ElenaRyumina commited on
Commit
f4944b0
·
1 Parent(s): 005c0ed
.gitignore ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Compiled source #
2
+ ###################
3
+ *.com
4
+ *.class
5
+ *.dll
6
+ *.exe
7
+ *.o
8
+ *.so
9
+ *.pyc
10
+
11
+ # Packages #
12
+ ############
13
+ # it's better to unpack these files and commit the raw source
14
+ # git has its own built in compression methods
15
+ *.7z
16
+ *.dmg
17
+ *.gz
18
+ *.iso
19
+ *.rar
20
+ #*.tar
21
+ *.zip
22
+
23
+ # Logs and databases #
24
+ ######################
25
+ *.log
26
+ *.sqlite
27
+
28
+ # OS generated files #
29
+ ######################
30
+ .DS_Store
31
+ ehthumbs.db
32
+ Icon
33
+ Thumbs.db
34
+ .tmtags
35
+ .idea
36
+ .vscode
37
+ tags
38
+ vendor.tags
39
+ tmtagsHistory
40
+ *.sublime-project
41
+ *.sublime-workspace
42
+ .bundle
43
+
44
+ # Byte-compiled / optimized / DLL files
45
+ __pycache__/
46
+ *.py[cod]
47
+ *$py.class
48
+
49
+ # C extensions
50
+ *.so
51
+
52
+ # Distribution / packaging
53
+ .Python
54
+ build/
55
+ develop-eggs/
56
+ dist/
57
+ downloads/
58
+ eggs/
59
+ .eggs/
60
+ lib/
61
+ lib64/
62
+ parts/
63
+ sdist/
64
+ var/
65
+ wheels/
66
+ pip-wheel-metadata/
67
+ share/python-wheels/
68
+ *.egg-info/
69
+ .installed.cfg
70
+ *.egg
71
+ MANIFEST
72
+ node_modules/
73
+
74
+ # PyInstaller
75
+ # Usually these files are written by a python script from a template
76
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
77
+ *.manifest
78
+ *.spec
79
+
80
+ # Installer logs
81
+ pip-log.txt
82
+ pip-delete-this-directory.txt
83
+
84
+ # Unit test / coverage reports
85
+ htmlcov/
86
+ .tox/
87
+ .nox/
88
+ .coverage
89
+ .coverage.*
90
+ .cache
91
+ nosetests.xml
92
+ coverage.xml
93
+ *.cover
94
+ .hypothesis/
95
+ .pytest_cache/
96
+
97
+ # Translations
98
+ *.mo
99
+ *.pot
100
+
101
+ # Django stuff:
102
+ *.log
103
+ local_settings.py
104
+ db.sqlite3
105
+ db.sqlite3-journal
106
+
107
+ # Flask stuff:
108
+ instance/
109
+ .webassets-cache
110
+
111
+ # Scrapy stuff:
112
+ .scrapy
113
+
114
+ # Sphinx documentation
115
+ docs/_build/
116
+
117
+ # PyBuilder
118
+ target/
119
+
120
+ # Jupyter Notebook
121
+ .ipynb_checkpoints
122
+
123
+ # IPython
124
+ profile_default/
125
+ ipython_config.py
126
+
127
+ # pyenv
128
+ .python-version
129
+
130
+ # pipenv
131
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
132
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
133
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
134
+ # install all needed dependencies.
135
+ #Pipfile.lock
136
+
137
+ # celery beat schedule file
138
+ celerybeat-schedule
139
+
140
+ # SageMath parsed files
141
+ *.sage.py
142
+
143
+ # Environments
144
+ .env
145
+ .venv
146
+ env/
147
+ venv/
148
+ ENV/
149
+ env.bak/
150
+ venv.bak/
151
+
152
+ # Spyder project settings
153
+ .spyderproject
154
+ .spyproject
155
+
156
+ # Rope project settings
157
+ .ropeproject
158
+
159
+ # mkdocs documentation
160
+ /site
161
+
162
+ # mypy
163
+ .mypy_cache/
164
+ .dmypy.json
165
+ dmypy.json
166
+
167
+ # Pyre type checker
168
+ .pyre/
169
+
170
+ # Custom
171
+ *.mp4
FER_dinamic_LSTM_Aff-Wild2.pth → FER_dinamic_LSTM_Aff-Wild2.pt RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e053fa829d3cf550d4d3372338b4a96e79a2a016fa8e04b218a83e436a439331
3
- size 11591051
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21b0cabebe7bd0257ca8aaa991efc7546c6f46fd4d17f759d33abbb859abdacc
3
+ size 11569812
FER_dinamic_LSTM_CREMA-D.pth → FER_dinamic_LSTM_CREMA-D.pt RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1fb0aa416759d17e2f58b31b757a6ee9fae1e5749c7382598824533a97a49150
3
- size 11590417
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5486a9b4816fb86c4fcbbbc7e8b6506c9e66fc6db25404ed492da119330b86ee
3
+ size 11569208
FER_dinamic_LSTM_IEMOCAP.pth → FER_dinamic_LSTM_IEMOCAP.pt RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4efe957cd4d3ffac0f283528dc7c0631b2cad9958c7c244555b43faaccfa84d0
3
- size 11590417
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cd1561a72f9de26c315bb857f03e8946635db047e0dbea52bb0276610f19751
3
+ size 11569208
FER_dinamic_LSTM_RAMAS.pth → FER_dinamic_LSTM_RAMAS.pt RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:adb2d8325ecd266c9f5cb1bab5fa02758e9c7a90a719205ccdd6531a65fa8697
3
- size 11590359
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba1a49032311f91580eff67732bbb0a7077f1382c8a65e5d0fca01b1ad09ba37
3
+ size 11569180
FER_dinamic_LSTM_RAVDESS.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b8eb7e702d4be62bba48dd54addd53698c95fd94ff8293fb53fd8d59ab22248
3
+ size 11569208
FER_dinamic_LSTM_RAVDESS.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:43bc117590334f5f64465d3dd80c894baafe80b83911959cf403cba41d2bbf54
3
- size 11590417
 
