Skip to content

Latest commit

 

History

History
72 lines (48 loc) · 3.58 KB

README.md

File metadata and controls

72 lines (48 loc) · 3.58 KB

jungyeon working directory

BEFORE running the code, you have to download Kitti dataset! And then, change the dataset directory in main.py. Download

Setting Virtual Environment with Anaconda

conda create -n [VIR_ENV_NAME] python==3.8

conda activate [VIR_ENV_NAME]

pip install -r requirements.txt

python main.py

If you can run main.py, the setting is done.

Active Learning for EFFICIENT Learning

Goals: random sampling VS. confidence VS. LL4AL

  1. SSD(ResNet50) + Kitti(Object detection) + Confidence

  2. SSD(ResNet50) + Kitti(Object detection) + Learning loss

    • Learning loss code Github
    • SSD(ResNet50) Github
    • Wandb Github
    • Kitti parameter Github
    • maybe later : PyTorch 1.5.0 이상 버전에서 model weight update와 관련된 inplace operation이 수정되면서 zero_grad -> backward -> step의 과정이 최적화하고자 하는 변수의 순서에 맞춰서 수행되어야 해결되는 것으로 알고 있습니다.


Reference

SSD

  1. [논문] SSD: Single Shot Multibox Detector 분석
  2. 갈아먹는 Object Detection [6] SSD
  3. mAP 계산하기
  4. Object Detection
  5. Object-Detection-Object-Detection-튜토리얼
  6. Object detection: speed and accuracy comparison (Faster R-CNN, R-FCN, SSD, FPN, RetinaNet and YOLOv3)
  7. Deep Learning for Generic Object Detection: A Survey
  8. a-PyTorch-Tutorial-to-Object-Detection
  9. nvidia_deeplearningexamples_ssd

AL

  1. Learning Loss for Active Learning : base
  2. Learning to Rank for Active Learning: A Listwise Approach

KITTI

  1. kitti vis code : random_vis.py 코드
  2. kitti label : 라벨링 정보
  3. kitti dataloader pytorch : dataset.py

ETC

if time permits

+RL

+SSL