHH~4(7N=&o6`Z z4d42oIsr{L{UA-W65nzR%V0!H&d_)CrsCz*Ri3hX!GZ7UT#MuuP-MXR;VX_t!c`l5kHgqD`HpWQ{Yk2W%0%SKGx3gYj=@qmcT5FHaE;gu?b`<6|9?)UXA zaEKwz6eb%?y0}qJZ%`@X8o457#lFvE=zFP8gG?$O*ZKUz{2{Y7tGk{~D6T85OScULa8lq7I~vz`7e$BY}dQAQ!$HC-)y>0DBRe zJ960S(P37!;u3}QiIBer&9Y*n%fGjb0g;0upO}SQuVN2)9mZ(3= zx~Q_}=+RP@`XWmh?>u^6<`cw}JsG)F`kRIJ$!#%N3`Sb_KB_FqHjUt`&DMUx0=46y~=aVAR*ASZ@A?A zs+)8!;+R=n2<`@l z47*I|RPzneGx+#o-?ari)-nRNg&_EmLq#O-E$km}qvyfg(w(1Z3-{ zb{E2f9;2h!qKkJ^ciwy@g{8*h(+r`6fC;TY4d>iqVxL%jmLP$9UeS*bkL4Z}LbAC0 zHkQKj3N|3GF5iuYPTn)Eb$dsHupq?dfyg5;A@2hx9V%khX5%d33FLx~wRU)0v6gz} z5h8GYfrdW5l(H*rUj$1DKbOR(1s5qv<5OIb89yeO-EVf07Mcq#1q|@M$6j_R=WP0Q|7Tv3#q>$h8unMt%07M{2Z6XZkW~t< zatC_IRa>2^QD)PRkBlR#84(s7&+t3M4}!STrxe;@iM~hERg)VmN*(vHlm1(Y zwycR%RL`F!wtXfB;WpQdkDtGPER|?#m)~pclRzq(cw={uzPpTUc)`GWqpj9aYg|#{ zsNKP?=9@wVr(I|kIrgPwkO*|Gq3q|1m>#h?r^H)_fkQP(l~U14xZ0K`_Y>67Anz!< zLP{{OOlqSGb^z_%d)3I9o>!<_o2b`Jje z(vfx*8x0&;sT85eK*<+gr$bES@Mmg3E0MNab-|x5$aIRSFx8ysrL*UdSWG8h_vHuf zcv&W*u=ly6A{{*l*f(EBXg$^+ml;|yXN_`MJ3lCDsT%iPxqC4T{zm25Z$EIz%0&P4 z4BrS#Y$f2!LrRhhcL3hAx>ya(Yn+ejVepyvxMAa4^`x44^6@=$j}QnA*beS^i6ZV_ zW{7*9HzQM_Ug4)b@x0QIFE`Q>q@M3^5Cvp*R9FsF3k=Q)jTewKnZK&-ayCC zQiWx&xdS|g-lIx9<*xhHaaU02EeiiWBXr_pSXiiMWKF{Stf9+wN+%ek(l!L|4!bcP zEuwP2DGe@y98kJZt`Zg&hG`I>JrVKiTXYh2O~=C$mYG;7M!>WabRdB^$1D563NmaG z&=vPBr|kC21id^MPhUbL&W~_7B89<3L2Q6SiP_NK+H1Gs zt1y#Yu6*MU&Pma!Dz!eil{_>=cD&hIg}y&$1`UoVOP!IQ0kt9 z0JE7RiTY-Ch$JSB=G0Zi9#dlP>t6}Je3ic}c(c+r%fCiw4owpk%Qz>)YVw0IAP9@a zm-&ezx>gSIu0)7}sKSK#Ui$2vOuDe~=JxijA#3%|WC6cHCqT*^|Lw+*yc>%I)Mw8n z;l;;^JHK$4p1N%iD$*G*Q!$b%ele0D9ECb-W6$GVuEBfRp$q{oLhQ5CQwz5Q?eb~6 z1_3()NroM-EENGY&kBv5_;u=kSLAl?XvO_|nu+W|Iak+=Vf#Fr@iMSN+UdJ4QN0QU zZ^`f-Xn!rA$#luipMCMTidm8gx-1?_f}8GG638wtvkYCvKNy^#zvjj3H~6Tf(<#d2 zv}8D>ZkACfahdx2KT#5Lfs*ByiP!v?p8@kWgBSfV4o=(Y#H+1?fMK3llha^zLD#hp z%Eg0cY;O{Z?(Y11Q(j_=Zhjz4j+IEDjri0O_mNxntBUL*U;l|D_eTmT84Y zkf(?{Q8(|H&H6{`d^X%ovqow)u*rN*o+AjuI;k+_sD_G&`=k^Emo9qq}V>8oXLWHn}L_ntnMv7 z@fhN^1k&{4k$T@zC0rCM-9NWGxMghM@h@bF^IyRuAl~GD&VY)=r;|AI0<*u((0nAW zEDEq?yzXz$dys%?Ps{NS<_CHE&_^V|1oaYVHr{CI7!sW`yhe`!ThZNVv6$cW{PIgT zW>weK&fb?rPmqr(aGw`imIY+H9D239WIk%A9hCe@l%h&OW!i0bMJ2{I8v| zIos1{AY+_db8UrSU-G1EQLaPP79Gu={!TUyGQm}=4SFN!;jU#jS9_B{I> z)^}zR8(+Nj0-m!qWxohVtPmDX6Admn_cc4 z?txlq4F$+&AzY1w?`Dx)taPnGLCZUTe{#J2xUR{3a+c;wWQ`iTCnb0K%feCtBa?zr zuKPJq5nyID3g}E5q#lo3cBXh*V4J2CP}bZtr(=+QGA9P<`fOo2ET6JY_NP5-3T;{* z@mVvvjW{hrEJ7}69T;|t9Co3|=5y4JJ2lDujj?O^1!K+wp+iO?SM^XhdrJ)%vXA@n zg{W55uw17rl{+tg4$kf4a*}}(DAj;Oo~ePU59Wu9TCET2k4ep+P=0suM)&va z3neu)yRmR-mGzH*0<&?mRceY7Rj7;z=r@lM0iMlnOWqp|4Gl89WH?~}3ivqtTc$$_ z9tyQ)0U>s1-zq7v(s~jO}?&SqGSscimHhcVmzoXR~F z+`=~?&N9vvc()gsa6KC%<%{{KRnT-5x*-zs8Vy1&LcorXT9C0)pq-jYX)lYUDvO?p zF=Bk@j4EL_6-HW27M5|_K66)g{P%sgQ|qdi(liS#pWWq8J?1klEiQqVI(rehd;Oz%|>%>?i^JaH=p5pB7?E$m}SQ{HXLT+wuQ`6J5g5=Acb3%WK% zUrtJkv#!RZ@Yd@^N-!6Fb}9kNtq&;2XliSt2P-R^Dz@*~)Uu3m?;Pt!g?);7eE70~ zsV*NK9j{jLW*;etI#_~gFgl_4@LFKn%N$+JZP3;B<&1&AYm5vI&dYGFF1=;%A5Pmy_ga6)c7^JY9*giMUHc;S%A?~3KW z?!Wb2l z1Km)llg3elq;g}!O}Qb|@F0e=_N71r4~+yJ=*6Y=2=}w(B4IoUs9@#5R_$Y43O3eK zWJo}lmOhyQ`x$I(VuE1*4$Gj{VgT$5smBZt2SrRvQVHlAl5l2SN3W5nS!1R!Iv*5- zB_jdwPqy?fgtb2B`XIwdc$4udsBAxivQ4C;3LL#4JJl zKIiNG$LFIAHs!a}gC#){Vsd@n0$YkfxEc@T1g<-kXp9Iy_$pwUj1N`lBPknwx z;Mc21#(4%Tc#q7HMG022i27uvnl`VB>?N)%a`TRa z5!fa>t&Sa)pt!iDn{rOh?|;{hs1hiF)EAp2hw=!iT9y+U5+z1UICb7vwjk=MA7nJ@ z3p|gR3LC46j&`C0{O;vQ3Ie9!&aSB9sl?;bm`eEeGZha^JA|pfCWAnAO{^Ad73~8R zgyR#!G$GH;Ehw2iiMyp;q;0uSJ1Mk>E{p1UE~jwo2MRwvx`?>`$l>o%X{LmARxG~j zm(?JGow8)?7qAN;Q$sF*zG*(m6}{(oQtRJk&=4pSH9RujR6r3Lw5kgeOH$CAFyAX- z5pw@i`~$DDg+QFl#jQkZny@q$7WczEMIMSOwP7c7Wx;KWoCEr6?Et!DyI-MR3c|Au z)5VVQy*@b4UHljv^n0(O`8va!30H?t$ubw42tHApk}1@p?D)?|7``2y`pGKtbdVaQ zA2n9npi{z_uj*AComBjwc|IXF#QS;Z#2Bh6hbB0j%@wOMI9;p=!-@O+;YsTbk7I3l zEd6FiBC_R*dC;T=%96IZi5to^^EvG_=^DzWEEJklb<}cg=$?`OCG;W~xHyiON>xlB5yeuJ71=Uw~P={zIg*g}^u)J;Qz3~Zj6?57|_Er!rKmuY70cfJGStC((1{d zFa>>+Ll|$&Z4c^WyDt6-iKG7C)ZRe<(9=ilL9N+LhkR}8;@-TSJl0>icZ z(kgwp9Wd?M6){>N76zNv@XmMwe5rq;AmI-HDS( z_0f zz{Ut9Oy<^IS%KLnU~utcJ)#LI`tZ!zkRX%5$3* zay+_%UE2&@-v(o&rB^HnD%GOzxdATPx3P$uNWy`TAQlJ|l`$BnmL>RG&G$_RC(O(L z`lrkarUO_uKDTNRul37zaG+v-bt$`Yq4UWXRXmSD^mI%LIHtoOfx$q8LgAMl+NI$c&F{OEsC2?dh3~V@Fu1 z(8^Z{u?A;_77fS8V;HWed{4h_-W7vJE2R07ei{Lz5cR!S>^x^6#IldNym=XHI$`l? zD8~2nTYY0=nqrZ_+rKX4O`ru0vS2nm5*bV-G|<>m5t9>U!pt9U-v2&V%ObGYXQ=Eb z%iLwD_k4h5h$P7}Rl%1sNgMNd_IJ2+q{3p#@v*B|_P*=Y>Ed~M9ZS+h%?mgJ@Z-u~ z+6&tkZtXrAk{a>Xi#F^pQr{+z-fgl|AC$w3owj?7Q3g>pG<2++J9beEQKh`Ny1xHn z+B1H>%w}t&`>zXy=p*s^7o=I^hctcX4W(OLd3CiX|8j#qTG9XuQaz5VHZnDwAYL)q zR4;M7;O$S0>9UYp4zOboWG;DSRPEZw^t~A5ydY5}9ONWb(M5+ysH&-Pd8mIkvb3~Z z!Ps#w74+DB3TeBNOlKK{N%Z&7vyjShDVu%!$yz`?H*K+s251m(uXjpxPX?{nJ5444w{A2;;4N6E?akQFzH*W_J%f9CEgwTZfBf|P zJe=zK)<4S1;xb#i{Gk(wlv7=OK+<_3lgG7rcJ&FF2ab@;g$~wkjb=Roqfqc^KQmYL z18l&}N4m#C4;MWcr>8&+<250$gyXVHq{f8As+BQkZE)F5Uo08vC2{EoLUGU;BNguV z9`}$NU&20`!GHk!Y}||6Y(MQfUvJTQRrR2NDP>$RCgZo)YysD!&GRVl14lPbeA?rd z?+ImO?xOP;>`r>92*l-UH(g_JSfHo_wF*fqm}YC9X|Pv>iGR*xB%JX>_D%ZxII*lJ zKB4rzAqOq{uC8M0O2v~B)qa_{7c2UzE;52%-@~afKlz)jtvZ?3=z;}H>c22K`9vhL zRJ**o{hvMrmCPPI_6apYKT*2!WuLTj&u!SFU{kIE&fh!B__Im3z(z)V_{ZlV$0mP0I}Jnw{72=e61lk* zg?1`#_wss^Sib-;`@D#U;3|;BHfsd@3UuY}0|OAjYd!LQ*;vQgMN^Laz5LcEgl{9$tgy?pFN)Q~?WdNUSeiLW^pYEG}| z<%pc)U;|D~V6F#ITj_*qD#4Es~q0KeZ8&VF54uGYgv>4%GGgS7}kCO77ykUwO|*FY0P zist5f{w`PgFyMfLExQ(7j1hnNdg&aPPJ3UjCzG_$$n3$cFU7WQolXjymQDi*y*cR{ z*wA|kAix&U*rgk-X~A_+T3J#})7u*iI36nUoSp8=kXiiG(^JA08b)0f;;fDEurTb! zSc|7&jLgh+a}M1m>;q1KiRlld@lR&T79y_Ur6nbYKJ71)%c+%^E~brrk9q;{D^FD? zoABTUesUrvgBmOmNzS!Mf9_shlxBt%IAnDKPH^6UOcaq}0d%0Fh4wE1CPox!a60g? zkN_p0qnLmjbD$Iw>LibSzUXOeZoW#S^IB~)3^ob&>W{`Ze^$b&s;aA1YUkk^>@@rI z>oW$ML8OmT%Rc7@>8z^b#*Xx+hamU#|)E8#l11KubcAmerd1n86SUz(}AT z@Y<)zCN#cO2WX)@3~Z%#lI6#?6JcO0@#uW5SX|}J_THXW`E;lP{zskcG#xpCbr*h6 zyV`r^0g(t~xj$Zc1Uw`Z5{Eg@HVd#H&L=b>6Yr%=z!zwmt1^P4SDg9~IFsF6ciz9d zur)B42S;?nm$SfU5E#Vi9PXw9w@M#yc=r`u1}2IA5A`s)&B(GifVN)&AIY5P+$^2w3AyE{25zj_cjIy&we=ba{PxMe0r+8B3*K7%Y;$H<%Z zDGq?OpZ`sF9y!7Dkmwi>^&7ZAiBaVppbrJ;k42ZB$18n7)D?!UjSUUc2j}-7zd6ff@Ajp`N$~#%U$$1Xw=W)? ziviithxri4&0my>fcf2DFW&>VI?3EIpt5_n@OG34E_71#`9NGpXBJfZ9C_2{_wKe- z0$M=9($}b+dU^9}hsDi%Ifho{uudY6gC##8$I?IfAGQuyijzmL0yra}yB-i#*#hDp zz_A9Kg1k(>(gV29E-o(0O!ouc(k#fu4liZ3$$|Q@Gw>k?BsTIsLon|_6{2_Scg>!I zqa!OLW2#tysM6%@1K5DXNEc^ssQ7CK3YZQ6R?3yCNET()9fWp!dwbdD1I7$3U_j#r zgEDtF?NrJHH{2XZoboNW^nmd9)c_O(0EFh^jk|lpuod&`9SFqE-X7(B7kDgFV`HFz zPL%=j3RT6Zw!OxAhzVex#IXW9TR|YX))NDSg#mmHBJ*%xyL)@nTW+0~!_ENE3jmr` zK#1GS##)rWGJvtnbar7c?;cu7IT@5d6}S zRO9`*dbGRLehnVj?VfYMBM5MgexK)Hy-(O9G`6&K7cO=~1H}w+?(uH*LFyb2^%>|r z+>_n3;QWG;17?OM5C!n~Wjp?ihfJw}IA!?&Z+Y-hNkhX~6yMUtDnJ#1c?=xjgh44z z)i>(Xibv~%cMI^{+5!kPdnc!`JcrK;g#c>vFhW{P(=sH6r@%B+LamX@GjfGO7i?Uh z^m|RjtnIMWCXlVe_M5LomF>&Zjz!E&MY?mSuAE#Sa2UB64Y<=l6o^y10K_)d zYY-T`71cEPRebRqxtJTBm+wGClX3n6faoXxaKE+tfIq5S{OH_#pg3#QJ)Ckmdhs*zEL<2)}QumT{~($Z2@)k`>H2|$#k++?-CT0MQsSOjHnc$ET)HA-yyGHdKD6aq6Y7o16?`SKzrE+7@SefM^Z; zp!Jj1L3-_XcXQc0H&USsfIctsS%H6n^MUw6dAec|_+fif)9lXK{?8iozeA}4Ek3W& zE@esn(W;bEd4(MRh7F(sUJfNCAx7YXy)=LaZ+QEIg#f4^Q5|t4-vIgO_?Lb4k?``u z!UHb|Afbs2Ud&eLfk!nOa#A67xfTyzqOkT#FmoSNq=Wz1xVQ-+nSkg8Cea(gOjcG_ zP}##%L1PZ{_^V{P{GPu|x(T#WPdluxI|L7WV1lAjiARL(*1aHjT zQ>A?x&~^sjz4`Ct4VBcu{jYijBJ9I?lO|*=;eR&okRtN`YD6^L>n5OL2Y!PQ1LeOz zq9pKN$5YbgM>oUbHV2Oc2Cjd_LzA>2XNRO&fVlENfO-G^{o&-p zJpvfmONV$U6U&V%b;x%llpMGfSdqjZEx|qr8Jl_d@BpiaxJ3<5szskMY>sK*$6$ebU#x@!U*3q$ zO?>2sJLL>V8Y`%`8YWXCtSP6;#r*GD5V*E>=F_0R2ejNCEkZ%|@^HtbxsMhh38ZR- z?M4Sucp`3Fg~?2bKP34ua=-TcH!k4cAT9wK^wj6JI~W7>9Y!RZ&~ozv!99%e|7Q9O z2X{F#G7=Vs9+`)|NE{N0{J#V7-;P*BPL3?~|M;9P@AItH=W`{y-$B3!Tt->CO420g F{{V!~ioO5< diff --git a/docs/reference/figures/README-unnamed-chunk-5-1.png b/docs/reference/figures/README-unnamed-chunk-5-1.png index f3570fa8de7deae1e582503b53e0766d3b05d165..85bcdffa0cb59ff06f77b9be27a4870e28d0fc09 100644 GIT binary patch literal 58415 zcmbTecR1E>_&)v^Av+;K<5Isvr<3@F@}v1~Pnz=nHCr z54Y`QG@TF#+@_oVNUe6cCI|!#LRL~j)jef1)kEW@`oynZMPw6Gd71#a&GYxjUw)3{ z4;5M#8gHzQHTPPYeRH+8Dj#zFHmqf1Wwt&vVk>B=-JH!UEt(RC(-p@JSYrqF|sR2Z+-|m!Q7Rz2z@XgAZSO42a*t zxcM%ATLKD`_|3Nh#9JtpkplnwIoGm3CjS5Y6(_o?|9^iH5FsG-9r@3^{U=s!H8nNf zA^6n?DD3R)s1o`4`4JRHo+9DRPw=z8d_lH(!APWCX?u^)mNHBd69Yp7K2PtZ7Uy&p zoIc-a*xA|XeO<<9H}kFE+#1{WWZKP?D{=luQPK9eS$eigp0l7&^SistfgphQ~vcX@f=UAW0YU0q#8Wq`fm zV!wmA_~Lld4wli~)|S9y^+|_~nvu+Pd+KahU4Lt`a;M??a;L<&wZeMb$i~Fg^>}-_ zCQk05Xa3;YCl<|tnVGb-w5z3f{pFRFVx6i1_ga-aof4yGHa3MyITVZ*_wn0upNSbg zVq-%?n3$Mg->jz1ztKP;O;|uwbmphS!E*P@uL?*AVeeDr;!(TV`svY8bvgnvG}vmc z#EY%US=_hSOmXiT4Jd`(@kK;jHxt6c!xiWslewPlFRi3`^|ZI&M)XZgyyF#h-$fvP zE$;OV!lJ2y8l7ET$zR({{CLE|(&df`w@Jeobq66q6FpOEKmQvYk4jZtokDA1a4_9# zTi{TmcytFYx3F@?(antydv|yDbUu{Y+uIvW(mxcBy5h$V;e)Qns}`1)meSJFhK3pK z9JDd~4hw%q^}M=&#wgJ5%r>Mq8hp-SV`DSn8t?DFBU0yiv|ikB^{<&kANy?zK8DFq z5QQZY>_BYO^t8`%S0cmnG)bK2!NI{#GVFU&1kCMxeCibFlesNEw13N%kH`Ip5T?SD zz_+urI~?lnj+CK;RU}}`%icVy+;(QJF3)iy>+9<&c&!l#ojT9*pFdB_dPU{s<(ua1 z5r`6vT3Er;P~3j=9{~h+kpm)Z=Wy{+xhgcOo!8o98TuCw4-d}{RtPar4}a9xQz7P- zmP~sEJ?r$WZcmm;(%y-Y`D0WPLW~(ap#8l5WsZ{1K{uac)zo*2L%-`2zi<+EB}K)p zVL`Yu7L>a*7$(*w=KWvbF)^Wq5cl+~-rL5tT;Vznld`a};i*W<(5d$(Gn3NMNooIn zc^X}cdMMXvMjAOEzOmWrK)yM0sl>GK{^G%^}dvvNCO^uBg;S0E+lg;tLf@iRI zr08%C+r|RrvU?IZ7yq`$nwpy8;NYOSQ6l^s8pHy`+j@F<6H8xrCk+>CH{r&xjr(BqN5Rr&;91?b%!5x8*njDxzqyS%yTV^7aFXstvRjqJR}GUam7X}^S%5x zUE@|+Q9(|=vA$lUQ)RSE$YsAa@bFK>>Z*CHAucX1TU4U~M}L1moEh~Z9SN^uy*jxJ zWdcINtvfY8f4WasyD-IJirfv8bgW8|%FNEr7IE+D6}!epv~_g+Tg{B}Jky3;WQ?_n ziUVnem|d^d_tKLp>SQe^J;~W;w-Mc}Hx07Ml+aEs;hj4#)YOjQC!QW2b!W@T^bgFs zld_c=70BP%>6IO4#;?(Y2X?L|H$$c$_^nX!eEii!%N zrMta7k_UTnMfa-x~*=2*ZwV~YU?Dfjc|cH{LvHClyw z_1;x#1wL12D>!mv{h88}lan@#;@sq{4;~l~epQ5A(PUIInDhMl>U?L<-J9CvCQU=? z#w*A6$;!&2qo=2b-<+!!|(a>GrACv*BgN&26WQEy%Y!=wx8|NoSklqDJ$-F&mV?zI`jH!l@( z=Vq6r1a#QkwkFEs;^LmN-Yfz8!GBL7g+{`rGgfBSt1J&YDs}t6TJs=C$ZeZa%-1_N z8!kB$^=7HjF^%u<31MPkg=%3!SjzoxOOgFkR>V!_d-gDfd%Ai_hW;_bb19D9033Kd z(%lebvY4Tf5!=~%A9!MHwlDkp)W$|i-N`2hKP(!0QqG#|eXvN_C@nMK;4vaGiAUeL zo!)zWG^!7;**5p#pb`B;2-@LK&Ie6}8TSPRJDQE&k7(*bcwF-L9(nycyiWj&jd*hN3rpPG++8UG zWp#BvaQ6#h{=+x9Y zmkl+9KZJ0#vxTqkRh839OBA)(kfQ`z$lTl<(JC552O7pIEWl>fx%yRsnr@Zj(&5_R z%bL(T|Ak#3L}Ht{F`PQ67#k4$E8WR_L#6+PR06W1L3D=6<-eoHW<8X@Zn+3fSI+u+ z&HV~k>Ws&mD~+E2b+j>h^LH7akYNJ}AkCXF#&j;BBxIhg4;OgW`HmLp!ZqH@<++a% zte4}pyBLL|UKCwhOEBXd``hTqH5jsanxM;i`KTTR_8v_OHxJJvB244}gMp&KH4f4U zt-_IwqxbLMn`f%z{W0KxWENrwSxScP3%Ul&NPD|1eQZp-$zrxDQ=DG0o15?6TW|k(l{)h#B;}o%x*!_zKSbpU%bg}k+>rD$BpVI-kPtey zvFUiz6NlAFVRZu4^qB!Anu+NAZ zvQg>sgW2-6FVgqYZNytKKe zaXAHc7gDUEg2EqzxrRfIrN-xCWbY>n3Md|P{VPw=)Av1G-SIou9;vW#6m3W^mDtSq zp8K|Ocilk)&{RRPc2pC$7EU0|v3_03AQ1_L)eIFCF+IU;8-<~bqorq>w;ddg^*h^B zEw2sQ+HU!3i-+98qY^&-8~gmDoGJCP9>f~}5uKm*_Ycp>dT8jYEv{9Eg@oMnPB--B z@u+()PZ!g36km3lToT|8++&F`AE33iF-4zx<)_x#ce>u50aslLY;E&`1q(biaK;s ztSJ#tCU)z#p`qyG*N0~11epY63-8{wB=en@k!ML$sj2pf6i(D)=c+R4SLn{@LVz5; zM#l(h{DXdLs@|!!mf7&)^wgnoZ!z$h&C%ADO^a@Kx1wm8yU-4{TwJ~;Q@D%**Rfe( zgwY%cnhEMl9UWo2ncCIWRj3;$9mxdye`P&43U4)B5L|XJ6Ali1GJ7p}`1hw}Ph$`| z6y>v3$zs0k0XMPWLqb%E2)}Ia02+?2z_a$0+6!-X_Lq+}wY8IDGuK*UWoRt8lk{Yl zR_DYYjQvZ93Xh8K6pGZ&T0rAdSN9?&sd$&=iBCj?nx5H$+jpCsixI&0Ycn&v^@plV z!zltzaBP~xNfeP4XqxVz-qx*PaUL%fWry>wqodQexEiltANL6j(T5_AgL4$X^Bau_ z4-fB7RA`6}5`vsRW$cZuz|TBYOBcmhsmw-09tjDF5Ldg$45kS2v!+l^PC`ZUy4u?J z)R*-2HQG^nIWO~7kyz-5-;vxw3+gxL=1-}c)gg`0O;!*VO<&$HJKYJ4xN~#Lh?LSr zeKyBR8nyKc)%bXM|NZ+1Re8J{H%h*Z(O@_qGFRb~sMtyyr{kl-8t1UzMv=2W`;jbv zpbh`ugO@J`Z} zg?Greg$8OOHV#2pR(W~3of8i^PH0pA#u3~+Lyg-e!4Z!5bVf@Z7(vglxw0VFQjn4D zm6S+6-dW3Ew>;RQCQ>qPdh-VLz_mIQU4S#DbCI+An*~PT7;fBL`H!|N!8o~Knzw$@ zCj$*d$OxJ2f%Q^!2_&TD#b-vGi9Pnv8^Bh1el8*8;=Z^z=nV)6Fc&P1q5Q9d4*<*vVGX^BZmg3XDNfA`!G2+ZIohu=3Fr?Zun z^Eg(0B5q2C%oo6Fje)o1vIkmQ(LF_?cmPKW3JQj3z2gj3%5lo@(BAxQz!6K|(`U{p zArUa5N*3Pkd+6!&QkN{;lzBo}l>TetsL=qUT2j7bVPWB_(@^TvRP>y|Q(sGje|)^U z(@SG@brOVsyNO=C!-MN9pTk$mI@o=0LVNo5d0cN2-dl-6HL>f91IV*D7#Q~U_Nz_X zcT6N>KYemtAIh7Un8+YD`Sy8q;|^+jm6MtGJ~u^^utiUIceh-&T%L+2GzxAf?HlHc zoOOzP0YAGHZ|{ki(L2-NPYMa@PlaDeImtsaKM#O#kEE3V;vt4*rrA?rvQV*0F~EgE4+y?|HP&%=zDRR@yY1hF9VJ@k&%G$u`7nB?-5=9 zl4){aZfN|B$WzU)aXSzp^Id+4k6OYoF*O?MvvIuj_op;3`wMMt4eQzrb=nwihv1C+ zhJYauh?utDHgvEWi$PYC6i0je-Gc)sXJ^$s)s|$bXwGIt@~EKK{ic0bM&BO0#SRGxh=S4fTe(fF{BS z8LWk!++1BJie66)4SkG`j!sUtDpAigx$IK0<*9_@={5|EfJjtQg6wH>{TfS!3I~uqG(Xt*sRj`6JiYUph8u z(GeW!tG2y0_E$7O4)E`Oo!M&5tIbF>F?il1w1YrEWLT1p4-6n9#=aW{$p8q;jTV_KPLm*fGP%tom8U8tDfvye zW~8~<^!n-&+VH7TQ>+PSa{JhS7ZtHRm)DfOkMdrJjqjvN!26UVw25p}{`zq6c`~of zzgDrU5@;zK>xoSgUaG48S#msoy%KzgL?1iOe4VhrU+V9Vs3oKlIr@B#jF9W30))gB zMoCKgMr&~U?%zcYTz^x$T@O2-b8$%|V*EaBrC@HpTC-ChPSu+(b`AY2pR-|! z#t&6H$QgF>?c!+BU0q#)fq`!^wB53O9seD!sq6c=EOo@4pX^ZA7Klq>O24NJcwz9I zfQ8trc#bzl1|Svy5yaf;>f0F?2mTb5Jjs_Y7~|wpl~xuu-?c7cPecW@y=9F3w6{pG zJs5k^TELD_yJ`&GDUjd_}x7r*R1SpoN^*#4Eor- zVM`oeEZ(-RE^NH0w)!~2IlIvgN!t56dPun88Jw4mi=R2lwOGybn+!Qim8#GO`8=l5 zA95unv6vZg&uwlRabiZuWjp@trjI0#giea$o@qX7#`p316D%eI2Fb>x-OMy3*TDCY zkxP5-P@)A>w;^372p+}6Y5`fJt{z{m=k(^uJTQs3kOP!*g#50&A(i~?jPG1J!Rj#l zTJoY7;a3jTnN_<2PM?0BD*eNU-3fb)NKL??9PG7HhlYk~Z}Koad>GujVmDc#Sg6+8 z+}y}<%AnxoB}5g~x~S+@2F*nc@Gbx;hU|Qz86Q1L6mqjQG5MSL*vz2X39@RjF^>ZP!dp%3=NT9Xy~uqAqZoMnUIT= zpd+9Vpd^Tq%uwz-b)}6V6=NIGLASKIJ2EmX^$bm{!6e{JupB1}nTMZJ34$0QUOXyq z`k{iiBsp0KA)eXK&Bqru`3HeW)ysKNu(-G&OGkhZA7c7@(B_F6l&`2&j=3=>lQTH~ zay%D_oJ8ujx9D{^d;My^xrozp7Z6b>=(yM+*wAE{agaiJl22C$UaD9406R<)NKS%p zy}~UP9Ub|nOC;z7k6gF3;{Aam21@Z@fBy>T2kdh5Xt5X>I#E$y1fouFmf6ZBs-^rk zA-x5+Wxcq$%MXaPZzbkUv%n{;dISK`Fy$P?YCWH})%+cGyPx4gP*VmIi za?kH|`1h`;zlyJ_u0}#6C=`FD!9v>2Fsx_!YEfQFuNPiiTs*x)!1XNvvri_wtn2`m zVQ6Sbm-(ezgf>oYOSZ;3`O~LQK-3>P-3e#WtJTO>0Xm?wv(t)WBs7A^l3jgNP2>>Z^QD%g@wZwM^{%!b-HRyarhV_37>#gLcDpu9p?R3 z@=I|sbKi~aG#`S+XKRaI58vY#RsffF9z%w86wQ!WlUvV-BdmFsc8!$%v&~j`T4-} z+$U9lV-UP=rm|d7!CO^JSXhuhy1_{r@i~rxAS^Y^ohp8FU8$0xqYIURfk9tij6_|% zusSr!|E4$N|AEK3CDF(dUdjI)4=+F*@v<)x_dmX1vsgV}nX&$K0SobKZ?P2+3BF0z z=bf|#d8`5+914EQ_fmx}PELG}MD~VW4)zC?mJTFU%MIa>1vP#j7rhFYwwCfm5{2y5 zcp3O}Y^-CV<;!p3LaD{M)m*ha1VZ)s*OFz!CY7(l<_^5nO+=W_o*HNJG_2JFonvhh z9}>ZGvkFgMyBVEVuWlg{I1GO)cOsL?Nt&7_?$kc;JdOTiKw23pdVQfBhRS&yq?V^D zSU58}+S}rur(n5TQG%9qgpR-`_=Was1XnrpXbcxFKJmx&S2`}c4XGm0plAM1GW`1u zGZDa8d4}p016o^JT6*!~>utUB3Ub68Z2ZP(@%2f=_4M_v`wvJ8RXqNUn*rf~gxDG$ zrt0tCo}Yhjvi}o@Vk$5wR7(&8ftafI5i%Vhnl$c9$P0K5WM+Z=A*F`fAR~`mCIq$WT^x-EFq}Y+ER5Oj=+Awg|hyB~3V&6AM8T+kSD0 zY>nQs;anY{_&I{+ZDpmKy|S{sa&#qG*zMc3pNJ_2$(%hcEb^L*mOlwvHGlkL6tgu) zK*FWTLglY@^5A0}vpTI5KE|7$KY!}`U6xmFK%GXFc=zsIR}CXk2OvYwn$M6|@#*;Z zMtk<4mrS6I@ANvdh7L79vcA&umX?ys+Ca8XGA@}Sezn&GfrzmEbowbk=5tWW#56N# zK*0JK_leIj3Dx_4?0C>KS=yMsHS9@aDo*hu8*++uK;TJ9`2Kmh?&dQ*PRlGx#zD=R zI4Pb$3|LvMAN|9XmG+&v)RPm;mr+uxKS%&-^cFgL!|rb^0Dv3Av>Gg~z;!RjO{9_b zp`vk`Hih62$gYqPvl$?vxy<_&krg_oJ z!$FDY9=$o-J`IV2VK(iGE~@UY-@ai_?@Czq4Vc zPRMugYX&j;0LkVa66}Iwd402yn1I`MLct@(;o)JEQi@0^6vWS}Du(AWVUc9i6puxD zU+YM<;5aLon%)X{6ZsY!GYZ4mg+W!7Bu;&XK}bj`i9f7!F|$fQIZMSt*XMHj0zJ*S z0gCp#JwL!ii_kCEc81P3fUkA2-}yE{*k7PV4~~vp92_*i8w3D>2psRi;$oQO7m%IE zkFBhc3yO+B5OZ;HiHwT6hDNFHQEF-`Mj&ZK0tj6gfuGxd48jj`o~PUP zzaM#^j6}{1GzFx64J^gpwl=TCw9aMgw& zt2pgR;@PIYHlU*eNi|xmaRKc#`ANoVsiAQxVT=qVIhEmy+5DoS7D8Q?2{mZWVhI@Z z8hi_jig@`M=~%e2ZQPuko-4>CMRNlH%WR_hIAStg?e+L^Wk6G2q21o$VPs_FW4(^K zdps>r9lee>0fy$~e6ZOz5J?} z45EUKh6GzYGzN+V!&h)}EG#ViuFq$^6dqLC&p!c?3qk^P4mb}yRwIWJj^@Zg2!#04 zr%yFC$DMjb%)B%}ELx}2B>P`pfE(~YAx3fZ4w!6K{d(`2S`S#0+xFDj*5Sg!0@>r& z0J0F`(BC*XI4CG6%+du!@IzCKiYy@~*P)DsyvA->o+R@lMVCA~H%qdAIJkL!l{?A9 zZf4rsj+Y{|$wOOCMnh9mmab-emj#+j8MzdVmoLdkNX%@o8^eC%{u`_{mBsvJ;9maY z2S=f`M5OK2=^~!7n>(}#+fxF($*Dkx#>G9v$LPCP-xP}XII#D56%}7V%Jt11X(C?4!@hl1iU}MUrKP2K z8{$&5|0AL3z4z_0bsAJTYLW>!{3IXSMZ5$}I%IX3$DB%((lF$4VHsXLh& z$d(6XF|xi63(A;62`PEC$HDRg>Gy~H@x3cGH8rE7qseY@A3t`b3h~j>E&wtOp)`Uz zhw!hh6&5mm>Xw7UNc1jKI%-0IgloV9TAs&TTtI%6yv@nU(O~g3if@{~4T8K@u{fhf zsrjAQwbbNz_1QiHYv#P%Z_c#*lVqASlFG`8Of#0 zVEz$eo?5_Bk_LaO#;v!xIk?dvH?nWz2;vzP`M!|QIh=$SFJ6dU>^@ai?t>GHU681H z&jBW zPEH5F4%gPz0d4+vX2OJvYyuadQRm4+jyL-N*jKJFF8?!)R$NskmoBtvYytYoYVydC z&ZT#fU$yQO2aon*-JNN$vsP8fd*yhRp8Q;^P;G1k7eKE)Ap`yS`8f|S&oCc1w>`gy z+m2p?14U2?Uv-)!-T2QO0e*f^W2uVAk7>D?6zM)5GFiK-22PayF>)|5p-b=KKm`d3N?Kgt*Izq*W5= zLu^&0O23g1<~-yqxaf%7f&xC_8aHQWRP;~;B1=UUno!Uuot?n|F|_8qwRP{U8p@4# zggjCzTSWjKFBw6JY}tiq=F;Kgr_HafCdW9Hq>b5LYqzjgklS3Qp(ZANN5w(v9E_~3 zr}x+}FkGaaRA?#Hw#b$jtj4}k^F^GHV-uq$VG-K5+%z|lh+4-vZHv)W`$T^&{$qJj;&LyCBZEY*A zJ}-;kGUs*zc!4K&(WkWYePO}q(7>Q@Vzn#==rWIkuO*|&viRTN z0uGOmU?~K`cIM|@aw=5B=Yd?wz+u5%qZocVxLb-)gm@ zTD0hBYHGTXKh>dFw#7UEK3A{obtG76M1B4}7rT7ZY-HAzum`rO8*c&p^fd=*aozF6 zq+Nr}Y0-Uxu*Af~8>0@e4?f=Bt~)cAp!a6#0tqz!)4^Cl0UIsotk>`AV8W^x2|=%z z^aB9f$&A+y)Og?Zyc{;&>L2cV3xEg6r9X|MsQOEx(1~b%yZS`ny-`?+Kmg0kRW*8gc1HHz3>-jUCjz3i<;ql+?t@ZJ&_pj`NOG#r zRWM0bWF*2LgtONt%g;yrl+uJXH8g(0Di}Oo$jqA0ALyi{DjH3Lu9}&d=@8zy6DLE5 zhI;cbF*DPSDEKnC25~p@=xKOYG9DvyK~z*G5`ut`;S1}lyX6bKoXFw^(d@xbTzMvT zz>`M%!s?mn_?xWTs+mN8b=cwu+cIjD-EHpeIqXT&zL*&vXPe7a#db?R7gxgl2r6$< zvw6vj&}V+iPmwTbW86WOhORsT8?ri|LTwzdWf|+@kQu?zgslrQvlJd!pMVr80R@)#JH6jA*N^U6ovA>}4JoCq^{!$36;+nMWX~i3_UoBntZ_ z(b4AYf707J`Rdvz8$=h}Eg%Du!7i8L0cKxpYkPb97>A&;ID`4yN4aRzD=O_F&-(6y zSYc{RT78R&2-8ED3Spqy^3uF~0=znfnq|v#jX|$oy@D7QIi8rsK+OGrGy!VsC`Q?n z)B5)e+ATM1bO=#NG($vAj#)wO@YSBEb+t#PTESMoP%D(-vC5>T`M*mu?RBY{FCGyP zeEXzH6C=awt$j7h##V$JFn65FQZ99en3#x~I;vuD?eNh{`gk!GEF;ge(s5f`KU+-? zFAw-MH;6TSEtQLnpdjXUQvUwV^wNO`!oOp^V*#WOchp-qw$x__4)blDn+v8Y(E=j> z0MNTWJC%E7t+;+aS%d;1ZdkHREw*jhTzZ?VO!XCUxK{FNS`YE%K^xtNEfIoj6{y z^uR%*AfQ#vRmoEhH7By7=j9gbGk?MqN4{Wu8#Pe213$d(m=A0rZ{NO!h8%zq@UPbp zr>lC&xBAWh+_aO84&FTf%&1W|osWk9#-nRZ$Vu*1fGFwju-~TW)XHknHPMn!ahA z`vj?Be?AqE*kM7+0ipZkhz~nWikmo@9lwwD?g+=%S9F$lG3d1?P7fXLBO%_R(#AZ4 z7X>!kSeVgT5^?u4XJbyf@5K1{_@pLg@WScdVqH?8=#0(ScksDDf*~YbdOlg>R$PK? zq9fgs0EH>L(h=9G&4deZR8&oMwSvl&)@FGFCpY)uwA<`6ik04UySMjlA%6bfoIc>S ztE-a+yg4CqrY#0m)~$=P17bp#Cus-}zEAZEm5N^$yi$7aM^E$0Y6t_Zk%p8KcXWha ztA0vtm9eD*of<(y5Y`gOca;1d1Fs=AnSzSkXq(vP$!j$=XJ=%pD1hsqI-Wr*fwY28 zOqHVlVN21+B?XhSUSfJgyf&|4r}Nh>v&r?UswuxEcB|5`b)vb01Xj@4g> zy?cj@@CJ8G?u--A7%S<1Ggr*yPT*|Pt#P#|pMbwS)Q~-ueUdX+H6=Z{4f~{<(vj8{X~PQ4wz=!xcgM;H@?K()vugMOx}lNQmSI>*dZ8#aAxn z&5ZefZxgOl@D~ z|Bih4fW@rlJT$`e$4FMHTGoqc1B)}X(co=!9R@0e zIK0Z_gb-vUk9eh=8pkayqbKjm@qIv~w!2)ei5n*NLLogoZ=k|4^3iYJ@9@P=b6JwM ze}AcSdV2cllP3zcD$q(b&0ZZ>g7?)MijogWH3QV+h^J;a4~;`mfF0}n#0tP!ohc5C z(2rktiBHaYtfYd-#4jv7RXe&s6dw8L(IanBKY+fL<$@sTAKpc?04n|Tqtl|)>_}dN zchzL6rsh0*{g_)x3mqx8)ZidVRc+ZzI$~{XBrk4pw$U}`WxX@#DHOi4PHM`?$k^Dh zruXvAJbhI#jK{pLLf`$pu%2H)fYs-qE+pjNw?(lm$u~(l({3HulQUwvn75)@!y_Yp zaH1hTD>LSD51NFnJ~mWzLFsN9zVbe4BF4=TVQ4L?j^s5cNnv4@=d*g%TPN z7UGq^f3b%GwF-H~#QeaxU|BwK!TZJ&S?bt%XO%%zRFs9d6W_akB{fTemW9O{WLo-2 zV3R8Pt^5{0JOs5z6Itrf$L*@NM^TG&o>={ZFD;3ZpMKG9Q$bl1lO&MMmT=t1^r!k> zD?;jA{Ul@aqZ|3}ZyXxdSm}5OU>I11^`1OIM$o{_0v&f(mhgK4BqXF3!Dva^yaGGi z+qcW5Ik3?Nr@C~19#30^icye^b&H%`?W~}Tj5~g)@j5Ab)@nv5Z2n{N;a$R5)+{vB zvN2XxR(D}4RtFx(yl>W*>tdIRT0$PB#XPqdnVGHN@I!L~Zp>N8m$G_z;dR6m4W|p? zfL@&ryB69be1ltF}LVj*|NQWia0)M=++KaP)V(Bj#`1f_g?em`3XSYS#UZ+g4`|{ zH8Otjq91%7(2X)NGoN{1K_l~eYYRZdfZIp8B|yY?P-PVqvPg%YflwWi&xY18-AE5% z4_m9javb|yR3f(Wi4+nBan0Y0v!%qu-Za5imFE3&nd@S8v<5S^K>g&+`dv>ohs*b* zOQSJz68wQK&)1rl!min?WpeTyIwL}QI&ClU%D2VEb_UAPl1x~;C+X22vxeK89Bs$b z0DygTtSc)6tz~>Xm{Mr^XXVQb{9Sj=#Ke&yny>Mr)8{8!G2KB@1tn=zB8-ebi+Tcu zjxmst5aEr7C#KDM9)R_!snc`PJl{#uLK$t$T1aTt3y*}7%dB2xQU(ap7QDzm_Jl%b z2{UnkDeGi!7$fzsUUcB6w3A;G)bqP^5n>-29)9)mWl*zGyGd!-c?Rh8kBOq3yPVKz zFrI)eBSa~VMv7{vn23yUf55qCw=r_$K?a&2NkUS#pFxR6_Cq|XkHn(!+tcBU-yyzu*)b#k=V+j;q*FZ@OO z(laq0EAKA%{A6u=aq)2R=%YCaWtq1mncCA{O2&ij2P6xbUp75TF-<)xe(aKBV{w{d z1pchhOIV2=xx7BZCch?>_bkMlCxdnJA;Dj_7iHPss1x4Tb z{CI1G4#Y(Br#XW@KztozZ>$7EGnzGQ38y19F3xn|2r!lJCjtt34Q~#BaBz@ekYPaV z`mDDxx0g@K{j`(a&2?MV#TixXWNK)-ro`17t5gH>%cpb}lkXXWYiBNTR6lHIXH!}P zGrm8h7v<*fnrv=nlLs$EPpZ&jE5qSDVOGDnId_twx-27+3S-aq_BI@Mpf)8W?$a+) zkgs2kWwhY2g5A;XAHip$uS)5rQ$4$fChnecrll#H)-1#u-9{(~ZmsT<)~K4Qs=LG_ z4DZXx(d>RrcW=4M28SX4Svh!Rc^83@z>mpw`O73O`Q_=8h4gd@Hg(#$la%U_{yP+8 zM=RRL2bDU?YA`#*a+?UVnZKx6t2puzu*2h}rr}CC;cwr5rzf34r?UC%%MlbQl^G+K z4W`MK@peHWp?*4-8-o*J^!#mmFo-h6{cC4Phj}HF*RO#<;p5-{$<@yn=t@9j*EfR} zPg&<=g7uZ{eb4qsJ`mgvb=o=T-8p=8jKBZ4ao!%y?X{BebY0-2WgWk*cUzgf%H`$d z){w6Wm!_hkjkUE-F^fJL5aivw13^|B>wT+CXhDr89%j=W+(lNf>4FcL4hXjOuAo~gb%`f!hqDtCp64Sx4BuLM zlb2T%501Y4D_b>6W|M9rtJ7oOQ6?4y||^d6=KP$!fHB-$I|zl^*ji#`pxfOx3Io$O>Y>8%mq7bCGA;U zX3G;+SX+Q4^1H@q3^kK*wL`|j4;dlia7CrCMuP=Up*on^nNGDVQ9uQsg(LMV%%%m( zBHfy=Y6WY~)gTJ$>goay2Chq}2o34!B@18F3a&qPH!tPoeC6XFs;rcKKue2+0B3-7 zh-T6K=f=VErd;pt$&pSs!Fjn8_UHG)hq2Y%-(SASCu;U~`?Lsi)aQTw`f6&q5x1kt z^P#Ztmtbu%n~sm|)AATKRn;TIqfvd)?&T`l>Vt}2Wu3HN(Ob%dg;_{=_fAgu_(j!U zy@IKMqcN)z2e5>I6}0d-H}E;d_5V7ObUPdGBU2jh~AYA zXF=mAvZmODjyPsT?{O)7$a%}uzr9YjVJ=QY#3tT_(&{ZUlakmui>LQ>!*#QuK=fi5yIJ4!t$7+lmq?zNd?cQdQTqOkip*)wPrAQ5zf)7Q!OR3kreK0f14e%)| z8bTge2@ZB8KGp}#>-X>9FufCmj#q!m|56>Yzog`wn}T4?>(!ek0uG_C{pRSnl;30S z-b(r#&s^i4Tua2Bh%UoL9J3|WMLX09Uf8c zG=aeh;nO|oMZ=@0CIl-%wRNJp%7=N?k)b!1VhH~Y3f{JFn>3K3b${At^nQ36f-joh zyI8J}!r$Ig`jruUFjH)x5h5YJCv+VjyBcqy!+hB~i)}W3*dKrYU-Y=W)7{*UGdQsu zR$J043cvu(N4Ep=4cZweDR!blz54^>jiPD0+9P8FlR%(J!c5{{^!E41yloo!7|+Aa z9l_!zi;BQTTU+VW!Ve1yY65eop66ONG%dNgx!~W<*n-Ui+hGNS>K?n_Stsa7FfMnO zfZ&Ttp7onX?HQ!%5uc!m6o6h62c3b!NHF?3JYdD+z;5d(M_b-OAto{6O|f2Ed|@;E26e#V3@&xYN4bR-RFcp!PRo_}?ek}F`YbuF^y>G8 zc5>DU_ge`F3J&CMV+Q}8yYgn>bDKJqq;M)3qf($$btBjRJiqU*z+Mpit7o?Dd&Uoo za;*rinfNtUf-sG5dUOI=(d|TBn#H5)@o`+2C{l8PlBg2jFK3WSiElxR#%(d+Qx<`O z#+-8#p}^C_LqyK#?AjP8{*c9<9wpUhFw~+|2wWuavL8QwJp9R>RS96F?x06V$aNC~ zr<}Pm&jv~nI`0~B(thj2K?m$9c8xO3cJhP%iqP}Sg*(^=4RKc&%cDmx3Wo38xl{JK z`w9Nvs+BbDa?85`;;SBEFC?XP@8w@25Og>=>LZ2c+Am%lpYJ4FL1fBO`6|Gq3`E$lqtfVcu0QEpouDhuTP!+E_8{T-Hv@jZfqAx0)aa@%W-;z zK7dE`>6O5m@p~$f4x^HuG?B^i@jPWlE-tPFh2@3_$NVQ~(cmx!y?l(#Q&{b@#Pi_hX3x|f$@AM3B>ZP6qzcIHa#%1ytq8M-;e>r4SmOx zjOca~?n>#IsrR^lirA{!W%$SoS|iMLsG|O^v&Fi+$IvDXJRH3WZlr1BQ1{0Mo97l7 ziRXU@!~AY&6SOZ|FcBQo-!Ky0xde4Z#PYH(J3oJYq>xG__4pGwdY!Gvg?nxfEvEi% zZEdC7s4Yh=uAnwO^t=QOw;(_N*Y_wAW+o=srG1Xyzyb>kEs!=o5S%z2Viq84G)S1f zhaLRv8C21pPoE~jNqSkdP&aFGyjq&;E_UaumzT>UBbRyP3jEFsk4rY9-ZWK}+h~i; zp#GJOO-*IBBN@<5-C*vB&@W%Ydw;omPcKJSNn!WIN7ag!m#O14ZSGlR$`}U|*S^Hw zWp$=4-|+wP0#s{-Ng6E<2-==?6QXCUXd5eU{#ebxpqNfA$CL;o%hF9Y>DOgsG)i{5f={u% z7lYFtM6zGMej#07QVKeo!>Bz1k)b?hqS{xY4g}wz(K)!$jhL z9`bTgNXF<3YtxM)?!LJv*fsv$5G6+D0+b4F@@}X;(Ar`_y9p%*r(EYLN+L|d=A`!- zTT1>(c?#m>BWmBb`7DxxJ_G2~&ZMTPByn*rV<(|SFg^C?nrgg~_Qw7(C>fN7N(Jw1AM;@I}rT5rk5dFwV30%Cv)Ky45b0>&S#E9_pqDi^2u zPTy{iKtlPB!tG7;nF>3XkX~V|#8}$XQ!vT;1ykJBhW>RDhhgBBW^{c(J_!si%gD-> z@EZVYf|FEg{?o~ZRW*md{T(wYEaPjKi94o*ygT5!YZmnU>w8hMm5Ssv0+JtB^% zjRr%hsRGlLp-ja=bp$c14_xVTf~V= zuuqJQAO9ZVuS45n=G+fxXXm$ILxWY25UVObtbRxdk>`1Rn+5C#8;1fr*)>+CnvkmXFJ--(o>8!^&*?*FD_BYDMF8~ zkOTdZ>;tzeN&3b6gOCqzCJs{thet>G9zD8^h>nk!rosQV^-vt`4dl@KwbkEL|G z%gJehhN;}i^U=Vb|4U*Gqn7qifTY~nZqsIKoEyE*Za~mI&E`{gq0is8r!~}PT~}Dp&PN5;%GB>4BVc_gPA^6UEP}*xq$%{7UFXl0=r?W zjQcK~HkDOX-%!CDZ~V^cOmZ9yjdFl@*%&F*27R95&K=H_yPyC5{Tn6vuWfc#jF%U5 z<~pm9Z&l7~D%6&I@9)vqU)Nth?!^dyCv0R)#><+4M)`;+cCcuh#~%pV7X|9lU~m@4 z#9Tw4nVInp8R(A7S4T3fv@!C(b^2QA@-#PXQ6mf$xq0|mX1_*l0OTm+fj3!HVpc%i z|NPF$&0kuTSfI+(8aknpaDjrHxBY1l87v<^%dQlZriX`*E=wlwWPGx@m&SeER4SaG zobD0dtib_ZI6iXik#Sl2m_If)_jEfnomM7&^_z(QyvDDo3&$q8Y<(~J7T&i&0w3PO z0Y<=Jw95U2`U%{#`66paL8N9svnS#fd3L%=%GGpD&v&?tndic9tG zGXD}&HJG*e)7zTU$MW@g&ft9vg4LbTMK@^h^9qXbup((=Q+Jlsmakp&)$6b)vovc=0}hx*l#P?Fl&(7{CH8mn|QzhHE?aU%jTGt(9L`!_wCdQtx^G_)hlw)^Pa zC_}yKepd=8@_72XV2uOY8Ewql-jxP$0l+(9Tr=qUfr$xZ-r&X&M&MMn%Ldpv!O^2~(jgix zO2folAnG;J-u!T(*w1C}#4oawRm@ePcsQhPH?S-U4>31>c-ZAO8#gps2F!njS#PE$ z?F-PnqM~}EJ8;*KXk)TeCzjg7X=IdTIP_^gQ!I_nVFg>F|6f#{WmJ`W7wtD8U5a#y z)B&Ugq)S3cDe3MGrCVA;Nohn%T0pu51f&INL`1r~@8Z4Vez*>X9~=jd?7g4oS^v4_ z{7t3|neoY=Z~PABq~E8d6+53BWhnJn+p+y9k9zB&{+3Oc_dMsfg#S0jyYl}j55dx+ zC&nNGXQO@SF*|#TZLd~O$e*sI$MJGz2g35()OP6aU1NLwLcKYKxoL&OJI%2R(eGHn zEWWq5Cw6s6NWPn%nb~5}6?rS7PKl?q{|4*6lbaiF(aT2H6(w2O9ypdR z6mtJQKOX@Wnb@3Inw!hzenvvTDu7w7h)Hdm#DwBT#l8NOW!FWQqFqvm-uypU$_Q%L zRGE{X;sQ+fH1PQeDlA=1p)jgJkmhFYyGGTE$DhQo6BE0u$NZUP)T&rR&YsOnn}HUo=X~U-*d~+FzjE8oAvXz-Hy*@lURk77_LI z{A~S(dQ^O*6E6-3KJs+W6Q4a@+pfkS!|ChqAJHd{_ZhhQrt)hny9GQe6!@IXQcs^g zWvnHIt8;YJL;&(0Z{_pcFuqZ%&s8-s3kf0+Bsb^3&ij**5T*Fk7|)++CMOsT=!pjf z!!H`o`mY+A|NO7(CF!yBDrn(4qLT4TBtYot&o(xkzQ$v`hhauy`IDldusY!xZYAHn z;Py}SVj8;R-%NCN+nrqVCX(i{cehO?AmA}F+R@)&Kw>g?(UUScnf*_OHXeJ~WiPb$ zpSRbb%*>ugPy1b&le(?9s zPs{j^eFE)1vFj9DQbzIFd4=*-($ZGf1d6*QIy%Ke*3Zv^QP{##7WYu)3zqE@soyugs`7#+l$bHTRGr197^^_hSDoe& zKL-al<9ySojU{-L(&}<^Gv=D*cAboj_7S)gOsmv?fr5e$>Bcd&+z}5?&!;jnGP1He zo}2L)WatKJ8=zy= z&+Z@KV||b=a{SGE;L((n)Nmf!5E^PhJ@i*YUw7u)@<&qwoIi{0yN9dBH!