-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprs.py
324 lines (263 loc) · 12.4 KB
/
prs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import time
import os
import glob
import torch
import numpy as np
from settings import *
from model import PRSModel
from dataset import PRSDataset
from visualize import MatPlotVisualization, MayaVisualization
from typing import List, Dict
from tqdm import tqdm
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
# -----------------------------------NOTICE--------------------------------
# 1. Translate and scale are ignored after preprocessing .The model is already normalized, so we don't need them
# ---------------------------------DEFAULT SETTINGS------------------------
writer = None
device = None
# ----------------------------------START OF THE ALGORITHM----------------------------
class PRSRunner():
def __init__(
self,
gpu = GPU,
data_dir = DATA_DIR,
aug_dir = AUG_DIR,
split_dir = SPLIT_DIR,
bad_list = BAD_MODEL_RECORD,
ckpt_path = MODEL_PATH,
result_dir = RESULT_DIR,
eval_dir = EVAL_DIR,
total_iter = TOTAL_ITER,
batch_size = BATCH_SIZE,
num_plane = NUM_PLANE,
num_rot = NUM_ROT,
learning = LEARNING,
log_step = LOG_STEP,
continue_ = CONTINUE,
loss_threshold = LOSS_THRESHOLD,
angle_threshold = ANGLE_THRESHOLD,
use_maya = USE_MAYA
):
# ---------------------------GLOBAL--------------------------
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
global device, writer
writer = SummaryWriter()
device = torch.device("cuda:" + str(gpu)) if torch.cuda.is_available() else torch.device("cpu")
print("Using device", device)
self.visualizer = None
self.vis_strategy = MayaVisualization if use_maya else MatPlotVisualization
self.start_time = time.strftime("%m-%d-%H-%M-%S", time.localtime())
print("Start at time: ", self.start_time)
self.model = PRSModel(
device = device,
in_channel_0 = IN_CHANNEL_0,
out_channel_0 = OUT_CHANNEL_0,
num_conv_layers = NUM_CONV_LAYERS,
num_plane = num_plane,
num_rot = num_rot
).to(device)
self.result_dir = result_dir
self.ckpt_path = ckpt_path
self.eval_dir = eval_dir
self.aug_dir = aug_dir
self.total_iter = total_iter
self.log_step = log_step
# Check existing checkpoint
ck_list = glob.glob(ckpt_path + "*.pkl")
last_iter = -1
if continue_ and ck_list:
for file in ck_list:
ck = file.split("_")[-1]
it = int(ck[ : -4])
if it >= last_iter:
last_iter = it
last_ckpt = file
print("Last iter: ", last_iter)
self.model = torch.load(last_ckpt).to(device)
else:
print("New running created.")
self.last_iter = last_iter
self.batch_size = batch_size
self.num_plane = num_plane
self.num_rot = num_rot
self.loss_threshold = loss_threshold
self.angle_threshold = np.cos(angle_threshold)
# --------------------------------TRAIN-----------------------------
self.train_dataset = PRSDataset(data_dir = data_dir, split_dir = split_dir, bad_list = bad_list, transform = torch.Tensor, mode = "train")
self.train_dataloader = DataLoader(dataset = self.train_dataset, batch_size = batch_size, shuffle = True, num_workers = 4, drop_last = True)
self.optimizer = torch.optim.Adam(
[{"params": self.model.parameters(), "initial_lr": learning}],
lr = learning,
betas = (BETA1, BETA2))
self.train_obj = self.train_dataset.num_obj
# --------------------------------TEST------------------------------
self.test_dataset = PRSDataset(data_dir = data_dir, split_dir = split_dir, bad_list = bad_list, transform = torch.Tensor, mode = "test")
self.test_dataloader = DataLoader(dataset = self.test_dataset, batch_size = batch_size, shuffle = False, num_workers = 4, drop_last = True)
self.test_obj = self.test_dataset.num_obj
def save_params(
self,
label: List[str],
plane_params: torch.Tensor,
rot_params: torch.Tensor,
each_ref_dist: torch.Tensor,
each_rot_dist: torch.Tensor,
valid_mask: Dict[str, torch.Tensor]
):
# plane/rot_params: (N_batch, N_sym, 4)
# each_ref/rot_dist: (N_batch, N_sym)
plane_params = plane_params.detach().cpu().numpy()
rot_params = rot_params.detach().cpu().numpy()
each_ref_dist = each_ref_dist.detach().cpu().numpy()
each_rot_dist = each_rot_dist.detach().cpu().numpy()
plane_loss_mask = valid_mask['plane_sdl'].detach().cpu().numpy()
rot_loss_mask = valid_mask['rot_sdl'].detach().cpu().numpy()
plane_angle_mask = valid_mask['plane_angle'].detach().cpu().numpy()
rot_angle_mask = valid_mask['rot_angle'].detach().cpu().numpy()
# Save each model in this batch
for i in range(0, self.batch_size):
_class, obj = label[i].split("_", maxsplit = 1)
obj_path = os.path.join(self.eval_dir, _class, obj)
param_path = os.path.join(obj_path, "param.npz")
if not os.path.isdir(obj_path):
os.makedirs(obj_path)
save_dict = {
'plane_params': plane_params[i],
'rot_params': rot_params[i],
'each_ref_dist': each_ref_dist[i],
'each_rot_dist': each_rot_dist[i],
'plane_loss_mask': plane_loss_mask[i],
'rot_loss_mask': rot_loss_mask[i],
'plane_angle_mask': plane_angle_mask[i],
'rot_angle_maks': rot_angle_mask[i]
}