 
 
 
FER_dinamic_LSTM_SAVEE.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa651fe5a937837610dea81fdf4e0079e1ebda07f28657007bcbc985faf25fc5
3
+ size 11569180
FER_dinamic_LSTM_SAVEE.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c7b89232ffa9fefaeaca64f3d8dc6271065f8b6cd56fe5a32e76bc93a8138669
3
- size 11590359
 
 
 
 
FER_static_ResNet50_AffectNet.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8274190b5be4355bd2f07b59f593fcdb294f9d7c563bfa9ac9e5ea06c10692d2
3
+ size 98562934
FER_static_ResNet50_AffectNet.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:790f76fe4d443953b3b71a6899bdd981742e8e1b954da48483d3eea6c3c717a1
3
- size 98631726
 
 
 
 
run_webcam.ipynb CHANGED
@@ -17,10 +17,167 @@
17
  "warnings.simplefilter(\"ignore\", UserWarning)\n",
18
  "\n",
19
  "import torch\n",
 
 
20
  "from PIL import Image\n",
21
  "from torchvision import transforms"
22
  ]
23
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  {
25
  "cell_type": "markdown",
26
  "id": "fcbcf9fa-a7cc-4d4c-b723-6d7efd49b94b",
@@ -177,7 +334,7 @@
177
  "source": [
178
  "mp_face_mesh = mp.solutions.face_mesh\n",
179
  "\n",
180
- "name_backbone_model = 'FER_static_ResNet50_AffectNet.pth'\n",
181
  "# name_LSTM_model = 'IEMOCAP'\n",
182
  "# name_LSTM_model = 'CREMA-D'\n",
183
  "# name_LSTM_model = 'RAMAS'\n",
@@ -186,12 +343,16 @@
186
  "name_LSTM_model = 'Aff-Wild2'\n",
187
  "\n",
188
  "# torch\n",
189
- "pth_backbone_model = torch.jit.load(name_backbone_model)\n",
 