`J~f-ir? z=}F~Jrr37cS2pK%hK)zv`^i%CrBomM3~V-HCY6OHB_@&|t*hU}6J~ZrmiVSW@|Aq? z!rar^&p~N^OZTk)NvIZU>r{X6y8Nqhz(P1=qM^LUB(E%U2UF8iSy^vSPoP=#UN-A) z)=YYU%9WBr%91GPeQZZj138mG{Z>B_e*Rh*=eoKWSU}UegG;6kw~L6qO4w|bZVkQt zSkPDyD|M7|W4Y6`lva2laNW51X|2y{G;v!bCu&5J42w?XKHK+ys??}=?xSZ1EJ@ro z$Dr$b_>qmqERyz1pTVQK_%gQwR_oDx#nh`y=fgV2WL5IMzKcYX^2UXoZ7P!IxMo3RO%^7ntFzE;oVKwWfk8T;@4 zXBpR<3F%t*U8jQywW;i})kmd@wCdg;sCp6nq!OS;p#|OgA)ZY5T4M`D-OHg@ukBc zIl}s_ssg1rBZJC^VC*#}PN2BBcMdW#a$Ktvav-Pm=qI0tzV#0$bB}NxjHi|B`|+E=sx<&PY#KqsYhwVX)nLo6zQl<)yLx8{^G4j+WsWnSznO z*Qci46QxHc&i!!@{0Nx@&(FV}Bm_TgKAOlC@ZT8ykAQc!$+~CJgPuV|LZ0BNjXyl% zeh_H(vzLu}F=^y(Z^C3JN2r^a4uqR4O0(vrdrnc&&^~7HVugGJfugjuC^t{LVC*xJ zEOxR9gArFaB470wAAEK;5T z(CT2&xP!P==fHe4q6X1K5b%8)^(cI$>F-(dl6Q*#cdrcc2R4q5{F6iXE1sH^WZYrA z&AlP=K7E1%1d73g74Ka43_3*W&EWL9tDG+Qise$@E0UR+bG+?L`*tG$e79IR?UkR0 zYczUfc2Y>g9gJC!Y5V#+mQ)|0-p@Jkrv(1&!SiajhWl zdG&AL1HZ%H&Dp6(_s$eEH+lRn;ay^V;eEEhIFh@#9H3<&|K#=NR7D^H0d~xv6LeY; z-A!?*#d)j7y$1$#)|M5MUJqEfKWr{8!e$D2?oppD9Jz5wgmX~P5h}&wgu8(`ywHb0$YARMIe}&nd5o|qrNnJH~UPb*hJVp)c1hb5r?mtk%KBXHJj1iHLP|Qz#J0;NjDVQj(EPg%y9{qJ`5Yu$LeTbL;5u#20%rBd-(XP)YjL&q&9`Q%P=U-3&F{i|% zBQ{}!#{Vr_a+ZLq_ZfG254D#U2qn0skJY)&RqXsT>dY_uR3GGAi7{BqqN}1i5yXh+ z%ivJkHEamrg)Nb~)dW+GVqzK%#aerz#Z{|q_7b`1Q|qw>ipx>+RcHT>$@NCy#n$GI zj5CVt-HVuP+#&CP!{pK9@%uu8{Xr8QvE)L6o|AHpW;I`*%}yH4i#~j}8~lgHql+?w z6UQ78AV)80^8@16Pn#3(b6RqtZ*6Y={<#kVtS`_K8Id(7(FoE8TKujAZ_Sx_1{Hf| zFSNAKIUtkUY?qmuN{$FnDgb$BMv79qczoU5c%u}owNfbIT_#|)K|;iFFk~qCZ`J&w z{)1{KY(tCD;IiBYha(6{9)Kiq%fP&)c+}u2aXO*JsgRitOif*Q8}z48@V%X?M6pM3 zNzn*npIHvl_BT);(RPeY#8gz(=0{bxTsvn(5CH_>{`*`Fb=49LVqTUfPgedsQFiww zvXEk?vQMJX%t;WM+LNLa(R)IgZy+t_WMSaPEyM^!i6Wkrgb7a|^F^a}@4h{SyeyqOa?;HTj<-1E&0DrjWrBrpl zz8fJ8Gixgt=0MlBrR(qb@oRASZ-N{>(Cv7dlX0KJ-~q1lyI3KbPsnF;h_`fp5(@iZ z9I~Z)gI>I^WU9L&tS$H$p~qWmNuUy@g)kp04R-j_rh zH$#LX10^AFpDrpg>SteN*&)IFwq@$Kokt*oKp!G$n?;kb?Pyv-{grI?s#N_TnPsQ6wE%+8U@>S|u* z?^bJ#)oPTFry~L%az8q#6W5Q{=gy~6H2m4q0OwjEfyvtHuYCXA*DLdsO&$-VW##?C z`EQ2;3~Z3ce-|H5NJdr<(KcASbu7U;6GXO@s+3^BX4Tf#E>v5`Pw`YPBSf6xVhLrtcKUkUA=$#)UoPSP5NTLTy|PR0CN0nikMs+sb&5oRfj0j zA+%~F@{#S+bMq!eOu2%n2T!<9*qz; z;!p3IWng99fLrx$3mntWQWCcFHIv z#P*36g^UV?aKVuA=}Jo*a9ZM`^V?6GMO>i6%mN3@NxQFUX*2NCb0zxZe*DPxq#^p+ z^>-T*A|OK2eDaV>b-_SS563HWDm4G3P&F6$lJ7L=H;OAND#{a&y(XuoKCD*d^t{0& zjO*y?QMwr`$h47^k{TNwh3xKSJ35WDj7$rtVla=c`Ag&AzUjo(ZzNV`G}Nts;mC5* zL*q>*PHHRG36yAOn9{-4{h|CBfm1$1(+DkpImPa0}~lig&|Ux$?8J!weUHIDQ`Iv7q32Fuv$1 zWK?r=D_^l>jr0FzBCgTVS5XPLtYy8ARVUtDQ!`$z*&vfEuc&xOq?Nl+Wy-OA4CoxRugfYxHDgwqGZ@@SfD4f+J2{*HE5rnOf;)HwJHmv0!$PIznN{7|> z5QhJX_=c0oE1h#)#l`1pY-8r5!um>h zu(UYuoiXuLO@=;ElHJ7QB=gq$`qV>8XYG<(m`ykagsWy}eJ=fLeVaObnmWL7eLUFs z_2#j)PDyP+-qsHS0lU|h1qn(!TF!c^&Rn(bBfZUExQ(N_I|n|>l*Zz*dIn@}8W@2O z7q-p;B%EZE@zqG+Qiexw+&J8)Cznl2sQyD_=j0%zY`O(v{;A@kiuQ78X^%|+g$xur zJ}fYeO2=M&2$RY6J)W|JrA#myZYnUW;iFW-dUs98xFg$reuM(&sdZ~d0+onPoqKs* zb;38JLIs`ikMG|vbaeV-;>@-i&7Q5ZvSxn9RY*~=(AA|`?~Rtodub!7@oVBA@%t#&h7_k<)A*$8c``3~v}SR$-%{ucC3p9+SQMP5a&pa} z?Uj{YPcNga?+~|xZ5R^5>>vQ3Q_ zJkA$VRy?LDt3T0CbJvjVd1&EIei*iyA;gzdajdEra3(M^63xd9T(Rw_CCUA zb@-OXa;OX`OIRT-s}b;Xr@bn#D4dx3u(Cq2wL&ql+)&@>362L6lI`r(yPjv4tXf#J zb*jh5r21No^xu%Sl`vQ(PHM^43Du;6?GX?%%5RbVyaC%y7zJxC!$G-&q+$lV?{K5R z&1zw^aGYxhaj-H!7Z{@ODs35l6mD$!Hss3OikJLyS!(_jc+ogdAU5ysLOv|a{-vtw z7S#0wBtJ5q&@L0Oq}jr<37(Cj#<6x+GC`;CHXlJgAv&)Rf;sHw&>I zDUd7-koEVXUxw(_S&qh(#U8P+M8?KuiTV4zc=6u&X{fagyWZ(zw$16j#1)c9f^l)# z3D1xa3^x}vUTGZ*ep2P@dHWt=sWvHX+jGt#_R%`H*B^Mib93EY>Mj2bYRHx3UYxMy zsJm-g8p!ywjE!NHU+cd*x!1H_Xj9I{!rVVp48ITb|HsTSAtY&Foa6XX+Ne(7a;4Lo z7#jwjSPPj7P)*wr)KjIfxrm* zd?$vASj!~^4Dx3eI=_gZN#Or>1f1o_g3MJFAGYR(%rez`hz6k_FOe$h|D5i*-H4&Q z?#QonVPogui0v`~5fQ?{^6`vo@{HtZb9K&3fC*!b?`0E?!9_<$uj>~K6z9C412PJd zindS%dbrK70)o#SS)s+)w8M-W{UxOjd>G*#P8LAJYxX@3tk>ZCgO58E1jOmyrGu2a zrnvnT3rzX|cNcd3r(kPqYiGB4n>4Lwx9_f9pzHtm=g$|@o&X8+kMlNv(;NkJs3|I0 zHB$txC#i(u_{e+H_>38~Pa^KM|GT44_*-&q1ycPi_CcQ z)4MgVoCNaUAl2*rTIC{iu|bM&e-Qs4A^>F6L3SQSlBh+m$GIEd7p~sR{<5hFdFq*% zSifpXiJ%pE7~IJ~V|2iP2>fqbX) zvJSPfhfF|v;r87ByVMhV3;Z?oJtBfrI!mIV-`R58d;))!9xR{1Cj~p! z6M*fdBs#x1R-z7~VtK%0IWKXQEYq~teHEQI`UeI5ujJyXi1#;hbMnMKF@})se~fj$ z7w7BaRIgq&spiUnQFZ$1UrJJe)@*SdEm?E!h>5}($2w2KW*yf(lbhJHw-Pxjl*mDW zlcT!4AEaH}TsrP2?;js`FWMYze-(T}j@#m@ug9tTf&c^Zd1it(j+T}y-QK&$fBt@F zd(^zNW15d0CNig8v~F&|Jib1<9~mBJ)cgqh+4d{e`}eh(Vn~X{)@U(4mlki^X@Nn~ zjz){*rsRj{>f(>knL}Xt#u|x`tHltSoeZBv?~~D=<=wakt&lFo83u+B&pB*1oXN z3ZcZ7VO^D-R&I`Fd-VInmhlUmKnH=fS~+Fg&7TGb4qw1Ld291bDO5Gezf)mXoP! zY7ha)qJ|9d48CW}8Als{BodK%8-BBz8yU~kA4ARXMBp2n;rtCjivEre&Kz!Ta4s%i zn!cLGpc{8-^CiNial}Bs;%BD6bq+~fog8(JtNYh6pqiVuzt?d%+^??&!Y+2ir*IBR=a8HvO1-m+owIz}-okC+zxAOYr;@!P8U8p}_Zh*mP&izRz^?g_9C7*QjCFD`=T#h*>5+6uTt@PyT` zFlrCQrI?gKUHv0=jv=mcwzott*qr{*w;>9N?;`{)? z@36Yx6N*Xk4}0420t_CtISEkaHlI&txNZ(}h0028_ntgEEz{#S{ZDk@kz%#%toG&u zkDt$mQE-kE6+Uoxjf|+4Y8H>%preOD47||Wbkm6v4?QUh2>}!|B}c=&HMlI^;AX>{ z0Em=!mz+h}H_~*#K)Zm5IQ0=echU+}ZBV*<+@D5$D6`tCq&{m{&i}-mkqrcR;Q2wu z&@{2hQs|pl&JOfrtX-n&XysUZSJtNYK?K1*`8fo#Ur%&ee4xLj|H40gd)wi(+CDWaNs9g+WRR{v{_umW^DXHD<~m@D z+%qx3i>Acf*!v5H;qda-7(;lh&@P%SV}eX5F9x(n@d9y`ARFn_dh_Rhk`3=M6QBHgLklO9B!|nUKmYzE zWn?W4a%pJ97|GW$^6(tnQ9txSgJxDu`yDq&1RMx9kHI>@^u?Kc21%lcJYA6VhyaTCR zP!7}gryIt6PxHunddU*8lza6eT>R%cHh;*Mka8u)vCy}|$H8sI~8 z?@|&Hc+F?)ToTBQ=at3Uu^qbex~6X-aB$+Ra#%P{6Q1%t-F>&<6JOzVbY+c^>hkAX zae;CxR0Lp0MlETTZ;uO<@H?4$<^^WGoNFZQ3DqzPN$q9aCj5lQ745Yk2h#_piiW+f z)N4P92hRu=2q^J-jH}3`3mZ6B=I33BqyCxpgp_662Z0^SWF(^wTg-II3nRq1I$oSO3M!H3NdVi%t!qSbd0Y6V@q`t zq@pz8G(Hg!5J-{Z**I$NB4r)%ZF z{v(b>L{t>mRR#fSF|Xfnh>UoMM2do-Mkp#Lm<_*YuxDVX7rVwl&^{4h_HHS3b9ZL~ z-jiP0n2mlIj%Qxa*cdj(zVDg2*;WlU2^R3^AgP>M&D)IoVQ~?GSP4M9R#&%G7EJy% zS(#8U%6Bg!jQH62!6fulR0E}@ln>=Cwx~uoBfIM+a|Wqt z`8lFy)wOh(|9YJ#{H^`+vdrnI@qt~Etrwcilb33)ila`iT}GYmt$z*eTzp|M@TAh; z(JfnSAe`o%G~MS!;yb7)C>^LlUerUnj(T~T*44fnCT5HNeq!*C__f2r`Tg{6nPF>- zS?@g%HXz*(MxM1h1e}(Nn=UYaL9ih8JHDrhm&+t4=JfE|>S|$G8L%hw-6h;mOFDiQ zsSTVjf->Rb8*M==`tmHUM7ulHVYF!? zSdcJ4z0M5TJ%u5!Or>aEtJqM)cX|ZY#lPE@q8F-G{=8>c7_pjJJmJ@-X{jLHT^9Gq?0^Po|ydu2=bdw#jA^*aQ=BG3PHEs z(L6$YD)Q``pcNdvu!oybC({u1|2`;Qh|}HMo}&~ncbQXPQ}d-pi2b<5mFrv9#>N&E z4MqPFXF)69&v}DZ+&kosG|Go*1u8#Rm;duLH;KcKmF4y*f}pzE%A<-C{9e{_J0jCY z13?ytzQzF|a%Ta(Flh~4tzhc=Q8SdARJO&Vwl-(P4acAZwjJIHrrljl$kt#PhZGEa zz%^A>olmysq?&Kkx!_fY?8R|6g=316smFYtUlt{(q6qX>wvopq5z?_DNS9=x0~Us@ zepCnoI4^QcdI-$=`dqU!PoA`+&%jAfp6>46SQC(u_3q|isEUVM?)ccHp3+*1k>x+tXL;ngOD)GWiNrya5`dWJd&iVD>0<$p51!ohp?_N$6~*1*3$Gj7q=4v1QmPPk#5wTOyl z3a`)_d;xL8>mbt5=pMD>KNXN>jGA@`%t8=JmGrBi*;B{zdmUOK+8~DyPqW}b{}KKJ5^qZlA2IOs0row*{F-)bYMct5(uuQ=7Ng7k3DIMuK~d z6nuOq>N~^IkymX>`C6MsAFVT-h-x~5SGV%z_Iim?Vg`A^Ab?LzA5K``Jv-5-7ev(=9 z7qdWS%JR$XjaM)*m=PP^aY;G>+OQJ@4f4XKTkx;cBQV9Vr= z{+@XlA}L{(dgkM&rbd`t>=*^r1c0U^n3-{Uo!>V{wY62ezCLcp2T7dwy=8Dz##5e{ zk%2|$T+uCxcakGoCqt8tc$D{2i%GUFrMg)`%|LgDia$h>>tJ|Xsz^Of&MfamyG6aJ zLmaQ$>Q>_iHYL=2wm8k=ySx+VXq=O5nos4q`p384O=QG=v*!I>J63dFh}R@y%uU9Y+4n+)IeKJ&HRjv^2g#zYYO8L%Zx>*F1j%F}#|VI%ZuD_Zf0 zzNv^Rth?)VO)^;|nmoPzz@w1PFtjh)Y>0r^+FGTe-^ugA%TY9U;6YWU6Xeq%m?$7@ zcASgS;PunMnUgFda;t?_%S_AI|*)D<*(Wz-UeqhDT*1FUn0F zE1U4`ho;8^NbpO*n*^PVE>FIulLWVu^4U$o96KBwn)yO^$6X2pP2~*1#PoC@NEZ`F z9qspXs4*wNl}|0|bLyNmt%gG9f$@-?gQmu;7bK+P3!TN^e(Tx&en22?7m}KT5@Y0@){da5TpEd-)Fx(W#2q1#7GgYzy7D_4CG8& zpKG7i2txGzb-UH}WtTG_QMDdk)prS*@BB_a2lcSKT2>+OOauiyTm(jtkfQ0{mFRBE zRr5RhID4a)2r4qh_obP01^>aRg}m7^QC@JT;ZF)MJ7>Hg3Um@nqEEtjplz(+A%Ns= z=qSj|Sy5R}R`n}IdvJabLqYDrJGKGzxZVaO%I5WMTx9V(h(bbj+?cnVciSRk!dJI7 z%~lrZMw;p<`7wgXDK_f$B-PEz|MB1*AH!F4v?7?Dq{~CX&@8E_Xg438o}SWb{{Zl# zSIg@k+GC9=V)3H(_MN~cxy>Mdw*f)|SOac5-=NF#K`^j|h818UfuP2ACng$QUTo41 zp5xkf*^Wbv!}w$s64bnixIzHDtE&qU0Dn20H$=7%yi%PgxIg_`uQ0w<9KqJ(zH+!$ zx4msxuAf$E-Y@&^-3l?gf^I|gzmAY|+h3zek66W=Kj!A=Z||GeJ+wYLJNPAb{c`9$ z=gZ67mJ0_ziT2G#cM?s_n42T5gU1tm)Lf9G2$IR=I`_^y*>@nM#o%|Cj9blaTMa-A zQ3rP>_HM57GOSKBB=Z*)vbRg=2Zc?0KW%i@t8(3j`XD+MQQ(=d3gs3z^F6-vFqVmq zO@Zw$GNQrkh4a-iGrqZ`89mYwXTEAtSN#;eb1!*m63O*5qSmse1pkYPt$)OUDwB3z zB$d*CyM2F`x~+sxO#Dil50QL;9~B#mXTkS#wzR19@WAzO`>w@U=Xm1GOWgy4da{3& zk@u?KQD$?QcB`wa!@>jN{xByuLyT_M1L|AUS-Rk{85J^#LtC7q&H_&4w*#3lxV5xg z1FsWSffBLq?(R{rw-yI8WJ&QKamIM#o4Ak}H7{Eo;dQfyf}jUdp(QYBe*O$Y?>Y!5 zz}p4pgx6Ffp90~@V%P(bJjy**Ewr2ltO+V1KC%FJBq!A0S_sj}RvMlFf6({GUFx&l zO<$ANtH^yC+oQk7&o?nrhZ?L$-#7bZ`Iy8I0~_ny^9kRNpq`~yf-p$c==lC#LB97c zA4L#(f=cEmvr5t1B-a%_H&oQwopz<%(b+i>Q}iDE$QWShDMsV|D$6TsOzV!0JUBV% zYT5xxaE8*a*=g}#N%#>lA5Dr*PrW?C&q>ABHJQ1;=&ZSgAzH)#_a)afsQMq1exsKn zTep(@+U9$Ud52-4+E%4ntkk!!yWs`Fz^n|8P@$ka<_@h*)>>|UFRCBT(DrONwh$*% zj-L97iy2VO;F$^gY8aD4dH{NKaB#o{k57{aUkiH>&Vc#o?w0AaWcsKvIX_QLM3k7E zjJ^?}?eUTlFRXJhuI0Ja?=15iB-Gkc5c$x&z8$i|qm{Go`Yn8>lb{ZUM$GTFYV{f* zwSYx`QB+;?dyCM6`)nBny?bX0Wznf_-dM9n5((jS$A}Bjg-9Q^YPn;?j95YvPsZ%k z(ec|q{Asl2DS(b9`H$_Dw(Umy1F7jVA4J=LvY4Xc^QCC&xt;zm##oei1yDX=_|aj$ z!CIC_1BGU_%l00Yh&~r^c|$tlvYk4e0fj-Sg%E#k8)X^W5ya(@DTs%u{J@i9Ci^+# zP;Ylhg-e>`?iMr(;j zx3&ht%Gl~F)!24UOt=V8ci;FWw^NWvQu5i6($z)<(1#ffn&5SiKF5}*AQSgBg^nvs zOw978{k~iQkF10e2pze**M^13#^2$nlAC{ErE-tGekP&q_ZRQ9pga>8->CdD&nMfg-+;4xz=jKwVTAtmU=2DG& zv28T&*r5$0vMsL?5)&h)rL_j#;^Zwdx0mxyZdW0>C^|SgIqH0$3m32amQ1+G?uU$o znP})YKX;PMpyWt=tz!~`K)`3&vXI-8-&`yD$wcy#M;U@2uqlKWYux6Qm6a7_q?SZ;nZmz% zpBx{CJI&5jTTf&Nm0@D;+Vr*u`=6|el5EZJuWajgqTOd787Z>1zWI^HR9X&jd?b&% z0jMlTg?fG%0gZ?zWQ2w2I%pSC0+dXAN!=DGh*WN#p}{N;HWn8=43E8)ED`S$CCyi_ z)>LZs5;b&5W;l_uhLWqFD_t7g0bUw2J>5VFj2_vl%wI}`j=1Yj3Q5u_H@CJn1Dt+^4VqxUq4wr_a6o7dQzi zNHd3u#2iT*{0VjiqDBj$L@;e;T7g0w2Th8WpiWyw!}5vd2vUa_*BOy=pQmswZNxba zT4#wJ!&~5D0#vSa(mVtFA1q&lZN8hi7(ORP&jetrq2U5d3H*;AM|AyhY`vNo8Y(X= zD4dZ2M$qc`<;^vTcIbsqd-cH?k^fc5{EP7^Pm}$>rT6<5xlGf&Ruh`l-EY~Jo>F^nC+eDBbWEu8*o-%-ZtwvU)0i) zy5#0(%+0AQEG!!+I+_oy_<3KcXaaf`uPeoEhwEOEble)ha(b%u?3rn~e;r z8N^7!IyI6KQ~lKPREumr{IDY}R2Ckk%nt0aKxpGie@D-dHzkIKNu~`Db!guyja5u- zwlFS$MdiV>Pz>-L=s@Km;&7So?Hv4WdQ?p4X*SKmb-&;-C&1oG#Lf{V`nkMCj*KeMokMHnyv;sjVc(n*-S>Q@U z*S^wOeE>HyAQrzHCs1F?9GWE+VrPlRL|FCq)>n8qn|d|O$1L~6^3S(W3A-{@GKv3wm+;p(N+0h& zKrlY7?Yfxu9EUKR@a z%x#DKW+9szonnp7SXBwrXa)8=h_}>h1uD#c(0TyA0oN?u)A1>WyqP%?esV4rwyjzH zOxgQ^0ejoOSU$TLN7w9r1jxnL#zsXpixjuKv8~O9#>Ub_0$d4#mW8?B_SD&yxTTs= z#62_3-n9{L|ABn%2c2uXU({Kin&H1gFE#eqa6Yp(0&;LORH`E*puw4vJaVu5pagh_ zX=&bTo=}H#ae8`qB=G+`DAMLk29I5b37Y@Zz@g#e*rbr4;0raikyH&xB0w0?s{Ah? z)uVkJkq|niucvAk&h4lFUUgs}Z*OlF7B)Rk&M(OC5b;Il&=u12amq%WYzc163u*j2Ag>K*Yakq`vrmew} zc>B*BD1hPo_PFxrvU<2Y8YZLg^>I=e(rM zaNKN}=X0Hq6iZxx5X_8 zDM^_(O6+WG2x^HUXRwygya!WwUT>oA)ISM0x1$;g(4%s%^uwD;m4bMn?i zD(29O%WKy?o@_*^5EH&ODIA@WLLaQ6j8QX ztFhg_IL=WEM<9?8P3Uddi1gk*avm2mfaS|-5H)}mqo7~&=kAEv#p-lWasw&2560zDx zU@U&6J@_b=yzla&nkVGVb#*N-CdK+^*1pZkRFeiSvOMh%Pz{w5*0r=}UXza+I4vYN zT5dp1Ne=DPSJCp$FN*wJnhQ%GF>?|i;soqg!xyiihZnvEm6V=&R>jBjge^53&aFLP z$Po3^ar1ef8)llBo#!^Ke$#S(DvLuiVfBUJrTvtBpJd5BHIoOgWJA! zvm@{&-m?F}1DRI_*A9e4LZQVb5|+TY)WRvy+Q$E^xh+YlfJc3|np5QaJ$Nw?Z54z$ zAy7A-o=$0-@q=&>cE_`THnyMUJ*0ilxxKYj`l}Bs9_kZ_qln1JF#m_I0k#~_dlZL` zT?r0&LA?ktmh<63M@!x?oQ>_x(bfGZMYg9xxG66~( z8NwwhO3UZW92sFXPI4n3zkMhw^)z-4K#qrH4&X@!PLWKk50oXYY5>ru_Bm84%-?Lm zk5l6Q-YX^vthvp>q>OO@d%BS-2d>WQ7Pmk6NDfwVWdVpCVzBH|@6~wgY6b`wi zf{ohXiDsj?0It8vlwlRz@Az)no4tQi$y=hZUwdO^D7l|>7pX>ca#=3s6Gsm`5@&pz zuJQRN`H&N1XJNXLlZutvb8M3F8KRv0vXO7hkCcRfEFqoWhY_Yjt~rOl1W zrtnB1$j{A%`vet8pI`Zy3eYhL@NsW;TBGnOVICZDY#oS>4ndD-#&#w$sgz`MSUC{7 z6GYZM_8Wm{8p#dwzdjprUW$8{PUA;d}~ z$uG4fv`HMy)79QE#gG?e(WvQnDwDrQP-ESDXSDEQp5@TAic^6S@_cUA`{*R8y%?|6!+shV`uG*tJYkTbYmz6k(b9rh_ff3 zv`&}(`P(a2F#F4r6;A1AckYzzIw8c{eip4!@IS*zZTo51n4j=W{y3jpcRexG`hH}G zh&N?(GuUbrH;GQJFI1O$NbcW;jJDBMn>-Bk5pV_ED zI*PNicmei@$F@I{9>pD*J+w=C3b&dWdZcR!#ug8zoAY=LJ<4A~1q26+Hp+}Zv^SH1 zvK%8L3~mE0t)(T&ZDr}qrOlsiD>RoC5jbdHMQaMsmD%12oXkGe)d^vk`Y`fMFPpFoZf$MP5bPn@QcYPV`i@`oR&mAZzlH;t-a+IF2^vy}?7fZ& zF_0(Zg1+|EzYJvhC!P5KDzpKZ@aTt7yd1q#(?X;T?yjLK93&wGa=f!p&L7pY1itAA z>0B3GILznDL`!NaXNg7=`=tXQ2I7^auRbfY0j}>B4zn4*vAIbp=GPP)i~{Xrpv_*8 ze+pw@T{N%PEBp14%=K$lFelieU?Bne?`_wqajU66^Y+zKmM!_S0s)~RC1vIL>i;ax zTn^EA`O>VmGdH+QP#Xf1HH(@mJSweWP!i7u(hGzFm-`aUmzU%76|^fI^uZShkyt0` zKXFj(U}^Sd@Pk^ld$}HSLX`B>OznpG{V9)6KPM)TsRn^qR6Uh(u47{mzx&#+eA{mB zSze{EANfFLfGgW~j{d=c9|QgD%s*ba{v0{ipZ#Vo@Js(@Y?3W(Y5KtyDk7ZWJx}t^ z{C9TDgPuV$mZ1$P5)F-7KTX24<&N@SC%)%ib+r*)V9qdAbC8fIR+uUZyeAU_6bGnt zmSz(pj+zVc@?E$zA-eQPP)D(YLn-_6(6G zodHr+ZP{na*Z0lMEJ9_Z*BLlpa{VI@E)bJvC?!dd=hJa=Xd2K)_ZGx`4`f z+Yd3N2vC#1P&@>5DfpW#Dqn^NGqJGP0Eq@C7!Peo_!fW0XHTAP^LcCyk6O46?rC*i z+C}Quu%P$l4*2--BjkbxR}KK2475d|F9oVl%k`n4fa&(`M04jIHp%?O6295v>Vkng zsU&`vT&p#|q!}0-q(YrcOmO&zrCzGLH8aK5Rn=0o7U$jJeu1pN-$T=@Tl+EC7J^4V z1_!UfRCwzLfHntsj;wHrc&Z{0REQuUcRV~QayTqwiyVK5mJNJS^ae2~xv?_2X9}J( zkS95|SS~LpFXOg1H+@*!Kkhb=TNWMVs(*gAzK(=osR@;9>%8eGR(j2gOihz$_4y>J z)sYsF{pI>=erf93U28iYWTf&Ds}km6e8TOO=Q%G1SQa{zBRBXR@yIg6?{0lDuzgsE zRg#6i=5JA31Cn5DAe!rbhVMP$H?-iNJQ4H%-qT|V7xL;|4vunvXf(SL-W-#Yk?Dq; z2^I(V!=R@969F3|BU)*QDJFDMfT9S89T=+NijwnihHnK+tA?Ch_#)ds_9T2!EDzJ} z9}T{Zr@tkT6UpnHa^h)T(+2Q+RWFyy+|84g`rEA5HBu-jbVDkVDwn$_6CDW-sF?7( z7;kP%XrTDl5QGjeQ*}y7F`=UgCMF`OlT;13g?rfe~~39*eOo%W;OJs zAC0TA>p|rH#}0*~#h`XVjI>xG^0l_2m#1j`n-5q{%^?Db2ruky>g;6ML`Ix?dtp4K z!(%aRDEA`~z}Imco@&o2u8NnY|3J)MROYB|RsB#lw!OM-)y+#ogDAe2{+%3jW{iJl zc!`XvofF#s=H4NQRmp7Hboa4fpsBPTV{GnkPp|PACV6~0ML+!GG8*vXNqUoMoT;ys!;o>@`rgq68`0a$-Z2HoR*U|zRv0kpf zVPg}NA&3hph0DV+_CTZS(>?6LEdQNO{8kqB%>54RMH2Sxg$#TKCa~Xq^ER{i7>$Gy z%j8xxMQk4t{Pu)~>BhbGw6)P+!0*)Fv{7rf|ME&-TY(Xg%}W2Vvguo5^qwoQKkhGo z()z569xw? z0DO4+^4?`;;zeywu8M6(M2v{+X`=rhuFf*5%69GAiv|Tj1w>j>S{msRknR#`kVaCv z8vzlKlJ4#Cj*Me&!A_naa z)D`t1QCMG<05aoz3-ww~zC=Ope*6bh+l3-wA3^ZoK^jtXTHGNHxi2}Q=HC4ARB@@- zLmuTL&IKB?FYU}ri7U&R%Bth(AY$;N6hug^Xijl^iHNW^(_@Xph22e)v+*EoZfLS0 zOwzV(anYOqK0W=0n8~ZKUxL-Y!OX+NQndO&;{g7wFAvIy)m9^kP+m;pV;c6c3hhs` zv%2?tUvVUrm6gFcp)W|@UUl%u;C*Q(sx33dV-}XEURXm2%?=OS!M@OgKrpfTBd)RW zAwq}|kKMC@RK8Rbe3PA@2|q2p`fKs}-M|yBzhGy(uqb|A$pf5;X^=nzh*(Ze&K~Y1 zy9NH6mJHwO;U|2!w!s4hQC9zux;zldQEk zIQ*&6rpnWdaRZh&`G$*^@6hVtony2AC}-~*6BjqpHFKz|`(k3`lI%XY;*$fbqA{zt z1Ra3h6&x<;?_O(gc*+Tr%qA;BoVT~I1D0$g0wf@??c&m#T`d5n+h|cZ_rkkMHXo43 zoE#s6rMslGaBSOo(VKk|X8rAWS?tt}d3kg+t8If~aB8Iqh2A`BbUe842>5)j1e*ql zcr5UuE?_VXV$U}ioLqkI$~jQQWGo0%yKVYO2*585A4sdmaUAuNWA#Jm);z&P0k^II zbZcjuJT^}7L) zOK+RrVfbsl^?W(}K0d+~rGf&1h0r(Y(LO%170k%Z4esV*EGY@qu+xmbqsSHg0@8Lr zC!)40IU94deBR&p38OaA6~Sb+`8!a(&hU`c>x0nC7kZDYMTc@qvc4q#!Xtj(+|a}v z*t?QRfdOU8OpgI}0CHfplOv0JHu_CU0(ng6&Wb$}GCw9VuCVB($h zohd`ZA@HB~2&L~9K*S-9n@neFLT?LF0tVK4d@yM4VO{wE?EIOeq~9WgKLT<30E-^| zp#TzV!obF1l6>9}q6z{6OLc3Ds;X2WlIxN}7#vX`pn-}}c+tsI(T`HbqD6JwY&7GB z9?zP|7V36Yj9<({RQ5?cBqbkR*+_G|Zj`gMm!FU(na%K5cF=xyxNPU2cx-vDR9 z+#d)gf@;|g{CKNx#e3byfBI~!NRc&ptj?%gz8e`$V&{yTqpc3z`% zEs_nBy@@jPct9hbF_i!eQa?YVT;3>pxRXdFdgSZ$eBP zGX3_a`97u%d8|y%hY$EE-iJgW*F2OY(3*40DNvYw%<}XpTJsy~4rWsS{n_rwxERuh zmkV#o!C}BcsFf}f!+MGHiDRw4rzfR1Cg%9?{9=Gj0tFfBjC5&Fq!HS8dV~~&>Q3eR z)4M4ibiw4uI4&V4q97nw{`*u!m64}t%jyxHY5R|%%P?16+n3xUk(RS(Vm}=DxY$Ix z-eMm75%$P>!bwkGp0OX(*$7jaW-Z;k`bb)WwxOXY6{Acz;C$Od#=VX{6c;zQw%$(} zT60_g+lGmWnt}p%Qzd)C4%lpM{z^N$x=v3|{X1cmd=jIWKUHvk*|9gWy|NOR6a66} zVW)fj$txC$t}b&#k}=d_up4@xw*&-ip#SVUs;Jx*P2%%dNHZ$XUI=I3DjutLT$2Uy zneeW0XOBrfEw9$=9l~+aKqwk|-XeLZind-84!8Z0T8L-b=ZF@?{KONrzU=6=+~ovN z8Rz*1keH3}D1(S$!@%9l)N;!)RZ&Ze7YwaXq3etfOos$x28)NpQ3Gniy`eW4RW^kL zQq&xFrh!R}eHs@Vdxvdx9fBySIt5bnSe0b&Jm5{1odMifH`~jUl!pK-?hiCdA9v_QTN4`GVRf*C4$wbo1>gHyLLm@aOi_3=l2L=X* zd*p*gC3022O2)hP1W%69{t*^#gUr#Sg1Q)JGUn!RD`B3vw?|l8`|si1>L(CvJ7HOK zc|mlDh(R)AqaDTW1(P z>$l09RD1Wt^iGCM7pc>$suo@S!$27RhH&^oHP~Jv{Q5(2(`6M(pUX+qb=}3(olJkP znElUl_>(We1L~|W-s!Su=HP*`{rXirxsGsm4uh=$se%aMF8dYgU2tK;gct0VJ>t8< zBy@Pw({Apb%UQFvfv)6DR>|>+9P% zROG0GIs+K&id`3tvlR$u`!Vox`xPNipacN1)O5h}@V$yz?!FRa%t+erLki{%wcK0i zr?i5j;{j+f$xn2?yA94?{Nglim0O{A1kh{Jp4y*flyfn_BBdnRS zyw6vuVgclGk@XCDAV@VGXLftXf-v-WXnAdo`(J$QlvTlu+hz0`L=dDZ7EL^NX}W`G zLX2)Z-zrghfI6d!EvOeOqQ$@~HIMk9?i_*Bo&npxCo1nGAql=*iJXu?mn|V2AJB5EKKEX1Y~4U3@`wB z4eTn^s3^Pj!F73%yJqq&hLvwnZOx_QPN5m^qLf`>3>#2%XFMPFFmTI)!f`{aIyS7X7i-j^ab%X{w%T(QjqbMakJqfL{Ikp zR?Nt_x#t`BzRNh0@C<@SYmj;*k=+DHijaD;1RFB&dBCdVLvr$L!fiAJ!c%Dk-sl~4hk>rQABj! zrQ%8X;nn@3y_MClL-=}9MY{CGj%2Y$v3Ie?i`rS);<~zM&B&{5$u1QPyJyPyNY6w~ zLxqrog5I8AInd(hpvoj}ocB|lq{Y+sxAwN?@WB9@7n^}%21enNyD z*fA;;fQ`JR9r9~trP-MwYM>SyGtu#qUqS*c>&Nb#NSkYvojoqXurcdlO1xah3k);@ zBtMnM#OXd)Ez5qdKu$TkIiz`U@oz>YTk-T99!1FfU zSe^I8du3_VYicog@)#e>dD5ro-$jBwqk{aPybd7^^@QA5!d7zXpFk9pJ%i>Pq2Bkc ztrLNvxS)(&WeE;`cCZ55?mGGd5Dv%6&YoFR-^yjnK$Fpeu^S+fF%dFyawObVlQ3}R zj*_g`dWan&ID9*>0~G@U82!aVvCpVt@tIn*wY5vME0+PWP*7!WVnVI7{bO^J&m5LU z#8=(ol&Lt#!5pgfsw{U*dYFB#^{Mce!@CZ?l^aM)En}jVyB|twXwb45B)fZ7UtVUz z`#knsT2BiDPm-L(V1bJ;`Q)hZ;&l38&0aB8+?1pI-yvDgTNToe-YY#j?bkgINzT2m zp3W^T0fh=sJh0ORohOuY2DMgG*OyDzg{6WS5rv_>^IGKx6vABQPxw&KE#%zib~7qV zi}Y#RJhb0ZhCLnV`edm}%VqMS!74qtcV%E;fScfSGFtSpv5ro?F;%d5tM_@4!AcKa zxa9i;1!d$Rc@heW-#`DR=hp=X+fL5#vFyw_xRkbZlo$SV6h`eZ^5xG1kI#R(0F|d5 z9oceUBe%@f2#M$WL(xxsy_kA94KoVYo##*jF>>?szfDhnpXFf}CB( zoG`JbTH7xJIfp5ta!rt2>D(8VMoIEg1e5{-0^oxJ{mZG;;VC?B17E*#ne9Bn!*tB1 z4WPV9Zi|xoHU_eo+CLhil&KE|V=)m=j`xWmFFKS?K!BQ|1eIOy^21(4HIJmuh}?H-)Ck9Y!+ zLf}IE4XQfm2f&*>3n~*3*}D88;m(>M^DI2pK2y&CZw`z(hbG@8v%tQv$d@r`vm zBER@SIA7^F3~=u7TuJ^4{rx?wMI7f$iD^uzzG|Dm%>1iQd=dfZA+*9aR82*f+PZ1o zPgW>AFmQO-jS9)&u7DXHjEanHZ7pqw3QI~#%FACpN%H7F22o&^gmH^G7*!NUU*DG3 z!grFoi-~%BNNN}$P4KFs>O3IYJok1ggp(gvNuGSE`E?*pDTJf%bwQ!1_~u(_bFJ|+ z9jhW^tqSq5hltPiTdM6npCy)Z<+xc23TXP{P%?91&wF5UFTBQft_~7ZAP;XCH1>c~ z3F#xuG;nips4Ui6TB^vD-7v-^i)NqZuife`qUK1dQ5bGP&#wAbxn@h{DPxGIWiI1N_HEAp=nh_tbU}pzH?KG^&+jE_-cPk1Mc}dIt-3m4-`S#9p4$ zUtKs|qzOrT92eO+Ij#~KnVPCE9r3zJ)M!5)mIk z5Bcmd8^}of{?WOsw|4_vZU^36n37n4RB&DGvv%4L2D$d6A5!_%X?8ZPDtfFen^Fp# z{*8G^Um_y1PEX%PKA?tp#6g;%j-R7m6RyFRf1gY_0Q#hKrG z134*L3_^^kY>!XBZFVk(n3x&a(OCBN57;lr9iH6&Iyg+oJ$+AkAmyz*1$}74VXQ?V zZIV2YMuEr0l@xpwC_kM;WVJ&+ict_5&|x@gSoZz9w!4X{s;aqp9;@#gxJIq&a>pz{ z%`;PJ0_`Mpo{+RgF5t?HpcE9G?^&1N{|8blB*ft0AOcaO6JJ_V0wNB>DZRE^n3C~d zdSf6)Dj~h+_hM-Qp))gNfm^;B4g<=(3+rUO%UZ;Bkw&t|kf6{;er_(QNOYfRn$vos z`{e_38(!nCx1qQqd}3@bt(KRwEbk)wgH3oFEcO6FV-OU)0F?%$aAA%=4O9`x_>itO z`-O4I7E;Q$wjxn?did{YV}JfR`GJ8TJm?~sF$r62<)T8H84(uEAihe8`Cfyq?lBv$ zbtcI>c{-C9+KhETinK1qtyJMcV>7xHd<*fIk(EfWrhJ^LjMeJxk!s;&=tLJosCcF_ zBFyt>bZ#VF%6jGwK4D~nk>^X_MEoB{RIqOT157 zvU1;n?-OWK;fwJK_C_#{xFG{II^}P-&OCDSIkW5uzI~upzcn$Z0~uc{e5=`CA7Ig# zm>~QrGBfEmRLnkpka~oIP?fDPXXc@b8?%sSk|SaM+o=>&A*TH<-GP=738Ac}CiL3v z{z6vAAg`-B+5-M@Eeg?bW-VaNeChF!&Z3bgwWtJ~v9$zNh({9V>Ah zfFK+RnkgV zdfk3Xlz1TwraPgc{HVizNX`NRJ|;BThe23mOfjDx5MOLakqRbyADWx1f3SKm{QbMx z!RiqRe@G7Z_=1DvTb!|`{1+vq^pk{0Y?b)E+}2lm-AcEdU5vWI?m}oVjC5~Wcd&B8 zn)Alr{Hck*d^h~CD?BbM+u-_=H%;=upmDsWwmWS$0KkD>y`l0ne~(YuT8d;;f6op` zyWAQJ+g!fL{GKmQx1!DaJS)$+C}_4p@Xa?|^A>*S(+_Q;lY)Sg*}aT_#P08(SS4dz z#NMiF>!5A(Y2RM7D?{tcvn|q z^~!@%s@TczKXny&s}W)p8Pgd;l&%np9FgyO3k!gUC4y(IU}(e)K;^wU2l{^LKq!)b z4L(&QH}Dnop+)f3DKf&Hux2Rc)`xk?0tTqsx;b5(%>4 z*;esN&s5p*< zm3TL?&|1UGkVW;B-cOhMF>-^i#df%mK`?80+ARs3Bs8Pfbmo zi|oQ;JX>Q4)#ilRDpZ;RolDA?Ia3V)UD;cGKKHY8jhpu3Bg>(+{PyAD$&vx_Qx3Zg zMfHV8DM?5OyK-HEhxlD&!g>y5jW1#bdMO4-wp?AA-<;gPy0W}JHy8$s-E^74#acr0 z#YGil3@QmTxc|v=;lPEF8i*1>8t_V9{%vvb4zxKWHR!*cP4G||yo#=v`l4o9(vuh> zF9lUh=F`cc$_P9^8S(IxmJ{UpI9m0?i#6fJg8H0hZcWSlOuIcx!0P%&y#?F`sdj+Z zffq>h^as>-o7xe@=JcxLOpUW?|X7MTjhxJ(a&X!1EtQ5Y2?2NMPW%`!cEF06MngegUjiH7*JUiZj zd&z#brVviEO)Y7qY?u@WnD#RNdDoN>*38;?_y{jdcRM0-B#J!B!zw?GkA3|+ zyV}sl$?Z>{@LZDYUrR}erSM|dF1}6sXjx`2Yw08fJE6!MnX`V28=Q8abUt5=Q~C?V zQ6ZOOy(Gl=x?O7V$g$tmF*a^tWm4{&{4`J6oaa)a8>LK>RW#7ZCaoT)v)@J(+DUvD zlLHkJdyvVsl+{h`cJ2{n2&3fFy??J?!9w;G;dcJ(5n*7ZarLh4)%oU5u(aMIS>(Ey@{>aNRdNL~FK2D$5RJz4Ix=wf&SSAl(Jiwix=fAE9v*<=-c z4Vg9nrH?>h-;u68`@KNyg2>deiiYu zRd?5L=jzf$XM%z2!`gO{x*B%s9>0rK@iPq?V6h7eU&V-AeTQ^p0K!6fOh!(=D6u_f z@oxY$EJ>%oaN=b#qV_nD#cTt$gUID_??JXmxHj`MQz8>xclSnZ=CYCk2)D;)Bp^c| zAX=1*o4fP@=BU(jvLz|&CM_l&0eYs$LNR+nIT}|U9@bmj(aJfhI_ZRvl8S&}8(T9R zM8%y{bcCBDwX6zKgl`g;(R6;q3JXcp2Z)%GOuP8jsgS=EoU`gCZdS>9OW8>0pQym) zCU_URme0oT{VP9Iqm0i`sFdh$hO>zHz+({He2c!ajuzFIkJ0<)qcCQdo z`m%X?a?;spWvNZm(8lHh6vTt+A_g?~KmlkwQiW2cQr7$ACAm&;I-Y%C(U&C{$ zjzN;xj|$>R#E}JBQ-MW5&BH=uv=MW8)F)_aVT5>>5HX%_+A&+)Vc}0wr_v}+LIS8!=hs2}*!3UrQ;b)a$6YJ`HWWC|m||ii&nCR5wBtNNH&zP8pK26~PSX>gj>5#74(t<{26M z|I(tOe$j#6US4TJp6g{xRNZ(o318g5pf-Im&`y6AX>4M`*3}&);2_?wD^Xc9`O^DQ zaw2NU3*OE1-=*g#`P#ZoBgt#{_p+pSrK7{cpG!(gii-y{HvWUQ4xq!;)z!yW%&E8Z zeQx^@qiM37`>bG-6)s6WqBS!k+}1Pw^lP``SYywwO%|6Lnc>`fvH8u+A1tMmgpVc@ zZ`@=)S5)$m4o^>Oo@-A2FdEu0msj-War$ckmmV{rfcJ57Z-1fg@~{;uvc%fPq#RKT zdVgnUXIu&gEJPv1?J=Y{!3CvScm($aFuX-EM7+;x^75o?;l?O(RzfS-B^7jg4c@bZ zsM24*Y$n?qz}*aP0(kR40jExCZ)Z1bUaX|Ocnd71>B8PeZQi&2ogY2c)SUP|zg2A> zbzY*A`D(<&>ud`QHGo&fM*M)472o*Z>==G2NwUp_<`WpMT%YZf2L+)*q$EfKZV4#l zkzPXMX#91&dZ6^v(S^8m>&MIf{()?~a8n!|_SS_3FkXHjE>usBkFTvI=p7GmI-EWZ zjoG88ZG9*5m1&AE`AHJpzow@G`8mQ$BQ{wRn85+O_Hji;ObEoWct_aSm1E=`!pPLd z^~lq2miJteQ3ELNbV?P~?F9eD4W!4zyvd&DwNGnqZca!@@VagGnfGox~fc{wt6Pebc}Gt;=Zd-&k4#s`Aff=sDL2cKkUwl^b_ zQqm0!=qunc=JJ!uHP6eb(q`_iDs&tinpt1}>iY&QKyoUUA0BxVt2DqEXz2~ceZ^xY zjHJX&G8Z(JdF}peCbA0^8=ccoIqo*(!F%0n;{oPo`dNgc?LoDw78_T7U7=Sf4<726 z1l{IGT5-}RhM(a!jVE4<&zt;PWGg9V-J2zfwuy4`dnujQUf;&1B$dCHojitK{bp?o%4-~)g?8WeY`fnQ35b~9NXdJoir}gZ5sbI^EC2ad(1RFrydngo;vz5li++^*j&%-A_}6)0^2wZo-16 z%=Kc%)6+fg@RqIZu8Y^xzkj#yv!*0+wR8G)8w<7ma?t)%8-GBR$6S4vI^;PX_c|@K z%-hSVU%2i@1U=VcLqTBjwG@*j$kJ(OY1PyI`$P!y_^nJrq7w9_emqQ6Nb*bmn!xCz z1dD){E*H zCJ2~@jl6vbkE0Mgb5NlP2?;@f;{f;r-s>hh<~dOjMmq4dw!RChf5_QBpVRt#6=<+XKtxNhHxDK9O}<$3j< zor6PGN$HKNv&t?b>-tkZ%Zu*HiYFL|@2ooLh=THRHWnrn1Q^9FWe4Xp@sfm@MJouk zzx{-Y8mu3OfBqmL!2Spt4+b0}II*Pr(EOco9xI#>gXYvJktYgeRQ*TXe8a%SPj%l# zw;|Qk)XOuNST?`mMmvysmUWFocJ_MUqgMO1kJ)sI^ox4qCy6@M=4Pg*Hb4@EQ59s3 z!)DZi*B?i^nvjgvf_5vpNw&DS^J6KOv$u}i?UbN|=ep?Hl{5by4!z17_PEX~YC_HL zh*|tPzI}O)TuUnq`B93Bii2wc>Fe%PZApv3yDBhZ0{{+hh@L7vqjLm=ib{Z_|aR=qiFTRP* z{9k-_pB7|Z3UQs=&L_V4P0q%82Vp3gyLh!6d2PFN<@@~kYF>xHRk2onx`0+{Dh|Zl zR^n)AAjJHBPP}W2jBevILiYFt#TE3y1;Um_dU}@QzU@{0($T2)bD(%pehludR9GxR zTXCc0f|dfbUtr)P)-~@``BGe6Wy)BWlS7wF`>o$p)sIp;xRgCS2PuXZIV`mVzXS1B zwD0BA z)7sL)qQP;^uHDa2WXYUaUbu~Aj-KT)^XfK3Tn@2mn0zj&W#qS;5!fhljy&Y1MMla& zccY;(1(PZO1V%?g9wDrb;fK{IE#rlxF&0a7O1v=WkmL>ydQt_S9kVPQG%${%A5uTPddJo>i@GkU}1|1OVa^5!d9>u56G6S}-QcQWa@ zXtq#sG5J!Xx&NcMe6`npByCMd<33pw*X2(6>LqYbL0eP`H3q~d%!23|3j6{LqZ6Qq zj2D{A^QZJzMql_OZ?n9trma70%E4V)XwYYB^~}tSbGBspZ)w{<|gcZKm%GJFlu!#Z_3r5qoMK&+(l&MCWm@F(Uveph>IQFMaRuRp0o^) ziAnIq$czB=j~0mXVq?dkrG6U~Z#}R(Q{6iN8u6){!ks(-EdF-FbuW&UzG62rhd{_=M_ zJSd;YxMk;cQ?tt~cTZ-&h)=O=UY=La&#&h1Rht(^CqV!-Of9A%&(ZhVhnJT(*W;T| zM3q(BN}mI|svp3_H9EUy%b0#tG?*(8Lt(SH*wITbO8HK&)$#X|F9q5$Nx{G}X!zGz z`Zv}3R&=-)?oJC-)lI0z4;y}Fsi5QH;sO(lUSVY}mJfu6L?6$=VoMhK^KTnN5;4C^ z4U{;zkF5lAXSikzl=+_-@f;WNIJiz9=-H2?#!+aQnG*{7*oauEGnv+r3195OU|+3v zjStiG;OP7JpjOX+PoK^kb$TT*t2E;Wi~j@hKjfXY!zlS7r}@PVU-;r6GXK@#zd!uA z<~Hx;>8vA#V-x?_O$Ky_eEos(d55=LA@L4NvZ|gsmE}7P4K4PE#4a4@Q5xFXh9(m& z)TrozmDSY`BD)Q3>k2vacoX3l} z(J%j$mGk5knp%~_as7GlQHBPKEv_#IH#!YFge=9DR>IV#j%VcZ0o#3N6+hx{rV-oE ziWc#${y5bBOiVFrS4gWyPfnN9x zq<^35%ah?1t|Br6-wp9J#qb!7pSMxbr+n_+TUO8+ntQ1aF%0Xx^NZe;XQL|V)rK!L zHEO34Wa4|3_5{Aq#fC{*GszMA@9&Rg!v+kNkfAZ;t?m=6gpU~*SQr_&YyP4jz{_Mh zUMKu+*iq<>5*kQ?7|cBRgkH zwf^@5gU5dfX=%8gYSeeXrNx7}i>AN-5WfyaiGj#dx;*&r*w_CyEGsKro;{1X`hC4u z_9A~evQdIERt91-+>W<3+I=oRGV5@-?f-b7kot+A9!OR_!(b^)S5Oe}R};1za}!P< zF)dPhSMYJ0<5Nh3M~>LVQd%^&m~LfcZ{_mAzou!iPQxeT>&u@>h=XF%=1I6~V)V?> z1MhC`vJ{uU!V9k>BqUV0{UwrEayRR8lODV6@bS^v60)3v!X|?6W;eFY>TNT{>X=8+wRsTbHx8i-e$7oF{N81|t6%TEfvxH3|_V}VHVl-C^`bR{B zUPICI0I_eg)W&dqHOKEuDFJjtJOTn2z!L!;0u2?F8Rj%laWHG992`6(23h#^uoFi( zbNq9XuH~X_DlUXRU3>-xF!k;gq9X7(*zqm{p5YN2&=Guy_$tep!(rJfO8F5+=sMtY znzH|qlfbs7m_#sz{OVO|ShI~drKCKfqj0nytc5G))3&j#-ThSJ_OXyLr(0mFIL9yH!h$ z0-)m%QL;m9%z2#*P`!CJ6`}!7q32B|xS5S+H zjD$vVEJvWJc=bjf{C$(@_38dkD2#B3xn!C@LyL`ufEtqv=Ln8;9=rMPp0iOZcsgdUWbZ+3Nyd#Jo^>36~JTubpG0fsz`q8Ib?SwW~F ztwPO86y8EwJ4Br3@*vBD^>`Z~+pB@P(Ka3u>0~GHS8-ik3+I2$|iQ9ft(Om^-ASE1Y%6CMGN3 z5Z{J?jF8Jkq?_`u&h~*T)C{g6qL~Fz zoc7eMbV@!AW|0?@hZ9Ojh?D8^g!&dfw~CVp0%jca@V`L=YgYjDg)0nVOP|59XFie! z+bDerdT&cKU7xpTF38l>+{aTdFbE@anXaB|7CeYekIkIUGWlXCDCfZ~XcN$4HXJ}# zB&DxUZn1ku>GvYin?1o_3v*z^rR<+L<;(Gp=)B(W1fT`}`+lQEv-OIhcGN6uDIZNX!^kja5e3M=HByuHhJ6fS*ci=)t^5r zVbcev=-s;x@KuCHEXzbzRu(GWQ4^;4hMUYWu%am?bA`+1N}%7VBj-TXZr#|CEp-`HtAEvb}rPsqgz z%EB|CM1k70CInHOkjUCMKQM$t^GLEc6sdMa~KEscUG}o1wAsYB`6Bu^3mLYB(BOS&c^~ zU=hPFUYi7*7Q5=@xJ4w@I! z;Dc=ntZo>p6t}9ZtCD^GoV)AmW9Yb6IzwWx9^T`zTuprU2(47sI;h)N{DJl_!H7pMEvBA7+ahQ}w+3C7tFvoGOwCU>?xY(cM^U;PC>d z7X&6)OGrpa-$nzW&+W)~Tl!=1M`9EtO0IYQ+UjKr3dpHN_|kfLo>)zA)@o73yE+Bz znQ!VKefdvL>)Ws}h~7;C_x?PFJN%R|dbxRF=#c9W6l4R_Q~-Q%B-!YjsCs$F0@~i^ z!VPd}00XSjE&(PbT&@<7nC|Rxo5Na+^4(w5ZD^OGy6>i}-KVlW@Fe6ZSPo3X7z+twPIjl9; z8u{thuddu~5YtbvQyXk(v4zRUtz(F(kNO@UAbT5T`?*r?cH}pA7JTS}?gyr=kr;@+ zzCI!$kDAm}Fy3eZuV;31Ys>v~-$+7`3>A6ows0h2E2Q@RD?AB6+w@muFaJ3Gw`yi@Z*LQwk`!