np.savez(param_path, **save_dict)
def save_model(self, iter):
torch.save(self.model, self.ckpt_path + self.start_time + "_" + str(iter) + ".pkl")
def save_log(self, mode: str, iter: int, log_dict: dict):
for key, value in log_dict.items():
writer.add_scalar(key + "/" + mode, value, iter)
writer.flush()
def visual_new(self, mode: str, sample_points: torch.Tensor, label: str):
# points: (N_sample, 3)
_class, obj = label.split(sep = "_", maxsplit = 1)
self.visualizer = self.vis_strategy(
sample_points.detach().cpu().numpy(),
os.path.join(self.aug_dir, mode, _class, obj, "model_normalized.obj"),
label
)
def visual_reflect(self, trans_points: torch.Tensor, params: torch.Tensor, mask: torch.Tensor = None):
# points: (N_plane, N_sample, 3)
# params: (N_plane, 4)
# mask: (N_plane)
# Notice: Check validity if necessary
for i in range(self.num_plane):
if mask == None or mask[i] >= 0.5:
self.visualizer.add_reflect(trans_points[i].detach().cpu().numpy(), params[i].detach().cpu().numpy())
def visual_rotate(self, trans_points: torch.Tensor, params: torch.Tensor, mask: torch.Tensor = None):
# points: (N_rot, N_sample, 3)
# params: (N_rot, 4)
# mask: (N_rot)
for i in range(self.num_rot):
if mask == None or mask[i] >= 0.5:
self.visualizer.add_rotate(trans_points[i].detach().cpu().numpy(), params[i].detach().cpu().numpy())
def visual_match(self, trans_points: torch.Tensor, close_points: torch.Tensor):
# points: (N_sym, N_sample, 3)
self.visualizer.match_point(trans_points[0].detach().cpu().numpy(), close_points[0].detach().cpu().numpy())
def visual_save(
self,
iter,
name,
ref_points: torch.Tensor = None,
plane_params: torch.Tensor = None,
rot_points: torch.Tensor = None,
rot_params: torch.Tensor = None
):
#self.visual_reflect(ref_points, plane_params)
self.visualizer.save_fig(os.path.join(self.result_dir, str(iter) + "_" + name + ".svg"))
def train_stage(self):
self.model.train()
iter = self.last_iter + 1
end_iter = self.total_iter
log_step = self.log_step
avg_loss = 0.0
while (iter < end_iter):
print("\n[ITER]\n", iter)
loop = tqdm(enumerate(self.train_dataloader), total = len(self.train_dataloader))
for index, (closest, sample, voxel, label) in loop:
#
closest = closest.to(device)
sample = sample.to(device)
voxel = voxel.to(device)
# For batch
self.optimizer.zero_grad()
plane_params, rot_params = self.model(voxel)
total_loss, loss_dict = self.model.get_loss(sample, plane_params, rot_params, closest)
total_loss.backward()
self.optimizer.step()
avg_loss += float(total_loss)
log_dict = {
"total_loss": total_loss,
"total_ref_dist": loss_dict['total_ref_dist'],
"total_rot_dist": loss_dict['total_rot_dist'],
"total_ref_reg": loss_dict['total_ref_reg'],
"total_rot_reg": loss_dict['total_rot_reg'],
"lr": self.optimizer.state_dict()['param_groups'][0]['lr']
}
self.save_log(mode = "train", iter = iter, log_dict = log_dict)
if ((iter + 1) % log_step) == 0:
print("\n[INDEX]", index, " [LOSS] %.4f"%(avg_loss / log_step))
avg_loss = 0.0
self.save_model(iter)
self.visual_new("train", sample[0], label[0])
#self.visual_match(self.model.ref_trans_points[0], self.model.reflected_closest[0])
self.visual_reflect(self.model.ref_trans_points[0], plane_params[0])
self.visual_save(iter, "p0")
#self.visual_match(self.model.rot_trans_points[0], self.model.rotated_closest[0])
#self.visual_rotate(self.model.rot_trans_points[0], rot_params[0])
self.visual_save(iter, "r0")
iter += 1
if (iter >= end_iter):
break
def test_stage(self):
self.model.eval()
print("Start testing the model...")
with torch.no_grad():
loop = tqdm(enumerate(self.test_dataloader), total = len(self.test_dataloader))
iter = 0
for index, (closest, sample, voxel, label) in loop:
start_sec = time.time()
closest = closest.to(device)
sample = sample.to(device)
voxel = voxel.to(device)
plane_params, rot_params = self.model(voxel)
total_loss, loss_dict = self.model.get_loss(sample, plane_params, rot_params, closest)
end_sec = time.time()
total_sec += (end_sec - start_sec)
start_sec = end_sec
log_dict = {
"total_loss": total_loss,
"total_ref_dist": loss_dict['total_ref_dist'],
"total_rot_dist": loss_dict['total_rot_dist'],
"total_ref_reg": loss_dict['total_ref_reg'],
"total_rot_reg": loss_dict['total_rot_reg'],
}
self.save_log(mode = "test", iter = iter, log_dict = log_dict)
mask_dict = self.model.validate_remove(
plane_params,
rot_params,
loss_dict['each_ref_dist'],
loss_dict['each_rot_dist'],
self.loss_threshold,
self.angle_threshold
)
self.save_params(label, plane_params, rot_params, loss_dict['each_ref_dist'], loss_dict['each_rot_dist'], mask_dict)
if ((iter + 1) % 3) == 0:
self.visual_new("test", sample[0], label[0])
self.visual_reflect(self.model.ref_trans_points[0], plane_params[0], mask_dict['plane_sdl'][0])
self.visual_rotate(self.model.rot_trans_points[0], rot_params[0], mask_dict['rot_sdl'][0])
self.visual_save(0, label[0])
iter += 1
print("INFERENCE: ", total_sec / self.test_dataset.num_obj * 1000, " ms per obj.")