-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain.py
153 lines (124 loc) · 5.63 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
'''
Name: train.py
Desc: Executes training of a network with the consistency framework.
Here are some options that may be specified for any model. If they have a
default value, it is given at the end of the description in parens.
Data pipeline:
Data locations:
'train_buildings': A list of the folders containing the training data. This
is defined in configs/split.txt.
'val_buildings': As above, but for validation data.
'data_dirs': The folder that all the data is stored in. This may just be
something like '/', and then all filenames in 'train_filenames' will
give paths relative to 'dataset_dir'. For example, if 'dataset_dir'='/',
then train_filenames might have entries like 'path/to/data/img_01.png'.
This is defiled in utils.py.
Logging:
'results_dir': An absolute path to where checkpoints are saved. This is
defined in utils.py.
Training:
'batch_size': The size of each batch. (64)
'num_epochs': The maximum number of epochs to train for. (800)
'energy_config': {multiperceptual_targettask} The paths taken to compute the losses.
'k': Number of perceptual loss chosen.
'data_aug': {True, False} If data augmentation shuold be used during training.
See TrainTaskDataset class in datasets.py for the types of data augmentation
used. (False)
Optimization:
'initial_learning_rate': The initial learning rate to use for the model. (3e-5)
Usage:
python -m train multiperceptual_depth --batch-size 32 --k 8 --max-epochs 100
'''
import torch
import torch.nn as nn
from utils import *
from energy import get_energy_loss
from graph import TaskGraph
from logger import Logger, VisdomLogger
from datasets import load_train_val, load_test, load_ood
from task_configs import tasks, RealityTask
from transfers import functional_transfers
from fire import Fire
#import pdb
def main(
loss_config="multiperceptual", mode="winrate", visualize=False,
fast=False, batch_size=None,
subset_size=None, max_epochs=800, dataaug=False, **kwargs,
):
# CONFIG
batch_size = batch_size or (4 if fast else 64)
energy_loss = get_energy_loss(config=loss_config, mode=mode, **kwargs)
# DATA LOADING
train_dataset, val_dataset, train_step, val_step = load_train_val(
energy_loss.get_tasks("train"),
batch_size=batch_size, fast=fast,
subset_size=subset_size,
dataaug=dataaug,
)
if fast:
train_dataset = val_dataset
train_step, val_step = 2,2
train = RealityTask("train", train_dataset, batch_size=batch_size, shuffle=True)
val = RealityTask("val", val_dataset, batch_size=batch_size, shuffle=True)
if fast:
train_dataset = val_dataset
train_step, val_step = 2,2
realities = [train, val]
else:
test_set = load_test(energy_loss.get_tasks("test"), buildings=['almena', 'albertville'])
test = RealityTask.from_static("test", test_set, energy_loss.get_tasks("test"))
realities = [train, val, test]
# If you wanted to just do some qualitative predictions on inputs w/o labels, you could do:
# ood_set = load_ood(energy_loss.get_tasks("ood"))
# ood = RealityTask.from_static("ood", ood_set, [tasks.rgb,])
# realities.append(ood)
# GRAPH
graph = TaskGraph(tasks=energy_loss.tasks + realities, pretrained=True, finetuned=False,
freeze_list=energy_loss.freeze_list,
initialize_from_transfer=False,
)
graph.compile(torch.optim.Adam, lr=3e-5, weight_decay=2e-6, amsgrad=True)
# LOGGING
os.makedirs(RESULTS_DIR, exist_ok=True)
logger = VisdomLogger("train", env=JOB)
logger.add_hook(lambda logger, data: logger.step(), feature="loss", freq=20)
logger.add_hook(lambda _, __: graph.save(f"{RESULTS_DIR}/graph.pth"), feature="epoch", freq=1)
energy_loss.logger_hooks(logger)
energy_loss.plot_paths(graph, logger, realities, prefix="start")
# BASELINE
graph.eval()
with torch.no_grad():
for _ in range(0, val_step*4):
val_loss, _ = energy_loss(graph, realities=[val])
val_loss = sum([val_loss[loss_name] for loss_name in val_loss])
val.step()
logger.update("loss", val_loss)
for _ in range(0, train_step*4):
train_loss, _ = energy_loss(graph, realities=[train])
train_loss = sum([train_loss[loss_name] for loss_name in train_loss])
train.step()
logger.update("loss", train_loss)
energy_loss.logger_update(logger)
# TRAINING
for epochs in range(0, max_epochs):
logger.update("epoch", epochs)
energy_loss.plot_paths(graph, logger, realities, prefix="")
if visualize: return
graph.train()
for _ in range(0, train_step):
train_loss, mse_coeff = energy_loss(graph, realities=[train], compute_grad_ratio=True)
train_loss = sum([train_loss[loss_name] for loss_name in train_loss])
graph.step(train_loss)
train.step()
logger.update("loss", train_loss)
graph.eval()
for _ in range(0, val_step):
with torch.no_grad():
val_loss, _ = energy_loss(graph, realities=[val])
val_loss = sum([val_loss[loss_name] for loss_name in val_loss])
val.step()
logger.update("loss", val_loss)
energy_loss.logger_update(logger)
logger.step()
if __name__ == "__main__":
Fire(main)