%^xg~cFm;P_80|C&zYN>F=4h^l#p>NX4bR=C1azGuCw0}?fxJbJbm z^V73|kx0$ZVlrh2)KpWW#=ph6)Yj~}f*e4ZKCCDE`TpS0+y~Y^Jbe5Eo0l&IbR$@w z$2<-JG&3N z{2Qbu6BZsRXO{gf!&mO|-;=~q&Q}+Ei>3V|^$)qi>|TZPRG%L`ta>%l%GNF!6S})p zUaw{Rgg^Xm;J76Y{lDOrlg7ryOAKbcT)o}9&*V9ZmefI#)?CM9xPtdt_Emn!fwyNQSaaon|)=5&cD2SR~{hj=yh>3%u!lxB< zP+z{vM&#yNvE@7)wGm9AFm*e&KCxVmO4p|No8}vJ#Q6rj$K)rN|9;eW$&WK z_M1Wl7=L}Y(Ru5AQql}m8^4IJSK*N@`vQ&%t|?TSDs6v=kqo2nen=v*oA2_3)Dx)# zBQ)nhVWF$O1ivQvhsmR(F$$$IVROLVTM*)|EL2{anjf`UNCUjKRFtajMzuumU(6bKt zJX8Lr+9dh7I=YGUsnglAxpz~)sbjhR_CT$$Cn4K6A5)G(tQY3i)@;9XC$=c492@3A z^8BeqkUy%&^ocrJ928MrCl_S)82piP$>fD)Wm2^ikS)D2a^3tMkq8+=en_*-=}Rq<{-f`AOkAG_nzxi;Z#)XyYaaxv&B0 zk~gw$z?1_U{c!!*niO3kSJ|>g^W&ofM<<1_Rw2Wq#Jb;KLBi=Ao49ig1ED`Ad0VRT zR~iRQY7^I_1G@OEq20z$qiUBmijBl|C3)5TDzt6Dk$$u_0Yc%PXfjWbsDkc=87|rE zwE$5{TVsfw@}8t!DP(!vfOqf9NIzh~n!Oq`^YTWLxp!H~a=0HiJ?>K}QYj5e4a}CL zDl9Esi;qWfnGIB@0m=?q%k`~5!%8AX;1$QMg?w!DX}i|vqd4ow7Rsah0wPn*vbRSz zcch1`?_%w2p^1#0&suAN=Z56QRZ&_xzF3(7;y~VH+{| zMKZZmbXHVFaLD6Dzj<|33LSrF4a$NV)bmgyf&vFdD)!$i#O9M2pGtU80>lnlZIbj6 z3NDLL;8ew5IT!6twK^;`xg31$fD8H?{^P|c71r3ym;kkRdoa^dv9=QL9FB(v9%g?Z z3;3pQbaF)l#19`bpc`$e=7EFZu{TO$iq3(XAdAl^9?F;yK?djq^qQQpVtQ{_H3$Uh zog0ZyZI2UX*QiYHxcB+r;LyQ8Xg9%=w=}V+mkWj=E#Bn7o-|i=eQyl8I#ccLgwbq_V%b+lDy`N7q|DhTfBs4 zRp|?u9{2Swzs_S;%a&>tWY`LBOv=6i>oa8{PhP=iu?Z~*40Vt8_xr%*cX4u!FhLtaX73}0Okc%^v7~NU0r@yMq}Nl^ZK`zu#kPQ0L_I# zi`!UJ;|L&Gd`|YZfBgc-NBL0di~apfAG1JFXGz;p0c_MAyrvlB53#ZA;N@XW@PwJw ztzZt@*_y<}#Aw1>$VkvsEEFIkCck}COZj-La`OqmM-3sU+RTJ^LT_VXx&J%J^)e%j zblDt*itXyr#+;4++Qvo< z>C^X8*$~3ge!zmj%t;N8j&5^5%rhPU!O)D&U!W|FO@Ql?*5vK1{sPI^Dcb`G#z4Rx z6Yoln)!5V&pNI(Zc4B3q2mj4hXDw!VRu|VC{2Y6npt7PuMp2&T?$oJ{#B9=@Ard1C z3nVk{J1JPm-;v5x;$(k}MQEG!Gq z@jZVYE>9N;Q^OQG3}nRS$&^-&6fUEafdShl3hEZ+sh4o@IE@wLo&0#+5dA)%eqxP9 z6hu#umBYZq1e1DUZ0aCqaWE4Cu8Nw93Wk7&h8gqRw(ztqd7q@hlH96%mcfbygch)u z2NVfxgfA~HzyyFw51L!4nT>Xo}IP9Pr<`OnD@_LbTVL(0TzYcmzQB1k-fzT_G`c$RaPvTMbadxF zGT6lMWaPFE0Bi97{`|slBwZx5d-2hbv7O!C&d%JJsx!^P55<2lRDeqa6uR}%ggHA% z<-VAbI5G*jIXR|~JCv;dfG~3HHQ&KFQYsVar{eLXENo-9?1n&wtCfcMQzIiI zGVcyoBH1^$$YVBM^I06bwZdTu_#pp?aZV!aPTI3^pUaxNoeS&m;{alr_rcUs+|9pp z|0N$bIYJpg_sYr{bvKEfa|)e3+!>0PLI=LT>pYxYkPkk zU0tg)Y3-LUaS)K@wz+!uK%05GrzbD&wxx}Yjgiqz($A6F&4^NNo*+AdI% zih-4thnt%_h~yo}>Pt#$s;W4GNR;6#;_cn)KktX_aY?kt1A7}yx9-}O*1~l~l{Q$?GGQi3Na!6j`bPC8_3wMqhC5-1;qz-TFb`W8J6vx~95~e@yFa$RDtX294eKKrS=br|{F!=&Z z!+_oV=XC{FA{d6ID#f!_H#PuO*IHI~M~H=$6|5&`FqGQa*})~{s{rSd;^Q27x))8( zmR?>h+RP9;XmEXXZZC9e25amaLBZM2?GtoK5jx@Y^8fEgt*)wqe?tq*v}$UHQ(6Y8 z!rr=_v?%^Zl1<+UwIL2TDJdx?1{V%*92|Iz?W$XK^KRx`o+o7!x5D`yJl);LENbAK z1jo2*$vcD}^aY`zp|??y|Mh{V5RRILh6a!kz-0t|blv@1NgqCRnR1{YBk#LiKuZbd zU%vDsfk*#+LxmRo4q_N+X`iuK7x55_&$_zB9XGf^h6mgx&{`F!TNxS}f}?A_7#(@b z!MT#90W6*vO7cxRH^f>!^yIrDqN>=+s~7>2>Od@>sxxZW@Q zizv#-?M46fs_W_&{r8=;6=>=A&}#uf5FC}|Wo5u;YJlX$d);gI{z6tPO-qU zDSgDgPRo`$fD$H+Fs0^{G%RWhqKWGV6~Y;;I-!05vYN=*W_C1zDvKo5-Q#?Bm<$1h z8K}iGSiz8u6BQXr0?{yVKwu*HyiO~~gMS5W?%Yzpe0^M7MFk2T4;{7t>+IU&q0ZOv zU}VDDIjm{&L9EMa$h~u9QX{PUB`ZpW4&|2iXvi&>I5xS|U^OnMC?nydwT8qhjwAOl zh$v3E&Q_FMK1n&xuljuU|NXB|k@5R|zwi4#&-=X3ThmV!1Qm{_whoP(ujQ;`CIx7{ z!A0xmU>h9ruwCLQb|tVPTdKQv&#NQn07%dW7#cclq6pOUP{$8$i68_&;sk=8XliN# zrGCvfdC=0)u?I^RA)>z@GWJ(+8ctg3pqj$N@&D`PImjUOue{9r@_EP%JSLCJ76@X$ z-UupI`k58Vd218(o{_~ccD?tlxpyP%I6u&0?4&#_+ zb~mk6A-A4tGa*)82t6LksGFKbAO8XOrkty-k3YAj%HtgX_GR0ZU^H`RxYJIr8Rf<2 zljr$r;BZylDAUF}4TaMi)K3A$1qFwX9lLgei_5{n$DVreqHFRE7(+k9$8a)3z)Y_# z#pvkpa0U2Ay0UT{NE2v0H{b>U{tXo8Bj0@A*v-P{&$Boj4wno3hhL$*apV}2Qg#^? zC&z||(B-R7H%l$`RzLYjKQ!Qw<;Y#=vjEEsZLVS(3pk_65Vuo%YtEkF;!zd zdeN(rRkN)!?nl;=Z)Z=>P*;9=#!npgxcyt_9Ul!pCnXT~7BLBxE$mg0@fTJ+_K>eL zk2;H>BEb)i7%bwS&#|HvUA}y+U^3xLVZl+Ba7*~~ z?dO(EAmSiY9`MALRy5%>`_$dN+mmac26OUP(Q8X(s;*MC;tCm>y$q>y^n7QS^cMpx zz?hba&E59HK)-Zp&F$N5YbwIIe0Wj&=p!_T2rW_GlqE>IoZs*6PNUN!p>V`YLaXi6 zle)~_*;U~H1c+o+PNh8}&Ji`-_xYiUVML0nd*jEiTcH{RdhhP(`AS`#EGoSIKc;8G z)h^hGK*W)ql{J+dH-m;D-Z{Kpgm+#uQ^7g-|B?)io`YsJ*843Efb}(^rvnl~dt$w6 z1*KD*)Mg76&b$bp6fP|;E{8*+S0eS_!;72DJdz1^!*JljfTGGx0wM!L6XMaugfFOKd0r6+SenWB{jE46e0ja zXxaCBJMs<2ar~+uBLV|N1g-X?KHMVCU@5gAOi{^OQMbD`R8_q}D|;$=f>4X#k-+mA z1t&(ZF**q;0p<|#SZ5HDi5^t-i5^%+lSqiO(XbaIMk1cp|30QSfN0JY);$Z={K@vGe~tgvfwX@reV;WRJ?+?JiDSI z_{b5gQD-nDL%yMq(Z9ztYYcxu+mzJN-EBDrRsvhXQ1nvB`!FOos+DOoa&iUxb*W?# z(%IFg5dqA?UYO*}dF;B>1_~I3^RV$M5`?~i0l|}v^+#u*d1=@_CUWkkKBQVDdfGt# zKz3wvkb1sS(Vyz!D7_Vu;3G!iE(E3p=FL4*W`6@d*00Tn{u3SLQWUfwll2~tX0 zT5xZK7(@U{b7F%A(2h!x6H`+q(a9UkDJ-0*@X%X|#EY8~xnQXPDJnrw>^O`;`YEAs z*O`|i&sxr7WnyO6^!Q!2wGK_YKFUr#3vqX8WMX2QSy6ughS(Y+-~1h+4#5zx8g{?1 z19h%p!zBT;WiX>3HGv<6O|&di?ekkl30eVrMa7z25uc4Ru*m8r<>gD zgDX-pINsNnu=e4mQ}Z*-nP9n(5Z{jHiDPCOw_aCW&BkPNQu8l-{x{n2@5Z=9h7-@V zY|#ps_za@u18(i|g;$j$3Yx zHdx%tzsThu)cOAFpx|J_Rk-Erz54WY;DC?dY&OMKq2Ru9PST~VY5MeD$OW-@HRtkW zMlEXJJE*3mXgVxsFtg{CDarrA>5httf%7-f;X^1QdYBFlh|(`F$bGll%nY~^z9vaB zx>{NkNy#jx>~>jMSyylGjb2zgqC@fM-&pkE$i^F(oSX~}3hG-y^sp~+75hz&no@}Y z6EPB&a(zBS@4{Yj`A__v=7ncb&!X;|s0;N)8w%U0B6st-7AjBEWX2O;G(&X>?0L}B z6B^T1B-PB!Odv9l2h08Du?avY#L5-)1pE42?CrZoM@KR6tV4U>rFWml9%?7X(rxTutSich(xP1xfrd|RJp$(>j(Sq3|O=rPV?Bz>M=d0_B z)AoFAUEPNm{6oPX8WB-CASAqQ+uK6x{r&Ht=Q#M$+rwiOSYT{qL_e<^ zZ|a1BQ6e>8V>NikTQGZwc*!GQoK zdRxA=s)&wgmshcTs}cKQEgZT)5D0CP1V(Zb*+(TFB5D#HS}@W#&^-1qqT@>>&3Xws z+1#{!g}_-?V7h}2`;?ae$1X-pUgcAARWXzK1N@2n@s|W^N~B+5=%35TpOGD}?afBV Xje$=ANr2kwL;T|m)N)# zboV+C+?@AZqL{y3bj_Bd!|@ZLziQJpI#OM3O`a=JS8g zU|;b=!Tg_xv5?gK{(F&sI8P=lJa`4>Gt)n>zu;wdb#>**Cd9|ZJ+G#~>>2S>$j?zK z*x9k_7me-3#l`(1mc_`#6pdA*bHC_$7(w_ZNQC0cmoFvSKP4G(FR}o1672(E2zO693!xUC@nH2T&>iTUggmbezo&em4X zzyNMoCmhQ&cy?2fETyERq?^~t)ze*+-=LD?Tc%nd;^Gc*5PpCfbB0*78fPEM|xWT2-fk;4)j%FNFG zZOUG1*p}XD{Ei0u6gFB~f(G07YB^XaTC{j#%%WPq$%V2B34`qH;zEM~SEFAcL+Jjf z1EZ;_2@cZH)s1dX;kJc^;9+5^np_VJIEYHs7)c{8Lw|v(uV??l0@f=xpINKo-^O5y z9_y5V!`0DpFu4!G3|EpI_+ak4rFA`~Rqp<6ZI7+qx1R$7ZYBJ_e*GFBA3yWcoVw|! z*&vui@VS#G*agUheeSMa7`U}NL`l=wEVZUd=1?{*E-p$?VFh>a5*_0BQ)2emA@GmD zKJAqNIXXo!){!jnkk#$k8f)W9w~c|Mo{!$%En-=Tuik&2P?n8n-e!UUV@C-@K|_;p z@%HvUcJq>z4V$Q{{_mEZoxML-mx83tJXu`ciURR?UhIK6t+iRWX-6VAs??HN^`?CT zc4@o_DkeO8l~$E$Z?W@NG zXk7wgRM8$py{>CL(F;wk#cGT{C%UhBz+Rq)#iMv;YFcTx{5vKlW_DHw`nB8<%u>o9 zlF`pjN0e1lGcjfzWOs9BS@Iki8Cjzrom?oqQT)S)yvWE%nLKu)hz$gXhWYO9d?~~C zn?q@Mcz8`<>$G~gtE#Hjt%4(Dj0%oQRCHiQ#!|KAUvyGFH4Tl)kr5;GZWzdpheT0v zcz#~5SX`q_ufezzrMNxmjrlAh9#|C}7TpRX(Oc5r9UYb&$-SoR`Gx)K4skN;*@G{I zg_qa^_oJoA!2VBQ)py`H=;H+|5`q9uZBGc?@n=#YFSnsoUN?b7fp3yIhF-^=Pm@_& zn~b!(vjZM5`G&*pxHJCp`}4}mN{#;c`T6EUKgk>u6B9UCSnznjK)Rr3yaW|3Eo}qU z1$gabiFVF}RkVJnM7ByH1Mb(H=Wiyy zHfg=Tm@6qMv2D9|nXR^T;=3Q@UaHnfN>4AV%_=D9xz4N9+DqoNo-EaMJ>Qx5{P}a; zqQ~y_W(GaxGsutJ_wKmqu+`CF?{^@oJ1fEdkd9z2cWt(OP~h6e1l^G zv-Zm2p)Z&?3=9mZRl)0Mu>Y};`b^oMSEIG$R#$Vdva<5?d-i>Q3CDt(Yna66Y^A3+ z|BaL%QRlyKil&~4@QnQ|s@K$eItk_})KX&>K%)P}QbKzXglA9x`rotq|2O`)^!mFgrUtE{BT?Gc&v+AR|P*hjqzB0LdfjK)b@o9|R+dmtg2eFgpJq zso}q|u}epDbJ{;XG@VbD{x=Xb@&7J}NR8L_(8$DdRUU}yOCoqPc6*q??`kt&Z;u^n znz;_H)dBzXiK5!2T_l6tZ+FZymTP7!O}ZN!8lGoLgXQM|@81(8K^2`U;O>x_=XXZS zm{qZHbv&8E4FlZ_DZF+3xz5}_=Q&lTZ(v{mM?(q%i4FKv>@I|X*}NaR8zNJWmHKHk%Qe`flxw@S%8to1=hMT6_| zm;XP@zYz3bZ|~@HjUYw!Jk<$2g#Z?nQcM!wxN>@F$rp@?=a;F~?rc#>POFgVP-@=h zaEjD-nLH&1uv-bxek`pAfRBl30rMHn_vGZn!1w;#KOT040Qc+pzkqnSYWvla_@@Mx zm6c^&Sx?^iG%18&Qi6D=$_+C(t?@aC(HzVUW&*ZET9=nGGI;zko>l0)az9ynV?Gqs zyXGH-4i;EE6BUg;wXm!VoNlhz-uc>3b0Yn)_CcC@hu?*|dwUxe8o1=IA30z33;SXlI@ETzQsbQ=z$;Z$DnoKZxL zSJH}><%NYp4iYK`LjSW*o+4mJu%YigCoeA{G%`EO=Y4Yqf)N;5g;t4wJnGmRo4v*R zwu*{2avwKCxq*pcVJSo=CMNDrv$<-FNE%!qr+@T&EfTdHBuAG5hMqAz+}HOtJe4XWXis5$78CLGYWEbKPxR`97<$2H8IE)3k&*LN|>P%{i>EVI7W#Uv-t0y&O79^4W;eZs=B(n zySsDy>;cM=Vp)1^9`53*u-WZSw0w+3>MJFD-+N6NS^9{q54EJ~Z`-pAsbQaXDKcWf z`^SfSy4Y=i5>$W45k6hPyq(+^UOpWS%A}`f>lu*fKtH-ipY793VTWjaQ+*cslPd7#W#jRr6h%d&~8;T>q46)Z6P|HsfkgASjY}mQ!9fXF|p~ zNcm+UYgsUw^FQA=Yd*)|faWMMY__0+G*LNSn% zUJDB9GsdA;Q&7X=qI@8o7?x;f^&_!j!IaiLI%rX;>{W@jgn2Z!uV+F0`|; z!ELUw?2CCF8Y-inAkdCZIW^Ti7Z)2wi;aMSgO86`lMxM94T&ORS85Gxp29#A6BF9n z+DsZHukz#Thd?5|U2t9cw9tqbA!%-Awutna5-t+#OEX@iU=ZtX1RfWi-)thxw#_7 z-CC?7*QeRD&KHKw$6dsi;;(urC^AUbqZr?5%nsCK;hzAERPEhyA#Iml` z9UByAG>d6B_Af46M8hfya&zm~f?~!0U?cM;KCj8ZdIqNL02O4s`=!SR*S7K#fKt2w zFy95Z1faS5R**F9zl>T8^z{+pkOzN%tjzt|U&HxG!NJ9uOB3;vH2>xnCpPx_vsq9C z_wzt8OAaFXm}fdVYK)l^R!R&U^xq%0zM4ajLqn=(4h{1clO_YIPt>D?73xDh@Qfl+ zSu#>m-PYwT7h|$)-Z$I%AR@rC&;Qa=6aD_x4NWpCjgvqwOlf*@QZh&BN3MLut}RvU zKFKr4!q)bbHj|{G;F+6OoY;2x-{r;)sP(&F^hR6cu^EifQJ1Zariu9vi76dia^DNk_Cfj48A z9y=7Eet+dk>MuD`kwPau)Uf_gZS6icC{j@Z8@m=;G6vOoxTI%z zSlD4rnk|{w^uvdV$;p-Dt6w7gm;60;ANHmz!7c$wn+WV!6b>T!@qv6q_z_s%A;UL3 zSvdo9#_t2PVaBX#t`Pzs)N1!B8NQ2eCeW7r`zM=Fo=f+KvMHvvwxGW0{*x&?VI(5;h0s6>^^{w#oqp2F&umfNYkj@dam;^L%8Bmg0{ zQtyf>WCk3)-@LlHD&W7(w4#j`v54z;_VCvAk=tN!=u<=567LY+@SHJltD|DK+%K!dHA#2dy!QW)%rGP z6rfR1jFjs&j9FO$OaRKp*RO{TWV}C1)5s_)auc8d8pSE)w?!1z?}=hfP~M{a{B?ta zhN!CLg%H`DB1ad{4uLY=P8yDl8NV2iGnZ5mk|rEPEiGR2f)!@_-2(-QqZ-sE-Qi6> z_sOTS37Q&x>kfb~(Xckg?uue~Ff}x{6^h1+UYXQzJVbx<{s~e~FZ~dz(PPbbey;G_ zcmY(RFc5c{diNg(qv{#y%t$oqfB3)g-Lf;+Yv0{;`19K0G(bD3~+y*ueu+*csLuS~tK)CyGDR>U9^rtNJ`@3waE5o2SsZPGUK z@$qSn$1fIbF)-Bc4I};Z7}RB2RrW%YE-&0=S0@0A{cg(yL7FuoC16NEQ1AnL((ccA z3y$Q(#6++Jo}QinzIX#jy(wq=eqM8ZZ^w#=G7SS|EF%-H zjbpdUoK=4lHAeOA^RHhjbBxY9kA6fxx`s+nt+c>GPA)Fkp%PQ(ETQ4yUY855fJH$J zNaD67Gd>YLy1aY@caZP6g19rFT&_g~i3iB_(^osLn1ftXdVBRaGZv+kZnt z(ZiO+CFw}d&qFQ(l#X}HbsD^&b;4e7q*NImbV}nz?A&DQsJ?V;Z&|oj{Td!FFDmM5 z4(nd+rlZBj-{99-nq|bV`Fe_Sf*KY!__)Z(c8U7z)ot5=C3l?-PnaufgE9#z9u_{n zPs`SiYkvg7__Ioc5ShGEUKpFows){1OcczKM-5{4hE8pRWAPMiBO_ltg9lI-(7tQEv9a_^Wq*~_)hA|Vwk;;{ zE47;KS0$sRO*x1n$%WIClV|H3(1mAbXEgwZR8e6c`FsWg&IX`i&4*HZ2L`IqvV+l> z8MBT?O0@GlFDFU(T{Z$=oV49l373C^7p<#X;v#nYIn$0IV3Z!AQ;UY=NQVfUB!^Ej zfCweZ{UB2}JDhBYPvw9)d}m>al_d2H{`YjQgfi3PMyZOaM4=i1TA!t=%BPMDTa%Hn z&J{ow3ZzHHq{e`s6f-J1?t~tMRq!<3f-Y*yk##ert)M zA;v10D;1(KawhhgDiyMDVZDvYk|o#m0|y)sr**bVWuq1`v9bB`P5MR4X|9Xccc;TS zIXU}7voZ1Ubhs!}rMmflx3RIY(|sSVTjLzBvXmGACnE@E;L6Rsb-z8b*Hov);~bEf z7$iKeTo2~`@sS)78ddX6@e$tiV~|KU;3Q39Y&r22n-zpTJTzH!qtiU&TUOAc$h8IU zrGQOgWo;dSh!c!6_V;h!I=kYqO&_6~hX?GxnbFZsr7zv9+RR)LlD3x1Q&Y!@q7NW= zDk%Im`{~GLs31*Z9yjqePlbQ>yNm8TH7@SDV)CmYm-&D76_}xT|Bjogz=8&;rSNL4xkl^7?+OhFxVRu^N4Hz zfdHZPvG}PNN(%Rr`;izHr=~f@#dV});UwV(AL>-c;HaycB9kX^Q48Y#TEyX$i{ zDg}s<^LQ5B%t2dBYY35Ew5yNn2*-&ju`IXE+&-HpV=%uHouH29ruj`RSAf;q?Z?D8UeE3!IOuQc_Y9bA8+j zwg!>iB&~K0urH9`3qXy7vbe<-Tl4@=QMhf~dH3c#h7KqDo}!0{I5049FX@e^2T`Di z5hst_ZvaJkG@@ zm=Cxpcm&cI7^tY=2Q63EJEkiFk4L^gTe%QmDpKmTE_8ai+qkm5=IEVlv!R?+TL6!EC;cT4>B$+@lP*pV4lQD{j$Nl*6 zqsDqlXF`@VyZQE@35QOO0Pwy6-(TWiU*x2Feq*0)tozQCIkLsucDF)`4GSHa{WO0( z!y)40vwKbyq2W^8To_G{{WUFDo)S=Jj1x6xpIFrh90DctZJiJ*hf1KJIrSd>Q0mz}`(={=sK92pHuXrrl2N{Y|ILi4s7RVd z7$tCQl5VgeF@R>#x~8!j*|G@qNQ%=@kJw6mr}cn65O@7e>YpTWEGa^^O_> znt?^G5qr{5x?r)h(jPGZ({j?)8RKvc>j9u4itx^Zi;Itkg#ept#=VLQD|%#HnH|s4 z^kTmoZQSR8yX+4H_WTVGS7rUsda>rG30!#Ax*%y9>U%1XwF_Tb9^0F&u6A{GNAwO2 ziA}1ht2eGzD(C#BG7)R>66j}?wNcmWjF8FD-Oz)7ewyPN znLy}TcQ7AJUSC~}O-yt<+frV`%u@*!%NkGsM2ieA%EaiXe~Dqe9c7%%`N>H#kWvo6 zLgJ_+(xT;4fPdw;D)0e%-qzL@hR_wjE|a>pyxXd%5Lmo?g*1UYd^SV!n@V0CMLqe>hOS1XY}5=b!0`y83w{jOIH1B^2~vSs5bVhdW-bU>q#0cC)1eLq)n+aAS#YSYj?# zF6NJrq)vHjn_&4{tOK?{|KvJ)i($<#|O`xQ6B3_X6RS;+puuS zRS+-)1qJKCgo1qol*A;tTGQSbz+asL?YF0|?@8PMXs|1sFd$VlPene79W27e)@Tl3 zv;pj`lF4)M8AU+F2h=slLwJE=pQbC`ulL1WU!&`G^1=eK!@6Ft>_dybY?PL?(WnL{ z^lS4Jh~jQ{SN2nE$~roYCf(?e2nZj6s4qMivqmlUoDroS0U2KVapvS^w_Hj>qQtOG zh@QT?sx5dyyD5Mw+5+fsAlLx@YT&nohBr zHeF=+#-|I;eUbQCxve6q-4qma zBAy7y#YIKO5{C5Av^F+2@7}Fi?-pTWlelPK{KD!GKWwaHxKNPH8P(O%A!zy9N4^7u zqcL_8vVeAg8pC@{H`dqno86RYuqp9dGkhOFQX~=bN*pxXb!r6AMTmpL38+)AU%&SE zch%1Wn*HA1o`BcYD-}JIfOclR`jOrVdAh%j!-92g$HwTva1g*DElla`95xA24-%{i z{3>jKmWF{qIFZS#n%dlSXaHge5dIONvjTT8$40M8v?{Z6b91w^VMED@?!JHjuEg-Y zzMcmIBl7xm6VRuw{MN1&B_+&2aHOIF8u4mYFj-Ma3B2o97C`iIKi%pmkJ+t8tOjQ> zpv>bt_rkYJwo;&m%+1e_TpLe;`P0#nBc;xAfMp{u@1}Nk^)5EHd#*P^$=Rj0x)v7N z;@}^hd+5#MFA4)l`^*Wb}WA283Nsil6%B~=08I!{I0z@Y5! z_TBw`G=EHRaIg}?M;n{;SMSBFtab{NbMRSo&H%g0&C2?%v(Z|i$$3}9!J(?5dLv+A zfKMO3sMoXIw@f2RyQOI?>>fs#0h`{D(Ea!mhvk7W7tSMu`m+uPglu>#jq)Rr?GwAPZuP>B6UYJEu z0E5KT_&A!;?;dG73X06E*2+2DidNX&WnknW9sDYh-HG~Q=lrJm4wfi_=-;6&>!6Od zy1bp}t?1F|X>mb8$k(q`{QN+R`|7|NydYl+--5m{IcfHgL(Hp%Aex_>3;3DrY${t@ zTL7f$gk-^vwXr!URL#HGpG%02ev%c2(*=o>syrMWU0v&LSW{-;DvnKd|GfMa9J|u2Uu2 zs|7LL|3pDDL9KE3@X+bhoJp(U-&$Vw7r~Kwtu32KTFhqvaf$!_!^vFf z5Vm{nA(UZj9k_4#fnB#uzs+V_4G^M?sH?HsLNB*xi`XUS<9Usj}|Lp}@z&`H6D2+K0YeIw!o^izC7 z0`;nwkT8%Cx*~`-hclMy?N|SV;s{@_#jdQZfK_}1<Zpk~q&I<40kD}s=WIKl)IHr8+%2SUM+4FT1c~H~>a}_i&eRq|A3l6Yf}2bonVhV3 z+8#?zCYmb*Nn87;**lt;)Kn5j<_kcWz(9bg@vSrhLxm zcv|8~Rq}T=Tg|Vp8P#Pr}> z`R?4@+>+bs^FKvW6qq35v|X))$)|7uZ_4EXhw#Pe>0hfFsc$4nuT3ODOaZAL@I%(t z){64>fU>Ut1ME+F%6=qSDurePiOQh-i;D}KPQ|K2H)aBt{Htr*vfk%Tr;u82v(Tt0 zd_OMmd)>j4Mg37EPsP!}A!>hP!;CR*cE4mnG)>_Wc&tEuSEgGxMB)>&=KEGc0)i^E zJ}%)eJ7bCZJWLD=?c#=sZw$%%+!prL5KiHr>HdYgJLKE92f&48cpfy|-(CV5y+p4;B}+*zjqf}^!v_f6 ze}Bl&fw=?~URrdtXwE1=c!41J&fQf-bgzPmG4R;V<8|DCM?$iluOGc*t@C|+08bWV zWkrvW^gSKqW@|ozg^YfGLC)~Ln0cb!F6L~7kAA@cxTaHWF$yFDV1gQ>PFh|-GR|m~ z|EbgFBbd-H2n;>OEBn=`#YB^UDq>CFiQrzGuD7RNxfaV(dgHl>Uz8CV8M#zxBK7GL zOUj@Sh_l~cszx0b6*1DqTDndi`~znWu$thi+WoPBxe@fd_&8r5EtW+h>>~g&Tt-`3 zYB#?fJ#OZ8AD*}QrUdHwICextQ+uXH4r#E5mNGCA0d)}Af^<14gV7Yei22tgB&e4) zwHsBObR|D>11p>Ke>WSOvV~?w#<-`GCld%BPTALTDHeL|4+}}l5JiToX^zXxKIcuAephij};`+MFGHnRH=c#?qYOas-xbDy)=;sZ0jwa>_xz`!&<=RScNi%}|5 z6X3)H#T$^Zaz@?U-IMygnlBeU%>po?%#sqcnXS=SR7Q~w|EHq8yzQZi6yzYFl!#*^ z=p$VtIDAK5QpJ?d%g$Z_uq(a>(Bh5oYK^QkNpk4VpMSEk;UbC42cfFEXCy_+Wffr;EUopgC(-D}t%DVPnO%x#^utM>t(Q%HD2mF|f98y82y zk9uB@-hlfxva*_`&p6u>14)gInRzeodz9xBfC-x0l1V{@*N93(0sfTs9DX*Iu+E}l z+gD5?5fKqApUq-N32^@qa1XstL4fri8KW{ntR!JMy12j!mEh#W!@|N+j&_~fRVh?s zj7v^S6Le7v_tZRRjZ)yYMS2YzK;U1B9U3w<%ka@05ka}|jL{}eB}*h{1TjE}&Wt0C zYqdyhZLNY6Sbx7b>*vU$Ubva*(a^k|uwP@$-m%+U6$HFm5Y^||r(Rj%T@hD&|wy>Xzt!Z+2(qN^#m26&3xS zcKLc%KgQJB*qAJnGc`F0{9=U@Rv09cj5{-|1ZZY`?jT4Gan%fXDB9?#IL6=b0F=T(gmD+g`}z|gQo!IbL4DMLDU|UDz!9^4 z;~ClT>HX!><+!&Q@`_Ama8Ra=jpYRP68$s(09~QUyK-(AMULM2J7-J4O;6pf0d(a z(r^%@Wc_9_+J+DzDfRYkV35O>|M*Uyjw0;PfjULN^F(hxw3kdwx-A|xypfGlUf1gh z^or?w3zaWe^+a$f9Q$82=`}hbLm*sZP<+xW`3f%<1aIT!HQyIkc-Xe2x{m}!fs^hK zMxUD7tY=669h-gn7fvH!r)qS_$;l;+C?*Vofek)d8k6^)xXo_)bKZ_$$FiDL&93t% zQ*lwHP1nV@xeq2BI?lZjD<{4_C=<_Gj@*JW4EwKRlTzAx=I=UfQ-o@m7scPhBfrhI z8D3(HKDurWEi9BsIdJA+6M&$@P;>Sqn$MBD+N4o1@Su38drg1_eBc{nsSpGl=f!Uq zt9JM18%}p7iWzW$X%p}(IFOQ_UMg^~HDS9S1FcAUaOKaRKOm@T*V24J!_JM1OAx-1 z)-W7S<>NfRzw}&atyZPtZLv~6kES+Yo?K&VwWvhiwf|1wd$u)-$E2aArUuXBRxftI z&7QQ^1q@`P1rxjT_O8?_=N^K98_rSE;^wwYF`c0v3MaSdmS3X5?oF(mTr5l6+A4N; zAC1OZFne6rYbJQX52%!!h6e4?m%xN!qgA(+c=TB}0q(x1hp0KYn_+UFXjjvBhM3D5 zCS_34ipbgNva4Xis$pW{oyorSb$UA4ibkbyCpq-*;6UNxxV*Ty=>;lZE;;bp0yHayl2L+S)T;{=jdp z93#L=0eI!Nvgvwv_ZB}4hnyS(0xaPXSB$llRifMmMPUbeB|_sbN%)3_1|T~~)bjK3 z#k1<`7#jKtv(jLPLXe`+_1f9?Pj^DY4j(Y?Z`E4#T zG;NA07ZDjtQ)FZbLRY^I3f)|NFtF~VB5UV?xHOJT3q^REuRCP&}$Q7M3+PD!CG&1r0@Yw5~cSy zrcfisJQb?Ao9JHj7X{#hjn>92m+ID~a_dHfgcOvP;-Lh_*Ni*!>3{gJ@CW&CYB3uq zE+U&N%d)bBHmAHTbFxdyhLU+Elt-||@^x4+Il7&v%A`sswI*Gg5+>?J2BFZn(Kjd~y4-GdT)F9^js%%J> ziSJie?MK$$7oU`+hZC94tEaacOpwqx+ec*9rL7rMZ6%qGIamyLC(R*1a*IINAXcFrQgpNs~X7 ztpF7QjF&r{KnpDH5cDLAv$gFV;R6pSom?UWZ8={#s;b835hWnK3BAF^Mf|xoUZ{P0 z5%GA`A@%cTck@lr!Uqlch5ZY+{QMt6-uE{p-nY%udpCdc*~)aywfSGW@9RJ!2f^eA zW|cl^9F|K3%4P|KCGdg-MpZ3oY#|XC=a-itgS}Hwcn=>;#_ukZH3{T67cHKXB=!%0 zKr?zpAV(LAg*!evYJWVIm#Cc6G~t6OCML$AqyOnsnlue|n67#e`U_PlYwL!Rf6~CP z*=S1JRwIk!Da;ll!RYMp(XOK7=Ii9j=-n5pTl-kx{rJ&XRz9!~hXBx^@xgh3BtOR# zAoyN$am6d-w*m8E?S^C%Ac_Ey+GWaqe}A9AqWeRMfkYpjQG^;@AJo!g`HYjvcM@#6Lev;N#+;mfd4 z(ON0tQ@QE1GExniYjp7&yJ%d2oH?-5f5&DfKGInu=(4h}Aols`TuMrQAwDlUE)9uYnu zip66t~fNgxLBsd07|dN>rL{0R$*}BxU(T|pmTXU zP;LUshg#|z1)ju{mW_ral$@Sj4JhjKPbt&O@S(k4jk#;vF)`}r=RYqFYQk~GiYMZk z=86D!C3tr)zA->Kwhj4l*(4aLA4d@PAdaDQ0N2G{g5glhorCQA_os18-Q>Q_$9LDa z=iU@tVD0F+!tp8Fqwpy7A(VwT*v6-!pp{$f9!(VGCO^g zKzq~4dDgsVU@Z(hFtCkW-q@SM@PS?wKy`y63AA2=mbA*?o5F33~yk3I6WO6C>uoie7FaO0sLq9kdotB!8+{0Xij@TDpD(JYcvgJ={Q3Dujqe}6b07vR3sevky#4t@$bwe^^;sqYd=K8& z{shO@1acGsz;Q=>=IMJsF*S8L8!?vqI&|Ty)W!K=llI&EQ5GaXpQ#*@1&Y0+DUG+E z7e{qjC zlWhUCa{<34=ph8eN9)Z_F`z7$d~Wvv{C`|eFy#6;{b~dj-NiH_qMO`Pu6+{@x@u@J z*C?0lqAxKdcgdHi4=yj?QSdko%};meSlzt8VH(2YedLY`l zJyDD?nCkveGld>bo&nw)jz!@R6rpC~(k80^{l#^f4885GBlc0CM-IvNz8Xq6; z>ZU*IIsLE!Jb-dxR--k}&eATx_Kk{$((LxKdrS?O<>FA%KB2nuu_!S|&kmAOV}C+H27fvlrLp~mXO!4j{z0;uoA|GsPS7=3;@n4*Mo6a7fGQT z2J=bg)B1w?X$S55?Y})i#L@Lf#8+jQ-xH+h2IGrZ zXo~)1i%$PQHh%vgI<%UEfC%B*%*32!JZ3WAb&8|f8kWFRzkiiDj%;t?#N7$^=_Lyb zZS4IXA_C}I5Nacw=`vaXJ!inJQ=n#LWMrhTukY!33mRQ#=jM1n*5<7k6TUbE>gc|I zAvh1DpH31Jl_5VSO$VvY>Bwhi7+<5AaA{tAe^u1hHfr%_^?1tmdspYTRt*&gzRj@? zN3$8aF3qWN>D*5+?N|-wL%C zXTn8oo0C1KQcYe>UuJ{jp1hzAniuPKn<5sp>4QO63J@r-b?a=rk2_zGo;!U;!OZ0b zR-qalQqTZ!jo!U^3P3ajfj(3&40L@^@+s-+_M81=kpjMAWo4`%II&%SsB5)Md z*Sj@&tH3~@sF9m;aqwtqZLC5I5TlJG*45SQE-jn1;26a({P8>@Lix46m1VXP16N88 ziW2AX?gS%g0G5@m<1>Gmyai^y3_hEWbuowYzEHzxTC3ak(jMwlzY|4jPov#dhHt_^ z8Y#Ec_jV(O2KRnp1_275uQ>AX5ImbF3S@_~<+cBz?lml2N^)|doLOB0*~iQg2DA+W zQmJpoemo@Kc#j$y8)q*Tt$}WL1X^6dFhFkxXaXk}ewedub7tsm@p|542gLoR)@f7r z!DP;U#)gi)sv5Ldk}+pC5Ns|+rO1;8i&P4oI)a`9vw%jSnjy$0dQ(OTSh63?eyrPU zFScxa>f0LaJ!}s67@Ih-&F`W`TC7@_P3}wLo9{J04~In3Q0*pQU}pA1rxftUaBw(= zKD<8XJMHE75Y#g|3VO#j^a17-*Sy{41oSF}1);FdXX^cKRxM_YS=P(rV?+r4HNpP= z{-{3cr>zLOrXRQhWaQY`eb(4f-la@9I%1oDIGv|HwI0nnpUMw(baXHagW3l>l)j3! za+aonuLT$` z2+$-gEEu3nP%m+DT>vY_?d9PTaONGab|dNh67^T72%I=riy&UrEC)ypfrds)@QRa^ z6p3CgYW|u<-#|&kS+C9LVs9qIyVBKZe6lt^PFXVY;^0PS2E)j%{%!ZS_2$!Wxy`8{ z+IRjI;==`0x{ECD+}kWApml;o;q?GU;c3r{Crk<&(*NTHXxX(g zSWL7ZVhny?u~1!pNv--tOwf?RXk`1_B*}1}OLjFO8e%n9bmz10(lnx?f^IV)z|&BT znzGyX+q~wX6kmUf1>ni6h1=%T)gIWjjg9!Er0an`a2h|$S)aWb?(zNCF>=>{~orKP298-H%b z72r29$c5&E={X3{HV<=2h$FhhgV6y4M^i&dPoG~|`TEtXio!x<$WJWm2e53c{6Plh zhFsmI+uPesKw7V@eUFddacTrE)yQ|TP=vS_up$KkEx zdQdD>Vsp8PWc|8#^aq|fySv;!^1 zHczEcqZlj#AzD{=h4!$~3Rsic$NS3wzyoWWM8gC61QSHz%&FbWy%|t9MWtw(nQast z+-#sx(kZ6jfqtTvhnw9uW&@y&zqhv+7`xmogq@w8iKei1Q~!}-pL~4VnW$+Pq1)iF zeSJ#lxY_7tWNw`>l+4*3xdc@8Vot`&`j3wfeFJjdwoPk0YDK5`dBwve+9vgzGtesf;r6v5ga@j7e*2X#pC*pF zx+Lj`x%@?p%J4(xsT=Q4K}!H%m;Fv(f}xMLp<(3s70NErja34rGIncjE)6g5%n~eq z*asUXel)E{CreY)HGl`*A{UB!qoXlCE(w`j9{ej)_e$+Z=lyH7W;_*SA9Hd-4w{vY z$5p%IS??)1)c!6mqRxEhDn0nl6?c$IZEaC-wa?w!j~s(3>)^;%IIC;fD)d|(FFvF3 zYn7qz{H`T?xT4HTh0SHMG=X5UZC2Pw;e*RCug7>n3U}Gm#020e=@Ym(7W;0T^Ysos zK8GcmfGZA4l)Csm^xHzUveA^|rWUy`*b3jSn_>uY|l zHzG~ueWu)B;Z@w_6W=$PC%d5bL)hbtA=?KJAD_>Vx1t%~UN-?B&?e{6@&HoWZ0)BM z@a+=76oRNzCS(FE3*gHIh6PULKnpzBu`|Pmnc>yd$mBj2yxIRwBk&CZ!VX)lS+R0) zp9!5_3WI*H4Ly%HRb5@H{qg$|U-@o&s7blh4O?bD$|9xOy47piRqTp601Fg%iuYY* zw@(_+@e&@Bp0FLkYLFvmurT+fikO@PW&oCSzOMIYAZ#KASm4}dPiVOoy$;iNd*5V*~4uP*v2uNbK;nZ~6eBopF z8J2+R;$-F=uCKt+lQkl zPzk=fKvS<@Jg~mL9{B9^8=XKSfGv=QfKzhww(jSj`fxP1$pwX2Kv#{}xWZ}DuCK?3 zwVd6|f`B}js(pFb7QgDtW}pYGCS!elMdHEV1~M=jg({T@20jnS?Iga2ARU#lJK+aN zu;FoIzSkHIng{XW{ZyYMCOt0h8vP#$Op^KMU#OIwa?>Oau-?BfTf(3ISX=Pc=zp4>c;Y1;_Elo$6{# zn~h$w)2aNmA^7>^{H^^?MJ-FNZ>M(X|D!hrp%w-Cuc191f@nIDuPM z=oZ5n_9a--mvmF|*`=ippoYiA#c3}>YQP%=F%+aoyF@{L&3T#o71+p)i*OWi=SGoW zW9xJIY0e|;qvrbF0~3K&b*p*L;y@DGcCSs@d3Xq(6eubyZ(9*%Qp-cB^4m9HSp@Kr z^}`!w^*u3YOk@MYiT>ZqXrh#|HvdNv8}I0o>Z6~fNmiF29Q%H-$d6X1xvekH1_za} zAyqa{BKOS+aE0zMj>evzqKIGMy!W{D)jXirHUFIT^N$L}pv2M7$+NSD70Z_8u)bwt zBBEUzwqzSt*-%%C7m^4<@Mdgi?t4;nLc;3e^wWKB1PNU@KAz`A5U_)7c8)VD`7AW~ zGHpZgs0p}L$Nj2`F;!e}qRhkOD(?~ybVoENyY!gcFl_Z6-Md|)e0+G!#8!yq#>&Qj z#j+GjQ0HgU%Np=;26J;wYUY#FGfq+@@D8b_b*A8-!!uXC$rl<_Yif@JrBT%}*3t}3 zLUOK@1zo_NcCMd->>-bch!2=1@J_6_)R#W;dZ%=Cd2CFG?aukFAq2ZB3b#GxN3cw$ zlh70pZNL(xd6)=@m-0 zGM6))mQ)cl-N>flbybtAs`hvJb^ob}2~BG6Yf5qSwdNXDl|Fo8;E;#}gNLYkd*($J zGBX;xw7A&wG+?j)iqd_nQ+3PF%8< zQxBA$oO>)8I)m zk?}XMUKLZVXdLbjl9H`uEoZDOEH6IKT!!5MhqKY3JU8#;b7fVzcbG#ECTxM0*A z1%}wZfQu65l*J+S*Rt6WjOV9YLV{T(B)G_J(jMj(kBIKoqJyrXq5F2yQkk;vZ{`;i zz)c-`@b2|}r<+vYY*q)+h{Op-6zlEU854gtk zmn7RfuZ3`n=`R}HQAri&(S@#)a@k2x9FdP57tbP3j4oW%dlV2A31^D^@ zda1ui9`EnA=KCSYMj#76xyw;;Tm?jusN8sCWQ123Zj(^VS986g|_~>jMb!Myjo1l>KNDsk!`9w)+Y5(+f^ENyQLhNM- z->i{L$}*#oQ;*s&bMS&}WXh8SaXE6ajSGL&iV0}x!X4uLYC-kRS408FrW+FM&g zuDBE85R-OC&~$2iI_P}ULNQ#6A?@>OdfimS%M0iI+DS^w$IsjkOQ-|*b}Fg-oNB*r zr=$mTP5oZHy+GlScp1rn`BTxbhD@FL<;T(z?qn~q>@Eya)DJwt3d)+jnB#Hwa*^iL z5-DFx3ZxH0x^fxq^M0} zcTu&&-|L72C+bp74*@;_imRN+{sZwttEb+F>HEZy_O`Z^ryZReFNB&2YV^US8C^e! zk0&mujvw54Iy(9CCWc@fUrz2}^8gp7e4tshWfwdS8G4KebEHZsIlth2P1psp2Pg9Ecz8 zwgsL0`#Y8zmuVH1HJ_KZyt_F2Rns#;EGcmGwb@rL;Ic+T3faS);cWh-^4EErgLC`5 zmkr%f&fVFWTzJItQp|&bGKmsfk?v3vJ9K*vk@U1!UKXxWx;ljo?X~H1w!UZ6C(J?g zOmf;yfvP?4hJ)srrY^X_l=UnuJDae1;5Ol zy5Gy9*4BNixx~0M5|f&b$3w~9UD5k-eTJ+P)4Hslv#F5>yB)lf=N16n%6uv^JKn~8sR=h1hVOA1(oTt1y`XziLasf(cjJxG8h zUO#GCjSC6P3+tX_TR*ORg&lX-L)lc#ndeo%%UkgJoBeQ$q&rJo6lPOFz!e?*L4biAR)O$Ex^vs2U`Dq@5!Y6 z$~`z;1d|2H({D^$t?Lwjx^elzD-fiAHY6}SJY2s7y2ucCHZ?Wf&4_qu0hgkGw@{1H zpoP}!E89ZtdkzK9OIRY3IccH=a$Wz! z4GGWV0Ada$Qpqdud4I5m)CFNj$i~(syO|(}wVSMkmR71Nb8%T&esOVrap7I;TShs{ z%ltJpy8=R(W>xhZ9F~>lnuW@^IB$q}$etVH4u*WH8SlLHIPT6O-BDPPT=CUT)XX9JzM%#LzjykpYS^P&P98p2)oj0txi3 z=GsGIeh)Q-Wm!`UydIR4!ZWb>`j#kbY^=3WBy#$CCHeH*HxFENgl0WE>Y(vMs;G|t*2mS8zuMPx z0!o?VHuFs9xw+`|m6LIU%MHG0NF?RC@5YHPkIhrjMbifESDhB-xzSGuBaYg0LX_(~ z7k%%oEf1}~>&o>(0=2W-=l}MkBM7DxSqX8}ib*t^$h}8w)}NWR-U<{ji%E&j-Ml_X zp^%uJHVNtKLJw`?HAmi7^C42KvH#tWoU(|1p{GnDK#r&y8aWJ_)85Rc<}4?0qs9*w z9L7<~QSVQeyau!r7;FH(y!cbr3OVLL@o*7cJ-vGC;Vd{Eh5irbbETwi<_tdCspWH4&h>tAwGa5{-^u!(q-@U5zj3&9WAe-Jl#)V5o{WOMJ2pm7 zFs?}c#~oDp!SQuBF-A;mrzd^i-%;}Zn8So5*}#@x>YGMadkx;k9KGR!KpM zvN;`Ruj1lzXtD6t0z<^_Ms>e!uh=YNY~5|MQ7dSyXNInZg;uC||C?^!$y}qn(L;IE z;m+yi(t`CTJb}gUZ$wyCmzu~p1#mu3W!NqtQDkK_QqYnp8VW(1w= zJ1%#|wE!$Am_aiHX#?RGf(y1wn%>^^EKzk4FPEXNF1_*xic|!`IKR0`uhh|w%cM8( zS-r%lUi1R$(%;HJjOx0Vtt`=|tlgaF5M>hpo>Y=Ar^cSCG80li`Zjo1Mj1~V&5B$e zwn*rcEiNn^?aa19#vnR68g?Z(5AC1&(MHtHZBJKLS;eUr9DjOJ{xyV-AhokWoMLfn z)2z;+c|2}i%)Fm$Ho@3~T)2{v1&eB!H4Z`C75kKsO{^QCy6>i%O9~4aSqd09Ri>vu zcvj^kh!a3VKv6NXrP{k{83Mmp# zPhw*>nfVGcU(9eg;vD+sbMgzZAN=^bi1wVR{pkaEw~9XZM}*}Zj22jMn{5v zAD05J4yqN!_*U72z#)N_%k!l>aGpGa^do}!QwB}`az7Ex^W4x?H#1Qskc5N$yV5*w zF)GL2OK>3|sx^nh3 zneovH&W_*Nda8;fFcWyWZcn1j$OdF+vf6GG^_VLxnH)GpEfXdrMBwpci(6xj)C$nH z&C^f>DPdEK-FW7NAJ*yo&aD|jD+n??Jl7VbgNsX3ptSkTcD_OEq8yrH2fL=i-Yjlu z)KpQ~!)p^PQ3P)$`bOW~&f*3^kUuWYT*UDD;*|7$43@+d{u=1~T-Sw0@xw3NLd)h4~w20r$ zzH@JhV7DI{2!Cu=G4<;#mZbZ%r%|NdR17cn$h*jT#WDAK-m z6To%y@W_p(AjN$s_=K}uTW=_FIGdNl*ljiWm^9{@uj=z0O%I`AHW}I}FA72pPIe*Y z2cn`*bEImD;br*Rk#>zu)3asW9>REGi_Z1Xm}_d90*3*sM0AGkVcs~4D0SC8h+T!^ z-Cr_dCGz>y@$Fkd7TZGuU=#YOkLhVN0`-?&uksPiZJ-(5XaD{w$YI6S%FacBo*?=5 z!eW*jk(N`3s+H9$T+st9IH=KZDdK2jBJgwp^(VH>)uO^G1u3GRTRf&vsEs^H8EVu>U4gsx_qPg}1`Ie#@&`w82D=~>#c zuRNK=n;UtwFw=}HDCp(=U2t~D(D1&Pgymw_&(YED%aiQ(EZx{-grKRLf~_3Hqh4uWyrm!vtQES6FwU^aRcvS249oABvA9m$uV?*_k4#9QW^MdUo^m zF!QYKWUCjv%RYZZJ4`dTvA(Vc(Ba0rZD7#Pf!SPhW@@jCBaz+;eKasVUzWQp`;rUt zpd=z~pG%&R&@;uRro5VVol#LvCiXlm?AGn9)dU=N2_ znNS*{#|RrJ^)1hi8XS3fk~_KPIA+67 z14GukQ4~90UTx|U`xuyacnF8f^1FHHllY={rnOt!*%U&0-Q|HoL?y@N#~b3%YZ9FC zqJxK+m>;Cj_8avVpc#ux%7wTSyYGT02JlU2!B`G{iAOt_0NRDUy}hMHO{L!Ea zl;Y!ujImIis&wdkA4xnxdXghdfydK0IXioO=Kw2!J+c3Gl_mwis`i1f`CLZCVDcXSTa2 zKeM1pquq^1ufn24K3yS)b)ZP+1`Dnqebj$fiosxYv$n9XS4<`awdM(Ov3bhmbY_u{$)^bW%?ygb z02E!<-MNa64)?zJH{sz#m?h6@WYp3>`q+=Ns+r#BWVPw}RpY@&Cd%`ENK2RS?%n5e zeS{u$8Vro|;`RsBZoX{Hf4mwRp)gBw_m=gu^2?~~$k)P=o1`_?IH0@8iDnR>R56!T{k6%En` z!c;`^gAG?nRjUY$f7zfn=NO4R|Il>cKok}I0j)XsS1v2mq~B-%UK8z-8H77)&8N`# z#zxT;TDaDgsNCi48Xmqg86Y7f^f@B~LAanX`+P9=>hv6IV`T*YVA|XAVbt-`x8>_A z9Ap>8%ryLds+we)du0~GR;KcS8+%s)~f#-LBZvWpbK=7wOVglsP$tl;4NV7+w8{Ph` zbz6kjkiot`{K`=bX)6u;^+rjqdvDWD13j9uK*hpL90(4r8lUFiAe+n@=r^nga>e>RcGTe(%sPHGgaG;1F3`& zd)=E5CbXhA1G>E9OjALfC=vEegMdtY`;V-*p^xg+fo-=y>g#ZD{k+^BBqO+#7*K~# z_%2Do5%}VSsmxg#)@TUSMqlyP8(irwY^!kJCWL$B@at__A&PAv>p&uS8@j6y*00=H z=@-1X{Fx{(M?^$YMD+I8c92(l!1XPo8tjgFBMBGtiQK2y6%!V7Qm7xX(<5Gnel;Un ziu-%&&mYKat{A1NXZW;jk(&&-86&(rV$GLcrXhiZMHKJkX)r@&&_kT(H6z&uy9b#l zg#YZ2tGP+Wk&iCgNqSP171tAuBRtDO;88wiU?}g!O5M&HwuTN^@}u|fifx}8d7%Vn z{Px`DT9fe8>8#$C+bP=qNxvqC-+)pLtr|c*!4aOIz-rP;;A~*IFQM;F2NM@SEh{S2 z(jO*#{D}RV*lB^6i**Vr0_QK z4P+VhBXY$g`?_D@$Q6x_WBv(6ZIGGT?tMs-?dY&vIKE-@Ip?eU&C*ilo!^s_b~I=u z<2Iwb;or>P;&g{}uE)E6bDnP~7uKs^&RX$M8FZr1$51PHO+%04Eyhb}UV?Qaqa~SB zMG5`pS^80Slmr?Hvl6p zeuKKn4NPw-h6M7avZjLdUxiwwbh1tldcvyyzPd}Slpt@R`Syvkw<28Ltz+Ha`Iu5P zZ7hAcp++}SW)!&dld7~-DGbBx%V~~S0fk&o=Z(qWQ#Tj(w) zhY|jbk5ozd2^Kb)S)mASFwGm?&GkF4Z2qOy%oUtp-U{oi(DqN#bGrSC>0lCVY?bC? z4VUBZ+PXSPwFuU96`Y~S(2Uw9gk+&`CA}RFuSajPeWYy=+!x`9DJo>*Z;F`jDC$bLB9Lh0mx`k92|}jMkXrCnBUJV zpBov?i0(91foNm=^7QLT?OSf&)d5O#TAU;2G?jx|ML5G5WGgeq_W!ynuRt|^cc3tT zW}X3tAgw6TT9hnfEO&#yI1`lUV3~sEFfBZ|xz%W6{taRf=DuRj+!