-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcr_formulas.py
61 lines (46 loc) · 1.72 KB
/
cr_formulas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
def calculate_weight(constant, index):
return constant ** index
def base_curve(accuracy, curve_data):
accuracy = min(accuracy, 100)
# https://www.desmos.com/calculator/bkyq4lsq2l
# baseline: z
# cutoff: w
# exponential: v
# apply default values
defaults = {
'baseline': 0.78,
'cutoff': 0.5,
'exponential': 2.5,
}
defaults.update(curve_data)
curve_data = defaults
baseline = curve_data['baseline'] * 100
cutoff = curve_data['cutoff']
exponential = curve_data['exponential']
if accuracy < baseline:
return accuracy / 100 * cutoff
else:
return accuracy / 100 * cutoff + (1 - cutoff) * ((accuracy - baseline)/(100 - baseline)) ** exponential
def linear_curve(accuracy, curve_data):
accuracy = min(accuracy, 100)
defaults = {'points': [[0, 0], [0.8, 0.5], [1, 1]]}
defaults.update(curve_data)
curve_data = defaults
accuracy = accuracy / 100
for i in range(len(curve_data['points'])):
if accuracy < curve_data['points'][i][0]:
break
if i == 0:
i = 1
middle_dis = (accuracy - curve_data['points'][i - 1][0]) / (curve_data['points'][i][0] - curve_data['points'][i - 1][0])
return curve_data['points'][i - 1][1] + middle_dis * (curve_data['points'][i][1] - curve_data['points'][i - 1][1])
curves = {
'basic': base_curve,
'linear': linear_curve,
}
def cr_score_curve(accuracy, curve_data):
return curves[curve_data['type']](accuracy, curve_data)
def calculate_cr(accuracy, difficulty, curve_data):
return difficulty * 50 * cr_score_curve(accuracy, curve_data)
def cr_accumulation_curve(index, accumulation_constant=0.94):
return accumulation_constant ** index