 
190
  "pth_backbone_model.eval()\n",
191
  "\n",
192
- "pth_LSTM_model = torch.jit.load('FER_dinamic_LSTM_{0}.pth'.format(name_LSTM_model))\n",
 
193
  "pth_LSTM_model.eval()\n",
194
  "\n",
 
195
  "DICT_EMO = {0: 'Neutral', 1: 'Happiness', 2: 'Sadness', 3: 'Surprise', 4: 'Fear', 5: 'Disgust', 6: 'Anger'}\n",
196
  "\n",
197
  "cap = cv2.VideoCapture(0)\n",
@@ -220,7 +381,7 @@
220
  " frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)\n",
221
  " results = face_mesh.process(frame_copy)\n",
222
  " frame_copy.flags.writeable = True\n",
223
- " \n",
224
  " if results.multi_face_landmarks:\n",
225
  " for fl in results.multi_face_landmarks:\n",
226
  " startX, startY, endX, endY = get_box(fl, w, h)\n",
 
17
  "warnings.simplefilter(\"ignore\", UserWarning)\n",
18
  "\n",
19
  "import torch\n",
20
+ "import torch.nn as nn\n",
21
+ "import torch.nn.functional as F\n",
22
  "from PIL import Image\n",
23
  "from torchvision import transforms"
24
  ]
25
  },
26
+ {
27
+ "cell_type": "markdown",
28
+ "id": "a0907155",
29
+ "metadata": {},
30
+ "source": [
31
+ "#### Model architectures"
32
+ ]
33
+ },
34
+ {
35
+ "cell_type": "code",
36
+ "execution_count": null,
37
+ "id": "f67038e3",
38
+ "metadata": {},
39
+ "outputs": [],
40
+ "source": [
41
+ "class Bottleneck(nn.Module):\n",
42
+ " expansion = 4\n",
43
+ " def __init__(self, in_channels, out_channels, i_downsample=None, stride=1):\n",
44
+ " super(Bottleneck, self).__init__()\n",
45
+ " \n",
46
+ " self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, padding=0, bias=False)\n",
47
+ " self.batch_norm1 = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.99)\n",
48
+ " \n",
49
+ " self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding='same', bias=False)\n",
50
+ " self.batch_norm2 = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.99)\n",
51
+ " \n",
52
+ " self.conv3 = nn.Conv2d(out_channels, out_channels*self.expansion, kernel_size=1, stride=1, padding=0, bias=False)\n",
53
+ " self.batch_norm3 = nn.BatchNorm2d(out_channels*self.expansion, eps=0.001, momentum=0.99)\n",
54
+ " \n",
55
+ " self.i_downsample = i_downsample\n",
56
+ " self.stride = stride\n",
57
+ " self.relu = nn.ReLU()\n",
58
+ " \n",
59
+ " def forward(self, x):\n",
60
+ " identity = x.clone()\n",
61
+ " x = self.relu(self.batch_norm1(self.conv1(x)))\n",
62
+ " \n",
63
+ " x = self.relu(self.batch_norm2(self.conv2(x)))\n",
64
+ " \n",
65
+ " x = self.conv3(x)\n",
66
+ " x = self.batch_norm3(x)\n",
67
+ " \n",
68
+ " #downsample if needed\n",
69
+ " if self.i_downsample is not None:\n",
70
+ " identity = self.i_downsample(identity)\n",
71
+ " #add identity\n",
72
+ " x+=identity\n",
73
+ " x=self.relu(x)\n",
74
+ " \n",
75
+ " return x\n",
76
+ "\n",
77
+ "class Conv2dSame(torch.nn.Conv2d):\n",
78
+ "\n",
79
+ " def calc_same_pad(self, i: int, k: int, s: int, d: int) -> int:\n",
80
+ " return max((math.ceil(i / s) - 1) * s + (k - 1) * d + 1 - i, 0)\n",