$e4vibTod{<^g zMRFa3!NOws`XXdX$*!Yn4QZ=BI;uguP@J#>DG_rdaI3=nW6=e{O!N6_Pt5t$^tIk+ zRR<}H;g33nPFZ6Po8tHhKXTh8YQEm=3UVf!7SL34(M zi5f32`Mfnv4^2LM_@4pO7ykgRZ^load;{^~K?=|vE}>(8h<^LX*$$Ra##k)G$;E}o zma;?8PN-;lW`=58fg5PBm+0lgXkiWDdY^9wdVSLe4yC@s2sHKAJxi2aDG}g~% zcFh9qRYF2C$0QBa#E(gF3Ga(l-P-Vr#)EsOQr=%Q@sQ+tI<+NM^GPe%*z`90vK(*c ze9Gma@S5|7>%@~JX3Q*U)GDfZ6LP1B= zYT#>*qM}N=atfCzeuA&v!Xq^`wTJrp&$QyM5_9rY{@ArFy$tNPtdsxlB<|DWG2!w9-`l){@AeHRq5P;aCOO%GCF(gyVWt2> z0d5VFC!lb(ZEh$2DuNB1Q)wMK@FwveKN{9K7@C>U@>B*oQxs@6_#T7t>&e8(C?a&g zV{-A`hP@8OUXLE6f4Gk)M%`a<8N*-`D_th{ne<;?Z%(HJlGo>Go<1oJ7Wc}m;0C~#nuGK}C9@QB2hKmBYDU*ZJa|_7k3e*$ zm7{)-gv4{}7yo4sOsIi!S@d`eoWEgzy1VxP@F-sB!xQ|ljdO4)GZSve;ZX>c`yARV zaX2;~{us`dJ1hb<#M#;T>?#ro1gFVY&vSPCA6o;c*MD@#$;siLgA>6a9c)xP;Qd86 zrigmt9gqX2e8#lKM+K4#6V5GZL7yw%`YnCdE}|k^2~VVa}um?WEdBr3-wNw4Tb~^8~Ga&(dK2bX42)!8~4>@=Nt9SE|9}fY1C3=%T#G zdaryT^Cf#K^PuiJxXA@K!T#Yx@tkzg@WWuM?`W^mZixGzxedj6LHtV+euZ<04p-)u z9l=nUAhwDJDK$=tp)$_Py+lYLs7pRkf73wd(PjSu>B0m1-&EZ21cFaDAJfL5<4UnS z;p%#CqcY}~9T*r0x?JD;Ixqe5(%aVm^KE_&{r88ZwKX+rcN|ColS~{Q_gYsA;5WML zvM)zqCcvlmX>Bbcw^Ns988v*V`C<4!KiuIoqA*Z*x$27e(AHKj=k1Qd(oQMYGB6!VvR3WM# zsyi9yWge)_tod!Z9fz2ZLKrp5i>C7Dyo%NCxwJ&cy=xhm2Lu17nF^?g+!~{uQ^_-i zwcf0P^i(mnZyEik_?t(;nl+GRhu`vU-dbDZI-&jt>p1HJqXhoo$3kc~&W#>=Mq&zz zscSLO=tq~EVcCIc!)5N3oSS(AV}8#TtJGldBI|qTXa&K{JvX2540NyTpVc@vg<4xm z?_(a%@2qC8t2=zI9qgc`UzIeqp!<#93J14Kz$$G_>gs-CLEEH7Jh$+Wa=`8_u>#opB=jAX_`fh) z&z(h+{Ge=$-MMyj4DO?Hz^bJ8XaxiWgc$xCF7>(S6P_hVSUp-C3AW{ZK*$CHQ4mFv zuq)%5ih-dauWQxGv}=cw>9>8@8ptr#@&Sk`g|X2`w!su3Q)d_LwQCr@Gkd4#J~g$Z zhv&7i?AyRT>2=k1^M+4Tjek}n+}Vb0#+MH}EZ;mT8bv`KpPZZ7;cBqvW4%j?@IM76 zSG{mfE-p>qqVZhJe{E?j4AyL`h_g@%z>K}>OG_h1FRxL2YdxPyFqtr?cNitL9EkIW z0&KCMfQk1+2uM6dCs|PC+Qd(m@E0i%rKF_9A!c729$s^6n2DD0XXQ%UTBN~^kbMT_ zI*0>6-oS3|YMn)-MBv3@S9578oZui0fQQf8C@LA9`VSja)UcBdGcwD4y zYyV*8?5<@r|1^?iCtvs;nQ}EQ?6LCusU3M_K1+)|Bj29&9bv#`FZli$`amdwn$H(!=@N?*_Txwa)c%9a_o zGPBwC&IV+sT|1hZwub(v(A&#?@>#$qq@s(oD}I6;S{Nc8_*@Z~`1t#O@%I0&O#Bv1 zjNGrSed1`PBhv7n_syu=ug4zT;xG6ncr$n-c#|D#Y5 zj}JpL8B#xd0L&GPYyj}L{e@qtlz;ww*&=xGV1E!r9vHriD`b; zMMOkIIaTB)hOM$Ylc1odZvxI28K1wJL*3Fv8WBCv0n{{ZhPD^E@ZR`np185!@bmA9 z-@<^&c=X$pIzY*yie+FRWX9if?)oasU&-Rxvs+n~CE1N=Pt^6_HjseCh)9`MFz!q^ zi!tSWDz-a2SU0}h>jN`$XLP-HKp9RPn@_zs9zT98I1?}%9A%p=2+Vv&oVV%^GVAL@ zEooavhi8mbnI5IuSlh7LYvNM!;2KfhUfWn)CgL}Ljq%f4dCKX(W=wZZQcg!fa}OQY z@S)L%dmA65998f|v%fIHi@$&Pl`kE<-%3VqA8bosEtjwk)s`tz3cR1cvI>bc?_+#5 zixKaXR!!A^kY7GjeE;^FsFiyY3L;W#7&---FjHc-##RS9J~lRmL88>|#LpAp&;kNI znrKA(S$|zfa4_x&4nkXi=}x=?_OWHuzUKb8jxl%A_kRPB%#1(XduIF(@t2|b(Jvzi zq-}_*ch7XWK&c)o{yeENK}^<$GM`NUb~-|B=AWIM zyhlV7>c4_BdpXsEBuBwhEDy)v}Ox5{O=_3(MepoJ<=KUsG9SM<5J8}=T~58 zVS6??J$(tlA=?>mtMxB$Y$eXts-h&`;$WTb4rP)TY4d0K>l|W_2^2@Brl!iXXS$V* zjQo+NTmOQ)4ICSvFkCJrYzCoGRT;&&V6vK2#lZA$pPp0T|2G#~24pIJ|=9)w1jZH{9|T6!T6(fW!aY-Q}`C80hI~Y>g{m#sP2gxT)dKK7glp z0~yvH5%+~GHQ75pK|yenPXV_sF7m$@OKZdbT8@ptAalCt5vHdfN%8C^z$8@olI&>d zzPx|dwD;ClNol*Rb>a0R4_#d~GujQKuX0i9r0+=XD2yV=y5#kDJG*zNb7IK(-riNR z;I>H+zEd^T{_4cXTTJl85lMuw3f- zB>K%SirMZQVxiE?_%AH%*i(aR0&T22BvGUr{9JI|y@Z8?Cgx7>{d=Lon8{H5eG@Gi z<>1pUSmB*XU*lh&!lCCt?guZrSJPyR(jX0t-~tT*7@$K@J#CL_N)j{4y_a_?rV!X*8?&bFr?+`PHGIxuWt5KlQsTRN%D`qp6&*`!A@=be>xZB!Q-7G5NH9QRY&g$Nz-%?+v zr<c)r0-mUr20J= zZ)0w`c&p1!zP^)vs}^Pkp{oRfx1jl)s6?6Vj^Jo@9B*!DqscF$i4U4OjrbpB84s0G z9v5s@SJAP=rP^5?+z5&33}eX4<(bUXtS+`G(bixp#=>*46ctS%A};?dmaEpM#b#y| zw(2W(5b@-h=x+;4vpWbPMrGzo{liK%f33>^#>2J@CAOQ8%KK&ynC+Ow%ZD|0? zhdjoyTQ`u%r9;qB5DvqJv0uNi|Ftp7jWesN?m8?vVAIA-csg3Cgg6fj=o+G>Yr%Zg zCpqe^z;~(9Zw4V6MBzv{l){Js=k%Y?1Ld<%pQisyaQ>(S0{v~gFuItH(Gkt9EhI1{ z1Y@-2QakZ|aC3qT`<3J2#$qhf_4(PKT}-Pvsmo$XL{89N$A)Q4!3~D^lXe1AdoqroU*-csOe(O<7eSJgv_V|;xE}02 z-g2j#6FXhGmX+Avw)n~bxp!eA+UI|uY0Xw#Q71UI?mVBd)TyBVjIiJHIqK_&9i4A0 zeRG`)nY?t_5t@lUMf#2QX7G!~v5J0wD(N^QBS5k3Hhmc8A+JcDj7x5!NT0P5f1y?( zZD(bL1lA>xsIsuVefx;E_*Gs@hMMi;r!JR88kx0^&h+xodYaAE55Ab|j^8wbMu4)i zvZYmpCwF*1+8EPZfP1sK8t2J+UOGIDsP2c@38v&ytZ{{7kKQt~x`|BB&bC(i>hXli z{5?M2ng1q%oLci+4N%xIbme_KI5>bcDw0YZcE3@$GySWABq`0na3-KgFG|$pq3anM zwhw2EL@-)!8!R3yiM%@ELo$wz?2otgMM;;g|8|!@O-?~YMK3YX^E`I=_U0}UnBl!o zo4`r^h+a8aU<(YvbichP(B6Z|Iue%$8jiMp6yy^S#)s1xad_yRV3j9Np0sAWxU#xf zh(5d>xoo{NF#ibs33Y93}HNc85W!p3q4t=d^{!T83=`;PYcSlljP zy%s-xyoTNOhM`}`yFGeW6?I!0CBVxhusk#9C);@3zUTJYtt1;OtM%*xgPE6mC+<29 zG>8HcD5WdGjLH^BbdNY!)h*X*n&JJlFoh0g@T)_9KOIrdLFOgPBi#SQL+%q|Z*6X# zJC-x<&nh=w^1ZnBtE(`-uC+#dq z&E@+xInG89OrIg0o1IKwOt{zyLuzk?{P_hP$$z9sTgrvesZ4D_hYWs8)M&9%kn<-Or=_mTzrI~F@{&HSYwsb1{Xsje=* z{l-Yxhfui;PG<0cqb~SUVnBOWRsA1TC&7w{oOoe<9n15*bWV9W7iT|Su+v>RTyj!E z(tB$=GZs#}DSGya1rac-jUSt5l=I^{$x~;XMJKQIq=KZR7d}MPHTwRNi)jXouamil zy^hPHZ&!SR0iqlUZ*3hP`B-Psbz)&AhbUwcnwuXi(Ao0o4-T!5Yw<5z5W%z%d+TCb z2k!l+cNO&w>VwX-B&?)rkQ^#1NU)JnQSx)WdQkkNsE`AH*K?0YZ5L+QY}_0tp7HUy zaRYf3a(2RFfdcfdQW)tAbI7xYH-Fcu%nraff5fis|0{+MAB9(@Y;OBM09TlMg2rx==j!#H zT^`%Ez%_iy8;Fvm`&(Y?==S(7s+$;&jwFwE!@rxqPfgKhW8K4}ENt<(wdO|I-w&Xy zW`UP}dU}(&*G{5M*|JX*8vHfbrB$B9)F_T_ z{~$~Gy4Os^lH%u<*Y%8EF_2A)p4E_$#>guvDZPt|!pFk{ zvZ#MEq&>;WlT%Y8L~LzHa4O(_CF|=eD*NpK2BmzLH6?4*{%o;j2J$UqrJV{&z-#HeSCjn{!9)-q_Z zn@i^pLxTiM`G5TWl3$e{!bM6+NR{#?iMPg-8@TJ}Tk+A%gb)qa(9y9PQZ%3^fFgg1 zHd{hpg$4Rk(~Z7Id87CF`q3vUxiRq{-ZtOezBE)m)dX_&|3_^9{TXdc<85(i>HL*{ zoN&Rr7I-5l1Ai3U>X`RZQ@fbZZAwj5U{oX(+_vH@Ge$*og}Oy^i&5Sc*JZDK zf$tES@!zuGmx0OOF3WBavaX_E&3hU9-q771yQeEj@FYB&&L=fH7A;`aGeIp6H|o2a z&CcMp!Dyn2ckSGvkTOLC)5@bXor3~NnB>dxp?v5N6~oL+ER97mM~;Jn0&n%q8pm9o zUR{Ovh#Cj7OaG9%0HLn&Iouc-QD?K%5I1sgoVmE0etjN&zZH*^W;3%mX4&fi_Zb*cY&ZDXTOs7@ z?xj@Rv(OQ_@sUiDny~c)RnHou@5=WFBID*cB6yX|5x+*K4adwFHM`AuxZhX!V8Bj? zI@bM@_czXWS!1cAMlPHww~oD+Bohu==pmVok@lI()t3DqArGm4vfah5Ukz%M`1~m! zQ1l=L2pr3TvNDqJuP}ZI+K&CcXXCGu_xIjQp5q!h6csjDj%7`~JsC{ABIJe$%srEbA8msh0O*7REX?fN=PV-`X87$svg$ZUN;?)Atr5s zDBV%ifUjHGKZTJS_ki;YqQ385g=(Ao&)yF4gb_V1vx<{g_wJ}`BloS853&{``AVX+ z@zqh>N~|?oGpQf$z8QCSk5l&>8=AND{CniovHL7RM>F_6st&P6bgYFPn%0jWJpLGe zekc5>fmmF;w4Z1W@o&BD<>``}{;rC2eONgx&1npO|C@BopL6;=vOv3;d^1i#&9kTf zzaXDStt*JQ5A05Z@(KzYYFG_=2dE*C1C$vJlc&d{68oH&+nG^XJOVp%2n$)n%AY?) z#x+9-8JCF^l*pn6<_n%fD*-}aP>2QuteD59E_@>F>^4O&UvP+#eR=%2XZ&g((UZTT z4wyPU7(F`kiCE_o+L&vXL%}qx>2>_YcYTjnc4z98pkwj9>l`BWs5hU317bW)jLJ8V zp$44o@#*^PZ5w<-N=kn)J|+&5_+E@8azEdmY5x63BclGEBI|aYwAUiZN93?0|Jm(ZY&KG&ONiD;u4Ef zyj*qaUR-pH&>zoKxtQ}y4i9CWv21HLD&JmYy|*JPQHJ^5aaYGvl&q8HG%7{o`V&%U z2$z^hVQwz5FS!m?S#H);2bwBSOD&yI@4zW;m4GpMmzml1Uu4S%D`iv-3I@nyUSLd7y z{eoeohUA`GWR*WJT|<@gGzvuB8O;;=&E)8he2g^=TD@ZzPs+t_My+ec#bN!HqJ6?P zGdcJn zMlQyv2P2r~lWt)_gs-Oq>_kx!5&WcJmVzi0%rN`4Jp{uS#?T=Y6clN@8FB8JqwDCs z+`x64nNexZN(+e^{K6qRV=>o;HT}$1+=rBLIA+7NPTD4@&k2_7bqW;yoWdm^tTuMbI> znij;(-nm9_)yXEZ#qqD>=c^U@j=8FtwO>{MRzbaS%iEo|B32N%~XzpRX@Yr8zI z{WuLWw19$FX>9-}{9kpg9U|HV1>e5BG=Ze)*>4+HSKf>Cf??}}I6bF3EG{HsRI>>y z#{XC~3OQ#my4$Dj9P(GfHe<|48w{-n&oVAHcJvRgcf-kM)gWBBu@F*mA3kIb^jR=w zXX+f&uN?m#)XL*LtE6`u&Kmfk?GoUDR~aqMrbEoYSi7`}hFDW5i*~FPKT$wMKDp~X zXebrZdG2#oCM~_UVu>I@3R->3d{l$O-C;{>q%CeN6c;1Bkk$zyVUPY0@A4n6G}*I_ z$jEop0d_E&4rYEro?cDk?Y>W-6(tR**< zvebNzZpL~tr`-0G=Ls5`7@O-5C>SUnx4{`Hi+D{&wq%niPG<)rGBo2q+{k#`?WL3# z?8`EfZOosB3Il#lvI;FdC1%IYYinzArt2vw??_-GH9s_1<3<|m3LNjeK}EYjK`OWb zrGZdczl{G7U%&SsDxzJQhJjey$5z+%*;F}xB8;&d#D-*uxX%zJzu9M1-JNZR%3$4+ zTFamEZ2S-X)n!az89D|tY@;#Mw&oXrkuJxezpt7NqpEZB^D%=n-oGcfj6^r~#0h=x!!HN&XB(nrcmt#6x(RtYJtZAh@O%=el;(QBsatq!TKs&?9> zRyjLctPY?cd)Ft~j4UtC3N+wvOS+ix-2t!L4vxkD_=xZ=h6(V^@L6g3X(H)ZK519e zVD-!LDJ^$qDH)Bq;XQM8Evt&;)BB)qr{rrrxXP{P22JnaKE1 zSsDdxgPgqHdc`qLipKV~tehCL65X7WO*Y1uat^_`8|0>86i-xu)4qGTr(3zF-S_UY z#QCBT=CV}bl3|;W?5z8kF3T?GR1a*d?RKe6@`cB2X(-HZQPO~#XBX5tkBWxo>gqZ_ z-qRyLHszb6ehOKG2%ux$`!K#L(J33HoX4w-Ua62&s`W3r5GA_+gBZ9hp(kwr5I^ma z&s^>Bdhp73mWy*oB(OQG8|QZ&8seAtwC{A8qzdCjNxpSiS)Qpt>`yvJYvzX+{tyfS zn3!5);rGq0Ey?rEDnN7dwraqi_^eS|PaJ+G^;ndCm{R`^TyLY0ZaB<dHwcU#vO-;6gfO&nsC!T@MQ zq~PQ*R-l3JPI5D7m|PGhHrF0Wqe@cj!o*#u99J)#z5=0D#E>MIMuUMU9e5s4s}y^B zkm21W6<-gUo$j+e?zBNylpD=^KaJJ?{P;#r?#<0jkAVSYg`HMMb>=;lv?T&eh0zH1 zwbIftBlk+a(D3j+n6e3WQM32{%D=`Y%q|Abh*7n5%yN#%AQL3bAM_I#rz7t^v{$Vv zi>|KV-`diC9J)bn68!{3$o~4zpSap2V2ga~%mL5Xc@cmW3G8|!qm=hCf$RZN&9RylEN?FGQ8CK9EB*kY|AWbboOE<( z2%J$EpMErVbR0CR05;aylGkFIsR26P!AGGxwV-p}z_ys*X$`m^r@T1>Rcz$`NO{-J zZV%eARQC0M-dedoQo7bba~4{;ZZA#^Z5w4B>9x&;KJrMm<~xB1%Wp?_ulc|cn-!H=NwVDd$0dmbItjEzwd_^6Dx&KnHr0-5o)=XaQeF5E8V2@ z^fxKlIhmOoOBm`G+pm^|g(eq7pWD9aU21w#j6l@M{26I_UDWswFHmBF{fk?JdcXR{ zYl@S9W+EN0DJB~)S`U`!YJ~H-c$iA1-dbyJhWEuEL)-fFblM;Q^bO^hMuz$dO`f9? zh3&1ayq>5rRY)%zkX56REPUg=Mc0$9fKZp!n~*(-EA{F(iJ_pmFsKqaIEGDZp$7@2 zZmDW+UjS!BH3cpLq;T{QR1*^BbZP%8C57+B_6+O+XLaDo6<1JExq^f+2nG(vrhu%& zv0_DNiwjOl?v>)DUUax#+&;K2cwC`lwL7cneLy$)>Avlvu%+6o z1O6%5LM{HHVh9`?&XX!3cRUpU-KKj+s8lJHCR_nJ8P%=y=hE&yqQ=??;@{M6k_+u! zZdwem1tP-$17@}(E`kOzs^^v})e9TQh%58tkJ)`c<$;Zyj_Epm2 zM|6Ol0YPKjy8>_@7#T$$Ied@Zp(y(Hh%S+x6b^;aT8_n zDJXyn(0K9SIjq_S%b~dzCx~<{9j5{W4b;d`EubNoQ$9lu(L7e(W7Wr+$#uuQSUA*8 z4it#@P~**K@)I#K%seFhwlyum7TW((zF5wGUn)U`URe0X-w4L0tEKZ}3Ppv0%fpdY zDiQJF&vf@JEKQOi8-=sQ=<-M49ZgMT@3hL0%4!bN1wpW|Al}0)H+^knnZ`RlL!*4c z=H8vE+~m^u-mAU(sgtaRwWS!~Ao#NO704BlhZJYuO;OM`RR#%k`PdBp!M>{3WTMLb zpZiPn=w{oyTXzu%W+H}14j#kei6#8>c>93!+I*g$A0Q5fcza}Vzf$>je-Ya=jAiRo zqOKG?oDX-;vrrbT?ta#vkv2&PhE}3Kk=_p=?7`IKkEEBpe56V#1&?KHIW`QoK_mc) zm#3%CAlubV@1N`5_b%|`e)s|mB-q-{rEB4wHPFRe2!9GKfOwh5*VbBUhhsI}9D^ef zshXbK^0UoVO`V+&Shp5By+6Eu9UyjpZYXmPxfU--2l1}58g6~|0n_R05B?phUb-4+ zYadTmT>2<@wm61W!3T95c>Vk8#Gv~f70ZhkFS@Kb?nvQ*1N$ZqX7Wz~6A8b-7w#?v zQKakRC#5y2+@87STY(?$mtg+eDGNLHXSfNgZ-`gqRWCU> zZmHSMW^M00=YDFJIoR2PZpB>2UR_BpWXWb*jhn4fQ&wheXQ#B5}HRu;R11PRRRmHz2gQu*;}DdJoX0tGP3R8ltJH+Fl?5T`{!Hdlb?69J6Sl5 zLP*^89bjUS6&KUd?D`zUn@uX^4OQ64w8%kCh_5KLrJbVSQX5RV56|bh!~Wv9CdQ?q z_>}(ls^uP@A2HMkOpSJIf6A6z1WoEu#cZyT4!#Qca=qYWSlYm-L9`&J1fS=${dVCL`tH3Bcxj1N%$wa zytd{E3O%pC;K2hG?W8KO7hXnWZYVhP>RZ27KuA8)CwCovKuha4Tb~XZ@2{RE?g<>< z1S#{z7Z>Y)Kek!}=_Jv8#uCW(KAow{CieW>$7r&uK6R#z-|Shno6d68hGHJx>F$t-<3Bw=1B??*pGsK@1>#Ajj zubN6x`0A=%SNPo3DxeD+bwRTnvkl*0RLh4(uTBI$qp=Yu^cQ}!hAZLo=g+&o#D?dI z8%TI1i~XuL?%G^hdI&ue@N>HU235`V;&$cl(6SlVAfG3$u79kIkOH)n!i<2jNHl+V z1^8L$7I(RC5THl_0Qu|SAfUZM(Q)4eT(%$dp{2W^0pkR;E(TwGkF*;6{{Dd*8*V~B z2@%nKCZ@of6e&cCf(NLL9Oj$J&JOL5&?lk3)_-THq5qkTH*$E*lQ!fI^aN(`@zLh{ z?Pt{dwn;m`#z$fp*V3N0{BU%bd$~{oJHh!JA2e;w1AIbts!_(`qCR(`n}wJo5N*&|Ec4=(cWk-&SggMx~> zwz7Km_itXweX!K#*XqzErX9~NA9#T|6XvRbtR3Iz^f4=w!dvgaD|o;PNee83XTcvO zot75g1@`E zQcoS^`4{WomQS}$QBU=zP(Li8)#&qiO|q=y6&5bTEW~8zBaBb~09JAVu670nE#l-m zGNMtufA^Q3pyNoM^-tNC*VQHNd~I?zuXve6wN3TJ9^-PmJFi-+l2yh}IhFgWA+HkT*x5-voQY9S4$NPY!bC4}XnUZBA0L{~VEj4ScfJ!dYK0nhc5&^w)H#c;-)5-7kfG{Y#;%yj?Glp5)lglX zDgG*<#S`>iMn+YVYDT)ctSJhK4S-jw?^J*js~pc;kr+B%yyTa6tl9lN<`pBZSY2IR zlLjsJ>w$xa@icE(Upz8;2vLtLob3o2+H<=sc?RiWIF?xmF)x4gBK%j$6Z%8%Ox(lZ zK5;%_emEc(h(|#1>-%w;Rbj66*RP^Hz9%UyKln+VDyli!UhEjV)VV~LJqWKf#y-Wr zg?L3tRrozH&{%^YQ6=?tsv@4lcY{BN&zr)L-TnLL=PzK?4icBd#6+jg135jt8OYj( z`IL-2M*`+;Lc-tonSMC(Wmh31%BqM+pN-zI^_bq|QV@CDJqvZj`>0pHjeDtEp|7^F zG5E1L;K*5sGKsaj;Y%#WpMxvbha!-6!OFBY(#_3j)Mlt>XkQz1|5<1_nyHLD27-2U zq^6peMCjA<0T~v0Gf(Q5rH1Ub;}79)-+n$hiMZqtM>a!M*+t?@+x3V?dUNBQrCb zk_yIy9Tb7tg`a!8{))+$;!e)^OdyGx%M2?=cHH> z?_Tru{B*ADICZ>*c#E1sO|3$#FTn+Dt_>mY6uu^#wl=co7FLX^6WaKK>TE~l2An3DY_r&_0CXikD9rM{~;)>4>iyyq%^za%xag>~dIV6M0NG1PVAy`?h) z`_iC%2bBRxhl*)5pb0W=eQ`ckaE*B*-iBFtVj={919m~6rUF-AK> z@Q7iC2sKeC8a6kDZ*){tI+rPOCl(1F$k}IDQso)?=)?#yiyOw3axG?D;ZM;~$_TKy z0Rlk^yZ3^X>9WnQ>v@sAvy!(b!MU*|Hc2I{4Gwc-Z#aZE^6X`r8!?dI$-XXrAM*!u zleHj(Gx{H%3j)k%pYiY$ALOxTj&Wl;JSg@RpxTg6<`+4=x@yH6}J}b~vz0RT} zj_Ea9{QB0z^JKyX=-!lwd!k;A@@&!3$Gw;^mD`6<^M=EHlNi@B%hv(Efg&er-f{rW*6`&anea`9BmCSOn&+3pKFiEV_M99RVyiU#kc%h%>wCPx zs-qB>9?Ql2zj4T0yT6Uz@BDpuU5whmwyF7LEm!O>Ed$q7Rv$bPYrjzuKgFV|o@r~c zCXO<{E~O4}pv&i}qY5gu6J51WKkyPi#%>}<#Slr&b&}NI{B6agJlfU?;m@j2$lpT1s ze|-8wH&W*36ZsB<>(jtD@q6~P50ed4Z8p6`#bIBRkhq4v8${2Vv% zhpjAH(a{tBt<$$BTv4Vc*1XFI+&Ag%0&SjXVx-uBT$SF^;wP4YYM{zND)JxLl4gM| z2K5&Xl`vd}egPytZD?u{bK~((`|R&YN{rxj`!3-*=hYxAb$4@D{fZeEp*B57OhWQw zvUzTD(&JS3POW*ml7@Z?J{485fF4ff5C#>aOREavR;ER>!Tvg^zPgGm2 zkRSe793p}k@{D16LaNOak82(KuNVkPBYy|2RKqxPIfjLI9_&67JQk154+v-MRWi$z z=S9I1P*V{{cExKibF;<=c_o~ZsPPEZJ*JEC9|vKMBFsQieN)#1e2~lP>>4sP;I6g1 ziB0WWG!ljCflAc3+cy zgJvSq;9$n`VGK!XmgsFnnX>Adl_kgL;l8bT+824>jN3gb&OZ}184gD!I6Yv_a}{)y zlH$L@T7?rA0J=kv1P(VC2bdB-EjJJA4n_p}J4RTME-Yt$*J*mGOyUiqPBqcL9>+PD zF_o&U_Qu5_Q(x4nfQN{*I=>fd&+F!+fMrwv7896IGuzdhuMIhV93Ma7u!_u0xY}2z zBKS7&(&Rm@mHRR|9&0GQj#t#{-gIR?)Lm6er2qv{!?qx#xe@1RHU zyg^a96(#ebx$z+@4ND3pVg@E(Dh=>gG(`uj__@TFmRq#1a%AqOV7j_Jx4dv3#9FI- zpDcfSYs#j+wZej1>7vJac!WgM%cPbwab3hF>Dp~XU5{U zK0t^RqNOzfY82xl{W&dcx5=1VY>sQw(`$gZ6WPkSlum`N3_;BDn2;H~4+&Z__vv!x zIH^05gCUi>hPQp>_tusO1MT~fAKk5$+f$1j+Q16)6F+%dR@v!#$)EXqdDCpvO^qWp zt^BevN=7K*<*p+ZuIHP(gUc)BJnmMZ8@+N&3=8sN=AwN`xi!~uTLSt9xyH|%_*6A> zrzR$5XkR^E6O^3lLTCk@(}R+LE|D29>S}5Nau|k$b*><#Z_rX? zOvX-^ctq=;JVzlAfQfy1pJkH*H^Eo`-lI6YvZnVpw+Tv^H|`^@2l9~&adGLWIV*;F zXFv63!-ezFmI_nKmvrjY^X!eEBNV$bM?J>aO~m2S{9zxqXFeOH_LEX?qu-}081Bh# zA|s+HwJz^U^wD>^x*rQ!-2%FDeM7O)(XOhTHB(bM;<h2;T;=MSx z+-XtNJ-?()J7S~Uf5}v7e{n>TKl)Pxk2)bCM$y^Tz1j37aw{^g{L?1el##oqbGpy`CnJBfCbFVO z^lq%*hf;FFJ{W?bU_kcl*|Tl->DR1`C}W&y?*hAhoq_ZFc}diBU2U4TSgx$w?eT@f zWE=%QaW(GYg4+mO-1p!@T3lQV#}#}q0y#hONZ_~nm~T2qu4*wl+V0aJO$j09$+u-3 zB4x&;#y-n_w)8gscM$-JH<+Sxl&3k|N*V^HjNHOnHKYzzCU` zoQ7O+3Vq`G+sx4g|2^}4Xx6l%?8jIT8Ud;`xTWz}4KKhe2mjyO@+5^~sJ&MI2`qtj zm(4`8M5)bX87+AbC=9}JaVxc9lIQqe%gTyTQFr{r!v-g|@*Gj99<#UnG|7yfng-Z9 z_%YL9t_l_&_@}7-Of8_m?H5|V%}c8F8#4d^j%Vu))8WA{OlkzO)X1eQM{3kZX%s0$ zG%{iz1zA!(hAtF=P$OhdW_da^gmq^q2oL4pX#23I2ua`giVYv0x+AeyE99 z8fFdCN=fvZ53FQYAAtC^AyfI@! zpVM2<4%HslSxXIb$kpNF)g{_^$Y}m>MdL}Z7KbJ? zDP?nYhMq=-1l!jIs+l)ajGQ#ON_XosW(FeB|Kj@pyQQZTw?;%mm4QDQi61O$!(=1$s3<66ry*h@uLiJrkm%`q6_%-x`Q#*x>q5^p}MAKx)TOC z&?eO;jbB*>Wg0knm5|6wi6V)=l)m&)ukzT+vw#wY=?h z6FFIIth+Q@c^c(g(>2fP%s#<{9**B85ZQZzkq+pv&Gk+@;_!xN%(I6n#ozI7*BFb{ zL`9c;Tsqoh9h;l*+#;^_5#3;`(cm(zMG}2Z5c-WBrn!S4 zK_GEPJrvny$<^VfB?Uf#;ru9VqQa#gn{iV9_~PsLJ7YT$x0jT{-^_PcHqZ5z$;sYJ z-pjsD?pX1_95UIKu_M)El^jJIFvCOn3lxMnUK8$g1Y)Q+{p3e-VIe(M2Uf6Nw68pd z2>(?4oa*%fKOFNv+CA)mprD}e8Sbolf)BRuvPepZW6tMw#Ui*fUJq#DH*)>7k2H<|}<=!B|YJixEa_^ed?dB%`{mrq7UhRh}}bdWPw zA^)t7G+n?6W4`jC#;P~=;P96(?_3A(M0ho%$%JfpuvJHh#3?jPy!(t|&50u28F1+% zBZHFq1*S<3(-?j}c5&`P0smSVKSPmMX$tr$qwKGI_;;G#MES!1*T-?UHR{;7Nf-ZqQUOOpaMm^yny;4T=D_#HCP?U{wf{(yxu0y4t7vG% zJ}|VinkJ?SHbZy^JU~Ayoc+#uNjh^YaV zbsXkUs3Us$rf0b$pI4|wB8O&XCNn9ORkBSQfa`L=;)~f@?X00o$HVOMyrS2;TYGzZ zG^C{R=Ji#h!IYHp$6hq)v-8<;RnnGgwHy2hS^OrrmMaqG!6$WocBYgin5a;EwI*>b zIc&v*XL<_TZ!8G*z-`PQN zad!2619s8AzCN?&F}wlE;_dC(=)kL<_)n9Q0{r%AzDpr06p-HpMT&&gFx$lzCqnWd zH*jj9_2J$V&L+d0cP{1|={y#=3F;IA=PEh&!`@LA^$jg8FKlsq)_%_ie1x{u`1m-G z`hCCgDOKq_4(~_o3+@&-e|Foua&UtZCL0zLU)^YXloCfNnHPuuf~292!MDi%yOd9G zFhbr=+M=VIDf^3!vvP?Cyp&!0JlHmJd}JprwY2CiO6~mAUgEpvGDVb9ANFl?u_sA4 z%+-W`=;lAxo&40@5E4R{H9&almgk2NPI!y0Rn65M%{)b@<}}T%chjp+c1x*&G1{--dg8Jn{{^ z9+a2<%O3%b5>F{qpBXAi>rdw5P<1l@;udcISP3IsDa(|U9o7yX?wudSQSc!ZCMc)> zv304lGszPw&4JLca;B}4LIDTYUEc!_HZ$v*RjJ-3=kO^5>5z!umL#Lr93U4`Uv_Ri ziGL9$9iE=cI?3`lsZgO<29Hm=h)+NOav`Uth*?siz4Oiazp%4cL6NFaj>4+t5!uxh z%g*L9yZyP|Rkx}!c8*z_9`pZU*WNDbAV6FJQv~&=x6D^~d4=)i} z%3M?ysKTy)p+i`#@c=;!&VQf_>0oVbY>*K>4>qMj;U@j*@tyv}`{ZfYkh4)G&AzGv zVBy9&YLpatG?B=KeNQH60@=je!pW$pu6H|D6|lZVBrcE;V)D6YRla!gbgm{#rCLdq zzzm}p;4p~RTZkgM(W6#9TKgE)jH<489*3Jm$#feYDg9~{TJa2G9KSf+LBFC~PPkZ1 z&!73_x9gDM-0AIvA@A4pgw3)ERJe#V(fK?VWSj_|PUY#Sh=ko@wk$b@VbSKTt&jU$ z^z8G+W1|~S`1u3T5Qw~_FZzm@>^os)T60~@Z1D{(3F-a-?)?1aOPx7{q1~m?bE-Pv zn8Q*+T?bN=oQ8JVtrUgDMw@ZaIjIpouhZM>I;9S|F*7?lIs)}YvsC4Hf4`RQsS>FB zSZg}X>YwWA>Dk)a?umbuvL68T_6>>%gr=aL0&C*tzlR%DlLl$&>E37iOK;x1f!ihY z%FQYM?Lic(rP!agwH$*wGuec|ce@`VBh$QBf!rVR_e|PZt@0mM7_DKhqJ~c zu0JXu=LY8dv0$1jKYWKfyX}y-1sXQHEggg;1Yk5xR}U#F_L_F%L|cNEFx3A7K~2+O ztDU9uQ#113*(9AR$Kuz%oo&3lMp^@6&wmZgi;H&lwq_eViMRI;?ONTKL<1UC+FFea zjkH4x%JRy;ub`#3q_)79+DtU9>+-i)1j0O*Y|7B7^S0Oi{;ndYYX24bYL)Tfd_3pl z@CY&umyZNbP@kiczNnVR|4qy)tzp|T(++qMPj>yf$r7k`p@xLV*EH`@o zL{Skw2k1`2?46JhhT1!e9V7_aM0t3c0d!s2fD8bPa8$?U+Z-Gm$&AVc<3pFM!AH+0 zY>!F6(FO&>4rrWPThAa`iP7$un4h0N0O)i7qq?Ta9J+$^pIUr!a&mCZ`N4h*kk)Pp zZxp*ma*!VAzG|v0TR$!-v5~l3$>XelW@@?woqB%PwPCC7zlRIi?X-(jLY{Ci60>3uPP|0s@(o8vPXD%5RpP-KRP-yv%chL zmpsozIJqz8kU>#b-wsxBO{|s1cnoX@>$33&?j=HQZEzJbHmvrvoeQJbn09sDwKHa~ z@;P~GXtZeimFGpkK37HAS$?xetrDZRRvNv%9U4OZd6HEr)^wQ&G^?Kv&9@xh(K_e7 zO(+XPNzQ_3>|cm{w5&Y<*dONcfWFM;A5H98fLm71KC6vFoo!hiuNWnfpP zsEf9Wsdg#^ejezl-C*w#5EXS(rhvfxHUjv7EGaB}e0;$0@3@5KBs(4kh_LuL%ndm_ z;k$o6VP1QnSpq$$>1Tmmr4qM`T0n;bBX1asB7#6>53F;DTO+N3M*tAI5CaCEF(Qr6 zj@Xhs;jf!5e3N^+!%2+svjPx15JnUfjeFqYdbs2m`2t$V{no36A=o-M*0OEd?CLM zya;6<49CMladfn458T5+v?iM8jPHi@F0Ec$IjFn1^cSLYG^%uX>}aG%EQW*@Vnmnu zOkm9Y|0YBk?5`i1_ZhaiK8G66$PU}%W;#Tz`3!28^J5syY{jt#f{SXX4h$yq;e!^{ z&$^8Z5ik%3zOZh_oXc|GaV(E$QO&oRnaBq{pqx)&TKDUpG^l9d0^KIZu8VOWWQPX@ zflm2N(r=0Dzp5bHwzgh}3taW=z78`Xq-!98AYZfRmEtfT7gwKX2Mx9tdPHs5okLuz z58t^z^gexnf#5lJ%6F79pNGVu=m>;lz;kVjKUsRXxR30XSUL;! z{?2@ST%{v0Ev_P7qX8Dk6sAz)A7j-T6%=!<;7wU^Z3AV-r3m=t37u;0X*~G#DMbxi zYuO#d=Fw0yWk;~#x}3}Zh^&g`r# zne0b9Hyd=BH!=v1&aW;ne)#T*A%YA!aPQoKjrm4T4TT60|3Xu4A@ue2b*l8ksCc%` z@wgCaomL6+qxq0^*p5vlYx@nR-LYXQ@ZsNHDeQxG4u|?xung)LRW?S`B%bevS}FV z{90XgEQ)&)iDKsK+cD_p0PfS)T4pZVGCS=@kFs;SrIwk#Hhs7H%Yq2fVj<$?LqcR^ zWcc}gZQ^dmm>_O@-(Djm{g3coT67aVL)o|@CN&!*PBVh; zX#m^`HOfDB3a^di=4NL4?k==Jly_TeD>RPRd8wg6>NJ3{;g$txFFro)4hxW#+4CEi zpM70BYSrh}?{HVzHHjsu3_l;91rX_g7y#FXujS@$`s9+X9o3f`XC*8h0K55NIV02#$X zTLv3aRMg@V+1XMTH@6sYw~c>px&So=)aI>S4)X)p6i4l)Qdq%dlkQeLr^dOKOl1y^ z@pauNp;Gyy`uZ_(%#y2WPj!Y4r<@Q)rXM5g5~x!!!jM%}Rbh}qD65*QKp|vSDFm00 z>LMD-VQTy!YV$h+XT~FQ6-X?S?Vw`%34g5_Xmvb9`~(zg`a^T*6G5}o2s<5m`*s(8 ztgnzzf+fA6*n_(5Ug{U{66ScXl2!VF69uFUx3RHz^eb8vVeoHkoFmr*g6{|%DsmV! zJ$lrO4)X&omcqiqiyDf~C*im>@2p00s710XwFSIOE1QT|Bu`4pm3b}3+;w#?4a^sd zs+1v0jb(Ikng~M%IfS;aAEML)0v@SN)VzKBXJM8V1-VCQr?j%t%PZ@u>S5RZ)+X<5 zf$d;r4b%5TdGEdeJKRG7E}5|Kmz<&dE%z(hmKF~Kila?S2Dt%AItB&{_*)5wk&78P zIZS`JDMQ(=O@Md=I3%IwyUpFf1*qMZIxlu9Q+lI}8p17E*0a(_{r%Ds6EhadD$_`< za-vHAN#P_fTWH{N4R`$-d!lIEl-mOh+jp52xw1xQ|IpeD7a0lLJ1Alqw|{LLf2rYX z!$7%tJ@4KHC=@5D@a>R?s~hMp>+Evb&v3bsw=^{gB@L>)VaTW@H6WGhCCU?j{PZaq z;wRYF$NA|$Ejbf&N+ADSSt&BdKn|AN{+PWpUnBm+RNe2_$1hKx#`Dig_AK3y6pt4@ zQQO)o*R8D)76gHT*Iy}cMa8PL?y^##G<^3OuNK%lsjXfj{y!~%4ngr3vo5{wHeE8s z8jFL&C8GGflVSaqF8C;>4RK+novHr)l&BcJpFU}GBziVQO)1K}DkT{&ET~1e(Eh!k z;6Vdv_pf*y5urdENp(VX&*?lopWtJ5SS58Zr$xL6`A-vH4tykAmF++a%yhSYDM`y; z3acSMzh`<{w_k|a={jJjuC}p}o1J|fHPkzmEo65q)BUJSIh>q9<`dfL0_zU>*FMUR z8c{|~0J?YdZOx3opPiXYLwFEdyrpMP{FvF^!-KC?!GcPFr&>(lL9isPpo@@$LjlFc z#-m%eKs$5h;X%E-oAGiD5d?`lVG7TkU|U3}O%!m2pZ80$8SB*EMk)~Rs9jy&;E4)k0~y- zDD#5{z_yQmF^u#G?0)~GFiXdz#goTTNS}Fzwi-)@Lyjf}B;0#bAE(A-We|!3Ug=RP44*>&hv1#jdT6l6h3S1csr+0^!RXlN28$=YEH1B>^Iq#it7^ZGMvVkf3-C2J`n zM0bCQJz+pc1SNMo7hfZfzQfwt<-N+R>MksH5zx24?zQb;kXc){o|xHzPK;irJp*Bq zr0ZMacAI6@{$dM@NC+rKv2%aS&Ak<{uQ93{BqrrnYk6PG5D%fVw=pr#K~M`Ou9B*d z^(wvzRK1jP_eVZ|&Jb|Q(XS%L3$BtAXx3Rz}5ymY2bCr*pUdp zIWcD71;(UZ4B?Mm$HYTlD*pZRW=W;ESj}vHhzN1N)h)?r#DR*S`S9nKdiGm9lm{f| zu7Zq|GH>nvw1*q?{+yn|2~2u%J`=^0l0uZxuZ0s~x2}?}Q9&23;fC2DWbY)PYea9S z+iu`ycPG`M+O*!dpwR5Ehu<<%Fc;t)K18l(U9|OnphH6ZCc1yGr8rTO1i#MQJnxhWrc+*s=9C-cx^ZfWO zg-5woMox~SA(AjeYTVH$z6In4!0@>XXUi2fH8+oKxG%r3!ow&^?OBq(I<9#Ycv;c% zJ4m!Ivcg{dsgMZQcO51l(&r)IpA$60!GA*9Q$nzxxPT8xzk`kOKl*dc@R=qF#mk(X; z&&$N)IcmaML>@CDNXB)=mHL#3ckcHuzq~PrJE(seIX7n3#VYJr&EeVLmh&W|_`%bE`b^q|?d{}E zeJ^h#5N75C)rRf(Vt#3Tf_74>h4 z$0@(7>Z$9IT=UejhE62g~0k~jOJVy*aZ!$FOwc(A^^t3r!sIh<9VJ^j6>=N|a> zczGvAMpX0F)-i&5mtc$oZ*dvieErUrBJ}e0tBj%CXKYL2=X5_wYw|o7gT0Un`aY~W zm0Ulj(f)g)AkO?)r_C!vrRq5)jA%^_GB;j?-^RV&^MdrKK#RqVX2CZtH#ysX%`_lh za@1twOk7kVJkwKI*~9Z?BcZlPCr4#ZA0}SrP<2(+r}*R5|6XiuS(*GYa!K;9M3qu# z9^D|UuYe%?Qaa!GA&4U786fCAx3&c%1mGyR3Dja^Hadoeolw8t-2HB%XDhE~@Id?U z6&S&?>NpYO^C6N-LH*0w{+F*$2D`Tgf3N=jJ!@`(1;=H21EWf=khu5o$_7vW^wgx@ zLk#MKK(mwu-Aey^K6Q1-5SXM5oqHXfaM}Ur2=JyiK&v0{)Zd}JLk>29dM++54kJV_ z^;aDn_24{`BiGW^1z1M9Tp?uYeg^#6+U0F1Xe=bbuGw2NZ6uO7V1d&-^u)8ymOvZ6#9m)YLD|p3|=h-@HbXlNi5D>~Jz7{JF+z@5q)SAC5(47Ehx1Lzi=) zdbfl^s@>#5GLnDr0%JSOLS@Y`Un z!eWFaa_`qDxOS@%62*K1{bfy66}ViI^7Ra0i>h&f%Rgx5&YZ$*bRP3t9_IoLyp8pdxz`}2{F)=K_G6j6JRt68XEw*Kqn?G zE$uroHk4Or9NBxz?jzy{?;j9El^fQO(aVwBXsWCCSZqdVKVl#t!|KcNfA;QTijnSH z+HmmOCr#QRAc@6IMex9chdT7I%pD`Fb3?8Rw6r&&n@u+HVAqNN1mgUvmW8hLR zq!_f&KtoSJ<+0!*r6YJUI)#RK)yUh{(I(`H!(6Cr`pkPQnV)6QGEm=C&EaH-x%l98XK+-kMhH= z^-W#rzeY)u32O!NhlqGO*)`IjsCRHph>NS`^NtM{?9%57H4NCKNVM) zurx)>Q>L9BQ0LX870u!S7!U@3z+Oj@0wwO( z#op=H9KBcdw!D1lu+A?v4mnu591fwd+qWw%5w`K*@|nXg`0IBCY(R(?m4J~FNJUNy zOm3d5GLt$z7{cU;>INt)Pfy+vrG}mI0b%ruW;WmDy{+U_4-rw9Mxw#yCMX!Mw>~^f zR|=P93iLP##Dh{A+ptluI* zgD_v!)Nm%sYl)@bg>V{p3{es9n`khKu5YY7Um^Fsx*7*9boZGFTB_)++q@tRgT9A8 zJ6v6vqc@NUt=8tk(L||hlD<6D<*uZZ!lT5|Ra28>z_ZqRJ4vqOB|ospnkuJ~Gk0ku z#GM|C?Rvi8gb~6pS9-@Uv(q6{ErUc0kqWrNzScEy`9o9=b4oVUGcQ62O4~xn} zSy?i-p-Z1b_wDN@57oN?O9z7FDGJ4Eym#1LzNrW13g#S{MPom@3*%QqtC5zZ513Az zV!5)6sqJdH!ilITrzw{`J$*1lMj)Vf4b({re*1yJ!KV<207U0JWR&0|JJ{Lk!3g*L z4e}ThEkP6*GvG%!`I(1`!%Nv9@MB?wSSy&xB@BK2y5jLP6WlWOZSRHi6yBc9|1rCl zIW#r%R@x^vxEz6mfIR^=G)S0y_wSEl9EB+Cf0Afm>{i*+xV!qI8mLKsq06CVgk=Xb zgINzff~caMm(Nu)z)Km{@1g&~?4b~RymH%l_g>sQR!k~cH)&>(GQXg11tuKb0Sr@o z)`V|dU>*k#37{Zf@?R zq@;6sK{5=ufwgvYcn%E}%xcFdV%-9T#oIUF9%&_u=*?%|{24U<6e;A0_|}eC0K;R?|u6;Mm+|j~9s_DMJ_Y z>CeFde3n4os((?|b4r9ZfjJ7E6_62A6A^j98FPa)Pq)h1aEPLXfw#PhildDUROxk% zg)+2f4hw?Yg4aK#nv~ugUFdPck3(i@2XSDIy`6yl0jK zxy{YA>gY&GQIY2t#qFCp4d7#pO!v@~r zi3u%I5=vyUGCe1hxZe99X8spLQhIqbUh(OZ6lbRi`UWkY8x#gC+NGoJ%0t-utCOrp zzVz!5VW!JWXx#AvTP`s~5{(O}@vu?pQQOD#Ecr32G&X@?fDfKBjs&*566`%lSwi@P z_xMYHuu6i18QPJ!w{LGaNWtr+@`hOl_`&DrHQ);V9zYizMaZbkfUd`DdPdu5utRm; zh1>`N;(>tyc!qA4CSHTHhetM-POCW$q$ycKzspJSTjtRz>wS89^P9+()4hn`ca@0YKnxjN>+a&ZIv3z8go~3< zC!E4^b#>hwH(iei-#0FGbMw_4l9Fnh+oKQ8+Q&zptDv+|+{lun%UNboBIVLz&a_A*AL2 zB5)V>2PU469r|H?@JWg*1cXBZ)^Dg$P6o;Y;O8L^8vq4Rk_s5+#6u}5PGt+>Eq`qa;@PVH=4FV4m zHgTzBX(71~%9`!`LX&%V^z`&Q`Go*+gD_7zx^4Ufm3%b>;zMt*zn`DIxL|YvA_&|) z5Jr)SixZ4xpNG%;-^cn&3LVEch}4S~Lqk`04W6h3CL@XuYlnb9habuUJ7Umj9o8hFsfkB&LwHTYnws5N!i-V0#-S|&{OSiS9_b$!!V##x)3h?pO z&D#5>A(@6Y=&>bR!b*~fK&n8%LcLj1q{xoJ|MRb8?ne^z>k!d*^B&P9T0>*$rh)nt zciOVgR73<57tq}3+=htaDD8|Ec z2&DyFvyhOG;1IFoPWM+E2oDc;diS>ky0$-l1VT5{U*afea>jOd5mM+nQk92)zv42Q|8xD9^u$+rDHb8&n z3-|NnroN7Cs9j+F_-hWpZa`w}wFD3b2vrRQ{tS5SeRbtyVI~3N+PcERTfXz7qx(?e z5fc*wZ~$JKB?u1u)#Op6fScugapC~PA@C4W3A+!3OP@Tj=Q};Rs%-8$ul)fotyv2t z)@uJPlqsdR0SDTtDJks#1t~{<`UTzgYv7lhTVkVd%Wqg2m@3BBG)Tv$NhGBk{GhwYyju5I=83l?|40Kn!ez7I#8yEEXmv zUGgAIQNf_Q9V)%LveMe#4v*B`sE@FX45dBn{eNE~f9E-Gw>sQxZ{Ezg7X6=B$J*1= z)2eA)!96CU){QV}2oFcQbr&6(EcU2@y%zd()Cmz(hhCy=yO9T=cY!sP016g3;6dbl zqI~bBisXJOCnpDI09dd=O!lKg8W}NFWq^)I6Y;Drc@DV&hK7_c3?VNC4{sDbtg@m4 za!_G60zJk z;p-EqV}M<)4D}tnXTP?mZrgWu5QUz;*END&1ERLTzZw?~ZF$LV%^+*u3?;_icrXUX zKd895jKVH+_~%b_eEja0n-3;SA}|2lLu_#C*>{a}p&=M9z_ zW*7m?DoIEl=c_?)z#DkA6qvK6wUZ0C&I5EPaH@guHV2Dr*fINkUx$G}YghLsd~$H9 zQBCLm4Oer4BNy6NQt}d-L6ES^_?IMiWO}fwutmqo)WzihI_=QvySn&sJvBXDT2y3G z&U60y6&&TH;(mgeLyU>?plTi*8fr>;Id!|7q*wzK&T^`%BQ@{NKf_uHCzw-{Cypr= z0tEew&)&1WFpu)_umWx5^NKc4s3}0u3^P2aprF#2f8p$)$M)v``_653h1j2o7)fUL zstV1DixfsCRS;MV0$oUl)zeGUcEd&{OFQb8A4Nq)1*=xJA&08Gyk5PTILT-I$YaCVG05lVJx&l&#;g1yzIi(SxZR|=hQgt zZhYDxq8`nEnU7o2K~?OF4_J>VjdZ!X#d?S#nq7D261!8 zS`Wg+`@e%n>wmu&OZcX^zxjEKQ6!?9Q6l_DC{7vTm{Fnl<|H=ni-o!oTAt8C0};_Z z9gvc;`@SUJ#sP^}Mp->xWS2LY1acBp{-46m{hRAMj^iJZoK_}Xu~71C1w* zTt3#WSZ)A#JZqD?A9gU&N`w6|{|xqnD&yRSZg?dO>Sn&2 z^`fQ*Sv;$|KgPwySx?ohI=N}xx;`Sz&3dWif^FbEHO2d2MmrZr>0Ej_ZP6mVWi?zd zWjbpa{&df@p@UtuGS0*bo;50UDs3T`Gd=k;*VDNEUUnuI9S#Y(H??DG8 zS0=0J>W7y??<7sdtG=YK(j2bDAyEEMt>>jZF6={jW{!7ZS$X-=Fn_$baAII)M%{^S zi=2{=rtM0Jk%p6=c*>0n)t2VEoKqjSCc@EcOuUYV#Kvah=h~EYP-HyJ5=#afLI#IZ z`H#$8I!#f|UT$@^d%x#(|5BX6tt~Al3cLDRoeSJePoc{qb~-W{Pz@9p3;trgtD~bs zYNaG)wC0_?O19-@JwvX~#KMc08qh}Tux3V3OdCxjzz>lH*MyMqo!hsm{{q{*ODa&C zzZ-3+wNek`zpKCRpu7WZoRD)h+xglb-DOrEdU~Xe9(NQ9Lm@RIBjL2(q)CFnlIe&E zOXhjz=JzXsf0qSV6k`2_kxo=!V=O(umR?*ckJP*0Hs4jTW4fN865wp3U-z-5WR7f43r~ z-?f4KxKANz-DC5-z4?BEt_$XYVm4*V8Hq*$aW7-;X2>1;htl~f;jz8}3de{DYt009 z1W#wtGiAPT`)Mxm!pW3kN5=M1CW`~k(Nt<@Vey7;4#eD4%@uj06LT0Qlu4jaJuzY6 zW4E{c1UjaS81?4(s0kL&ygEu>V$k&Ay<_C$Y7K)RV)&R(jigd(b!FvztDOUWhG%Q4 z&(|X1y*M~5%$OU4w)pFomLDih#ng4fSeNmsg}X|(A^vm>q@RE9KTk{JRuxwOaGxB3 z|DIk@k435|)@NlIO_;EoCjsf`q`qZ4BbM8&u6TibL6*gZ6s$lG0+T~RLMC!@@lFlZ z=WWmu#bypef>*K(zfr>E?kNTakrazX-X~5s$q#s3_iSuF7i(Yr@aa?V@*pvSYr7Q^ zs~5>`JCmQBuc)Out%7ni!m}l;G_eZTKE6vqx9Z*Br~8XZZc)*fl#2J8rA;NnEf15# zGQ!mrcZbYm&F!kKy}bv!pXDK=IAi*BEaTAMqeO3hI|K;;4@%M3mL&(>*Q~@G0wxOK8#E2oDs%@}Za?f-)jB{%hABUhq0!80Oas zu>fB~R*f6Lk2Gukw#1~Q)lN8T;EW6)Tw#2oP$p)rSti>q+T1_0sF(M!mdsfSfGm(}?BM3GEWZNJ_$H>0Y} zzknU~-1f)BqySqE25u_WWySrONy1To(>%BbR`TYs6GmglN ze9paRpS9OodmTgNWW{H002tQ z+i!?