forked from LabForComputationalVision/matlabPyrTools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshowLpyr.m
executable file
·202 lines (174 loc) · 5.29 KB
/
showLpyr.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
% RANGE = showLpyr (PYR, INDICES, RANGE, GAP, LEVEL_SCALE_FACTOR)
%
% Display a Laplacian (or Gaussian) pyramid, specified by PYR and
% INDICES (see buildLpyr), in the current figure.
%
% RANGE is a 2-vector specifying the values that map to black and
% white, respectively. These values are scaled by
% LEVEL_SCALE_FACTOR^(lev-1) for bands at each level. Passing a value
% of 'auto1' sets RANGE to the min and max values of MATRIX. 'auto2'
% sets RANGE to 3 standard deviations below and above 0.0. In both of
% these cases, the lowpass band is independently scaled. A value of
% 'indep1' sets the range of each subband independently, as in a call
% to showIm(subband,'auto1'). Similarly, 'indep2' causes each subband
% to be scaled independently as if by showIm(subband,'indep2').
% The default value for RANGE is 'auto1' for 1D images, and 'auto2' for
% 2D images.
%
% GAP (optional, default=1) specifies the gap in pixels to leave
% between subbands (2D images only).
%
% LEVEL_SCALE_FACTOR indicates the relative scaling between pyramid
% levels. This should be set to the sum of the kernel taps of the
% lowpass filter used to construct the pyramid (default assumes
% L2-normalalized filters, using a value of 2 for 2D images, sqrt(2) for
% 1D images).
% Eero Simoncelli, 2/97.
function [range] = showLpyr(pyr, pind, range, gap, scale);
% Determine 1D or 2D pyramid:
if ((pind(1,1) == 1) | (pind(1,2) ==1))
oned = 1;
else
oned = 0;
end
%------------------------------------------------------------
%% OPTIONAL ARGS:
if (exist('range') ~= 1)
if (oned==1)
range = 'auto1';
else
range = 'auto2';
end
end
if (exist('gap') ~= 1)
gap = 1;
end
if (exist('scale') ~= 1)
if (oned == 1)
scale = sqrt(2);
else
scale = 2;
end
end
%------------------------------------------------------------
nind = size(pind,1);
%% Auto range calculations:
if strcmp(range,'auto1')
range = zeros(nind,1);
mn = 0.0; mx = 0.0;
for bnum = 1:(nind-1)
band = pyrBand(pyr,pind,bnum)/(scale^(bnum-1));
range(bnum) = scale^(bnum-1);
[bmn,bmx] = range2(band);
mn = min(mn, bmn); mx = max(mx, bmx);
end
if (oned == 1)
pad = (mx-mn)/12; % *** MAGIC NUMBER!!
mn = mn-pad; mx = mx+pad;
end
range = range * [mn mx]; % outer product
band = pyrLow(pyr,pind);
[mn,mx] = range2(band);
if (oned == 1)
pad = (mx-mn)/12; % *** MAGIC NUMBER!!
mn = mn-pad; mx = mx+pad;
end
range(nind,:) = [mn, mx];
elseif strcmp(range,'indep1')
range = zeros(nind,2);
for bnum = 1:nind
band = pyrBand(pyr,pind,bnum);
[mn,mx] = range2(band);
if (oned == 1)
pad = (mx-mn)/12; % *** MAGIC NUMBER!!
mn = mn-pad; mx = mx+pad;
end
range(bnum,:) = [mn mx];
end
elseif strcmp(range,'auto2')
range = zeros(nind,1);
sqsum = 0; numpixels = 0;
for bnum = 1:(nind-1)
band = pyrBand(pyr,pind,bnum)/(scale^(bnum-1));
sqsum = sqsum + sum(sum(band.^2));
numpixels = numpixels + prod(size(band));
range(bnum) = scale^(bnum-1);
end
stdev = sqrt(sqsum/(numpixels-1));
range = range * [ -3*stdev 3*stdev ]; % outer product
band = pyrLow(pyr,pind);
av = mean2(band); stdev = sqrt(var2(band));
range(nind,:) = [av-2*stdev,av+2*stdev];
elseif strcmp(range,'indep2')
range = zeros(nind,2);
for bnum = 1:(nind-1)
band = pyrBand(pyr,pind,bnum);
stdev = sqrt(var2(band));
range(bnum,:) = [ -3*stdev 3*stdev ];
end
band = pyrLow(pyr,pind);
av = mean2(band); stdev = sqrt(var2(band));
range(nind,:) = [av-2*stdev,av+2*stdev];
elseif isstr(range)
error(sprintf('Bad RANGE argument: %s',range))
elseif ((size(range,1) == 1) & (size(range,2) == 2))
scales = scale.^[0:nind-1];
range = scales(:) * range; % outer product
band = pyrLow(pyr,pind);
range(nind,:) = range(nind,:) + mean2(band) - mean(range(nind,:));
end
%% Clear Figure
clf;
if (oned == 1)
%%%%% 1D signal:
for bnum=1:nind
band = pyrBand(pyr,pind,bnum);
subplot(nind,1,nind-bnum+1);
plot(band);
axis([1, prod(size(band)), range(bnum,:)]);
end
else
%%%%% 2D signal:
colormap(gray);
cmap = get(gcf,'Colormap');
nshades = size(cmap,1);
% Find background color index:
clr = get(gcf,'Color');
bg = 1;
dist = norm(cmap(bg,:)-clr);
for n = 1:nshades
ndist = norm(cmap(n,:)-clr);
if (ndist < dist)
dist = ndist;
bg = n;
end
end
%% Compute positions of subbands:
llpos = ones(nind,2);
dir = [-1 -1];
ctr = [pind(1,1)+1+gap 1];
sz = [0 0];
for bnum = 1:nind
prevsz = sz;
sz = pind(bnum,:);
% Determine center position of new band:
ctr = ctr + gap*dir/2 + dir.* floor((prevsz+(dir>0))/2);
dir = dir * [0 -1; 1 0]; % ccw rotation
ctr = ctr + gap*dir/2 + dir.* floor((sz+(dir<0))/2);
llpos(bnum,:) = ctr - floor(sz./2);
end
%% Make position list positive, and allocate appropriate image:
llpos = llpos - ones(nind,1)*min(llpos) + 1;
urpos = llpos + pind - 1;
d_im = bg + zeros(max(urpos));
%% Paste bands into image, (im-r1)*(nshades-1)/(r2-r1) + 1.5
for bnum=1:nind
mult = (nshades-1) / (range(bnum,2)-range(bnum,1));
d_im(llpos(bnum,1):urpos(bnum,1), llpos(bnum,2):urpos(bnum,2)) = ...
mult*pyrBand(pyr,pind,bnum) + (1.5-mult*range(bnum,1));
end
hh = image(d_im);
axis('off');
pixelAxes(size(d_im),'full');
set(hh,'UserData',range);
end