|n?geXAO^(03M#p#9WA?fV(dP1p6%8a)D_%j`2K{bY3PCX%bjP(1^5sx_q;uG1A%HVle%lz}W+h11d32dchEvrOuVZZVwm&I{x zGj7AN8Pso=E_t~#pPD>QaN&dW0Doe5|KFj3c5O6(AR4rw+(s9G`t}6|8q%5Fe687} zRl{;ZOicFVzDkAm^GVBTq-;}xZ05^BNyWjz!Jh)on7^|U0^0~PN1Y4^ z`5<>kGhdHtMxVTW_EK%y?~UEunxx3Tw|n0ELBVAoOa6*jA%_%;#BaJ?@jygC_#vbx zEBJ-d~uCON#^LZ(O?)$Hj`1ts~CDs}6pQ)5-d`=t;4-fZwTwH~P^gDlm zUd6@viWrt1#s9E3x7p-;tdThAR3_PRSl$8v0*~{fl%yzsu5)Ko;kmJ`2=L&tR;1_0lKdmACpxov-YvdrVG<8OGy{{AlW^_~b?u)7^a zlm52T4=R)sY3fIYl3aJ&#XlOoj=hPAiKNu-qotz==1U?QEddOe-@-|at+38PNW%s4waJzrP&^vO=DYP)S~BzhYJQMyB{ zoZdb@dt-`FZ8P#;x3=@YK3zH;&g2yoY?^2=b}m}7M}LC`<{E5>g7ilDA87&I_3l8u z77VhShS1JnBJU6#4Bq>#Sa5$%4i6VQd|sdKFChTt|7FIATJ92(GlxZ3Y>d0QWs!_GIdn5(O+mXqc|UBCWe2_#$_>9QdR9Q^{jMPR#q0cACSGcyd<6Z zr^~qHFv{oNmeIdyWMuUGv@77koql)n{&daEr#$33ROMk#ftPUfa#TP^Nr?;%{@=fU zD?YE!y7g^sZBe`z-^|UaGe;RHDP6&0>1Q8>_KAPIJ=LkVOje>!XS0~u8BPs&2Y*5I z{a8*SkNHZ55@$`|@rVWZ;_S@+lGCLN0E{>h(b3Uk%kN^w7k`NOWfw~1K?1xlcbi$K zJou4fL|#{L0(XL5US31Oe)7Dlj7X2*Zh(*N$h|Dd&~`Ov5Cs8vUzg~trwYk3`d>1d zg0C6yU41@r!3p{q842#B?$JB`fBPpVx00|JoPfSmL&}ds*B?f@h;XgXx$k5qS37+IDW;a!rpyN?hY`}d6 zfIJ1RdKLOa8XlgH70SlO;7*J#v`o%ti>_Az@)*XFJLLgdVh|dutU6WhxGw`23ksuXpRgL>uq2w~5XfgPL8> zH<}!FUoJCW*9QC{2yI}}d0gmUHuv@@Gk!NUaXGrY9dSMR+WPtpGnoutTsr9?VZm$9 z#ac6rmwYwaKR#l_3ceKlr~w&1FK$3**asR$Bp&-M_zad6{ihX=QwRV75iyiTe1Gu6 zWn9QzAF9YxQwXX|8U=5Vo_!N98{2jLqBTZ%-~Ijl;cNw}wm+IB!u0?}CIIA1r`~KQ z>a2L(F5iOn+E3(zpR(5R`q<&dyD|_UiV!Fs2R%t@4zs*T9kztYOn>OifQ4vErTc%s!rW5Ut|P{IzUYJa4RaI#faGVYi$E zfFw2x6}5POpMaTiEsL6YcAJ%mSJ&6)TM$p4Xo6p+wQrmaZOWI z)%#Jb4#~wfj|P>J;h`ZU3wxv&YLlTPCT8XhM{b*@?F3yr=zB4q2t9Li^E1OP;I%~O z89{T|{l_aEzum^yy-4VRJ*zM^KBOM!qdC9XF;mu!Q_IzMf**5@cBJQ7zunv2+O*SU z-~iW?rd^@%j~~}UM}PbdfJ21@w(PmWvVFiEhXC+V;7|`nc`uQGwE}@>D!b1EK23kq z(8t^F1fes-@78*Kx>Kddd6U&>M+OIbbOb;g>rL%`I(>a%(6-)ltF~U|_O#H_A_(tu z-_J|@^OF99(ywiAzq8yEH6U@$V0vnbGhL=gDeScmGrVt$vrUT5OaJ%D^GaVP# z{j$rd*LJ)rh>mE`b}h@()6=e-6oBqZtDCIAbM4@^xwW;mg+=&{q!0MM$k5+qj{2PU zVM74d*VoQ1>BO&9)8uYy{w_ZR?~w7svdLn{7ctBDsi>&#!rR;V{mn7(5sG)eOG<{1 zn;J6WxK@9+X=7U$Cv_tq%HaD>iHU-W+E81Y#_yHVvtFv*)?8FHVBL_(?}Z204$?LJ zDm5Hpz)n^q*}=|Sb9hgbb|>rFvi#Bsh581G%gf8s($XET&)`wAX*~~`+$Wo3Wn>(4 z6j4>h_U7AiZdrBPB>-!^;bWOjhqs|2G;p>_^vcP?a+%oiWYoJ#^_B3@U3D!Vvz61z z%Bs(UbF;anegmz{-AVQ$NL5&uCUPHmIf=X8pVn2`5HkZqt zVIJqBFY=D7?OyQyYqv%3*Kawx_(#FhdnE<{cH8I90>BqhQPEnGC+}B-D88FxX#}$?@^oejB+dDg=t&Zew z&B(?B+=(g8NWXTR?PC4jNoUKhtTrSdseJsmdx`~-ZbOH`rWn$4fxOEFQ= zm#YGSH(=~9sc1(4k~nM#0b(kucLG@g&sT~at3EeJ^JU)~6v~7vp)dj8(cMk2k#j@` ze`ibP5E|Kh6*@Y)x5llmrnYx^PwBOa%D*qGxuqmr3?G*@dV814e+RaPU?snKYcZI%>6(H85rlH}& zj~q9B+6ZUxvGV zmU{Xg>QWrCEBT)KQvr0>E(t&9dFGi|6k!{9WwrUE&OVjz-@Phau4@B0iQeO>w8oi z$wc}-AJ2#V0ti6A>Mq$N4^gMm+PrZ2GL?!%$952 zk+(wJpZdJ=*fG1O3bCMG&V0AA<4mipfb!M}aj7Qd$5a~SXw8B0o(oVWSR9DFlY$Re zRe=OFzJITxfvST5*x1;Z-sqFaOC0>;2Hbm}H~86oC&0@a!C?#l-G3s`Eb$OKWFSA? z-ugUDW_C|>$~fEkL-5lRd7gDu8x6AJ{S?Yd;`6xSIc>$5*>s%Dmj)?s!Z)&_q9T_S zHT%dpFe}}2qLnN=fwa8#6GY(HN^@dDq&QE=lz9l5MdPDYm17!{QIi< zxEI*>s@_LLOI39sOr@)oOq;Ss3B0&g=3IkyQ@IC`v9cScM&v)yBY{gm@H{{2osgPJ zg9a}lDG7F~bX{@^*$mAZV`+PP=EOm;y?KG0^t@{<3nX9Q0jn__Ko9-O?65QR{CEq8 zfwuL=R6}vrn2EdXRn=9n$KR2zgEYblY*o6t zYvnB`+^%Q3{}T~%m~R9Clxno zFyX9i!a_a$@aJHOY(s0GU;dkU2>bN0)^UI0O??{=rIEEPx7&fZ^O0i%>QWA~@3CzI z0F+_>5d#=VK|8zi z>vD2v!FRAwyqJE2+x9KXcNTtMKp#W=WbfP+B#Zzt8oU}U7I`dg^YrQM;_*$T76`AY z!zeGN4U2vHcBYUGi^J=-I1x7AQ)#inrN~Lk2hPqaHR&nTt?=+s#E8*;eIwI5ZCO6~ zLQIT_5HN7(={;vhyms!&hy;>@E*F1296*;9&xxDhh4kgMnd27l>@$Iez`;8Afejeg z0a*eqdsLS$2@-5-4=UYNzsv3zF9I6$a;L6uFiBxikzN&j=0{gDL`gKfczH~|+LzB% zQHX#p6AmvHBCsYl9<(%XG`SOWOo;~n-tZ{klkC}a)^iIsZPW2V89dOwhHBlw@;w}+ z&l^#;M{`vv)}QV07Fti_g_qZ}&1ir<3Yq=OW^yB2#fj=d!>AvGzkX+w*JJE@7*dPv zr6Nd^$ET5g8UM0(4Go%Jut;Ze(2#z_#?Z(MAi|K8=SR-fIp>Kl%+1zQ4-QjHKB^C(B1(+GZ#KO=DYyXgM_{K|0OY(3O&kDpcj>-P$#$ z$Kt5*hv82hgDb_8c320_Tpf4ruXQ0O0DyT7_uT@l$Zv12@bA#j5$FfR+JpF)JaM)= z#);{}E)}SeI)vaxNEAJ6{66%nl7kE;iYl>ke&j;X-&2xVLzHCw+AWMuM#rAV*8$oz zX&yL8?c2TAc6giBPp0~yUJe5(K#OL1(!h{0%UlD7AjwksWMjaosYTp?GE=M`4pvpK zUCzWVS1EZ#s%1}$RJ<|X-l3(<&7)_PV$}GQEx*eJIv!7q9+T7d&L3BDNWn2_1omOU zE3fNm)uxHUvTYoRW0dxqHY2Iq=8tjYb+*4-1oH-sD>)4(Zn?J#hkefOX0@XZ69Ok0 zktC%DBj-U0Wy-GbFqD;)ic5USDsvhwv3IF`Xi(P+_qSGXI+#w60BlY4r^z+|Ep&` zo6E&U?@p**VNt{Oa|eIUxG8$-+k+FoJ$OP&%EIg{wv~l}K@N$#W4~T5l;>t%4fW3q zDT$n_$MMru3FgIfq563K2x_iTR?~?3_<@M$9~tP0Jr{o^o+Dpd;d6MPy~IG4PRSfE zq5S=OYFZk;U5Ue^3UMO(Q6zE5%~ShIGgLbeMjT>y5tHmdlk=Hy@06aBo>Z~qPxAs? z2S=3DKPtuiC$FBt;w@gJ>&I4l6o!9sJUA(2v+w#4+A04mHN1cKLm|9KEFWA`g<7%Q zTp6{~*1JGzY#AH2@xN@$kAFKY1ay)!eORvTeTgY$K#+~oYP9{dbIb$zrTt>DXw4(L zp(Kjia=s~7g?s;mmG}B@IvGuJZ0zOyAAy&vzMuPURTOzlw+&9X=B!kK3PuP6Pj;Ts zj=u~1w0(&SmnR>{#vB4-~K#aI@60?%E2QPb^t?ZejPnQy<9L&tw5#t#OVOW?a0~eksLH%a1OQI^RoTwW-fw6g3*wX_?BPflKb^f$_ zq2`RHS+d>6$TCDLmP{)f8A%l=zt$|bJQIW(*EIrO%y^lCkNEgXCDT>03R6qA8C`}W866RZ4+;6%rWicpQsp9Af(;3kGOJ5OQej6LT2eq9vQrZ z)Wb;~l$FroHe{w&UKqO?C`w**Cd_5EJt?@w9!+8jFz*8wzzAYpwuFpKyW_rs5aiQd z;ql!%D2n20k0R^yv&FadAR^{;eHf5G|`GMCT+B0j*^rv30K8lxO(F`)~_kl#A79B#c+dv_mp+$#8tsm>yWTj`l zj1W0AF$K;2j8BW<;^h3s%oLXW`n=I$#+n*Dk(cPmo=GCJdF$rd{a11u{mf0v9vx%M zd@@YnVaoxj4+k#}rm-m&_4;(cok-@$EAeyw_hO~(UNu~PuCDT$x- z62|&Katd{5vp;?nd$>qeF3V31cNN0>6`-!J4ma?fX^PAUEdlPqCmdV>=Bd~; zb%`Xnonry|gl`^Vu9hgW*<(HyMk))lPU}6JKzvYGnvLNzWV}}o8 z$)?cC#4sk)0zgn!`Y~P0jq3h{;i;zDd)%O3h#3;l|P=;uJ4OyW+7on$P~k z){M%|;Et^eG>-^PdRLrLN-RfYSl1B$^N17Dge(vaEc!-vUsnx4Y5;PzO%+EGfN= z<4@gG1|0X#?WV{tdJjAdMRn1t51|9RthVPHBJPhuXsmjj3nN0KMC-Ic+$PFkZR11{%zN-{SwZlnX9%+Fi)Prag<8F8p3knQ8Petj& z{H2q_DQw}xGH2B_Ao-&O;pFSgo1uh6wJon#dyT>Z67~KvPDuSCzx7LWkQlb16;lo)qX|lvz-z_X|OeV z>Z{^<@?8}(=r6z737Z;JCAL5RRqO`whrb=Y z`})LUBmob*#SAUhA$MjW5-iKwt-B@)y$aYwsH3!{R2(IugB}2dBT69fPBz*dSkH0b9oo40tl2!uu|cm$MYc z@E-{=!m^QMZ61@j)RLw0d#pX~R`OCgY%=)0++{|TM_Z-IC)d`9!?N!fy&4wzjQ(Mw z1Y6$a3Z|;?&Mnf)?@2QEy%+lp4sCn(z>>kK~m_P>9_eWo|C*gjR&#U9^vd7?beA&8T@fcLwpp)oh zVQ~n~gccST&;N#Hn}U|JprD}X*VnzADA3kn!{cVzj@CP1;XF2Om~=l3aG4zZ)KOWx z{iRF^m*1J5#K}HmeoB_A^E=&6_Fg*K1erLG&&Af%YHRM~{>0=!xf+z<*f1ijD`ow^ zYn$5kmkYLkp7)3hB9?yO)S)ZOZhn3q@GVj-K;OCqy=8DRxM*2#Auq0|gP2I6uTb(-|DO0zc?zPtY4m9#PH2c zZ%@q5%BsYmtgrge@(BqxC>!4YjJx~e3=kQ#zI&L;bi_F)R>D#1;U2I3Lj40dft~zX$`u%_-Al^>Tl~) z(a<<(a@3~#IH}2NLEeTm%F3E|=!77y0JRW3SI`Z<783D0NUp8>R(d3nWtoy5V@N=4 z*bC=C^}wFYUZIKw6pldWw-J#F87iEk)8U~{AJ!flo^<5N1E-D90Q(Qs$f!$~n{+yo zWSblh@BM$NK=lm`9n{o z)?-vj?4@vU&37rSd5vC%giDb`fg=Cj=JGg9X=(x2iC<)s(NeP2@$DTIEoyncSc9V%ta} z5*ku>Z>Uhr`T$>cuQpZWga&QK_AuCXvW92J`pXCDv^Lcw!Kg3dgubAs%>Zg_9G~A8 zIO}?S!oEo4z^2#y#sCNJZ!Kj@&SToTou3E&edpatWkuq@z{z*@=935l&-xWSpc^Ax zVdkmLfp;b*Wz2S)V0eKj83K#4*4(m?Kk@Sf@Fk!tLwz|5Htp#HZKTN&X#d|I(OLt7 zzpdMH%5-EB+{P}jAWN&O?kKRSiy}x2hE7HafXR-jQQfbPxgq>HhLiPPw=3EMKb>p{ zaD$L>bgV!Wf|#3M zdYGG(b(pgRd@Jhqi36&@K~>`~UTA3~kh14)?e5yl--zV%uZ(PUoj3tN%`|t}uM5l4 z*%bcIn``ICMO@ITgdzL}6DB$*Z6?%8(I&#q4qZxR7}_9;K#=CqGAvrEmIVqBu$5vSfF>gXm9e zx&$7L=XE8`7V--EKDf2AjiFKq-t{Rs3;j+f8fw*R#d+(a+L20wWd0iBJz zoAXoy`qU0rC@o7`Dyi-IGZ=#^LCd8dn?05WCIucg_R^{i%T!XMqxEX$L1=vT761Sd z`OvR1iHTzEwDA7rq+1$S_WtC#x89G3{t=D&oXgI4f2}TeV2L_8oSo@CF2q6$7nH#P zFn!%miETp@FQSrRxsKB_^(Uv!(}DC>P6?sXj*|8I@5U0j7pCgSsK`g9+%&3rRZVe; z2Lr!&>@OtFW(lJX$6hKD={qbeAMZo@c=d4)R-blCG5Lb~SbuW!l(8qCE{Z*V4o?Jt zMtpW~g-ra3q*(Bn=mT?1VLC)y8kGlBPjybcmbio)moO4_{Bz3P+m2TsJx(;aa&mKj z9Q6AUo2G%Op=eMy9`fmYltoEgSP(j0vk>Kbb77aR5kSwX{)jU@EhXvG(Q(<&GV*Nx zOJ~UrQB!I0L772#AH&G(7uoi?0&%L}s#m(Qn_+$1%uWBe4mjOBU$g(QL5Ip?5^z&v1NK)Rq)Tos_1pOg0LV3tnp2xn|!}N0|S!RW~!rM?mxL5 z(z%@^vhX{^{^}>s3=9Y?>OUWq1Ry)9{v=zv9L92DeulMjlIZGBZLd|QGm#DQz!L%4TLuUce`5x>Rr)D^5-e+<&Wc4+ ze@3_ayLq6OdW=V>#m&n*v>A0faV=COlr><*OZd|EKiP>+4yV29|1{-2G&33i)G#g>&)mK-GQTWWB zaECH>scwAD)+3adqG(QcIzm35PoL>hJs)gPG=FPhf$t9LCOi1A5E}GP{=x4!0%0dy z^6BN1!wjkDRa6;$hStl?9{@Q`O-;Ek>r{1v+juxQmGhS1*wmoE;e?aWb9npw{SS}& z7HruFy}h`!=+ZQji~Ihl0euHIk__UN51OzZDK@C93`%gXrL$J@9&??umGf@yRe+>l^B%>5KH zW7h3jM8%FN@m9W88JtExDO95t1jtPhjZV5CA%FX|^3=U(y32@igKtJjN4IU?R23_P z=Ew)amONVP&&bB>sl0~^f6s-<`DQ-tJdF~i{+9MMPH}T9(|AgH*=AKnCoa1O>yL%Y z4lxu`=;BI9qIVHY5_EwSlY*wiXrmI1$x6X`dj2?wZ*P< zjSkWCI*>Dk!waLu*;a-UO8BNz6x$Rfy_ZG7Y7tK4rTP?q-l(PN-TjcS9_)T6^bP=o z#<{>TnPZ(8B)J;{j&4u*H8W#l zNuzst3_-Q@BLIRh+t^Zor(-oUZ??ZF=BRM+b2Rlv$%2t}LwLWeTB{zTI!S2CO1r)E z%$aVmQ0fOBvt0W}I+DRkD#uo!YCzG1y`HF`O8X1%&m$_cc_$|)haI`YAE2=1^ab@o zt8+%-h-^U(p((-w!t~Jm<$dB z!@|^+cFM4sx+?;K*3>8Z`#{BZOC}F0nH4c7G*6sl&FcmqZ$eoVG-xeE@Wp25S5{UM zlkzE6w5)t+;`&V~;j-*edpzZvjiH%KT~qD#y1OoL;SP{7&!^Lq?vuC$R?9+g!&)$r(y zA9wce%f}<@$t&{KL*Wu$*Wd)k_8mc?*KU_~L*)NE36zkI!i9u-GOgAcC?(?QF|uvg zd<$|lC6%6Tw)DKPv3+u*Pxia#x+?p@$a z3=A)Vvu?SkO7Ml!yjhifX_Z*r*Y#k2P)ov&qPE@GMen|vDG??_ArT`%DQlQpVUY<= zBv!FP!?hv5nHuincKkB;=0VX>i}dp&gLbFbr1Xbox`(1kL`4X|l6}#xwSdaeu!wg=w`oeZQ8h@fe)m%`{glea5f(1@X-Q`4e*K(}S{uzhf4 zV8UZ!peC`f-Q|iCl<(@^G&vigRVbP@F{0qbgJEmR5mtS{b&YNDL84Bf%!IjunxJQF z)C_=)RsuzX5PQf z@hwi(J`k0HMSadl~Fse$lLD=W@g4zng_5|7)bc)qcRlw}yBc%>X3 znXKVrt3A9bq|n&hhSJtxQIwz^Nf+A8{Bct-AS_~VOB@@zbJU6k{TUxbCL<(R(yGba z$0u)X{L48VQWb~Qzj6&$xtUV>nWK{ig?(ebU!#$LZw!UMry9z$oMpY|6<}juZsqeO zEKZn~T;PWHy**kMSyR57B@%||wh6-f|G_{y8@uMvcPV703jJqgGreD`pDor04eODr zPKyEnP&iSUaS1$hYZPqcl_f>oC9eE!oilPRG&cXx$z!DrR^>dSOKZxg_-HZ@B08^k1fu{`{^eEfr_HLcA!M21re?#cY}*-Wxy6B z{ZEtIEg2ap$A09;DN)kxWIJ4>8DC-78%uqa->0V(*K+?2HNahqyt;Cn{QLL1T!f@f zib4{e2wj2uZD=np| z9G|6v|Av6wUHq~D9V5V zkk2u6dqaah!JzhwYc}=GC^C`4fyk+|#f zgF^^P%$;4ulW9~zIiXHHdo*eK#KXCH2bm~1&CqQCAPkQu$E-ZtBZ-9sor0sssZpF_ zzi%ZOHAzFb4uvDzV8KIl%pTWX2BI^Q4)UbPe27yy9)UinTkvr4Dom-@=igtASE!s z{gpHJGlGJ_p|ls>mPH@-U`_aL4&}nKeM%3;LJ*aUxPzMXc1cIuzD|qtalO?d4$_~K zNp@(xkUVqt#Fr4k*}~7H;Y#6Vjzf!08)U%|j_{G%p&0XkXuf z=qC+kdVA<^>k!Wh9v*U=2HxhjcqZYsUWQ+?269=YX~EpvXhrAku|>!4(KIPE-hmrIvr7)GR$qN4q`X!jAfkqBClTE3B@I=koyuC+C1rYdKkq5I+Av-y;q z`#vLXEm!OxTT?^N{Uc|tt);Zp!yn&&g7?qfTU-0BQ5H!-1n*zy56&LE4r#E#6wLh- z=hS1GnS_?}km1e?`vvlm{O_F?6uji5$3;dYf)**Bs<9h4eeaIfztN<3B!?}si=4b! zYQ>+v*?eS2!A17&P|g09A;3q$mR_h&Cyo8+&Mifstdy+Za5Xp=5ZGswLZe40GM;i! zTn~ZSGiGu^!@v;Lpu7eKBEh=^p)6ozk*{^>& z+3MSx1V@;jiDTssh7m~Dtxq*Z)XGPrY%^e#eTnCGp9l-;Y8fByHFHUL&&{2bW1Se29#gU9yL@c)rhcTM5gVedq z+aX4KPstdfA9eC&D3T^jri`)3!3rV8SBdR6(qZQ_+n>l&pce_7`#IBd<)b6}$+PYlVk9sF8j3_WsL^6jW7wC26XzC75xv zCQ2m*fRGr>XdxaHdDEI!;7DMFb?&iFB9lg0M&VD2g-%i~&SUZ9?*xVWvWd+1O?h-u6E5QIN0?VEBy zWfk&TqKwThq7h`YQrW0cFJDcmLgJ+WgHQ80!|2#zTeYTRKK9{h@hE*tKgsgFO!l`M zH!Y@q(qF!7$!YsA%CCj?EtWJU)a0@m_?r0j;0Ua~KA}rjt!!rPXS+;6DmYLCeEal4 zZvS>UY7-V5;$Oi)`f;exN+*(kX8(S1d`T=QeWg8GxXk=}%-C%S1xduse=yV3urPQK z<3gmG^Ahy~{9V2&9HHwP1l}WCY~>j(^=nM_{Z?g)sFiTu zzIHpWDs4hB>$)(8!2Df9Chs#^;^6S$paXZh-xuPSEEhEBXb2DvACjbub%&0a&JX`} z#0uR>{HT`{L(Hd#0ysrscyb@v?4P`=xW@-qd|*o;vuXqI@9N@Et;t*J>bW`TmUQ;9#fmu4)^*C z$zr|O5)FhWvf^g6l*BySn##)4VmwF^S~BabZABF#d84E{_(Aui{9Ylk7LH&2uV_;R zBuPk{2`BdyQVvG9vE#u>GZLUnfXnZGWeSFQ!C(4^U_-^(X?8j+cOm$ln)KWC;;c&8 z&Uk|OFIaET`b}TRFhUHGU}K-!H8UzJj`0V?5C7QnSOLCkclL=r=nHXl3B|}x!GDqZ z3&IAmkC$}XTvhm^us7x1ZEQ|w%D$s=RGy2N;UeWvTK`G>z5Ofo5^NJyNY0-@0VNET z&o8Xa?C__wkJmeb+qSXwPcw^Ia?@QDFX1Y4n5OC8Qqyk8*AThmA~-=bH*iYd+{C1g zUttn=bCNDiarsU)MSL)wop&z!jBRyE#zNh1CqVi!)7AE~U<4TQd%VFQRWNcljpBZ~ zSvEhhC=m$iAeG-!w=DlkcuyTXumSy~y*oWiU+bpn>{oH!&Z8odM#xFxWiC3$BaW^f z^VRvuQvfg-{P%C8;sdmx0a&?;VWy$|OTCmvcXtU) z*2iF%kLE0h2DBeY(FWj}@p=`^75|{uL?Oi)BG_LR7~nj-Je~@G7tFH0{}kN}M8pQu z#5>EOkk;{m1^uaH;R_ljENDP&Y}hvuCNn8hq20+}T~Jp6h`Kl!dH^7Y zWB}eNg6?Ak3AW(dUqXC`(JSW_2ork@siB`@`MmgyqF^4&6-8P|pMQ;`v5#BUmTDZL z?6VY*8EUDPG&RubB*Z&3Ru zf|UqHary#BcV)+mH`6NXNkmo+KV}oG?N_BdlB^tw#%WdmF3A%um!V+sp!Zw%i^Pp} z#8qGYV~G`>u3ZZaFxHdmNNC)kvzw?+CvQnrhxhMINCIDwu~7%vlI@+`&z_^RtgXyj zCwsY%dqk2+ib2@zGoW{FUmepf&+j*uJ9727L7?9(93^=BIx3>oit8Z3zjXJ zoW|+xDhsG+oBMOe^UAf^TXN1h%d9#wRWJQ1&t$VW>Fc_K$;lY|2vNo3@R$ z4!{0kCUXU{rv~uk*Sb#%Lys z(48kN56|x#w;}57Uq4=6_(?{7!08+2D549e=*%yJ_n-6Rj5$`dLB5`X!f+#~i#qg6A`icC`%cF)n-# zo-ezVuEnJcGZF13Pt#koj{yTQlrdD&#&7_<%su2;)A@VY)M4r2pN!4!l?|aiAAbCd z%n>A30e$i2k6_ChpTMD4;j>*OAYqzse_;9qACvxlYI0hG-#}S4IICx9`|K<9K3#r! znmFPn)i}Fl8V4UmMzU`}9QAP^3k9=7Heq?ymV}c*11ONbYikqwz!2}Xz(xiHqw9KY z`@4$%o5q97Sh^$P&qM`mxzitSjvZQ-JuC>s?fK5Hm~nz0c>Dszr*mxh624>dN`!xr(V*C7V%Yif}>m))YlRCBp0BoKw zSDRw7G01Kj@vRHub<;icy)#uIxs8Wg0#{B9)PtlG*0X4-nFs+!W?m&Oj)ux#3)*PV zU0^&8f_k=N{NZ7+*2U%V$rY3=@X-GM-Lp7pg2U&u)ipJ>wJC!FblGkrm!rE3FGQG& zNV+$z^kVd-E*3<2DFp3d+Ek7CgB_H2hYBeT^)JrxeKI%%{>?d&Hv=jy-Y%1riRjVmIBro3Ohco?;jNKAQPQ#dcryjkBafA2wLU9V2}j`r|xmko1uhgFFj zC7TfpQ_uxXt@_dRQ~+l&DKuW$sQJV-W|Y2H4XrapNKI1G_|-V)zh zkYwX=D4;cVK!2k31bI!&z=o+JqOgIj#Ld(K?B$6K|E2r#IXI^BMgp3I2yXa;d$gK$ zsoVFgzG~4GAm*=RPi-UNejkQ9E+2m{v3&t8p15G;-H|Dimm_BpbI33=Hdj?gq@+r5 zVGiX_&JKbnG&r%zuwcRD&){(dz6c*@Tm)Ja-3%1;A39Uks{c)@?q!zN?uvu8%)9=- zEWpT30=qEO@eu0qYDO}_N;Fzxbo}Zx`udEs>+c@hDv7M&?qK4B2}#Tpsg^vSzoxco z(p%v-kFAf+UNRL6@5OWN*~?bmS+eh5eO8o|l!T;#62!m(y)360qo3}#?|`$%X9H|e z(xRGuL+61f*K$-!GaJrN%A$KGyS1q>Lh{xxWPV>9pU$lDxLoSlWK$Fb$Ev+n(@Wqy z=w+XGoOqD2OF$0{^tZv7q8{JT6cr4}?mACF>Vj3Zs-M)A@yAJ^?YhfDr4i%d>3e}} zjtd4uG&TQ2E43e+-|u%wV7`ON+UpI%E;yjMD)jZPvS3-~=7_mUMK-73?V7{}9!hsl(PDRNS4W#*cV!Wq-T6Bi zI_~{b=>C=2?r27m0(&^|u&&Q(f>jG$k z-D;PhviEz*09U(9uPK;T-O$3JUH zf6+31^g*%!?~jR%?Q^sJI;d2kYj$Hw-4HOE?!NN0dGV z^s}2_jgTkvlk3IU59-l`5mpoy>Q(vbB<{Hmr@M>x^30w_#y{ruD zoPdS1o2VkXC{H_GTU!fanqV(T70`vr(9=(eED7q@6#L6O&;K7?ZyiF(~3M!KX0q`MpT!}`wN=lrqH9E>$wj3uo1o%6k)JFfe8 zU4KL$EK9a4Gk~RcsSYRntH3(0=|aU-B27ZN7<}No;6Ik}7B+5V3km`arCS-o70`ty zYWnZl*_>BP!oW%DN_o9m%rmneTe-Zoq@lpzxtsw@wcI$$4c)HRd^=)Zlw~4VujLal{;P{XfRH1FIgu%-&#ArW^C))F_LB$Ih#=A2rPfJr05s!NEPL4MUMKT9by)(` zU5c6ePCOBW*c4$H(ThyxEJm1M$(`WlapkR2gJKe4S^Vs03Gb6mZ7uoFfbxP4>rFt{*P40j29I++ z9y^pQkjXgvNcs31!l#`4*q<$HS#k2EgfE#1d!CUc$(e91`t|wy&$=VqSgj9g1xo4k zNzv+W!iEEdtK_K?hvKE`WQ%48|4C&@Mm&F(imk?_XArT%KY9(>VWvdrv9D4#z&$Xm z;(SbZVpb_$ThEF=D4Ga!<__LYH2D~>xt_v^gOsfG5#z&*vRW0VR+Tz5Wan^qU|^`= zBJ`v*7Uo+oXf~d;tm@`7e7tpb^wpw&{#Qe%O-N?}0vxLudeZP~phbukJ2#dL{2R{D zVAsTJrx<7y;@-SCn#rZ3Q`&TVv=|!~cS`tz{*W%1GON?9)3jnwWvEy9VI9p7Yi!}G ziobCpJnn)8R72?b_4TR+pF6v^vqm!oo(KH~rkWOM#qS4xQs#Z{&1Z>OOH#gUmj~c9jtvuR(@wQ8rb#asOb*Ss#9ve_7QckYQ znA2*sUE6px#E$5nr|kpUFb)ceph+FH3qsKH$O^;-#mD(Af+r+mTVsw$FWy;h9~VU~ zcXFHg2dhbu0bKATvwj64!`5B%eOcDVZj+~-+PPT*zXX-4?XAKW+PejYC5L|dVj;~m z@;VJV#bo<~(pqvbb4jv=3tqn1LWQqR@z8zPEi)jtfA<`gr?|WR8WWwr-fb8gCwR8) ze7#s=7Enlr4Xf_OAN~coB~6~9LtXRQKBL&2%5h8Oscu;5x9NP{uQ@=~7tsg!2?VXlUoA5F-CU^>U(($oi(n zHiIOzcPo1Wdz?j!H$LHuXoaYspkaQysrwKA^=hP`VF{O@)T6|db^SYM+Swcn#Y zT+Z!#^YM>Cz1F`CKIAJQx_kWl_b(>~2;Kag(kRVY35ki;cWO7RwAW83Gp8Th@=k@H z3zf-3ZJDwrx3ze06C|@$O_?deN*2(ABZ7gLNUUy37cF2AP;@S?kX7Whf@jiqtC(@7 z7x%n$uruWx9{B(|VDr2qEza3(E7QKM9zZ-e$%vp}#(DL#+zKz6q6J#)9>;7Vx1nGA zQ^JB`oB}<0-ekkDVe$5KL@`9Kuy=a%veBbi6CoC4_$H|#VzC36@Oq3N#+u1WOi|)` znYBvsn00h6mW`QIrKKo;v`|upEEi8G{J>_wgAqdfoS!dgS(s^xBP@zU8TZr6UtL5* zgc0m-^$8ft##aeTP3`xAh37X`|^=0TiD@g~ZEz9=x3=~~GL z^)@~|5k^>oU+&~oQn0%RcXpmlArF~aKT$A!Y$3=}Fuq}yIfcM_;1ys}vp67{DKo(T zVqCX-{`VeUQC)Gx{uFJ-G?Ik%m8X)D(pbwg_7!Easyln?<7za0wt~K>miMF&-}5z) zHIh?{{68ND^nk9PUfU9}i-%kCZV+Pl8)>f*@H@aji<_&%wXb+-@G~bb6d1=%SuWa< zEJWd8@tYAs`APN}R?%$B$PN!grgJAMz)hex$CJR@_gf|CGz3h76{R?78$f2^&9KR& z{BwA9*x{y10k7L-lcKY@v_!zt07CR=eq8(>ZcIO)W*6uA9NZRuG@<_(0OBy;AQ4IB z*4DBHbbU|3)6=-PIb3QwpXq2F(?9Qq&6gmTQY=(L1mb!LX>E;O2j#ogZ-bNP#?CHy zic<#BN#RAUolAErhPD6_L;7hzb#Z%$6li?phjf)c-4>X!bFWGu@3rbW}HPV0SDWJG*$@Qa~irz*vR2D9(18yX^*B7WYh`*bmVH)pmD zE5yOZIe{Gibxyxq6VeIrKXSE*gB8a|&YJrc&R8;Ea9QecK{0%~6Y!g9V>g;`VRJoJ zbArtjB;;uBfQEKeyn1TT};y>g4$BzCUNkP2_#NhJ7ZL)FX{G0mO0FZvWyx%6j2)!@rb> zhsmMxnA|cRl#a_WAD3FT37o{k$}h|GE$aDZ`0H(#qp@UYwOYS(SxusbcXxKp z@v9zuu10xF2Wjp%IPRel$V>eM)w|K1VcyDPEJ5tlnj>cH7P!q9?e0>!)49z{%4QY5 z6eyLb?9*dSXJcJsVu->hTzP#`7a;)`{r&P7Xa?s)t3)Q@9(<+^&a6>xgm z3vz0yq8GbQ&un)S_Vz|wgVBJ&r`&P-@r8RC3MtC17$bk&8M|7rZgd%caZUNEh}}NMcADUR>1d zS#M9ItklUsDBgFEJJ*M*BI|148yqT65km zqV68eGBb9Ur!~!6eRo3GKAf&M51Txfp4l!ZS`O7ZdxEmRzgxJR7t@6ATMQ8!Ee-gb zb;g=+u5V#-@v&1=3b}0G^di)_!;n48!`^vlHM6MpjEI3tAh*9Q#R*S@9iA0OY#7YW z6VgzaOi6w^SiglUkaLv_Z&vGPDkO>hCbl2oKzIqrUiU60EYQy3@9dWD6QW=k;F*$ zM-j4^-u!vtjDYG!2pe4UukLPIIy#flG!1!q#wB$^<8d8kba1K~=pP&&c0BC7!lxFa zj6=4frcM}Q#JMO@%f&&0g^Vw(tVpLoLm0_4)7V~)xa?N&09G@d^^_qirUPnT^8!REVvcsT2{ zTO_jo>{jmXW5RrVVn1^~RE|KoFMmM2jDc8r-jiHTgk90DEZo4hI1_rrzV-Wr`Zmas~6mdzSp(yLd5i#lO@CX!JWC*&#s1a2=6YKhUs|MJe;{C8XkVeM;HU0 z%V3T4(V#>F)2tC!f-2bLXY<$%;npq4J0E*u}-7XrYD zUm>V&ycuPO!{t2yj^XF$7Zen9H%1mCi3T6I2em8@%7yn4c!7#V%2XI=qguh`twlv2 z!HOQhi-4XPcnIcLp8(Cpz`y{Nh!-9rDJgk!cE$}@VWa6ha3e+kbL}BJdX$J${?LKx zWt3^-lS5Til&e4AU)$(zeKs>hbfj>Txf9b4Prp|t4q0zj@w=;^73XPI(5xS~wL3R2 zo_Si{*)vVCm_dL0*JLN{$g$sK1eUd(g-Qw)0*`=DMB~M|qpxkY)v?_ubONL#p~{F& zp`-gf@gJ242ngtPS_|7Jr=|evD1CD{sicAmBMboF?(Xhl2mhU%oRp|l6zc-v&kL9G z1=V6>vpPA6{`PH5e7xiBnGp>11i(=NjLd02v4^WG2qP{o*MvOIrZVNZ@>IoWk3ZK^ z*{$rIomEqjk&x6iHIJ5C)Eq3WtmvTq8r{zG!^7Xe2Iy6(dt9}Wnm7WY#Q3;83k!>Y zK*zfevPcc~Bky~Adx07QF$g-^C+|X>1TD9q-~%OPF+T+wxHtrnOj*YtLLP(UohU?o z7cjJ1h*n=2^A`e#JJ&~SVPb{KR2S|CU{x0P^Fin3FNYBa54D(CNMc4wU|O!_P=9lC^ZVr`&Hb3*z&GOn3BNqcO6%3Hnm-U4LgfDavn_Xn zCttw!8@QE%i8=iSRrbjkLBZ&!Q(=(-656{WE*-e}De`jhQm-?=H2l6yD6g=4yEgb* zuFx5lKremo7VqymLP@pr)m*pJSYT~zT(t<#O&X^aI zr1HSYo+WSk_=P{rn#GjCOcn+ACH}jEk9~`~I|))65&F`I4f~oD2qKX=1@3P+2>|4Z*D?zr<<0R#>;;`!0{E%TH^D1K9kL+sq1LxOITH8HoF42U#iLr`tN(69T6+2v&+EkC{rRkzfv?hRaE(7~nG6vl=Xm|mtvr-e zlxC6X(ajj*QdA5ur6?9Ha3O*S@$kNadX*sUf#o?Ht%&QtipP3%(;?;YV^39#I-)u!2TUNN`^YlhmT0X#3-eEv&yH|5_H~hXzT2pzh@Uex@rGR zARh3&o(p3&P^?ex%-vUzL|NhPWwjREsLnN8CMG5j!;96vXlj0!%r!>L0K88Cc(QLQ zesv~vY9#|mW*1#>#Gp|-Wm? zJfX+l@ZVp7s`7Gr6&%6-p}Oqq({Rjo96ZS^FMvIbo=q7PJexIQCp2CB)lCh zsIRZ@=;$aRAz^O5mn{~~sx+i>)Y{gjeYmj*n2PX$cT;QbBnUA6KYjp=<}5f6C5#B( zzSZ05CM6>SA1?;o_O!UTci7k*OG-bf+sm@+>M$XKITOl{;Q;4pi;5NOY-8`}C`y6` zZl+Scw1Rd~c{!1zY{eqT7bu}nCVoYr$fsh+W@1bmO;YheAR!$6ZzX@ZsV0lIiWbo{ zMF;lYEzXNF?I@)asyshy#M(Umld#imSP;+p9+JutJ0dPS?!f>fb$4y*dzymMbfobP zJV~qBNwo^r4i*(j$8FrQY`PH0No_XxA+H27O}Q^RmWQ!0F)=r{x33?Z8*`MY&(F^( zjCwOh`+{+&|0sO?*?KdY^$G;=JwL~=3+}hLxMmg>sj;#4AhZj${QLQngcYwWImiXT z1buv--?HF<6=V=Ao&jL1u(d^V;rKFkx70UM1Z6JwiFb$I!ff(>{_j*E6)fNO?P*`<)`T0>I)|+CebWL#t-VAxIFIWegX8(9iF{Db*g@j1s1k9|FQ&?P{esj6f z&Ta>wxZ#w+{)I+)Yq5tbR9vj(;DR&V@3 zh-Le%T|(#dTtry-sdA{USnCdu>p&tr@S2;8>jm}v2=b1PSmBQk4~hT^Jvlk;ZAt~S zFwM=}0s^bc%Y*@4mJ79J0JNK)p04ZjSSL?KOGC49e#@Orxwi)Psf&sG0g?!XklWDO zx*Z$?YvOr%c`tl1kUs!)L5s`r6CiGboE-{6?DKGXce(%N%a;!_De)N@Pa^DHY#^!PK#NEy|*%|9vNLkf3-ZDOAS>-n&vQ`0v$f*I{KQ8AV%jBxQam`;b<_S${+?kr@I zhvYPc-(c;+EIg;6qr=p%qs8NOs?xK0TXl-Dj)%%G_}w_}uiO)PVq?-JNOvt{OiWcZ zH4Y$a5aEII20&Yoqj3XlEPzYCdGiL`Vk|m5_5i(^ViiDK24Qe^b{5n#AE~Ls!owE< z-3&xI6e8Z6o70Wsj%S^I=ILLc2-}l#bYu+`)vPu|h~czUrsd*F25eLHDpEE!Cr~B< zVyL|KDgdU<>H4I{##RG>95`nlZ#JUw*)7Mfd9ouxdJ-QW557r3PF`DAx7^{gI&&#T zC#|ESBPA6k#rG)$w>BvPF3ZH{0}f6A0ALk$xXpOp2*?s%TwNZHC8^^nw6GDVyuRiQ zFgDXMvnkS8Iv<$)Hd*wA?b3q(Zs6y8e1?A_B};KqcaPeYjwUYf1}c)|uVj$x*aD)K$Yz?8S`k=G~qmA+7l4mk>qoML{11tT#;c70T53 zTy?LEcF*(0A^1w}E87Z1>Xd?j&@C)oh-y0$-dUu&bRRZO^ zGL>&4DBOel&~RvKFa-o9{$I;PX}k5aOfON9E|PKybqM$f1!n%n8}lKAMtZp38=s{8 zY248eeMLsfCL^;1Lex#~!a|=818xn_yU*y0{>D<}AKwLu zW<49v=Gt|Ai*kbeYp_?FM8Ya>VB~n`qz3gXngq6|jZ?A!flelEv&LjkcMui|JB5$h zIs^MxWrPc$eJX2@4P*$4D?Djf!oN?Ey!f6J4V>P%Xoh$)@;FKWU;>s6TU%QlSsx7;aV*(Wjc+nD1`&{u2#zUspq)<` zbHqA@zlDM-7SuD$oh*m$$|SxYT`aSzf{XNv+&BVb^<3k1NU`+nzN28o4=G$8WqUKV z)b)-#Uhr4lNNwd%FtJp++f4hn@m3h~X>xkmvIWMa(-qWRx*1_Yg}j1LB}k!Mt9bFj z_*+|S7+P2ed5HD5ulHdF3BN^0XFlZ!_dy#sy@{QK~CDppA6gB$wS zWJ;&BMH>6@oD*#tcya)fcpnq|2sM-?wKr5;?K@Hkv)$tE(d6k}HO)+AxVG_o@lNXZ ztMS>7u9`YeTWK0(sph^yIUybqU&l?6BI(jI-g;1`(=&XOYaxeK};`=?)2js1jOFmK*~44xfvw_fMuiHQ-kf{#Y7c#H0O% z5M=_MJ5@OTxxRP8{Ju56swi#5*~#(5!C|VH zd-NT={wrab>dLJQ9WB9=>STv$qj|;TQtfey0}q9ORG;(wy;n_&dM3tO)?yP2bdh>y zLeUwZeu0M}joIm{G2!Ruhxm?;$~I|531of|j@ zg{VQuNQTB8JzqZEN)~3;?7eev-Cp>M3&O23TF^hC!@F*pTKIUqmb~sqCw>sa8Xx$* zT!3HKSHoWo@7Knkx{>(vB~sXW{k=Phe=ultxoi%ycL<-$%cY- z{+vKzpGEmArpso7Oi@&xkukk~2GZ-76qX7k;wNWrFoINminIwu3u=W=HXy@dG6?1m zr)6O9v8NlEV1qwXn;6_iXn9>6ZDYcV>@1==@oLa8td34*D*sC-9OS3b5-IIqYY}dM zPzyKb&xj{>cH6~=fM16Pa01O5ily%N_ag{_Yp_?SNVzLx>Ub=#>_z>Shc1Kgn}2og zyrk!SQ1qELHbyhE^Mhua;vq2ijm;7BW%u`@jtq2dc_F`IMG@iQ#}9H55@{#QKgJDS zc*1}l$L8jyXjFUl#UULVpSBfPQp#}sccTG;fFCn?*Q>U+#Zp&Z<~^0~1`^)aubY-% zks}I$Cd$L(qeiJ(6y)yy9=J@1wvnQDAVZFPm>t4zFN+)uwzhj&p1PhD{8yz*Ch(@;@nz2OwSuSoyJkAa_}?m>zgb4#=dLz)Xb z#z8^N+z}!PpBwY^+GHdU2nV&i+R_Qj>X?hbTCLvZPvwCTx>75GA7rDuFRvmRpYMVs zJ^lS9{D5QwzQM=Gw{@rm1Kss=em|LRVtjV%utfU~IlNczSCa1U;WV>=$}CfbrYxKl zA@#VF{4Fy-D6&OdsF8&*KpS;+jo8!v`n3=CPuH)A*K~x0hyLZ0&CP*DF<4t$Xsn;4 z{i*x-=^KawHJh~G$JIJmh;_?Ce1j5RK_HQR+)N^9@ULb=d*7y}q#*4vhxY0l80cE( zR}eqwjE!HH!75x>YQO*fDK5u;_zj;29$y+<>ce39>Kp??{O30G z3kxfR{>AB(TUhmSnfz?|k*tVZ_6R&lW6yQXEUcvNqMzkdzq%w%)eIqVz@_B%l`qe5 z8pYlvCNgo3oI2~(ni!?sP*6A@hM=HqtX`nP!ZN?p=XiDAyuP_9*15J$+I?vj&kqas z1oxGGvBUmOm8)~e`@@+t-j{I$PL4Q7XX2=p_V(_*6wVrLH|!%6holdWgJPz3@*LgFOJfx;j7(unWdv`bUI*cB8M6f`xtNlFfY z#F%+{Yo*Nt-s%BR_aTrX9M(`Sb96jmh@rrkVDYtuc*Sx$=nf(Gu5V2LdG= z7~n*Zy7GDpa{J{97N|#LW3$F5fd6FGb8>cqRZLg2r7q>GW?prB(`ND?UMfeXKxg`Y zo$86LgIx;?Hwli8PSHlpl#tFSDTPE#iq*z-4xdvH?w=~HHbNA2b;mAF$W!)*&@rzO z;(YjPK&R)i;Dsyy4jrAfLRnRnl9G~MyV-HjCbbFsuLpAz@pq4*#)K-X!2TUtC@mRR9SL=t5fm zsayki{nsxoG|9Y4@Rn|cGqmGe+&DeloPs3P=W5=By5`~G;iV62e*##?7Ho+6oAz$% z>VL3xJ=eCjRCRQ`L4y&b?4U+cV*3Rud@u#^05@O+*YU@MDWFWVA9a5N-9%$Y1ocM8 z)}#~vtv>hSAcZm`X_UA@&krkNOCMOhsadLL0Dd|mEmw|~zO1C=uPrraTISgvx7mA# zcPosFxqOC05h;E7F^7(%xP(mnd_wPIR*-_TYb$Tog94rx3U}?liod*N+458)QOAHC z4Y==54@t-=WTd1ZXyW7H!A2%X}np2p0ire$H4f=qa)5GB+roF)!%86)rN(!EVvFZA07)2QG zdo0ZFzKD|FGTOci*D=|vKp<~E?**_YFEzdkY)(upRG|Mp1xNG7zA|ZhK3x}VNJU<2 z>NpVby4wEj^aHE#Ul|$l@W7j7VQ!u;ms#F^wlhHn?Z;SKwggI6(1QeSOT*je(F9!f zpg*scOB>v|eGd8y%_d_+GaIFmk;o9=oEYYAJHnG{3m6>_6x7P?%>EIXyhsCE)pF&WHVIcs> zZXPuW?s@W08#l%ZWNFHpdtC%cJIzc0cR?Urw9=h~ck>`Kar6(@J zL}liNM(la%WLxQci?<;}I)N!=k@a>Fk3v355$ipx79l~DXA>O{k4G!^nfr?^iLUM{ z=%*u_fM=y0G%f*QXFJ_x+|53*?kLqm7qTVrWl=fG79nd6IuME}#{ zJ%`OoX}d5vI)ipIIR>Jar{{p-87P7Qz?v1gRVVme79&@3pCc1dkZ+SH+&&v#T?AXB!`Z zz_nQ{thy08N?lCWyPkELWQ|fHp&1UIn(AuG>9~FiK`E)B)0`)+S7s{SYH5y8hQ*mv5x+4LFE9kv_ZF9LG|8?h}8o29ue#W$_^HO4pjL zEn}s!{(rxJun`loKBK7JZfsDC^lNIUSAO{-VW1MMsIGm^d6^`r(1432BAA2!)UbVy zqb(Er6=@StcK{h8!9Pln1Yp-=V`HZ`cjqc}b%AURv>w3D6>$H`bqZcu(t>n?AU>@o zEFyC2=?z-Ys`p9-vTe6psVS(4ibY`5s!Wa!dUKPp!vcCg==-=FuS7;f#19&Rf4QB? zd~yWOan|;cxpJLz%0wx!KmeW>WfV~$g#(j9(8nWkyDD!jf9f!H@e2f3dPl-xBcQAx|l zsA%IZ7$OC90k;NQX|)PC=48tr&st#VwErRMuDRL0g^_5rMa0u&M%}y`Hb~lvwsq_9 z%!8WBW*-A%wQ*0js>gK7FpZNBr7r>~k|&pFxRIK~9QK|dV*%>V69FM(Z_pApGgKEWXqhDAMM)>BvOFJc?d)#n1fJzwjJWKJON{wa zKgp}mAI!6;fBisDj}qMvvY5QwTms-T0rcBo6b?FD0uLu54h}UTA%NKrx9V}smryk% zU8d*q`~(=AJ`N7&LJmhOZTO+0*1(P_NEkScIeoF)Wz+$oc(-9UIxZgG~Ro62h9{Z75RmC@*j5Y&Wj8$3&3X!%%c0Ge*n*< zxv!Q_hvX6~8qkV0wiShBa3o*u9IrMPx&;Qm))mZrO zr;7{!+P3yV5t{l_VWd12*bxBnF}P;Zi?5YPKPF!Kw5`_7@$&pLy# z(NU}fjNr;vC?G>tq-1htFcq)n_IYYeQz9lrZzUP>MWio&&Gj?R>fiDuTzK!NTt!;( zRSd^ut?~{R?9b$4Y<20v@7r|_CkAma(B*02G`M3w&8Ay5#Eq(l1j^{UK|vO{UpJX0 zwON(g-d%F`Wy#NRSf5C@d?G=+&?5RRFC|sG-SvZjY;58}bVddR!kD;QBJy9Z^O_u; zB60A9QiT^8o>7YA5!j{KC0@93^AuHBezWIQQ8h6-hPCQ0kIElxOu?ck4$Ymdw` zdfU=BAB1pt1p5|`KV92h;@o0R#_MxQ#o_>=MTN0ZD#z@GJe5am6CX6wbPnq45Mj43 zN<1`S40UyDj5vy9JmV{>V=6_qIqF;6+j6O}*gYZ=HPK5JzQw6at`*SyAez4efmy$G ziYp!GC>oD43?)LHmf!1+^-UhZ^mE_fsB>OJc3IKVIKsV{c5D7n$IXCANRY5j0&;Jx zk}iT$0cYh(E|gX*j<7tk2kV#96%PNL?;!qG z@^SR9GXI3!qO5{i3fEY^Td`4i+XU&KDJ%IlzGZRQY*e~POKJ^WHEN7YuKCE;lJc(( zrJ>^+|C&a$Oe9wbAz%IaDJs0M>81RW<$;XBn6|RIdJjwJ*a;S5itVTp&%ZsbQg^O- zfA>>5Pkvy}e8^g5Zn#h79UTo#c$_!KctDZJbBMLY{ULr94|cU`W4Qjeykegjv1`og zF1Zh7X|aQU=jXy70cbnrqox*P`p)ZHg9#C_@pbl zL%$h;Vi%WXC-O` z<3v*=S^BtvO~qtK;Kl`&hfacKpX{jlZSh-wUs|)2i^LMhz2&Kt0U7r=*+9Lv>QDuC zrYriJaMleN#A}#-wc+RT!*wCN2JXpi6PtFW=VN5qF;w^k2H zu4=7x&5_!fk{l^Z0kKkXVaLXYgvAEVJRmjm5|y_e5B}_Eq8eFc!zJQqtAIuT$1k zBus(^L}eZk!cG}apBjQgt-*l$f}tr!DzCp|f#?9C%A^$!cI0Wp>_=2NeHs7Q$i(}a zpN!N4g~BAXup9eZeTvi;#l(hhzQ;@%L?(|&W~ixNeiK*yv@YPK|NDv%BKRRL0=FC* zO0aLs$33k>n!Pt}Rund}@6VrI#LmA6!F)D$O-n#0;dPy!7!v#n4rRcw8kqV(Ll9rw zSpkt}PYq0d>Vct`>9!TI4hT)^s)|CIy|CR>6D!Nc7p zEJm4_sOUd~su6)lLEJcj&j6Es8QB1{*^3cd6%}Y~MG-e#f?s=J5$f7{dR`((iUu00 zh!p+gHORuGZ-IUpGJf>_4i45{N~-6TB6LBbROdb9dyHp&$mkC|oS$r>r?sU^D_WmT zC48uPZdhZ@yy-SW-X%3GA0c za#XSOYvw^`pBz0ox$S|FF;v6Tv$gnBYe-1>wmqmLUULqj7$2NmTpaA;(fKLDFmhsG zp`+`cZ+F!1R|&Bqczb)Jo@J&QQdb#vTK;gf!-iXkn`Dk#dJXXv&+5_FUdbwgKHHHucZpr^m-eHHR-d^(KA(xH>6BD_KNhd5?b)C^b>#>% z`dQerzIAyo@L_q_t5_=T;OKBH%0`5%PQDK*r~9rDCGYM!Y*-LbdemLrzmp z{9F-?e17D&Z?^X*&#rCqp1d&2H+jTQW&T$Fe0I;iJzbg}-F{qtUu79Jr2X}5bX7~W z{TZJJMbb){sHZo(+DbH$m8X>xj0IYaEGQi-ckW#u7Z=&fP!SQ&fYuusIWI8KPE(iv zgsuM6vPnjox_90`VtR{g*AP8U%5K+mggYq>yr&0uD%ya(){rLU}v5jXg-sJmKBNQXPE*H7B<#j7_ZT)ST5Y${NhvmFOnE*jL!)v$atYJkVZ{S z$E$0RCp?GLFND$CWHQI5$K&+C_zLJ6pv6EB(I zl=h|hYjEeAD=Wt*Cf;_dgJk`8!54bZt5CRv^+Jj21ZdxHavUWnCrG`Z!?%9Tkt5>& zKH@cm3Inm4E5``0fmR5lb8l*cyc zI5}YQd>8qr&&|Wbrp=RXJv{yEe5SSX+%DEHw*l*u^YZ{_GW5`%ly@{SyH3`8@!cbB(@kIj!gy+0TCG;sQ<7nzA_bNLT9-`G z{VkyQ1q!kdSyRoL)sKMfVq9wH?2L7Jg0K~Ts`CvCTwOrd59UoN4UPFhIRU$BlGhUl zl@(I$C-?VB$9J$+JsAwFtQRNPU$$i;86Cg6*i=NPmhdNBU@#XoX%i!||)Z;nLt!-Xjl3jwVKjdcaQF#Tg(Ut-ayd^W$2Eo{$Yp4dX&nzAFp4Xg~O zL0<$=99rl!xf~NA1|h!j*pvk8kFCJF8FZ?yE-t_<1{l$T|6ky)-JnuI^nZ$CP6BJu z8eq}}Bszq~+~ch=Lb_WxK+*ie?(1T3NFyI|6=d={QU*A zFj3GT0%>I`K8JN<;y*?gb2(A<;0!K#R3M3BxFU4ucqxaVTr_zlyb>10&zg)8`crJeD z6KQ}-tMZ2B<$x1AKB}+AZ@MoK3gmX8)oouI_ylA!Yrx_D@UYD76tw-dKcE_XA2@S< zT7Q1}YGI+yqfiDEa{`iF_(Ny;$Z@Cw-}ZvVS)jYR#2E}QK>>(lj!==n)8yte|Gr2O;D^_~R5pn8+Ghp+vAYXKUaJ#nLe7LS9YA*-w?z~BFA z>JLG$E#hr|hx9tw%XxZvJ%ch6D4e4ibiTdG%wBBQCB;>!azfKmNW9+(+H>vDz~uTD-`d~cvP-@s*%k+d67Ix^CD-6qrZQ*H!sLk{Dlkn!}<-4?P)fECQ!H^1e( zfBgcBlPc8}Ibq4k^B^@9zo##@wr4Kft^FVU9qLPOn1hH+$uvKuGOnNhW`?KlUpo{e zL%@fKfY%c03uw#S9p^PS<3WDPQ?0meAP+Re4Q~Qb<*tV_v@ZlQkPz07a~-YEt6ol@ z0{07O!%8y_w~t`gu)qwExoPQ^gF=?i>~Lp*o<2*?Bfy-`vN5{=gy>TCE$Lja#^`lk zfK*8LCnR>zENxGE?p!*3YQ`$K7jH^H2hPdAT*fvpZ4E4jhKioK$7hu^4+0xk0s^FB z8m9LzQwh(?+S>S?X+buOJYl_D7lw}?vnCw*Y++zpr<>J`0P|=Gcu|>BH~`41E+u{B zwQZz+D^e@R`Uj(L1W~#JIxM}g5J5`N^(!kEa3{cL5{CG25|oxr5gG3t|Gn>7Pg_@H zrQ!Z+S8M$leJ~q!7pR`jfY+zcm(-k`4Z&$?BZZ72;cC68+P)(qzD%5Ap4Tkekt2eE zOmwEK3j-bNp#h)_zA67t>Ii!EllY%NR2z!|^+ip^S#P@|K{uL+sEm-1EM*WgY*EghI8;)$=2_Zd zdieb9$nVfuZ!n*-F*Eb4uLpA?~8rOyIcFrz&4p9~dliA-FX$!#36B`>FznPtv z$foVVN~q({xZkh08+&Q1lYPhd8fTKl^7;yehIuoXu@)WEJ#cwj>XvG1NoL!DeoXOm znWP_y^GeG*(^}*{VF^u?;x^92le;!*saxl3RD=Nft{q&W@=b7Cj^9|d96`8p~@De?GmJB*q3&m*$So?|4wkQ$-`td#U6HwM1r!2BR9Iv`1sJQbVrx1)nI zL4JIR%yh_yJ;^>H;T_!qf1w&;&3C#pOb;-4i7Di4lR^-=sI2;&{@O~ve{tDG7n}(SC^M`T8;A8X?;KP^7BC(w57P%d@}bF0BlU% zZEAIR16S4;b6$&+CI;6bHTh5-36(ZfG)337RQw5&EA(FMFdB7Ev^jI$Hs-!uAQSpuc{yA<)3j; zZ=Jg`R-g>uxw){x_$P;_VrT5#cl^Sx#XGru8E`sgaABF+@UXt_Qs#{PM30qdboj6^ zTJGTt)#mWLez$g{QT18FJFa#iL~OM5BE9!rGUcgKmU4UFYbh;y4&XCTFAK~jq@<*f zQtE+yGuU?pvlm!M>-CBUxX>?PU4i3!*^hZoCTAIvK$C@{Gf%LhXr1L?^-uwX+svCNI+oO}Lz zAZI1@_Udr)yHXbv1oYKGXbljpVJj*tlUb}~>Y5@vqf9S`0BP@W!`t(J~$yy14Y2Hlmu9eV0Rq-Kec~xYwH65_wLEq3JZ7t zzjI-TAXtwBZ6cr`wRdm;RX_idWnZcn$fl~Qs(_$YxvXn=cpr??d0dW^@xfI3zmavD zCzZ0%Xmq`N^iwCusZPP>2Fi!SY|`#hp?xf$oen6w3N-W2Og1()22Ye=t1@+j=x7E! z-yw?}A>0vZnF9Jy9Fc2t(|s(CZqyi36rqyR*k5sL)Og0Vf6C~iU9q~$%0}Hyz0A#4 z+pOTDAe0FW4K0>K zfDs0FhU9I=e`D*y@88iLJAO04zGU(rKHDgTOpn2nfHn4gB$F|j>vKJEEvF_3K^ zsf^F->7fZMA_$2DzieS;WDvc3m*b{D83)Fyr?N!GikFB1b8hr`cui4yUmNOIzP=&L z!3xvF@3-{u6VCGJWtiFk`wRr1$fulj=41>S7)^C@vvPPf{6@C^EtE(s6~VeRfPS2l zzx8=f^eam<2&B2@%UC#YNN}T`r=S zm_)%HJ$lnp8jKj++{9o)<-@VcgKU6!-PMILm#qDxZA0YYu!OV){(X1K%9snG+tUNr zKY~F4Xk1*}J=W&`-@bs^AGsbJ<&j-Bd_?&oWndSM_|Ex%v31r#RlVW2KZJmQpwf*< zcY`!YcXvogcXuPwD&5l3-Q6JF-QC>+_vL$kckaxcd;Vao8R4A0-~Gf|pXKCKtXXXi zMqF07^~6Y-;Q@eS9WGj9Q5_|eaD@8 z5CVSGuMq0eZ7=Q8j(_LMSEB5HKU0`B1$EU4f6)hP{FzrSXEI3Re$@sEw*-AWz# zyKvV5)&IQ*F{dIktI}lqZ$1mqCx`Z;C8T+e6b9;fIWTi`Ytgc6j6EN~CJ(8?kAD|l z2TrR%p^T^~)I{lJpi~ee@&X{nmbt*EKg*G+F*Ui`rXFDM?*kH4KV4|e_1Gdm$01CdA zltjwrMT=*bPySI8xni9P1%GVIi60~cR%rEL7kakQ+iS`6!*66&pBxq&*?23Cf&OTr zGyAirQcLo~2aTSQK&nP<3l2q-w$~=so;sDEnsB0tR%sSV=NyKT{wa8}Ba@g9kv|(#X##4Q&bC5Xk&19eylZ9xwmxH>IQ}8$|Pq zUC#K?JlxEQAVFzna*{Npl= z@ziX6g9!28=L7S<^ETt(>ZWv2ku>(=k6e7*^!viCvW| zQx_K$7%*b*`!0g(TxPjXfdeRq5MVP43M5nc6?AlD@+P1la%ntk7k5eZe4jpj0&h_~ zgPv}c>6kjbz3|HzRDqF$<0dqjfq}}GQI#ZmtSFyW4GSUw=KGtcA`pleg_;<}%-Xlr zv#yI)U8ZfFEKp4kE-wkDNt@ux=!`rTWsc(;wx!3u_ifsqR@`wd+}+|t7ft^_asJ9f zM+Z*laDUIta)a%y&NiKHhDTil-BEipjp4>BhNQ@R`9`F34XiUAG!)lEmnrP8FMT&A z!n6LzZk>}v_w$-7cV-^9Jtt-AhHNH_34FeH>A5`(9rK7Q^Z2osgn3fpo*P7w%5<55 zTml)RTPeCgKNXVV#YKSO8I-_xJ^tUcVR|G`y5W_Ee&M#GEHZ|xCgm`vwtCMYkz!v z`9ti$xy^DF2ggMjE_=|EgpyRqgm!XSPK{}^b|Yc|K>)?uS@Y~?urAB7Hy7w5;YIV- zUTnH0uu`4w$;FHmul0R?S`UIi-o69r0DVTURHm+kK0qLPdN2@y4?l+EjQY$TN%ECl zED}E*(}PsJ<(7NI*9YH@H$`3SEw0X6byQcucpZzGp-bST#9x4Q#CfRdT1 zXMDV(wbciRPPi<8h;P1>oR2#xOolx`ilagV;%fdsl7a$6t|cIo`X8M_!&g`pW3Zc_ zAh=kmv)k~0h13F^jT)841U#}{qRh@Zi z>mcK*v~NqFT_|AvJaG6`+%Xq4x4eup)Q*LT*%N5K;`h#$)1~1fq|M`K{y!o4=1LQl z8nybgs&i|9#WrhA3|H^Gw1zWeGuECw!hOAR62&7!to_i;Rtu|5i+c;yR#w?mN-ddrpn|ltS zoUK#vxP&+jYZ6+-c1(z{Y;w^~bT%fXa&qBK7#%I`uKY-L&pX@*xO$&e+peA-@6&d8 z^RL-JIrQ;o-_b&Cmi!+OJPC-_BOL~t{@;Pu09cJ61Mlw&BC4A=9`kj$#l-yd?EoLa1{_vPd;ScV`Qp~Xg?y4-xKJS5() z`<4hSF&O+#&S$==BDoaRDmiw}?#<0r&W=V{@pUdv*rcyk=m<@BG0m+OSiYOL_?B4) zM5IzVfVGX}(IJ6^QGmr3oBoW7wR&aO`1l_QUA+I_P{=?g^<5@(Ksy-dw`*Q9G6vW= zIa#q}&tI8ue?+C&ecUAv?gb+!T&@DJ$CLlxhM2GQ4Y0%CGv*txH^5v-^0%k1Mt9}w zz-{oGdbxF~4Z=U^Pf=N!3~qCh=i;8UV>48%=4^kN1Od4pGn~ip;h`l^07@=<2|?{dzFK=J1-dufjV&BFQMh|$}O@3xEZyZ*hOK;NaeIDys6DZM5@eC4%q{MIpFwlU%Z zt%0$I22NC7e2)iEQ3q_2ntY5o0dE9|K&$=rt)ryyGKQ6W^v9F1gu~}0(?ucrczwK! zjEGb;c8xz`-<}<;@f>asMT!R<4JW5!1hp^*XUlw^p8&)@>RJaH2IlJ1STN88Xp4w+ z18cUZq4#IM=)*7GJ~7kfpNfl_>v_m0S2^$G5riv0_sY)BbBA_&os_7r9+wpEXo2OZ zws74~mr1c-&HzZH;@+Q>Vs;Jj-HY}gUTQg7KMoQ|xD`xS(qpqoKo<5Qw%zxYC2&pq zGqPZ-zyggM(df~TYP892oUTktOLUrri@(xD_k(36ZY81YIlCW&GUacg zv8h<&PafYgM`yLv7`le#CRcg^Z6p!q4RWwr4VEiyP3t8eV}8KSq?!zpFFjG0nblS2 zL4lq5;qmLL${=<(T^1MSC8JnbpqRPeRUI?4&?;`+z(Gc4{qLIuc)?F(WWdfq z7#xO@%4!gHIp%x3Dd}S0{8N{Ct~Ee3>+J5|L2nd&WSX@h;z`SvW<D?P#EM14hiIj(#5i;=ps6v`mcO-vyyi7`SJ=S#P*$!WA)kR~iz@MVXTLu(+49uV zvriNx=CU#>`N8oD?+Y;FRQdJ({=2ks^#4HSzaa%KUq2Xl(Lp9p(3ZZzNW9&QmIG%Y zpeXQO#s1%c#sn>JH3GRa(D{K)*?g^yp1l0%Xnu)aD<30c8OZ4%sGZ=tvt_utz6NUD zE8uzDI&)oKUIvtgIUsd}f&hs-Sc5}D0Mt)9aGXH-a@v)lD0}vVDCY0zlYkG-f$XhNqePUrznvf>L z0lMmf_f?7PR`a9eW3jQZps@wu zQgTX6Hht;%UJHYsy?smhbL^ogMp9N~^Hd=`$@WF4BQCU`utu;>y(2D(4{xr#JR%`)V*9P{$xo2YRNQ~IOJUv24jOLQ8SeV)By^DNEHC8eam)Ir&)NEs)2!q;oo+1By?}pAWyT#7RR} z-#R_azbekc{lrH23vLN$fmYWxC#TGcjFBL}Q)l+~EPZ$7wenWiF8n7i!-2b_!o8+4 zb!igPI-RDwp_Yk}CeDic*K5oHv)qCvBBd+E=xm@`+ljlHpIDpzg~(&xeg{IKHaCre zg!}-NVF(sl(A~YEU=IlbU7K&%fp%J&M65YGHD`6F3v_)PLu-5 z?J7o?aF08dH~fs0)|FopD0zZM5Uu&V72DU8Z8;xd*8lu&142zdLTMs3ENH?Rs>2ZV zhLj~X%j61q_=j_6zN)P`Iy{UwK;s+Iy*6Lh^B0<{k#S&PK&B#l^BbWNHEpBq@o}ZqI%gL!t zjRNu#Se|WeZPBTJvGmy)g9CamwC^B5369<)>vw_sp%!WQ9Kq)^IEw*gjK!?^`dvnW z%+b$Yo;pr*hh_cl%Oo8uQ45P-c01tKj@KT*2uKEpAxP+_ioD~6-7pX`Vpz&H{m3(EyAR&l=n%Yc( zO5yeKQsLauP?aYza|@H$EjPJ=xuO?PxQp)5=e`K(64mP(8d@5?#K5pCJG;%Z=sc7O zyGSS_A;FB<(>gUvYxFzaIk02?{}}nF2Z7XUf7|8}ndrD|eOK`mGB|{0CB88) z_=QpZ;d{46&|b6GWBYPiBs;r{L%QfI`1g)A*NUCiW-4rN&P^KhEG#}cIjze7p)aqi z)T4F&`u8cl`2i(ry$%nauXe^m#U^k0hiPUAHB2r}ctrc^@_N#GmxS(Nm#mkJL91*z zS}(t4?}r3mD+Kmt4nJ4~KhjAL{@8;C??#VSew2Y=M<*LO7ymmTR1&XkbO?BRvy^%_ z>~gq!nOKRInOU?IU#X#t2nm4O@O^hQfj3B*ME%}!X1yrKy7kUd77j~)=R}~c zZ08O$l~RlIak?B<6&iJ1HfEFVE+CNR&!4XdQlaVdJiah;ci(8{%LW;w4eZ~sU4*rM z(v!>^vq#zrsx3X%V)dH8vbm-}dS&NH2qBiCg@%|8#yLk|LPqmA7|kX#>k^oJGEi0# zoN!|VD32+e+ShbMaui>~LZ|0-cXdG^RrENXn#FOzKiRzwgx)D!P6ahJ?19a&#B47w zCveVFhCXc&J%h+y|L=VxBUp$*CeQV}AG`337cAq9+;a2eo)c!f3M_*CkxylGmR=nY z0tyxcQiO0i4`cyN&a*4g`K)l%Np9<>SU9XObbMu+_6Yv!cq8274hZlaak2L)jZ=u~8< zp^(JwUJEpZURH6G?&x+93wV7RET@Kr@yc1tx%Y=S>C+}QkfF&_#%ynIe{!&Xbg!+d z;@lZ1)vnJ}%-5#r)&;UXu+?}5mJmQXcp`4B1$wm+zK26Fq|SQgI={Gh{w;&121*xQ~Al|F4zrw6DyR_gxwvqZ1m>GJyOR~ea}K# zmI1f7rNyIurShai(s+1xkEFuG%*I9Q;^&cwB}ZeM6Ez$H>u%~NvY`P5%!oL0%$yLB z?iG){h{s^#rZc?htdTOmf~;aY&Rw>H|;g%RWfECW#~TD&VauxqYIUXLAnB49Eq%#F>cJM+}5 zT0$IG(!F6T9h>LJ<6DuB{SDBawl*H^E+lTTuar`R3)D~$Js%CQQ4U|>vG;)xU+rV* zRYgj4P)U(TOBk*xf=(2SMRw=@&C~RJb;Hb0MjWMd~gG(t?uq_Q1f^Lg*UL0%B6B$&6%WsnpqcP z25|N7*QF~@=AzDj-WxzcwsI)qXfJp@#RfFLd@c@$+|=(A;%A%exM@V;Aub)_1eiOe zNQ)kxXD+6&i^xf*=nc$On}40DUqX$e6@43J)0@e1NGW-9m35$uyy>cAuwyQ2eLaUa z;|X_rrp@uNe{#Y=L(^%eZGzU-O;I`9&KLTI+I>Fx;QcSfN7Pfy==|gD>b=TP5GtgU z91lO|_xdG#bZ+Wvxq4Gd0P*()f@B_za)a&xhSnm*{Op!-YY_EW4T_VO`H7s*Jyv8wT+3@+hV#GcCq7^{Ih;z~4ZP(;ciIaUrxf@j%m4 z*m8g;uGY0-O!lJh<+r=rZ+3ve{>|r^U-YF*tRJ>{3itURDlpF-S5_Z!M`eHAyn8+_ z(M+;NLA@^3V*@C#zO8dPXM!7tu==$RL8830azpzk2llJCDfzEK6;3)G%-#87b7jzb z`b(4XH_mlEgo5vG6AkVo=|_J@u19eHM^$NFp1vjw6{ZYTRaOQVa_E~r>~D`-M0(ns z4z6Ro-d(QGqNeX)?T)F&XC|2bOrOqLrp@^ARqK}i>?uOvYC!uKA+z9}wRg8CX~4us z_d%ghHI$UFw0Z%6@SG~u@74LQZ=w-kKPUY_XRwD5EgT~z3|?P5`#?8+$5FrI!56cz z)@H(abD%bq++b|2Jn1rk-$mP+WNu?6@RpP&?=57t=>uh>LZg95pVH&UIS|36=eiaI zRQ#XN`2)c+kv*9pbCwfGdz16%^D-!dp`-=+rKZ zaO}v5JwJ>Ol=QU3<$tUM1^xK%T)w^Y>fWjx)Am9hx$WHHXu0BNK*z*v5OrDA>&~7p zD70iZ84PIQVQb9IB_B;&k=Pzi)za4H$vvjksM9{?K50S=jRQa)JH(*%Etn7CAT@xb zZ*+7NSdu>HO#o_M02Mb#IIY)yy3BmFBS%D9?vZ6|WODS$twCyyoHT(p4mZpTn3XbI zSA6@{nV;;Iil!U;EpI{=d^!yXwM-U_SgY7)REh3gCn`Mpc2`|uG_Bly!#;F-w)9)y zxFxN%>H25_B{IR72fp#{!5(F!El*P6i1cr3ud95}6@hZm-5qoD;*PzrwtsH`ORk6F z??#WxQpVWcGq3$r`tou+-|cDuu;>M6Zh?P{7_@mJ3~5=CDJd_v0}kR0Q+{k9LkWEe z@f{i(dWtE$l%T~-wp2xl=kU<&@Bio#U+PVH%dYbQ0XQ}>0?e;=No;lu7!w6dV?_AR zy3jUT2=puJ!fzNj{@v@YTz&3Q=d{`{Umm_3)S4K_{&s!kSmsWxih)TO7R8Yuy=+3+ zbDAiSN5FKeglvNBAc=d*_U442&+5=r?DLURguClwftwQMR*yCHS!F6XQ%~-;6%Fj~ zZ$EQJrt_X%H3i++*YVWOkdx-Hv$ED-{px2vU*SFPt4=@ zL(n8?sAtT=kn|UJNY`C8i?0e>t*|Ue3Q7>2#AE514m?xS!ikHEAQqQX!<%;0pF1QG z)^@G0vDP#e6&PD0LJ=UHir?>56o87JTU@}w?cfjMhZ2L(hd8~8fAt#Y^nksZyNSFRcBDs0FFMhjeH#6RS8RA^NpbPjjv9!v zq-QDDB5qS{x@6o-Zb3$+QtpJQS2F&wKnv@JrI9W+s`Cd(2Wx9NSXg}5sr@p?_QK+p zUH**{X6)9i3TKU(*gskYZir1qnwHmPX8Olyd|Qn$g;z6v_nbd&S`}Q`MQp(b`CV1e zP}1ymasIXI{ek_&W&pL5Cwlu=55aREGBEkG1<5ST~0e0fVBJKkA#N+Hy=EGbinV0KgtEZhz7TY z|4g_dMD?nz4@0@bx{;HHf84ex7$_V~*}tuT*sz;24Mxt>sfIy8zTl2=;-jp#LA`=P z!G}O7zr%kBF`U^h14qlRXwv*&a^pVMWYw-E#`!&wF`)u1AAv6P3D}&GQnQC@J8lbDJ11(T+zuN501%;O zC(UEH-ZK|4fI+{l=Xur*a=ozV8jkp;CO)Lf)`CV9z`uB&Za4lD`NYM>f)dTb)0bkp zga7$%1XQDDAV~z`3m}02$lwjQ1K@3NCZ7{AhJvY+MnPmDjM^EYSA-f6GW z#Md!ocXKLqbs^=8C2nzR>&i&uZp`vrW!85y-=**}p1UN3WN zYr4-F^1y*2om*bW`?~f^?LxP~*>1mrg2FNd6$uo`6uK4J9%9h{q$~zJWv&lDh*!h7 z7OvA9ec^7=xArZ+lI0c8;ea0onL2iAnX3o{MgFB@@c64?$xcsEMgUqs#GGF{dMXv_ zgg5&tJ~Qz^_)U@K+F{Ci38H+Rz$<3WtP~S z#MsR~rATDRhp%{61B2O2GhZ_e9oC( zdyWtRYis&%`d3%N>#R||G=HN$*ulGNID#aJV$ilAI$C=u?j9bJswTNNfvE!!%{`d# zKg@wG=nXi0qlz$f-L_(Zs^O&%1rjmfrM?Cy5aln_ z*=LpXQLRObmT0G@CfAcp8rkKO>@patz=f9_IpKF{-=tZfWaE=P_z?R`Jr++@jK&Yp zB@lvskz;mi^AM;xvo~BSJMK~KU`>C1*s{Mv^*#+?O74X~fQ)YjyvD`^SC48e=f;;M zjYw9|5MTYw`&x^txcqc64BCg=bbjnL()SWS`fGsFL#NU>;^6%pz@~s9Nv)f+U(KrY zMgr4DqoN3SQO6cEH}fX&0pNsxaL1r=<+X18&;9HLo&3addvs71eJG!?Yqdbnt z1`Ql7q-?x-`B*fi4Fyxw9LpRG%rp8AKoD*ArOl8$mmiel!1V~m2? zjTIH~m>{GF3IeWKTpd;);3>ik6LEioY7bI$mdxD2{0q93Pr6tYDOGenEpG!uLWCw@ zxN_-i6VvB!J?x334sUU}Y!8{D37-b#caFW`<0sU{FXna`4_7x%M+9^I{Tpi1(z9=y zDV|x&m)%diOpdFt0Ez_A(?OI233rSl;ppq@3i6cGgD)D2U!RrE)=-_Mv~p%hNlC#9_NEDdeh4qTy=Fk zdT$j!!G7EIfD4A*5as^9Hx*U1a2s8L*NhvH3tUMLU&g&|mec^8!_*fZLaSM23e=>Y zYrM+)si!}a6BF;cTb}Qg3Z|dg)r!>50JynOnVKrYJOl#aO7%XREl>ZqNwH94b#QPn z(BD4?RF|ey&43s2!fUu36ARS3-7hTletuYa1}yEDe>6Dw@3a$DM`~X*mwT=DP0}Rz z41pg$C}`~%;f|Ab8dQd^4+0i8uP(OT`Sbo6(^cp5g^CFke2i)rS9qgake|qZ%n&nV z6#D94ZprZ~{3c#w1M?gysobnx)5qtuIg${0(y{sWhlSSpI%mHd!5Pr_8PrFEq`krC z1v^S^8{DyB_sNB&8UsN{2CFNAf1QpVVK~^3fs^}Wu5u?z?AKwqRy?*djdXhcXm-$&(JgMi+D zzxI^gZ-jf@iRxcY5^i=meO&nNF{uF)Rm9bimzOmc8phY^g@@R`V``3YoxYND;}cmN z_sOqcLE3B=pV{nntMaQW!%lD>o#zMd@&+`U7(xNT9UN(3h6TQ6=_!L>sHjAY)Y^(< zjZM?0P79iM5I}xc*I(C*sde3!|M+lj^^#d~ee`65g8t*b23^LwL2feuOx!r9rl$e$ z{QU0U<>e*#1$c%5ZKsTS!)X2RGFUUe{VU>5WmgUs8}*>_@=V9Y1;@DepVq1Z_cd0I zkyMVPB%GlLCeL3q59ElqS0=LER`Y{|96xjuezt6!{!FkDtJgp_Zc_c)^T?|En-prWgs2G# zF<-Z?aYk}*s6L-p=RL}igxP{`l#ZU>dHMr!vmJf>K|{ow5K))tFoBr2OZ0+2_<`nA zUfFRW4g-jMfPhsr%WkbBsB3<)(WR8KeSsZYmNQaIxf(=6A!U&j$uH07jR7j{yzuQg zfteAMjCj?jK)9sxWyWo?^D+N-glDgr){R0 zEpw6M`QIyX1)JqHf28RyjfWD)XuC;|~qt0{cII0`f8wHauFuU5Z}z*M2next0AQvgU|tH9`?tYsNaFRe*$+YA-;-*R)_ocs%1M4vl}Lt0h5J9 ziS-6&w=)rNycE=bcGsKqfkrQhedy8A!_)I$ZuQ{EOO-HlDbynapsQ&@<)#E-G=nU><=Mb#)o9L>W6WgH4VUU8 zd_vh#>UW4_I+VYq9*en%(L#(!6l5h4A#J8Lj+ZwF5xLXL%alL=xSD?`pXbavl03TTaoY+A_O$GtSHp-=Aso$-yn{e`3E-m56zZ}X zmAtEpJfB;3H5@32K|C6(v6P$KN|H2Yr%sUOv)x>gvNI3li@EW)IdiL{y%4H28|dHX zvrG^OMn*QmtJnUJZ=wrR^PjZh8hDM^ae7EK(SXC8g_RW@@D%r838QW{b90{mjhv(-15cd5g46>ePorMco5$qqixRzi|C6E zBnV`24SU*@?W22E|DcV9!5!|ZO7hU|d2j#Glq-0!fKyTzng`-Lu+?(9=|$w@%}SH! zD|BW7mzP&~6+|&DJTJ_EUcSowi4qw|D|F@GD*yV)&xlW?_irj1lrwefK@mDS*)E3N zwDvWl#IIt7UfX*vK}qiWPR4W!RBCtj6@Gq$JdX?nSQs93ILRD)=pJkZWW!e# z@q?gXK$_vL`z`+m*L0?^e{O5SYVPiodEtmFj7>Pg<=~P7K3MH*?s+0w^J;=n2G8YY z^jBW%>6NJcsi?t}4f0y+m~MlLIm_%z3JwkzU`N_9Lx$T39@1Ai zd??C85-b6iAGszV2z7bNW>8}8dcJrIPXEfkIY+8sS)NTe9?+qG@?V!lWDp zM`jqrf08E?MY%6y^oZ*1eYA=`S71lBP%cPRHn&rR-ivsU=-L=+wy|3I-hQNDVx2mw zW4-j}*Ve(xzoiFCNugKS{{GNG9i{0k{={;8cSaWxS!uG2IB$@QNo5n)?N*`u7ek9o zkan#{=jZpy+7pB+F>QT`FtD(8cB=khq2RONz3dlWK>+md?SpTw!p|`UL!{6vWU3)& zbcioEK4QR!u(1Z)ljn@+}W13y9tdbwB|l*@kz_$(@hWAA@c85r+qt&HQL zm(}4UI5EX}j-T27R69I19*g>P8DVu|7ApOX8&vAzL z%dfx{GWFDxLyd%A;zb@yTwb-Z>9ok~{16AuhAJ*xp*O4zdfB679Sg^dzcMBM)S8Qp zP1eFT(5AfV%#%&k)YFsuOYiU+dY#NT zI>_HS0*qhy4Js3lOovuSdClyh_2o(47Nu|p&uV!XuxdGbolAs@6K|E_#qL`s8aYyC z@zk6Wwjy-evQX*ImC;fCo4_hN z$rMZ|&@MzdBZJA>W!PrV)_a5)3=4p5Sux)c)GOA7E8*ecqkETQT4>zgJj^Ks+e&e< zlQ0jg=;E-<4D?sNuW6gOWco(QQ%XQXrS98g6PC|CDJiuwe{|AFN@>$V#SWh^zMI{k zm#^zAKZuqSC0bO#=O3F_NQr4PVdj}CzVL7VVm7!AYNB)}^rlY6qK1a~2RKLaVAh_c znst<5L-!g^ny}5BZ=*{vaIU7ApYTzFJMDs}MxCoY;bwNi&7`Hng-Jr_dD)&u6Ko0S zE)vjta>qoA1h+aVPTgLEEjXm}>>yN-B@|RgtgsUA5u5&9t)lc!>5Ayau!;!VVy>80 z_WsiOx8rU&QE_>a``Q$tg5=|syK6-#qs|*%iQD222ru6yh?W7Pl-#_$#-$C#mt@&_5MRKTE(h{1 zs4-T9=xCB5$knfdvdK#C(B)roF#JJardgYYKG4tF^L%+fPi!Ia$o$~`8J5v3rc@=7 zYuI!WOmf+dsUqg)5&bMiQJfLkgTwuig@dX^CrfI#Wo}$PHI<)t)cDR*VP}-l`R;tN zzN;4xP|g5;3@qHZLH!6S>obbgx@1AzX4wnya9B$+^gl*^xqaw>BdvD>^fvKvagqGE zL`3O7eh3^LzZDaMg2Z*bBO2MUn=LLb27BMG2VBm^A$)>Vo}VY;4V3gIuQ}$v86XBQ zi3oeg62e0egwAh=rVPcT6qlZ7C%QUV%WY53pRDN_G}3TP2Mi>X9|VZl>ULZqZJ$wj zl@$~Kc@}uXdh!4E_nYl0y%wo`V}`yZL2;{w)o=mAql5f9*Af6`GXAS!1mrYenVFf1 zt6_U~E&Sw}vd0vJ zCyJac*Y&?)g>Ia=YG(C$JhQ_2C-TlqLn>0B}YsxyOFix@h_>&An?f4Gure5#j7HTBp z^tMAp>ZH(0&FAdu*~4?9`Ki<%zq39e6L1eH(Ie>r;vNjVcd-5}rQrtfpWk0Nx|q4V zMSrUfW!)+wD?+30JJ(J*oYI9dIE9vyiPagyF_R!8zZDlAzK^WH8yb5a zPPIPaS1*L<(4$L)Vii+1jy*&_->rbvW5<#@pxc3;wXLlUuy28*r47t8L<9K95b3C> z{Kg1KULl{3643M0Ie}rLpKj0wC&HNyLU5yq@{=TFd zUeMeB^QAmCGAgRvY_2+jf0q`rm6a6~Mw^%d>#bt-@|i0S+PAR)56Pa->pg57jR2&tu_RPs#C*yl49YTCA^4ULq=B<7m#!Xx1ww=S~5@V zc0I+9^5)H}iAZH?0FB~W%lAUC2Tuh`WWdw~2^{NNfxtf~s~BvHq~Tawc+OKkXSq>p z`2j0_K;-Oq%{P|$L+OHE6TOHz^NRWvjACbTx0cGhs=}G8=Qo`N-}I--#k1WKxGdY{p| zU2912ZU*D`$VgS{SfG}(Dpm!Y{<{k;Ljx}Q6p1UtEEJ#bum05tq?I!wX9aRLfo`1P ztLdX%vCo&EiyN7xPM>fHaCOAetpz1XU<7R;)|aT*me;~i{3@g=@97+P=b(K1je7}D zSVA=ws&ulZG>ef-7xMc#Q!Y|@6FS%QhEkfF677eUgtxtC))*?7Vk1d4juR}cJg4c;A5#RV(GjaPkA&&l zeUDwi4Z8L-KHg=mHiy%B%_k2^30vkJf#8I*|)$`#K5*@g#?VjOI^miS##dq~VbbMVwnyCsXm# zi5(l3)`xe&Mt4{2bmc!_F&N2B68d&ayngfS=JKU~`>@HZ%h>2IJ$|(CN&{7YT1``C zror{0))r8DOCmtXLp~sx_%uFidy|Dx3{&8;IFoJ<9nAGMTQlkudUm zrG_u&!G^4{SS+W28&JI=5ARQW@~?FR0!b6VO-w)#`dN zGBDT-+Dp>Mb2Bmu45uT4^n;fJGLX0rSaAvp3mxq35wxu<7p_D%zV{nFvVSdox}<{m z&P9UYA9%vfElnoNKGURHb2bE9B6ofm9`o9@*P{7nb#w(asuLF2+lYeJkZY;N1Xd0v2x~a395u?c2z9zUveB8MrAvEVouI zUx;gpraiY(V2uz&cP+++j$rj3(y?)N)@zmb-$8swdxR+C`j2JYrQz7ex<01OW68SFqxL2 zRfK`*t>oM;4GKIqGj1NOj_g&LAa&%15`F+W!7Ip@a&-;b8^hO*fz)@-{7$ffxqx8; z5f6`K$Bihd7Uz9uGs|pL3j;ZH=1!Fb|4Ycsz^5mSPZFeN$vA41k$U@kjT}0%?gLO% ze~0#P@EbH&Ct$=wd&8s}hqKR$@Nft##bxL2I)VI)L*Fg&n7kvr`=Uc006UXDV+eRgp53Dc~+#A=13XF=kO8I$8Gn zgddEoF>5_zLAT5F5d%SR75LRE*%t<>kJZzh!&$7fdA1e&G(Y zISqIQ?MYnZY{z~gR@lAg^U~qcYTU1LK^yS0+602*+2v*k?gScf7d}wS0URihX^HlKtH-C_eRES*AOwV{sZtDNc9S_dloJ37OEpa3jJp7 z`80o))sD&{|IX;~m&goWk~^HlABF>pdimM0Y1i$pnY@8ynQ%*qs+3FUp7A0L;zoP>JnC-|q8>36e;88s&Dk{oI>&vUgi0lA) zPr~yGA_{+(Z?0bjZi^P2i|?_mM-#!eyILIvI04u?*iP%`Q#5+dE_CT+`{vwgIFo6| zP*f5!s?ML-F?_TCG7M7N@9yeCt!L_l+Oq6@nWc!8Y)|0laTVsc-C zad)Q=BkA#WobFi)s~P4QF0pSSBJYz8pM*&;kxs0+<)Fe$q=g*^BYrvSJt62c#4Z{i zu@7)-aR{F$$(bttcg{xlcjZn%Ah&AijoY>i(r4;$RYpTo%h-S z$Lv4_!qn8pcli$De(7ET?HMZWx;=m8u`^7b!&X77+f-Lm<6QOKOaS0gnZEvw*>UmO zo9PF$YqYTOu8d+`H8w`lFU$gW-G1j`hA4@@CR9h#cedsYx76%;T;w{8k&rbDRoOV0 zT67#N5SG4FV!<){u2Fml3!3k5ieQZR!|(oJ_8u?rH`B`@P4(f!TIL+dMj1>4wG=fD zb5dqKX$)oUtim^+l^((Q(Q)DLzpJJOEW#4k4|tQ9R87jFHb=46D))XF7y;5=DF`vn5Mo_ zI~V)Gv2e*Cc7Pi{3okOlyBGv2S{KLW`7S6Pr>=P4Jb!56oU!J1zC(lv*f1hCi3Qn2 z&)DLp*SOO~^*YFa5_wQ#nziM7VD>H;y)opNpS<6(SxnesYiPvi-imR$`H8)12a&CD zUVOM;0s7x~Ye#WIgkzyi$$ZmfHVebkBY_`SFQuFjd-5J3yX6%-fg1G!poy6=uL$e}~(tZ9RnL|dNH`I9+HiMgm7BDY1Y%u<~7oW`Y_$2UF zNJ{nyF|) zLCQUKkIFl<3>mLF3)Zs(dDy{()V~jz_#pnTf2PcY>Pn^CzUkJTk(=o2RPUN5CN8FA z+saZtE;b5^KU%N|=kQ?V$eHTCVe%8mG1CDLP;cpn1_+)59*X>0u*)vnG5XcM%IQas`c6y2aHddsyR1Naf z2Cu(YjH63n9@P>1t$|$az)89pEc8Pz`fvlIA$qaNjfIJIAn9fIJ7m(IDZ%0 zk%ueh^8oxF%Lr`KA1)f2feKR`OxITi`KoBVt#Nq_Ntmc z&2$NgHm>(_WOp_YBP@@m!5qeN>a3Bd6eU;f?Iu4U3u9=h#7rW!btA!c=ZX=W+|5XH4MRU z{0|(>Cl_N-6wHSR#wr zOoMebdML3G-LUuvt#X0F!=WKB#x{OL*mo~aEcTnHHMwG+e^!*5k!$u&aE8ckP*3(& zI@`PhCq8Ew?A&D-UT6Xt@<48d1tezFYnVWcxjaxx?czy`SVqzuICO6Eckzn6El>Ev zrvNTR6s@n!CX(Ga@0q@B@ZP^e@AbI)sEh~=5q}F7Ahftvss{L13();mxW#{soXIg6 zRe3wt&OKYCl%@YAeRV)dqm+}ru#oxqZT{n_8bX5-Sn&tF2@*P=p3gExF!*RlJ!4Rr zT2jY;;}@*zZ39B5E}uIG zq|j$$YT7q6bk!Pc2(pcA#2hMjd%kwi3FE#_cKXbeK!pJV`GY`$^}4+-kWURAk?b>x z?0W><*nQ^+;5PTUfX}H&c!(QWdbnaD4~zey`F*sBuJkv{tb4OAF@mcdKkPdJKW+@6 zHAP@h&ZKa~?>$n={YvgZYkHz2*1GPlq}0DH2KXb;#mag*I&_Mcw>~Y)rT}9>y<7&8 zq%>$TAp&T;|KDT&i97xB(Bn$!Q@~gqo zecGo5FI?Xhz)1G0so~ZcG&=qu&a6pZqpK#kYVKy!sEwQDH?J=tqM@q6%CufEY9Cgv zk-jsu`EhCU*l8?dSVXh~{b+Z|sqf{Z$F&EpSWOL2YJ=$>LY(f4VqOWY4)XC;O9&&W&IQ8xF!-3M2U)vt?hBMAu`kBO4oRMdyx~PdgX#C_6DuV0>P)5sGLE< z_B)3&qr-7^NE|fSkTu%Rydx*pQVK_r^(Ad975gc5wnN(uv!ldvPpPZqVLwx+#wTZqsIc znw(tL*6^T&?;m;U;tQ63wh(WH_Z09h8}994zvDYKiq5N8m-ia-|G>pR-FG4DoH$i+p5DA zaLd9ikxZ6sxfDTLQhes>>czm3Ek_f?YjfQYT+a+?+}FO#JQDx@*wnR;JhQ`F>*iX8 zWah{IKUD^jl4sMDonJYANhw-GUszYdbaLIcdh0>`L(y*fB26hG>}vs!<*lN(gJFVQ znGTG%`e@_r`0P44T^z=`NMs(%ah zri0w0*}!t5t>J2^wRS93l?je5JXYVN9of<0pQf*>#*s|cD4@(sXl!n7@3Ib1cKJoD zL^77pFr`pmr#qDjOLCT-&B2)?Wl587{V_}U3PT)6X}SbSb0#mJR~GQWFXqW#!yf@z ze&KhfCc~*RQ(L#CywoXHX~QyAW-Xv*U^@VV*2f+{Cd>@3RQC%;OhnVBxH{iSNu?{~ z78bE4^Z7z<0pd2eE*+Sx;?qe>FK&vLg{^sM1p1~A(3!XOB}6qOVgQ=!P6R`@yH znbWAz5s8+S79O)$&5iS2>UL9{f%zZGqp`K@ku!mzX=MsRLi#Z5u3mCz)cwUt1I%$o zemSyxMS9DTSNeF%S>k3J{<0`h?u*dIZ4na)VZ&Xr2hlv10cbzuE{~sJ&1G4=8{g(E z4tQW&a5#FWw$)B$HfF@VJx(Eqyt=%UjVo)V|D&O$X!p?aTDhGl2PM|I(n8y*dU`FP zP@%24WUfKf>BwP$X@vU)b-8#po{@V~_TuvS;q0wb(7_U3to3SYeI#l9A`c@o9OK;(FF z=*9BEDqBRd$)ZYB`1mV-sM|7+I#yXUH!gX@ms&9}5P|Ao0UHJKDvs3((yMme6-?~N z9Yj~@J!i}fD_xYw*2TkLWuuu>*^%6+wl0McwZ{dCa6U(cXb)^C6m_8}o-kp4%IrMEtB}y3SF2&h_ql{v}Iz$B0^iH{{N`E@aXAC&_5xV0cxX zjYcfJ4x1=r){*b+qn6G=4?9aIs~~Hl7vmb1NqU1;>Xdh#+%?~doCEtRPqMdm%%@7s zIiBqZ%dy@+N<~dfHc#sEh8?+m3N@#V%=>691d2V!ckD4*WLlq39_#KAC(2+hfK|SJ=_Bm6 zS05KHJs?TKt#A#c*?;yMAUC7$j~kFkNDxt3{9$cFJXZdClCgi7)IaF`yo*8e+xRu zwV2!igUbaT{HzlRa5l)&D>VD{E`+)FuFQ~CW~JZw`I#Ho%m67YXoVi7xPAUh=i%^Y z5b*nufR;xT6f;wENV8$|A$|PypGruzvEz;ZoVOfY27)FS^SZT|L&TOiI%GXE0->Ph zifGdQYXtFRPIfQmq2+6K5(0CWQXFs}HO()QPT)1{ee;375)HOYbl-I*9@V46cYskx z9*JiEm4}~{rroYD3Pwrjv63|UJ~&T1A18`cH7?PU5J}nX5;H3w%ylN`>9HR^Df*;a zjQd?0biE!3F~A#B6$qbHV7x8S|D1oB@->loX1cWh){`+=$HFYLMM+bQw8c`fu{7)yG-H-VrfH;PNHKu6v^hZ-P z-iG2*Dg4Xi_1C}vvP#}6>T8x9?$dAIR&te+9WcFpUo`S%2DMcUmXz$)Q>S;GobaVr z=SwhBkdRgOvyoJQqKOOkS^6$PH zrzZ=uFDqOS`(R@ymH#$Zks-DkW>&OIf!YWLN3?Od^r3y)_>Wb*5Y|nv92vatLqW!J z(yx&p@XiRdoSiST`S7Mo7rhWuO_rgeIky^sJ~lNqRr7`8RCB8mFV)|ZRTb56_Q;|K^S-j`Knwjp0V6ql`fByc*q*q`3kh` zW*SoQIu$=tp;Tm2#uW{E(8LXCTCRvCOHQ^&< z1dOxYf6RS$uxQ_1R@BW6m*usn$vbh!KuSoXHfstX>p@^0kX0)15}cA>brojkfBEzE z*}^XRzk^MitC(1Qthu)q8sCGmlTXyen$*eb_zAEx2BjAO!fe7D%g)TyFg3$2iK>~% zd-`FX;58iU{$hr|k#=eILl6JaTC%ROvbqWsiFUxuz`2e;-o8@3&|VJ;85o@NNK>23 z8U;7X^JMm3Dih0WQU>eBDQO04z!0$zPClXbOJO7#v@@sbF#z%^&vzn1iu<}C4+i)o zm;;U;yihdOr&Auf))W*dFxh z%i$0DmKhvOR0uc+bwFMvU={Ylf5?K{$91YXfT}|GW(knjLa5bzt ze{Iqx>eWD9WiFmFBQ8n-utPzyA~Qa09I+N&QJvx0SdI#VV>`5E({qvn_h_!%mso@H z<`H=(&ZjevuH48-NncqlikO&~Xlep^+7ae&kZ>|M{6$jofTCanw|yENI8dD~W-=jb zW1kWdIM!Hh3~yQn_=L*|S4_{ER}?FY*u(r&kbtpI2JIj_%Wwac7pSLE5vj2i&@u8u46 zmg%sBNyxr`-K4rbOO>E4QDy|{u@NRRugL3~nAzRaY;Go+Iu%SBjJ`~vnCLE(gWuWb z8kxW?90>E8aAQ9yDKRUTBsTgbOrXc59ePVoB9TeISf37FXssWfCw@$%@~{!1#YX{` z)o3%Yoa&JnFz%Y$|6=zJ1(g7v8i;bgsQUP87saLbHNfE2%&Y%@S9)scZ{<2?-ZCB`XirdU90C;SMoEX#QX!#UBxbS|3+a zS53XLCH_7v_X+2hNlv;LV@|T6y3oU%Lsig1OwhE!FuEm4I54L z=jzux{nLUEhZu8d)$4-E0W3LFqA$hD1foxj6&V-0H*ozwFVKB#LwQD@<8>(ydWv3} z*7c?IDg8(A`Ny$&+~LXgHBdIdjvjBNrP0)BYH4YC9O~#wnrQQ#g>LScdw`QJPy>0+4Hdxv-I`QEJOF+S}cbuh6N;(Du`7BJ}27Pyd`ti`i7bJMYQG_K_L3*->+Y$I77$aoAZ?gnxF&(mLyhUh8 zf$3O&es_OA{WNB98m{v%bo+H&|EzPAgRm!QsUZjGCang#L(>ABYI2Np?L{&H9op;( zcUP<3eMK^KAAq^rz<}IFSz)Cwe2=)j{b||n-_Qg?6d_t~AiT%`0vLF2qN(`c=92&g zZCi(^m>6A7vZ={Q%nHvmhGe0)8Y9=uDqlW)N)CSp%G;@7)q*z3)F}QNiPSj7XBY%; z6HL1nEZN!FLAY1L*?91@p0l{Au(;Y%pe7Ck7y`S!p#Z-bqjh@F(^zBt=#8HsDOc^+}KjO_apHcvqk+ zB&VbVGex`t)&3Q06bP6qwzRYWQ=CtqOp?|FhYdAI41 z+N`&ZB10{pZB}bC`k zPTyYid+?u*>t<{#3o{qfZYm`-w7t0EcTR4F6tR+ANS}FV;&$xi&0tb@GJ&UE4SKR{ z9O%8}4)4hCMQEuOjDpy5Tws~Epjy-GMD5+ct3$`jkr$@nymCuL!)=?2p!c+j)C^{_`Y#A1H5W?yB4z`5l5FwxHf&^!v7}C znAliQArR=Nyj@QhG3A0ri9m%c ziPBkHV?`0qa#zW{VAy^cCoiF`jNjVAtx4U(G=JxDviJYJz(REgDjq8%Ol3V{G*Ww5}~&96>c#6HYz}Au5Lv@) zC)RG*Q34x*1avPQxHA4VL0@jF#^7v4#50=Fon~Aw;Ml;UXL@Nwr?`^nX$B-Xunk_U!kZr}6M)o!Eu&qF zqYBAo04q#gb5!*Z{KVc>FE5lZvA+ib0xA22LIcY-74SN5gi(oZ=|paBE{8!6rh_=b z$ok%NE454Hhg=}N>yi^@;=M@f|4$s5POvo$)1_pUZruEIFG z0QJ2xbqhSw;Go8@uDRb+;EQdBA^mG`VDNiD4YB@^Q>V0QM(ct1F6IAz2wa{>yVU^P ztl{C|pbb2zDBZsuq$daWyRd;R6Mz#DD#LEe>(;e*JAXs&QL>L%@B4QcW8Nz%je0h% zuR!D9;tBoR+Jyvd^ec-S{`(&hh*1&ZhcHqIj))K_7)8K?zxJ-Ott&!NAn`jn&7i*S zfnm4I2w`G#U^AXV!8cv86D;`7)UbAToLH3Lm74?mvJzkPvNzpF6p0ImsO9D7+& n9^ivdS+d-O))?9N|MxHF)o$aMILWbo|E=DM%8C@e)%N}$0nI=z literal 0 HcmV?d00001 diff --git a/docs/reference/figures/README-unnamed-chunk-9-1.png b/docs/reference/figures/README-unnamed-chunk-9-1.png new file mode 100644 index 0000000000000000000000000000000000000000..3ac77a8404577805418f69e82c05837feb44f389 GIT binary patch literal 38008 zcmb?@hdEf zoI}&2oaRUGc^4UJ4@buRe;Vz*yJNpv*PT{5XSu5HMQ>HmyX0Bx|C@w~=TU-Eg|deE zbLp=n&($cumFKYQtniQzMHTRVl+N~ixOnDkm#k2G%2ISNyth){7>AO50nZe)FC$L} zzav-~Na^8mE@e;QArOC%|DXOt*1UQ0vxmKn&4VQrya{h~^v9DaZj*-JBO}yg=l1@M zCL|@XdeFjiq@awL_HXOF`%qQozurvjRJS4b@ZnHXQ_$cu_(3xb)Yap}+dBFN274=G zg&IYqq@)wrnV6QRL2Pa8$~_->K}e>e}%ZYKLdsZVlrHIBi--d@cAaQmH6?LW_> z&V*Z0k&z#rCRNncx3dZ1qlzl)H`ijGTo_WGIhvT5Fpg^D^IA1bvdlV+AF_LFZ_gy} z`u&xNxVSh<_9`W1JoAA}hpLdRiScu>1_yYg@`%(D0(Df8c4zyZt#r{N`CuJ(-BhLB z!DJtC^Bg2Q8>g~@f)d{n0|xt}Z$iV+@K}bfw_+P>2G7`9Vw0NF=)GlSWHf$ya&(8L zXNH*DxDLDgvy@KEvpen1?PHSOt&Ui_T-(Fa>WQ?khW>Z&wp7^SW{O;NS=Et+{pE{d6HGK>>jhqgp{Rv7;>Vw!p0(A-+_Hp|=mY ze{G}@)~J^`+Su&Rr8~{_qn4x?|v>vPiD_=`^lXayy+Z4g7Yj9$vmf6Vv?Y z$FwsVMHeySYW6PI62G^^CFbS9<5aOW{QjX?*4OYaChvC;Af)^v+Jgi86X?#4R~*ZIPdl=>B@ZGPNmL3obNhI@ zB^_yzvVAif&za@bwRotRNn~>SFcM`>Dt#x_UOGy<*Wo=QLT$LQ!HmBhy(}#)t*orv z+_sW94Iu6^=W97U;~0+z3~F6wNa!b;>+N zGj?`%#;Tpj<7Q+f7|n~UjUn<7$XT=3@Nt}L$2;N}Og=h{x_vzAt#Mz}xPQL`j!!p9 z-18rGSA}9Sm$>WSuQPg2($dllsvTD*8%JV`HGR^K(X$%F*r$2W#tjc*ZP4DX+IzXVVlS z`BnCriIo|yFULtHRI*W?fv2$^f>}! zuD@9#Zg3*3(n!~9YM(F{ij_B(g( z^z`&xy?T{Bk-g611a8h<)ac>EhZ-6hj*hEsQB(}viTt9XKJXdu*#E?MJBcF@QUWQf zM5@S8bYxXk6$=Z?^wCV2as98~zw2!Ja_ooSiI1+P3qHOnzq#RxMaj}(uxe$)U9+2z zJ~=aZ2*$Tcd%=wd=EL)atC*cfXw)C?OiR7Af{4ci4QdU~s)7{q;ECM0a_+dwR9T70HD<`#CIYFb}k zUklh1i;=q$kXKz@{q}8S&Kr;ApNUCH5&;E_B!wy&n^;V(=gMJCjgLAC>VPkt;lb8? znMor(9XY&`-Dj%0fmz9om6NQaC8+%4j@)SUBfXz1p73&42w$Y89{m00WjftggN}rd z>&0lPs>Tg3!yT;r`=`a8sHdkl-LX}fV3L`|FTZvUftXq=ILbFA6-h{VvG2yF_1H=I%iJXJvB*;cP)76jsF zk7at*%A=Fh5MpvGYwI$j+TEhHtFjx%2U~aV-u2yEP3)SD%L-ihk^S=J%k{(q$-U1I z#rI=r^%?_C5(**e5ShfJr#0C6iH@Tl%+Q8J)*8IDs!}Gez2kvu%;{2bnYNBjaDD-Jo!*lWWHZi2%mavtaxD2U36TP{ExG6dwaW8cgn_qv>zJ9Y@}T4>CoBJQ>Dv6 zOipiDW%p1|Z&a(E0Ww_-z3)P*+9gIC3(cn<-bQjy;AxAxo*vY*{;&&F5(ijlay!ez zx7pdr&b4Sx_K%JEZZGsb9{V^uHy6&}T`?mPTkAairOtZ`@-eTG4PNv*JmuEWNoi>* zq)6lOhb+(I3st_lpJsGQbo+k)rX>xNyMG@NKPHwK5tPM0exYI0Vr4e{u|{D8F~{Ar z-m}MUIjhM@hj@sfh}2ag242DR(uxW`e*Vg`va*~UnX+NYEnMv|@!uJWr4y^Dtjs#x zl{{HgmCM~QIomN|i@ZsaQ(u2FSfsf;TqcyN#G1f{?*#c{MnWp#>L54<$t~pgd*5w^ zes>`D%(nLF(9fU7pPZ$+lGny-sRnish;?Sv@!wAYgZE~XLe(cC4h~`_ojKg`E#u0tF4sjdKh)B4 zhvr_Rm`oGXF5itzdU2?@brEWP22XIDF%+@;ar8!&Ry{egQ33nY5KH@}XQwAV^#L|E zZ{EJOn`w`MS^#Hsw7XL4f3zEOU5Gk-wBFZCPA+_~84n@lgWiAeUabD{c#?~sIU40t zM`&zdU|?^*4DoGmZ$ICYZe2MV9v-d@R|ezN*qDKun)BL(csz45x5?>1?OJ zYXV{QYjCh+q!O2D#=_s7{*c(1(Jj@EYLki2gX=i(gS7Un9iMi#u(swWn{gLCIyy>- zk7wP;@rk^-S6{;@&5~6@fRB)}cs*sVq^#UC+m(Dicz?Zx+(2J{X?YpqPJkw+&Fo-% zK$V}LpZMH47^1?Wmhcb-A}GIqw)XbdX=vUS6}{-1U8~clsUEa-sOOKTY!5lhdJ;v65K=GGJejZ=avK_YNk}RN`^&msPEJmCc6RqWPAo#2 zS3Jw~jv_URO5VMj!}z_^JJRspO(-5~PetX*Es-D)efGa%re>5pJa+ab1DynDI@;TJ zSH`UQQdM3FLkcPlxO;ma9PTXVUxL5fFV(C#XS@~EGoA630-JdT;Y27sCG5EIr%fS$ zb9KCyGD?;;0j9?!%Ypv>$jC_6&C4SEmn(aoT@is%>w(!X<-YrI-;ImSyM#5fOuV-RTd_ z#)`haKB&=4JBK>P-YneQaXD|c=6j){RZj-g=I77$=PR-&Dimp@^~~K8GtPgWy^4qU zLrp4?L}p-kcKXyQBJeckd@z#i-1*=~dPxO~YG~%j93@sJlHeKP*co)BnVujuS@_xg z{n{k%Z(~(Om_HEkh?|5&4CGt@g?|73w{-wz`$7EgdS9Wgis5%g#igZ*ofgwOOD6$m z*>|66Xlj}Sp6qnY>_heaJ2&@s$j)|)0MV3px4Gk)b4M?XJuTrEB_HptyJarzhEr~u5&%n#C`OtVsv1{`ChkI&f8D9JW7h!4cld*-$d;Dzgr%ZBXo(cc^dC9C2y z7)c=M^-Hypgwre#sort!->9Vg3D8Vdjsap{pNi`7}IQT9T?KjEl9{&j;Js*eon8=vG<9 zDC7fPn-LCXq-Kpg6%??m8Kl4!0lD>!xiP24$B!TT188YH-t2;w#$~u4_hb#A9=G8q zH8r&#j}8wH0ly?!lG9_TNyB)Y$Pvf^NY=2Kus11eq0Z`fqxA8kzl% z!A1S$e9^7A1CrWwA(|aKe;R3|!sDsUNxKWAr1X<|R6;h9>}(2mn+c@+T1X_mk2-vW znO+*XyE>j8AAghNOOa+_o$=cD46!Usm$3=-qhXWYRDSERkBBn@_6{VkH!TMd2IxkD1WKJ}+93g#ZbhO8tq zsJ07KT*9=mQjD*)*p0X#;%Zs35}7yU^KVXAK|UP!9yUu$Mf{~AT$&bfip6v&&IIYkxqG_+G*19@#B2k!x*6n zctMz$wLPv_DD=N^9;HJxy=?Yh=Z!8X`WM~WDXQ-&XC}Awz43UKn@qX)>#L3LVr!w? zCD;EAd3^M#vMXg%-)N&UQA35vuEK#c$gRI<-}>Suq%R^tGu&apN;${GShgg$z|$dX|zEXP)I)TC_-#({aZNS}k*$Nv>pDI4Y|gLY-dL!EQ*uEr!W zspMc~^?&6?3B7MKz4bJlldDJ*GxqiCR~R{GU2Dcx1ZiS`76EbuW-~ybFqu-5IgY%) z;U{Yx-EW6_CYp!~0@f?=iMxO?dRtsPFfgFZI#8gT-f()je6+V#n4f>~;>DGb^4$0D z)s})_R#jD7r)Ghb5`htkZ4=``y`idg2qXi%dA@e%$FkcmMBA{?1NXiq-nOdr{z>-B zk%5;5=_~nb3_A2AUpG&8&gfx$e2Sk50x8ILPHf`=Lp}2$Q z4_>^WsM25AI*68I>TvO_H7e3t+VP2<;h?;LgVOTwfkO(up6v(~zZ`i-k1)FiN37%P zdj$3Re@vQDT!*H<{%6ZB%3#JXT~kQHa;u)S{(g-jbEv7(NJ175M8q|I>+ewc?2U}* zI$VHRn)Z~0&J2Yc8+i&@1`~UNC@W0qgwP6G=hjb60vj+xjX%oEd8Lt;FJGn(-@sy; zAF1W`J!f9@tc8f^ogc8P5>QsP4Szp-VQWHH{1!epAp#ktw(inqwny@1@Knav#|OH} zeRVBY*UhG;rjL)u`UeKi2QRFyO1RBMk2(ZEuVt#Nd@CsZ?)i*>2%@QSTCnC*yhX}p z>8Nu1=(*D4uP>N#?~XIn82|{EM~03&p6z~NyT27u7?Cfm);ZiXmZGe6OjV9S@q4O(Fzdw}&)0f*P zT*FOcCGh6X67@s?OrH2^>jPhA(>^YZ(IxmQW%bUxi=GeWp(X>85lI-*+*DCAWcLt_ zdLkvom25AN*6H8(J~3)jo3k@368cr^MHD7_5?~dKtEhs@ZYA8HDzG|Brr8;Lfr@uHkeU2Y5e13gHPiy@Qn2L%fvJHZVi{2B#Sa4nzq9z zjFu(pSPzV6z7}u~C7Y@gF72ngSh5}G$%(@WN=#6% zzg)Wr9-RQnY0!@H*EtVQ z5}s84=^{DeCNUBD6+Qt0_k|xfY7F0L6u~en=rn;56x{8QJXJ@A{`vC<5Fm{GY@Y`& zArJw0q!KyDPkwA%*b_E>F8bBNXMf$45&5;Vvu}9^)Q<9Ub*^N<${3&R2gO5&ehoP} zIktT2s_}ojwt#nJk*5P}bbC~mvgJqWVtCO6IqR2_y9$k2w2Mwc%qUL*Nu|LzfZYI2 zzg2%|U;w0sD_``B(EwH&<~PnE5{P?5(Nm^5gwn#^n|VWabhNYrsY(EUZ^)_#Grkh_ z_-0lPqY=aqPPqV5XF9_c*mk&V-j=!TOR>@N8GlAG^tg!(McM|5e=VFscB4J!`V*-~ zP?h0YVAzs|oPcJd{m#&qFE#Jdk>Q|%o~K+6t}?fi6EX0=b@Dn^o8Wy*2G;Pno&` znL7_C3_v5)Wx$PVbz3S124lk}fsY{)&$U3Vqa!~9HzhRbR|$~w_iw|ZEqp|)2nwT= z=G?)p`~Fd9JPSYvxFGI^eVJ12F^7-iwO+ZvHWr{r=_AfgC3|CQjuTwbne!sC<~S%5 z&nzFGhr>6(4L;)eTEU?_05Oh|4U^$zE8EvRJ2BCj-WEYX&yA3Jp5AJ(wY;|EpVK+KJipuxoiqII(o7Y2sAbY zABL`vx*VV|K%AREmW)HOd1**UPT`} zxS=w*RfSCLX%P`usGC~`f$U@mJT4zw(MF?i#Dc3UpEMG<8c5p<&_?4>Kz(07yUrO%~G49hC-N zVg{m5^HeBwv`9yHV=kX+^nNPivXMT?!1?9ZKB^yvn@OJRpv>kT@1Ptr2 z>ZRIer+bZsXoaObkPgX-$SK-feggmy6BQ*1#_o-KwX7I}MmRnW+C-jq@s7{Qb*H)~ zdOnDt^D@mX*zHRrqQ3V#_5k5l1JRQ6CNGaUr1{6dz|7v!mCKj$p9EwmD1@VmOkD`jOybb@d-uY!mC#5Xj+}hg5?m}NUfz!WCI1TLW+TvoL zT@_#!{c6XI!E1O3v+JY*H05IT=I`FCfnBGN1?5 zwE&5`xRej_W^szk_EwDGkt1^G3Kj}qsHfXIx8Cp|4Q3?CoDa$2;CJ#oi|Fa7f=QF% z{(LXjuwB&$8DIrDR04GxWtUQVrC#Jom&pMF-EJYF&oiykzkT~Q6uFTCbskv_oe&%d73x_b--RLdB=v;lFs)0pgrgbBG1hUl3;(7Tydjk`dyIW~>S| z9>mCGGm`uv58MwKSUg^F3bYrX$&WpcKqkCrML!77dBbV&5g3jAlYq+6<4@yfTasr3 zj@7qOkx*)V>Wy(@Rx5M#)XZqck&$QN{Uuam===dFyQxZY$a{8n?6T?v1O!i{7@3$_ zU~n?z3ODVxsvP9)$mQYYO7SVMMCNK7ro+{?+xI>;!4KRoC3=8+_w|D%$+PnGql+}2oWhid4h?bZD0bA_g#V+9R$;RtS)4E zRgbL%9u8!Ink44s2znt1MK2Y$SrAPZq?%hQV|3eTHHGf9L67;*3-CgJm#gl5#^jnw zxmg&nXFl~qLqq4!pD!vZ^7r?LDP+-|ORpl-^rraq%Qu=VEOs}Ka}bCGe9i532Xn`) zp4HfqE*6{1^4|vb-}g8O3f;M5>md&ThvQp{rl(ES^GXD%x+*BTuC)Jv0*^35$*m)= zVlyRuwiiHj>6npMRXqcA{l(ymkf30ugugyAw0gp)_|2OKODT|t1Vobcgdwj6DFU<^ zk^5U&XG-dW_Zj?AnK4d|jt%aMms@xg@?Ejm{T`vo?%v*H(YZ2nJ<;PuLWGnIdf(Q< zxmDf2_~8;tGHU)n4Si1?C5_}usT=c-C}ff(X}R8ZU*Q~0JlGfhFCmw5kWRjDg3migc}aEiy28Y zh+kx)BXe_e>ErI__A#@tgi(FuPwxRO+^(u1Ki`E`h>wrYyqzqqz2IL0lNb}591zQZ_>Kkd{+P}1ug{u5kpPX(CCLc0;&vfG!kdWTQ6R`AeY!@ymRN_QZxwc z7m3I<-{ktX&XdQ?T!)bjuxXE#n~4d7d_3^x^l{c$tZvzGx>CXJ?k)iFVy(9u`DWB_ z8E+-#@PMANL3Vqz8MS$ExA_NlwQlc#phW52!1cpJVnX%7rETqWBUYVI;mkan;Jo7} zj4j{Vli6FtB!_dR@E9{q3CY!$APImjp8>#T$u|lk1`zW(8b#s*;n_H!f?B4F~{4AAG<3z(F<`ek&0TC1!3}J&J4a3bB8bu(ufXO1|`Ew)*;Y7gE3h?x2`*CNW>Q0`n zOajpv7#OIhmpW()PfS5dpQD9F9sW&F1@nkgz*agOV03ge{0tD0*JI@3nL&pz;-XR> zxIoE)olVrqyL178^iW&h_$RGsqS~mugqlGae~!h;vp{d4BL&lAOsO+eI$VA)ETFq8 zo;`b}UHmXx%|>9O#=chMp^2cFCWH_&0bZedp4{6XuShfcN{0)8fd>yBtYa}ak(u(O z!mb{tv9!2YX?CN`pOj(`f1_S46g~$_E<=6PF;8VbszeVp1y9CUE<&i zI0qttp+WOuN#AeWpii!t_lBlm3>Yp`d<^hhgTDbXw7_1Blympp` zpa~h34Fk3Gc%rW6{rh#uG$@%sQvBy#`8QfgT>X^*@p_7hllm|IjDDtn+Klk`S=Vc1 z;Xo@S+)^bCeh-om@bExmr=`(^G)oO^gVp1mNuz|I;7367Niow=A4JmY2Y%31@-@8cjbmp9?W($FHHwGO`wK5$Sn2Af zF?o;%+2RqAm)}B?`0b8bQ$~d`M&LA4AZ7lm6#!g86b5lf0Fs+E0W=*=+~5=6d`B4R z``7gV1k!uz09CFFIg&{(Y+zv+fU^hZPvG>IFwH`hst+F?q+fw53)82CogIUNBg3mD zo%307(EW|ek_&7T640%98N^Wg~Ejj0{W=P!Vw|s3z zi637{Z@J$v}=|x zRf+l9Si%HflHS%ghyVNIcaN#*=_Ro1jJ;bqXg;z^uxCI*mz0zMWvPJ-^_uh-VquZR zH5Q6sw{@f>ij=5@hqi-L_dO#wciFpl-|eb?{``5Fuo;F(oh=dl%zWvHsjSCIx> zQPy}WT9*podeVO{L!}T@YIaV}q2(RPYcwrD4nfF7$Tj}DS*Mises!_A)k+$OrzuY7JI(KXs{nHHVmbk z@6vvTY6JwCI6b-Y08q>;zpBQ^ao{EJbSn!8WMT$CDfO2)%u)cU{pb0R-AR|psm#E3 zJc}Y&o>VeKuNuFU5Eu6cfd@DRVCv%G)SCunn(zLN);CIa5|o_^!+#=$Wf6;=A;C$d z^WM@(kVmOmsmZ?0Zbp=1nameB?YnGg+|K=10V3W!dLGqOyuG)Vh4FSBt+3Q7GX_HK zT*!?ZH%uY(ZmDL{($IYS`gH^tu~yQ|ya$vQy78o1rzZ>}-hBOiDKjBqXQ}u$j`qHK zTl+nSef5}-!w3kq{t~J@3r>$8Hv~2YK=Gt_fRA9jiUSTIa}sevj2@)t_fJlfl9J$- zK+}VPvQ)ck%Ma`gJk%gPWUGB$+bb+AOjlwpN@$NRiOv&9P=VgPjt`TH^|=gvF6(@i z8&9NySXvpoBHG+80RIsg6*V?CM(`xaxGYOt>ges`5a ze$zeRF*iC_Jax3SDXFNeEiECq*-()%dH|UZ+!821#YIK7a5=z+bX?s*Aj@E4;70x7 z^jxG$iNa*{0x+HgV)-ID`R&ASo12?!4M$uoEct-ZN=p7s)cZnc14)HuW9#hgxXI5g zm;Z8609Rj{xTTvrB%^x#tIG|RQ2kTh5_N?BuC5j1jyh^77;3V<;_N6W$#bd`5Lxm$t~O;QMfN zbeyQLR0L^nkQWcZ3Jm(6tghM5eg~UC`~Q4rWT36>3G5jp~-x+ZzM zonUYgt_8*O!WCIw)SrBn4Ksax{f47ev9yAEV?ZtMhU~_{Q3KEn#-j7Vx;3t|z^mnd z7d~&3_9g8T0vUcZH68YX`C2N`BCC2pz{F5-^0?!0_{Hl>OH1wTv>mbj8|~MfLS^vc znJX*#%~$F05XXEFPf2Zajt=H3!ub4d|ZKkPLD)pcC6a=dzhcU~?+$^py8nEDt z+4f>(W`3i~cZ*5HY^=BSB1=*=L4+B!{|}6jf2d6Sz<1LCS{sDKkdDahA|fG)zSx_E-z1gYVK9 z{8Ia$o(ItOYwnEvpkzFK6iH7~+cGfZ1k%kQ4gE*^%L7VtB~ngK2E&gWP30%wbMmtA zQkCpHDOnpSfH&}=$0`9wyjy%B2{`_z zvUW0OT%_5w1?)2_puf##3ty*=VBdvFb!h>@qK zr+UD-q+H^lPfyrEf_#HVG5Ew_`TWhI~APj*sBW zt_OGO>Ud0Wz^et?Z;ZQ_7lW85$DKQgGs4MTfGi&ij)9Mp%kUFmM&Q!5b#>7ma)_YL zC+WeDXi|C21Lf?o5#O z+Etyy#|vrZ;p4-Z3b=Ft-vb_$MzSW@T37(nAX}uRK&MG_Ai_3MMZ}mnbyE!c@zphX zHhFzebSkDzKLSW`_oQr#6ZgZGefspNYG(q1S3bU^s7M`+a=S3EIu<-^U$}UkI6?#YI^YVAZj&!R zv>dG}pms6-0%{-uFzl~?jzyZs9P=rv8IO3nnNs-K7=BY35RwHMUCG>M`!jJIU59=WF><*>b^wFHBMC=)1cp{{O&Q{J z>jcDIyv~T62vwc<*JuUSgd(lCfCW!L4}qB)Vjn0tm`swaYec`WeX=y=Y|6_|=B%wxB>Cc?1ezB^2!3@g;;J$?<@0d}?86DCY zNitOCorOVG(@jbgEwIo{f-w*`^ga7RLVx;%Sw4g7G}#-ZhRMLQ6X;5Sz~Q~-yHhm{ z3_vf@&+7F8(@<`ou9}+Ez=uIzmb>aBIrxn9Flr2_gJTms4d_Vy3Jdwik4yh!96?A@ zDRgsiaDW5HnGvml+C)ZAJy}0Gq3w{*xS8`H9!w;xBsal^GV^KuUVYcBevK=nOKDkI zq3z+uL#z~%P(GeLk<=?0uN8^HAg6s>Km!0NvUq3-j4V&d8EDAPMdqMLWdX*5`t9i{ z*i}K>pOZZj$wz2d2#Ci|4Ea9Q@!kfyQL*?4mj&+;a2H70!h4H#8AK#&#d##5VU%@ zL-4#OaTy&#^4+?13kZ-DoYrzW6DO&VL4kNA!xQ|}go5lG4Euv@tXboZw@89>K(%?9 zlJWrA`t>V`th&6syl1UAH5nK`;W0hBBjVxYOSPeX@rXF5(;i1+jXn)7?-+k}U#uE7 zUS3;k3_NS-nl;n&gk>UT`3X=o-Q5L5M7&{s99TN6vfZ)5`$G?1*x%#7%7;^=0GONW z?RqsH(aFaL?zb>NEP^61fkQ}Nz${IDE-M6&aTi=(RMN;gV}R#55kq!x@nDl~Yiomz znL6);`2*-65Qd=KHaAO0=6tcAX#T`YmJ3XY3LekOBOAW@dt3F3@xTVq#8^2v01sbP zT|FRBZ_{@(+!WS3Xs%zsN=npKvHwgNDMx{bhnijhsAg-iFiVv7QohE4$!S;M`M5i< zJmCXPL=F7`Jjx&pD#Afdg+T$jax>Db#7V1#M=2m60PK0{>J-WY*=ldV@?ToY2@DHY z^6=o`SBnaq_GhkgBQnR?n@;K&YBg)?+Fq?8*lv_aI$VGQ2Br=I)V1bS4!U}*r@~>M z0ylI<_u0G@okQi=iu&a;B3iG2q$~r`Olv4K)bXO2lM394!D}5s)*tza&&}R(|>tOc+Sl-6doia>sa$=%73iPlK zUTemnso`=dI^jQR+GT6+3TfDHM( zLcFL|=p!f5AmJbiOw(kTOf~`WB`_NUZw4dDEoNqt;Pv6g)2gyE)!aUygsgEMKByE} zV>EXEsT3o0%siDF*I@dbY9;_5-sQ`iTU)Z~e(O_D##Xq{Xzca^g?v2tm-zWLmr~Rf zvelHT>%9>rnvj%l4UCC}QEznuwij$rryk1hk3NF{AYYL8V^+aGsPC?~VPEESozUyWxj zw`9OMZ&fw5i?8~=!CdLx0=@uFxk^7w#rbCGJaEX@WrZ@W_&@Gr!gD zaH|~$7i(@GY^Lq_{AZe@kGth3nKG~lP^8b>JVhbD-$npug?g4fb>s6ohT9{w@%r`a zV!%uNw-i^Zy*5(bGVKgY3s-KbgeF(Q4d3pn(CF}k((QbRKsaBb&r#fVP;%s<{?^q6 z(ftsNzffHYBmYMNq`Vrr%L)2b433Zx96ulh>Zl!qEjsp1%n zAD9P%8Lhs*dX~S4$7p97Nq_SeHCg-5NdriDO-;C2m_t;Rlq{&*r=1NyyUU|w^EDPX zuu#L(GBP;9x+FCq@H3hqg;i}Gc_Rn?Yh`!j&=;z%4v_VUc3A9)1>b+!3x060vQGBh zkI(C~Av4ipxboN4n=GFw=$TYA!7&He#`N?=z%~8v-#-wr!l?Fe2Q909OXXDx`0o_C z>%m%+4SzyWQ7O_w*r#9!pv>GWe8lh=bk)Q(%ro!D8a_YLJbYDbj3z2`}6f{F2=MObMM|&eFloD!1uc zLz`T7#vaeC%z7n24M7nEP3czTAAvKm^Swj9^~RAo=*VAS)$FvOp`lSwRD@`G(`M$q zn4g@)p?A}xn_4QK`4=4{pR+jUvFLGbNuLdPM$bmAv%u#J+k1rt1=UZ^3RKA;>9S%R@(FISR$Fg=2 z0aO_RQu;g!62dRli5;Y|GawN_c$H||OG`_`>JH35@7__uOdzk0QdCrg0Xr{N5$gaOwzconvM=RD}eT%}L>#FlNA`F-8DkpelJHAS8tI zZs3YPqw}4MO;PfSieRs0=x|Z}Slclp0;oei9(Y}_tK$9+^zzK~j+ygomH67lLspgN zgP&(+zU#9Qj$K|@K+5uRb30jBv@W{CzJ>Efi|}*iqT%Iy6+GmY^Hp(7+4`w1ta*|0 zrTznlmD^l55a&SIdaqC6^=<*Ofr%NGy=rTr-?|@c&MM?j3u8L}I~Q`@Or{U6>XawcEG5mUjS5siP91oFsQKQOXx-b^Inu|9@Tpvl=}F zquM&+O0$chrR6Nh^9uQg$$pdR#Y!F>>4q9q~3*O-S7NyvnK9yG8B{I^D75DDx; z!7c<$l>?VZ=^tGN^<46FBMy*=<*2ytZc5MGy5%lhu$M3`2yL+C`%%9XdLS?cZHD4t zwk}w}W5w&LXgnHU1I+T*wMM1T_w6_=8^WrmW4W#p>i{gZ@aT|3aiPGpGFOk$W!$l? z9vgQQ>TrSUr0ob3N&~AApf*_QrY7qbpqr32UdrQUy>SEY3OS;jh=`o`*^F@JJWzQK z9v&XBC#YZg6FAv|0w}>a$MUSJItpx?edFUs(0~ErLalD8;P}Z)7{RHFBrpS$f_m+% zF0gTl)AxdN8=SQ;=CZT1f3g25N*fymhH)wZu31qln3=KR=ezM#vXQMzUHQ#xSP1D`tW_3JGR z{hENy^pY-y$&j_cNq+n&2<6CK6ddK?VwjqOMP3MJoZC2$H=J1>7U6=4_aCCML2MMH zVV4*rz*7pVSg;1AsGtCp5G;+1O-`D?WvZ)74{R4^1-#W_hs_WiMdXdgI00iig*s|u zIW|uXy$w{Vod8X}aUdise9r(G85zv#Kx<_{mo6(?YkhWwwxe@)6J#Krd=2>ws!S^R z_!OC-g{Q$;a<5bh!2~Ya_5u9)*Vd=^N;|ekLntFuMUN zf=UW#r*SfHYfd?H9=>V;9XZ|R46}s-4x=+k7is;OzzbpnUFQv~l6B2S&NO!8CZ2Xq z+72RoJZU7Tze=o{s;a73Dp_}d6aQA21%T68TbZb|;Ht3%vWB%SS@a2yGb6FnQv_?MX{??(Zg5x}G z**s_?2*L)$6YLfNepXx?pY?azaMRY<^EV=y<)bgr5~@uR#DQCMwd~E^Cj*Org})Ea zu(j}9dKv=MxEw4RfyBi~qL6=?h`v>3;Dd1)l^79*4TVKed?1t6G%+#J)Xdc=GR965 zLAna250~iOMYe(+m4=d%)l&&U@(8_-`143_x3X6P_r)cusvtg9lzk37-srgetQD?w zeDz_mwygk7xjDYnYndm+fuMST*K36BGku2(lp~Fzmj$+9q}`m1h#*PmY~8}h$5T*H zn05S9$H9bOYS>`JYvQRG!c!Gkik!VWjp+ru`p}~LCZX2u0YL;lCl=ASj%l;d2Tc6el3b1T^a)vnxw!%`C3czH9+Zrs=0-Nl! z_!vf#cxK*(3sON}SbPw{^WNp8b!*RrVFxlRYi$GTH$HMLrX9-9@v)zY>bskszEbgd zj3l2z5y%L&DLfJvCv65ki?1L-OuLKfC1vnitLW>)8XQU%NSK(JPr%Py>+Qmmx;1rK zoRB(prZx6Q+i%A`plskuz-9oH-F;-}z@lMeK)n*{78XM&&7uDR%;1r9m4(xeVnMe; z@yVZr&U}KR%_wFw?pXbw*8)~HSYc140=xq8%s{VsXTrWKAoRg=&ypW71Ew}BM36YZ z_1?TfIQ=90E&wVRAPzRWxWP}RUwXQz8mJKe7f|~0@-mS$HLuw{6_wZ#c|6AFaDWlL zIx{fT5lKH+$cLh^`*07GV_1KpqS67=P(nfo4LO4DDLy$~lU>#4amR8^cMwcOGv|T6 zymyl~RS6cBI5?Ex1eI8y-TUKOLw1fp?zL@*Y04D6A@%D4XDV?*1lYpV(5)(cD`2Mi z?|Wfl^h@6r6U%f!KG*=AVb-zDO+AE~GW`)uyv_ugAE4J; zBxe12@**N4lu@%$+zmF4jq46h zLW)Ka%(5y20v#^29Xl&ydq7y&Rfz&k@-JnIN{js}J!`1v)MbAjCi%-$JOokqZcYnx zfeRG;+Jw^3ZKaXtF4AbhIV30FANZh<|78+|5XA-RS^wbR-&&4d7egSrK`4fI34p~! zX!gHQkE0k#pz)Ly7cUPL4+9@MXy*ZR zqpt4A8}-~%a3PCje8&Z?&LZB_3*6t2Wh4RG3H;e6@clQC^Tx*XEj%!-fRFa(%|Ads zn824LkX(`^K*SLd(aR`Sw)q`>H7(b~;CHxa7bluR&=X1nQNYo)iBVMt6Wiu^;H_0; zbw-kiZKO<87db*44}LCo%<2kBqr^WV>90LKj~yJq{sXJXKx1jWg{>ocQTMNo)dr|ctXo6i*TBb60kg@e68^EJQR#cRB- z;MrDJS7%$irolE*hxkGNVG55vdj3;nT~{cz6EevXs5M~WmYsz;D5JF4dq5cK?X}hu zgfCGjD1gmJoKQsmQ>NhOJxi-+)CdIq`4~hHF_V0J(rxVbu`O=S2h4=BHQ>rs`ng#a zWeIFlQBh}G1x-x&We;5uQNs39JQ8=CW`g}(!0sSOMleRe`t>Xr%?}O^W;)^|VKu2^ zhL@TQSTw%yS9n3Y*-asmm$4Jt23Nij&x2*$-p-CBIO5r}Yp{0b;<5o>HbEWkBANmA z1{M~}sir4p)?{Rx@13uSo`yV!dU5*IvWhZ8oW+wA7!fsX?Sg?txMdHIDlPWMj*dz2 zW2s8{8t_F93e54~XcPD&b`!(O#dVz_oDr4X1kVY4Cg{UJAgHq^I!-niWvjvWHC&?R znF6i|k}sH%!?;dZL`3gj3Sz1e7bIE$E9SETzq`PgwFM&!m`*|1tTT23^|9#*K_mDQ z;GuKc37T47H{JDOJ6JV5smCwZBos{Ul0_0K55RPZ`<@zD`tqrVr3>c89Um|*k6gQ} z;;uaz+I$zncijfP{=*0xJ5zrXV@|0A%^qy9Gdn(dN#MEy%LL@W%tnbpHCT64GBGuQ zXQyy1A}HmA%g;vG5cC%zOuSyGy$sE1RiPLOpZl9q`V%HX;P~Kx!Dt)Ic!^fRaO?+T za#vUJ+jEz$1skj&{!eS~9gcM$zYkx@O5!S#%D9ZI?1Zv+L^8@KM2WO0**h{yGO{v4 zB}o#J?2t+ssgSG?vXjXCouBUS@A&@rJkKA`ecXTC$8l5F_4&NtuW`Q4^L+IMBH;Mj z<~?x|5@A&c@jnByADCTZb8Odlp|}!=#dHXmWnDu92+#?QTao;>Z4-2Ruc{rh;p(-! zykhUAE3nrh`v+uL^Vbbw9H&7$;l#aKhrey_-$LIkXfb`gr>>WBEQ6s zoqbe)sFejMwntj~sH@0rd>g&o&(}gi{(>lUw6Ig3ta<9xJ>#5H7MSK)X1AT8vNioC zuBJO$S!s{a3=X&5$&-zZjf8@&uoJz>(s*GrA`=Xp0IcA) zD9?Q|Asn%upTBQw>*(>nt<}loQ=B$@ zp-k(ivn{=E&I7mN03)^0N5{%zCfN};Ka{!b;pMe^^8#t|jNL#Kw~BZ|<7cNxo_$+s zD#xO!>m}_%Ngk32r9prrhzzlN_d$JqAG}C0wnnJxyyt#mHV?4W0Xj&>77CI4qSQBX z1>L&;ENElFS(0d@h`C|1l(E2cz1b`{ReNPB+||_98MGZdt*>(B=e?Fwx_WwB6dt4- z>uA6GwCcglTOEtr5OlbIl!c=)A~jP7g&?|a@X|22FYD&oz8!slZp?2b;bA~)#!!|& z?vPrEQx@LGyVqcxm1M<8!$mp3%Em^7G~Vc7fbIGZfJ7zf$0sF~fI9MJYFOKFafnTWnVSO-bQ6CTg@vh=p zTPIcpnlMA&+e}u^Ze+TQDNw7hdIV4))-1Zv{nEDfTK5Z=EcC%VJb|`}2#9I&F5iKF zRd~%|Cb=OkZaqEc3r%J+|Et>C1aT`boQ1UEZDN+EB-z=-k9*+y zQgB1x2AXLF4<@eVR1seFar$+&BDX-m-~dw@O>6%1eQ39Qe0)y3$%2&UGaFghsU$CD z5$JcMj8!*AFYgeZCUXGp)8SGOnovaGHDKg{x*|O_wF2b2hYy8r4)F5w;;I07*#7$o z1DWb@UrqkL4?j*{w-{$#_X7b6841~M*mD(u3;L}mPsEj!Di91&0lDr^#T9rUq&J>e zqpNQ8Qu8-Ey&uYiWlN2IB@+t-bSiyNt0?qbQK1z2`^ImdojZQ~IO=X5)qNp`ANQdh>hKB~gV_Hh&7KdBl!aMW zm}uYFqCkV&5lBZbiwh4h`>@Dup!}x`J15*=&mwH{fJ5F{Rpd6Nl5Pl(b`I157eW=( zNI{X-`2YY)%tay9!sU;QjI8AOfq5)%yw7uTEYfWsvYXnHs!yL`2Y2>6{jXdsyVACTEe<9nGbs`ED--r7nbHcxMq@De{=g!nb(f29wSFlk5TVbBQtTxgLJC^ks(Nj zfY#s<2lg%W108k+$SA-<^2`g=!+%ndKOOGl383*!cTGi)0aOnc8dzp(QqtSmWxN*5 zhmCWNLwF6pN8n=66yC@a*%c0aTH=j*)%CaT^ZX%e6}goQorny7R+dFRd@*u>zh)|`MnR;G{$_;cuuri`_3 z7&~6E%MNI&rrAHjXkcoZa_Vk}@LeU)o@L4oo`3E#kOq~#zSWiUaD787|4=s;0O-)i zOJ7DK+P4FEtUJWucY}Y(w%;x^;1E&)#j#jXLe8!(45u1uH&L6)Wu$j-T~Tp!U^0uI z%i%-v?dWJ8H)GO>7mALQ9TAhI6K?37;4BD{FKRDF4*8Z7l8EZ@adAil$@&kVevH(< zjG_Q;oTwuUVrfY+aqPy%_9J}sRMg_F8qRiB;!Oja6+&#nq;{NVJE&`$alfDd9m75z zo_+f|Ik~~CxsuiT=5Sp5#OunRl$-YTH%To<#F42&S2p#n6l4E_lMTwV@AqK#Qd(My zE);aa@!qO6z!|&URPkx?)5|PrvtB8O&>%~db>1_{^+;59Ys;dCLufE|%`4Z(uyF)@$dw%wCX z>QJk;LH$3Esnr=Le&@JwJ#sK+yE3w}OlW>FjRJB3r~;qjkiI_rx|F?s3pKdxIsINW zlKI>gt~u)Z z^;kF+JnQJgyyo!+HzO{|$iPQq46iJ%eP`BZ>;1l#f(d}e-5L(Epl)qE z84G#dM1obvAH%R@4H!O znYSfeGw-OJoZMv&9gJVw{)rDUTiY1a;!C3}l52Rb>I7FgQ?((`s0HDhb5F(1+#e?m z|HZR|Nh&<^LezN@8VTdQk}e=sIG(UC$u_tXf9qBYr-T8STFmUQOt-;qx&XEp*SV?< zjbs3V$mRL`D4bPZ0H&%sQu~S!0i#>Ml!sqX@EFIT(&JpIw}jgJ+}s1I(JCm)n&=i( zWLS^0PHUoG{4iS%B*;^lmp2pPMOZiohB8^LBd);aUxGCskqOi`P*9{Wic!vafv%{p zzd+Y9+3sbo{RXA0ae5XBXH~2GK#nRsa`;wKk|(ATl`BgL2?=JO(SvV^usz(D!E#`O zup9NlzXKCC{1*x{uy(-Qd-(7nMwT!~IQ^czu+s-5ey}A_JL2~USauk74f)9f0mP_7 zt!M#tbSdHqcmsPYB+}rBWaC6c1PW5TTzWi+^3YTy#}r=3FpGKeu|%Lf_`Zsg5h_5=5cDva z5PYKZpLCW7v8-)0u5k$SjhEmZLlN090QAlXCJ!Ck*WI0Uj^$JhgUFYop;aa|IvS_Y z&hERJjjvW)5qKIxtf*axZg7*BM?k~j%d^^7RyQGXZX)F1aq1aQJI_^K7zgZ8)?L~7 z3nN8QQPD7oRtJML0p^BnKgsU_LvXEcc2S!>?+d9sFh$(2carZxWknzO;q+{ru*q+) z6$r2H8IK}j-2d2D{zfqR0Q=Uo&(|nGGs%S4Zsqc?gW;NRb-s*Oga{AyC9}$M%fJk@ z{!kIYx%Ncf3`vcdhD-I-?e<^aWbX(`Ow4(qe0WQ^SvaBmY=hJT+VP z)~fKR@zf^>B6rqN$o+-;0^YFpTjuBsygLY*!BLSTxu4sox{+CWQG{R!gbWU<&qGt_ zgyeQaJ_@5ZdR9z6J4~Y9k07C*+&J_VK^%x3RMwEop3Scy6fEF!l2 z3O&ZPw(M$T^Z2gw_Yn7d`eV_4=`E=rmv)8+XWm=*M8h1yrU+9d zH3(pq@cHndfu<^6`5AX8dub-hzZ|q1Fc#73taEQ&PtC#VLC?;WUD#>Irl95gC_f)g zVdm%!-kyS@Q?VJ2WeIU{Z-#zBAA|x&KTXjh@AbkXKLeJnVi`gOCIQ?vd*$faZ(dvc zc}ETiLJIV-F_znNkA6J5@$6aDrcW*NTrOS9JP^{xWngloJs&gMf|IW_qPOTenZID< zesy;%j&uN-Ix@dd zR-ZGCN8Gr5uC#;7ZZ`%3A|sJG8ld?wW7XQkx!)BcPOv`gJ0XHT)Ary$)AfnlX4a7Q z*)>oHGz3sFlc?43E10N1fkC^D%AyhKI9y2htAYOqU{O_;qlG-b`%TvjfG>Dd{90se;T*yM@B$6cvAKwg+d8<>p4) z1bKF8jVCe-wEwKTN$PV4j2XafE*cL`cE<@xkk{am?sELxxpAO}V0xqj069@Zg_g1U zq-tR3VY5{C&aQ8wZVWT|uG~Ya!39=O$_*}63-uEJ zTF`ZOiAhSI|2~eJ-~@f@ch*mq$$9YLG^)EG%43_V$_Ed$$<%pAmoTi9V&o&@Fd8{} zu?ODn7pJ;~-5Az}+{&Pyy=Q#J+}zyMl(l&lO{#bT*bD$6!D0b5fz^LvQh>sLgZ;MT zC4?Xff1lJoda>lhjyj_(8m{!S-0#Qc;$4EZv(CsQ4gQ>7T=cqr{Ih>Y82mnA=ver+ zN0eSyY6dK7JHbt+*Lp_nbOH_sA~GzqL^TxROvA$*UYup!%C@h9q2)zr!k9dM;01ul z!cIk(?{(|e(}tmN{(2SjgzJ~f4mPK-PCFirf{PQXrozs1pyXif!zFnRP>Hru^N5MT zg5zI#*$VDUVj_D%ta|&#>j%T$|KxLH7@-2Lwc0q~n#?e@Wr1Ggnr7sp^?3u|8qU|Y zus**_!-KD`LvMNB1FkP!r}u8{iOr&`K2cXF%HZRSx|YN>j*1*a96>^A8_BWn5{$J8 zCh!v=)UtANXN$k;#tLxmyL1XnOh6jrPf0Coz`dEj^pjh9ri>9e0AqbXU_p1OPY&*y zAnd|1r9i*wKJoPk5Ywb23v27uEbbK{MaARePp7Mdk~5}dPQK9y45irS38^f8smiEy z7mK&|Oxs2sXv-eMuf!Fl$(wP;lCY3P&1ukvy$==Ey;OF?A>1Rz-jQqmJ#2sjfjW}7 z-VI$k-|-Yo2&f$&ef|j&4ZwaFy*)Wra!5R(p`pR>j_d>w6Zmo|`+A|ah7xW34QYBk zPNrj2{%g3ZffJ0Pt|({n*zglOR(oOG1mR8b4CpA?uaHX`4=~stG8YIl| zjYB}y9zWLSjmF&aY7KCXgGQ#OPMw1GVai$&n!LnBA-A5%&)#3(zsRWlp9u>|DZ8NW zdHV#?fdl6M@CrblhLe*T87Ap2U~VVr%i_O&{5V~D+;6<2;6J`08rtie&%MvY#@O4w z$Rbmb5KvtYK>(_T9FQyH|W^@dG}^v`VA zoHSxg`*I^J3UfB=gkC$>}8+YCj{hMw0 z*0Zwn(>ZZWc21wTyOp7UPgN4=6^SdVwtr!%cWu&jKRlelApt^&W;v9Ja}iv^gZDpT zg@A!TY&eP$U_$0knL@iRuqbF95E2(}`tZS?U4V}-3;qfe`p{ZT6*dG-dsU#Gs62F@ zCqU@8SA=%6dkrlOS5RGN)$-fp$NAkNZnb>+1jkYKYXz2h(07J}>`OfqZ@>Lo#+k1d zN|1sFl*_7P_PbpAlJXbui}*DppQ!AN3|rJkIP1L89TRTQNJJliyBOGkY9(E0YQ_P6 z5TB6V=N)Z8Lst73h`y-aKq`fI^j2<+S(X=|MEyG92Jgo*NBAq@tKZ!ybH~7;$2)Xb zzToO_YMAd{Dh1yUjNXkKvxERPY^Kg=bsTpqqtHVw9MMv#a$MbLy;(UqI$GF`Ob^JF zWCf1@L0zfMJElNTaK&tLGoLoFXhaJLw?P&fqIT=>h)yEZR(rs=&l!QxH%+fYx$^993%_ zw-gz$Zg@@SKLdVLR$vU#2MLLZVoK{BWGIwoMpyAo_&Q`j&B04=K zMbz!1YJCA0j?4+-$m}1*AShZD*uhf(1_~ki0*&wAm-{ZcSz3O* zryC0xj2wXk@-n0y<3J071pz8d)!!d?Zrr$m+X4K%Ri*+z-bB$#3d-d*AME+;g-`?Zq8ewz% zUS`JaN4jfM{?V+v@Uq14vZn7rvtI-gEJz*>3)$J(p3=j8&eFq;e zFPdAjWlJn4Nil~<Q0%?q%UeSFHHCkAl>;R8-UsOTYHl=NM6 zg)N4gIZO_2g@o?jw9vz!h*PE7{xBz}^M%WRiJ{V!(U12Lbui?Hfj*WNP2*cb!U{_d zfF00lSy%d$wmPyZh^kH#=WCz6gW<6tuNJS++UWFjZZeX5I3&;kSjrATGe+1lZ>&+xwGx456g);f>^&@6x{&*u$ zk0r~T`Sj3;T5WK6I9=WaW`+sz@lVVPc!h;^QS8<*qltdP@0@bKNOPQ(7u>JC*0KbN zC8okV6xKBG6uSFb_D>OE#>RcQmz?+OuK~o%8Ol9&IevB!#bfaP%(fjc|bK_ZM zOupa1O8Os1!L6*KwA6x3jY){>e&02QATk%%6Hs|j0B+H_*_5)!aGaG~jnjSi`ivrB z=#3DMQUd6lnRr4hf2mzP!+qmYI9cEM@Er1=U~0x-hL#HA=f`FgtI){e)4_oSX%h2F zNJGFwfJ7;681ht@%0=y9ZplN?b@c3h!ngLv-y`2_oRR^!1VkvvNn`F2ZtIX1ZV2kz z8TuN9V@1#OwDX1w63nNJ*3&Zi&TK6(sn*D-){wj`EBnj(=s0V}0dg?##xI{fL70K+ z?PzZMSY%jOqU?D~a2n9TLl*_~fEcMe6?fQX#IhGB8}&C26SRlB$KZO000!Uy#w;L- z0jn8K^M3ODxf|4FAh!Yun3rEmA=ryTbC_Y6Kg z*8SuTjXR^!YdkNWeYJ3>QcXn%TNp%XaXJ#V&BMa{MaO0eeFh5aZYTr|mH*zuWC`pD zP*H&Zd~%e*Df;mPvlm0&Xk>g8hJa05WW?Oe1NtywZm~~(chHkfZbF6BJc|kp9&gP` z^C?q1=Lv&UG#+1z&R}8<+X85UA#nq*fL(G`_u)x9#}MOj);Q&dtPcW zPVsy6{5g`=0sbwpB!KAgLJ6EuE%P`UgjpGKKa0e^1(#q9K_P-umJ-e1>0T4l0saRQ z)hZPVDX$=q9?IPErg%Is;5gU$43J>g#2>Y*w4CzJ6tH35#R;Q}ho>lJPxg|}M5;i(zdUtgD5y5BD;4(HgurvH+)foo`ot{=DgyhZ8;exCJBuc=qAP=C-*-3z4(8unCW-~A#Y5wVA5KD6j7? z;V%V5IkA%qhE**x=Vk8{Tb>6`+T1)5xS6>q@@0)I>n7d0;TsWLl847R$RfDh^osrA zx`6cDA_RF0WlGK6rr#I=3Hq+sbgyR=c*8!EY%7HI@2*a~sMXKZxbHod@j0AxojN`6 z7YbF{Fi|&yicJpI7dUA_*mNWF0p$iE6DOZw8=}Id4>E@%#&owcUCVl$gZ+;njX4?@ zp33V1K3+FinAvS8459q^x4;7QHSH)aUswu)O(U~|STf-TxRR&Gq9V*Sr@~o9GXNvf zk%!OrWJgpg@w!Fy8ChFDIht!hq!tm8M;RG#J|7uz45Hv+Tg0P1;njTxt4=wkg(n?! z!OF92>`Q+Ddb(m5KnkmMDn`rWh7twyVvKQcD+teJ`tOJ{un+-J^@_ee z9p9r}BKQdMswY6=bM)y`NsP_VY?Xgf64~#4!l#J< zl&Uo5HQRe9W$`jWuaXS21iWD($=9NzC;J717 zW@$(M+N3dTg4Pe3fu^KAg5V(7XQFmz;(Ups6-!iH_q(!e%)sF5?$`znvnzk8riSX6 zwsgqfB(GUP%DOs&`*{%{jrJ=4fu@jTZ7|xbOdFTk@d5AV%6_ZHk~z$d;9LlRA0;rnp%B`V zfyYAb4-LooG3)UKk|8y+PynXGp8X1e8VQ~g{ql&bz08Q|fO3JU3-8_yi-crN-tefX ze3%Rw8sdw{VlsP7dM@l{+qLe!kJpKX`*srRFGqAv%-Pu zK2HD&m}sbxQ78eC>pTaUUVi(mqK&onAtOM{;0a^tM0}%5(#tV`yy>1BU$MmCx-27% zQHr34MYu<;1=J2UU4Wj@9WI0ou*sk07y8$f2b3hS;bzT^JO)yK39h2wbfjU~;vPeiMfB4`~ z#0kzAc~)W?p|+4lzt(AJ9;z`;QK}o5A;aE{vGG|D1BY%)4kqhl*@4z|?wrps$ zfnKw3-MSY^Fm&rUjs#HRraN*H*vBZhOHQr?v~Jui90D}AHHlaHn2Cp@S^Q)M0>@E= z%Hc-}YUCga!NvlS4y@S7*Vyoo`TFVzelP%F@%ci(`Tn&A?+QD*Q6r89RC3q}0>{l+ zpDS1P)=DD2G9T-K=bKlanMl{4Utd~U`kdw22|Qt7MpH+pWNoXm;w@8w#=oNyqf2fQ zu2cm6O|3?+XyZOhyV*;SI=jsiY%`EyK#G8c%ejuHZk2k&@{|8m+)>;2Jg}EiBct6q zY-Tp>R<<-ZmXMaVijAZo)IpfF!@XTa+*n=f&*)Ac_dQ`m-KL)U;WS!GD`3SB4y7)> z`S|J|spU*E3=u0ed1tP~n;98FLV+g$g#mp1;JF5cClIxX;`SCkt}w)3O5*1so021D zC?7he75!(vYei%d?9}x1i?Vl=xC}9WLz9fpl`w`eD9SyMbFq)$Rq%!drIvmQsFRLcH z%j80`->w7%KcEx$x85S1MU#p1TGu5NQdR;l#h4$`?Jg`-Gv`m5Cv|G4KA<&H)wGC z=TLb3VdzbYu+w1knxX01xS$m?-gI>=NWk1a)9bX1WDN2xi^14kd;q*09@vkDo_M=x zs2`|lr6sk{n2LOE_WQFZ0<*%*SFc|Auo!i#X(C3ET(`&DgD&{kI0pd=OCm7~8`_!2 z^qJF(3xB?<8D@8AfIz1@T?nTdM5)Y|SA}qPNiP%gInhDOLg-}bPTq(gCaIEN=^P}H z0w^G^lSt%X;>SoqzR0WVE#+sI}zNjoz4YV zcOxt$gbAP3v*)U&M~)B-?{^L*fR{i!z2$omj}6!cn)iaMVXsGB0jFiP3b~P6%|)>p z1<+ZCnx=`FSvG_adiRO{wy+?yl#n1ra0XLeKBXZBFJNA9gX3#e{3;+8%SLPHxEZ;X zkB?I_!M;ZaiH!;4l&sJGh_BTF>p)mP_=PPDfN1EZ zodEdin0S-%AOH%5rK-!o3jk>jIzT(R&5=iQk)$wyOuz@sY8!d3mvX&~?q2FbDwG}eSZzZ{leM*9gMEPa;EY%bUKaV$>bm~D&MssPh~#7lK{KsB|wgY)O{K2x)di5E>z(bUqP^pIxZSEuX=Xk z-08!UfiQvJLOp}h__=QYbU{2>y%r>GhXnSWn zuS31t>N}oGdOp7f%0uU?PugTcY=r*e8w5r^YrAx%MMU0>y7p8J!b^Q{&Z`&8&71re zr_E5lb8i2=|9}5(C{TkaM3E$I|MOE0b9o=zsXK({6$til@JMJ>P|ht@?d4(adQaZB z`}wRHQ?$wVSngq^3c9qxHjvUG`UWHc_Nn8ZTv$1ZijL#`8$R=^x}BD$44?o*3s`Hw zi2{6xZ&muvQ-N&w(oZJ?`E+iQsb`=YDAxbm+3W{Ewfn-w3iGEIDk=0Bc`~1^EZVa> z(d~f3o$U+`^-FRppALnmDl~cfF}tpcFM>dAlVb{o!HS^D-?!-YzrOdyT8wAUo;}b{ z`o#}L0_-->Z-Rhy9Csg#6mTN`#HKF~Hv6w$zEdCM!CdsE=``&a7yDi(Vv!LX0R2E# z0AL1YCq65g+EzNrQiARAo!&DUPc_tMABUOPon5`6H~w4aDnd2##_D2w)q^vO74to3 zm2xX9t?wISm&kCqivI#%N!JQqCmS2vbA5Qq6NKpo7cr9{Z{{LLhdo!lnemx+L9Rc~ zgl>27bH1MzIk>jp(Sq_qu8Ku$fztJVpLgdnS#g)!clmAh%&wI*1kwQqMF^_rv$0-Q zFx}^)*B5**q!2`{w87ZWUOV>Ft(jWTMv0mHXi7a>Y^=+%6o8luAzB^WpcbQ8Wp&z+=z(ywIVk%A7F?R z^V|Cb*v%I!=HjP@K^`N}eVfX1`wJ}>R|gmtIk$Xw&`R0jyF4AY(2*`6fX#nSpNOp? zRdZjC!Qlg3Q^JxNYw5l{tA;IvaKsMuatS|v^C2#{!pK9y|8FDC0M0gHJC2GT1}kS9 zsnn|Id=T3Dde$T51Frv&ycc~4%;Rv%4fOSo!xF8Ls;1&^D*3kpe_eBg{I11?e&Lyd zjfw_s#NZ1DVGeP^^ypDUF)U&0Cm0WnRK0#n=hs$Oj@hJakj4^kaCWiV;scH}_Gom2 zg9Qg_f81TMjnpe#(`RtL{Fs-aJ&ifQU$wR}g=Kj^k{nilB~(F+QSyG%;s^iZYE>HQ z%Q(=PQQT=;-hQ!3K}Jw@u6D%k_Ww^6fRAAZz-_1tKnQ>^miX*Z{>xVfUQBwIg2DbJ z)hYb`RVgGe!g{f{8KXoncD*0lOno``{oRKT-GvT@cf#>K*p+>t@bJaw^Wke#IjnH~ z%7vo}cpFlv*}(w3t@jyYZkv^#W}u96E_VyIFD3>G!a4KMuk;G!lBkp`RRBwyQT2l| zh>i{QR?Yf^eb^q3;YykPo<9G()$V0-Jsu~~<~S8EVu!>s#3!F1xWyuxw{olIa(}UM zV!1(OwP5K>udfu$dy?YfK8@N;$*Xi~P4s!LmLT+Fifn244T%I9-zR-D&|h>T&?QZ+ zb-S^ReS7Ry4xc{Y4NwSR>Ctzb8%1;_07F2VembYh*ZpWtYP}(F>o<-vt9iHM)h>1= zeSVD|q#<%A#NL>u7h+>II2XPs=+4I@@igIYB7BA?ySYZ*W{j!dnxd`%;p_{`8r~zB z+67cJanB9$_FeiGV8f$MDLXZk3g-e8=nW?^e)GW!=6M`}Jjb`wl2(=10hD@Gq%PDi zWyL2X`2TLz0p7WbKJ&w^I3m;GMf$2hk_sR3-sK;1^ZA9T_50<u_`@Ok(t~YaCefR253P?Fg)6G+1qQ zi$?ZF7LMMnt+VlzXKBv^Ivh8LkyCYCRN25EHX5OAZK-O_8#MxinP3gVBoC^|dxAA3R3;4zEmvdOg*)r;i zkcEccdP7fn9$?300TfpiBP$M zh3LnQdH}zJumseet2NV5ufblc*s~t2>CMzG(|t7%hQ{z?HnH|QTcy~#&-UyEmg2d5 z$WTszdI2yA^n$#NqC&BW@klr8`DnUA3Ox*Md|}QsnclPd_=_S} zly&~al^#&i&$K1}ZTDYk2hD|fyEHXTWf|TyUw-@U*tbONDXQuKg%VDPgr66ljuK4E z|Iz2VegR>e+1H0UOv_;P+MzV^x<8v|C(>_b8g5Zw^c3B=*AGswxh3TwP1b^pE3x`)X2=`iyti&h^9S1!tQ%`XEWET~FX7(O_ z-rDrMs8B9#@B|w*56sjtxgjX`Ii`TP@+6d=@5wEO??4a*we9O?>rf~Zt*CDQUSv)8&KaQ8Qwz?!{0-6dTJnU_r*tUR<>$%UvbW~3m z01qvdewZ6Z-_nb%Q>bxCRAo8Cz5oxu z)lr5asIP3Jgq&QvT(?`=cW+<$%DMn9Zx96nqtDXz z=<=x5KDD=(tmgd-=%Mwqd;Oz0_I;GzrJ~|*wi^K0#CY&c?n3~97;B5-N-(B?jqcm zucN7?>k}xu@G1J(5R?Sp=e!`0?U1$yYaKao&OmyM*xUUG z9;^te7}@#u*=d9_&8^&ukH;pfLx&EHtzF`nfAcVJwx|Gi6GgHhQi+7b6rr;b5&7=9 z8oje4JkK#TgHHmE9WYLm2dembO$sj*)fKR}!NF6J+OzQQzl0EoxfU^*%3oW|r>k@v zE3gA+(6+FXc+^eFQ&C@G6#|ROMKd20p@^S-h+}h46)Qt_#jGiX0t2(Xup8ja1qVUb zWoNLDf*J;rfK*@f!c_xe%gvs{=Rbo}=_r$oo)M`K1tP&#%s32A*UQq)P1t{`Tf+2nP9rY_Ax6YDD)0%*l~lEi^C}0z#yqdTR2fxHE3J-^>N+2 zRWt1LUz}`U0>$rpT{vFtf-)Jc3PSHZtSnI1`}L(WzvN)>kpmOqB>MyGh*`D3a?R+A zFGc|6g=^Z$>^OG1{`Ko$ioMZvk?;f4vBRq6HNZH4BOwfj0|}C|2<-iBQxnt1jdwso!<9q@r4Uoja;$Z~hK_a7y?eowFyv0HvhWG^LNQH-47}go+}tQ zB_KtClZF$nh%yZi6Amr{2FbtQoQU$tR{Uky8~wje9Q0C*`}7P9&L^RBIiCC35`>PX z$H;8Y73JrD+_|{Olt`TQSOEjz=O{{6s@CS$CjS{w`e4U%>6*X7@V3~&dD`jOEqM!a zGtBEO1lmZOBBS~2&z!vBWGU8VY39~ysVl4Dke3&Ed#l*V4;L1Pjk_FU2JIxTBwe={ zS1@*=QX#p)BvinH*GHnsZpv(MAydWQsUm%M&uog)uxHxk9+lyg;g+wKR#r;c zQ~YbY-)vjvRljeHWyjn~UNTwBkO|;lxPbJ{7oLQroe+BD-Pddjm0wLa+f4WVWuppF zhXV@CE#98`TIj%B(;Rg8hs;)$q*`ob#uyQra}4TeX=#CEp*-O|pL%zj+D>{|Y$U%> z;{E#LQ8?O=R0U$O`UA)^mPKHh3OLdaVGU-wVfE}eXJ<00dU&=qS#7~Ngil!+{va== z)`Pb{?HzQY_;2{D%`7ajDJhKY5e{Kk^|IdKei#LOU`4K}hA0e)SZb1cD}6T>hb~B( zgS~d)5xgKnKmtv(doO*qlW^*JB6Wm?8KYtFHGJyLs z>4bC=y%F3dRH}r<#6q~sr~)bGd!(c`ldwATH-Ha#mMNz*SJ9&Pv6tB)#dx(elK=X; zzd<&~p$b8zj!G|FqTFL9vti(Eb2A+YQeVuoW$#@5h*2tN;OOe8NJ6X(--c*NSXlyY zx@U)K#$hD%6EZs>nXJt_$FlCcNKjK#6IxuXLS6_nu;o#J5WLCcnB+-!qbsh zlNXQSM`Ay0l(cwT>*}Z@wehWiO2OqWZO+3Twz<Hl|;DR%p#d4441u1+ZkwAz?(RBD^ z81o(!gqKQ@J~7QDQ3M6Ev5da7)D!i<=Iv}ZL)?{KZPS!tlTUu$0uK>a4O!(jJK>~cjj^z|!)ci<_hyW+*` z{N?`*cY&EI`>!6)J8B{n2VC4jG#+b^Jz59`KVCaLPu>p>-qYkg(r zTpS$S(C7AmB+#k<`UOc7UN`EAhSPC-|g(?Ei7YZ~q zxrW(ooAFj&?QZCb#gb4E!O?_5%02W0vYV>Pl9G}~kA5OYTqxN|s_u7wMT1whg`OI? z9g-L{QQ#hURixGS2S4$@>&;-=)9RZ*5iSt0`9$+@!+W!{usENr!9l(q4t44m-EXuur~T4`ocoVQ3s#HisCSnF%H|!ivmP1cr{O z#Y{DMG!mTLmdvDNWwkR7PwP~#oqpqZ>;2oR YgPDbFzboa5X#h!A>yYLX^%Ft=2gX@Fga7~l literal 0 HcmV?d00001 diff --git a/docs/reference/impacts.html b/docs/reference/impacts.html index 305cbbb4..b2643b19 100644 --- a/docs/reference/impacts.html +++ b/docs/reference/impacts.html @@ -58,7 +58,10 @@

Spillover/diffusion effects for spatial lag models

spill(beta, gamma = 0, rho, W, method = c("quick", "proper"), K = 20)
 
-impacts(object, method = c("quick", "proper"), K = 20)
+impacts(object, method = c("quick", "proper"), K = 20) + +# S3 method for impacts_slm +print(x, digits = 2, ...)
@@ -95,6 +98,18 @@

Arguments

object

A fitted spatial lag model (from stan_sar)

+ +
x
+

An object of class 'impacts_slm', as returned by geostan::impacts

+ + +
digits
+

Round results to this many digits

+ + +
...
+

Additional arguments will be passed to base::print

+

Details

diff --git a/docs/reference/index.html b/docs/reference/index.html index b0187c1e..71b8cb24 100644 --- a/docs/reference/index.html +++ b/docs/reference/index.html @@ -210,7 +210,7 @@

Methods and diagnostics spill() impacts()

+

spill() impacts() print(<impacts_slm>)

Spillover/diffusion effects for spatial lag models

diff --git a/docs/reference/predict.geostan_fit.html b/docs/reference/predict.geostan_fit.html index 9218d80f..904f4ac8 100644 --- a/docs/reference/predict.geostan_fit.html +++ b/docs/reference/predict.geostan_fit.html @@ -65,6 +65,8 @@

Predict method for geostan_fit models

summary = TRUE, type = c("link", "response"), add_slx = FALSE, + approx = FALSE, + K = 15, ... )
@@ -105,6 +107,14 @@

Arguments

Logical. If add_slx = TRUE, any spatially-lagged covariates that were specified through the 'slx' argument (of the model fitting function, e.g., stan_glm) will be added to the linear predictor. The spatial lag terms will be calculated internally using object$C, the spatial weights matrix used to fit the model. Hence, newdata must have N = object$N rows. Predictions from spatial lag models (SAR models of type 'SLM' and 'SDLM') always include the SLX terms (i.e., any value passed to add_slx will be overwritten with TRUE).

+
approx
+

For SAR models of type 'SLM' or 'SDLM' only; use an approximation for matrix inversion? See details below.

+ + +
K
+

Number of matrix powers to use with approx.

+ +
...

Not used

@@ -118,18 +128,37 @@

Value

Details

The primary purpose of the predict method is to explore marginal effects of covariates.

-

The model formula will be taken from object$formula, and then a model matrix will be created by passing newdata to the model.frame function (as in: model.frame(newdata, object$formula). Parameters are taken from as.matrix(object, pars = c("intercept", "beta")). If add_slx = TRUE, SLX coefficients will be taken from as.matrix(object, pars = "gamma").

-

Spatially-lagged covariates added via the slx argument ('spillover effects') will be included if add_slx = TRUE or if a spatial lag model is provided (a SAR model of type 'SLM' or 'SDLM'). In either of those cases, newdata must have the same number of rows as were used to fit the original data. For details on these 'spillover effects', see LeSage and Pace (2009) and LeSage (2014).

+

The model formula will be taken from object$formula, and then a model matrix will be created by passing newdata to the model.frame function (as in: model.frame(object$formula, newdata). Parameters are taken from as.matrix(object, pars = c("intercept", "beta")).

+

Spatial lag of X

+ + +

Spatially-lagged covariates which were included via the slx argument will, by default, not be included. They will be be included in predictions if add_slx = TRUE or if the fitted model is a SAR model of type 'SLM' or 'SDLM'. In either of those cases, newdata must have the same number of rows as were used to fit the original data.

+
+ +
+

Spatial lag of Y

+ + +

The typical 'marginal effect' interpretation of the regression coefficients does not hold for the SAR models of type 'SLM' or 'SDLM'. For details on these 'spillover effects', see LeSage and Pace (2009), LeSage (2014), and geostan::impacts.

Predictions for the spatial lag model (SAR models of type 'SLM') are equal to: $$ (I - \rho W)^{-1} X \beta $$ -where \(X \beta\) contains the intercept and covariates. (For intercept-only models, the above term is equal to the constant intercept.) Predictions for the spatial Durbin lag model (SAR models of type 'SDLM') are equal to: +where \(X \beta\) contains the intercept and covariates. Predictions for the spatial Durbin lag model (SAR models of type 'SDLM') are equal to: $$ (I - \rho W)^{-1} (X \beta + WX \gamma) $$ -where \(WX \gamma\) are spatially lagged covariates multiplied by their coefficients. The SLM and SDLM differ from all other model types in that the spatial component of the model cannot be separated from the linear predictor and is, therefore, automatically incorporated into the predictions.

-

In generalized linear models (such as Poisson and Binomial models) marginal effects plots on the response scale may be sensitive to the level of other covariates in the model and to location. If the model includes a spatial autocorrelation component (for example, you used a spatial CAR, SAR (error model), or ESF model), by default these terms will be fixed at zero for the purposes of calculating marginal effects. If you want to change this, you can introduce spatial trend values by specifying a varying intercept using the alpha argument.

+where \(WX \gamma\) are spatially lagged covariates multiplied by their coefficients.

+

The inverse of the matrix \((I - \rho W)\) can be time consuming to compute (especially when iterating over MCMC samples). You can use approx = TRUE to approximate the inverse using a series of matrix powers. The argument \(K\) controls how many powers to use for the approximation. As a rule, higher values of \(\rho\) require larger \(K\). Notice that \(\rho^K\) should be close to zero for the approximation to hold. For example, for \(\rho = .5\) a value of \(K=8\) may suffice (eqn0.5^8 = 0.004), but larger values of \(\rho\) require higher values of \(K\).

+
+ +
+

Generalized linear models

+ + +

In generalized linear models (such as Poisson and Binomial models) marginal effects plots on the response scale may be sensitive to the level of other covariates in the model and to geographic location. If the model includes a spatial autocorrelation component (for example, you used a spatial CAR, SAR, or ESF model), by default these terms will be fixed at zero for the purposes of calculating marginal effects. If you want to change this, you can introduce spatial trend values by specifying a varying intercept using the alpha argument.

+
+
@@ -139,16 +168,17 @@

Examples

fit <- stan_glm(deaths.male ~ offset(log(pop.at.risk.male)) + log(income), data = georgia, + re = ~ GEOID, centerx = TRUE, family = poisson(), chains = 2, iter = 600) # for speed only -# note: pop.at.risk.male=1 leads to log(pop.at.risk.male)=0 +# note: pop.at.risk.male=1 leads to offset of log(pop.at.risk.male)=0 # so that the predicted values are rates newdata <- data.frame( income = seq(min(georgia$income), max(georgia$income), - length.out = 100), + length.out = 200), pop.at.risk.male = 1) preds <- predict(fit, newdata, type = "response") @@ -163,12 +193,35 @@

Examples

newdata$pop.at.risk.male <- 10e3 preds <- predict(fit, newdata, type = "response") head(preds) + +# plot range +y_lim <- c(min(preds$`2.5%`), max(preds$`97.5%`)) + +# plot line plot(preds$income, preds$mean, - type = "l", + type = "l", ylab = "Deaths per 10,000", - xlab = "Income ($1,000s)") -
+ xlab = "Income ($1,000s)", + ylim = y_lim, + axes = FALSE) + +# add shaded cred. interval +x <- c(preds$income, rev(preds$income)) +y <- c(preds$`2.5%`, rev(preds$`97.5%`)) +polygon(x = x, y = y, + col = rgb(0.1, 0.2, 0.3, 0.3), + border = NA) + +# add axes +yat = seq(0, 300, by = 25) +axis(2, at = yat) + +xat = seq(0, 200, by = 20) +axis(1, at = xat) + +# show county incomes +rug(georgia$income, ticksize = 0.015)