81
+ "\n",
82
+ " def forward(self, x: torch.Tensor) -> torch.Tensor:\n",
83
+ " ih, iw = x.size()[-2:]\n",
84
+ "\n",
85
+ " pad_h = self.calc_same_pad(i=ih, k=self.kernel_size[0], s=self.stride[0], d=self.dilation[0])\n",
86
+ " pad_w = self.calc_same_pad(i=iw, k=self.kernel_size[1], s=self.stride[1], d=self.dilation[1])\n",
87
+ "\n",
88
+ " if pad_h > 0 or pad_w > 0:\n",
89
+ " x = F.pad(\n",
90
+ " x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]\n",
91
+ " )\n",
92
+ " return F.conv2d(\n",
93
+ " x,\n",
94
+ " self.weight,\n",
95
+ " self.bias,\n",
96
+ " self.stride,\n",
97
+ " self.padding,\n",
98
+ " self.dilation,\n",
99
+ " self.groups,\n",
100
+ " )\n",
101
+ "\n",
102
+ "class ResNet(nn.Module):\n",
103
+ " def __init__(self, ResBlock, layer_list, num_classes, num_channels=3):\n",
104
+ " super(ResNet, self).__init__()\n",
105
+ " self.in_channels = 64\n",
106
+ "\n",
107
+ " self.conv_layer_s2_same = Conv2dSame(num_channels, 64, 7, stride=2, groups=1, bias=False)\n",
108
+ " self.batch_norm1 = nn.BatchNorm2d(64, eps=0.001, momentum=0.99)\n",
109
+ " self.relu = nn.ReLU()\n",
110
+ " self.max_pool = nn.MaxPool2d(kernel_size = 3, stride=2)\n",
111
+ " \n",
112
+ " self.layer1 = self._make_layer(ResBlock, layer_list[0], planes=64, stride=1)\n",
113
+ " self.layer2 = self._make_layer(ResBlock, layer_list[1], planes=128, stride=2)\n",
114
+ " self.layer3 = self._make_layer(ResBlock, layer_list[2], planes=256, stride=2)\n",
115
+ " self.layer4 = self._make_layer(ResBlock, layer_list[3], planes=512, stride=2)\n",
116
+ " \n",
117
+ " self.avgpool = nn.AdaptiveAvgPool2d((1,1))\n",
118
+ " self.fc1 = nn.Linear(512*ResBlock.expansion, 512)\n",
119
+ " self.relu1 = nn.ReLU()\n",
120
+ " self.fc2 = nn.Linear(512, num_classes)\n",
121
+ "\n",
122
+ " def extract_features(self, x):\n",
123
+ " x = self.relu(self.batch_norm1(self.conv_layer_s2_same(x)))\n",
124
+ " x = self.max_pool(x)\n",
125
+ " # print(x.shape)\n",
126
+ " x = self.layer1(x)\n",
127
+ " x = self.layer2(x)\n",
128
+ " x = self.layer3(x)\n",
129
+ " x = self.layer4(x)\n",
130
+ " \n",
131
+ " x = self.avgpool(x)\n",
132
+ " x = x.reshape(x.shape[0], -1)\n",
133
+ " x = self.fc1(x)\n",
134
+ " return x\n",
135
+ " \n",
136
+ " def forward(self, x):\n",
137
+ " x = self.extract_features(x)\n",
138
+ " x = self.relu1(x)\n",
139
+ " x = self.fc2(x)\n",
140
+ " return x\n",
141
+ " \n",
142
+ " def _make_layer(self, ResBlock, blocks, planes, stride=1):\n",
143
+ " ii_downsample = None\n",
144
+ " layers = []\n",
145
+ " \n",
146
+ " if stride != 1 or self.in_channels != planes*ResBlock.expansion:\n",
147
+ " ii_downsample = nn.Sequential(\n",
148
+ " nn.Conv2d(self.in_channels, planes*ResBlock.expansion, kernel_size=1, stride=stride, bias=False, padding=0),\n",
149
+ " nn.BatchNorm2d(planes*ResBlock.expansion, eps=0.001, momentum=0.99)\n",
150
+ " )\n",
151
+ " \n",
152
+ " layers.append(ResBlock(self.in_channels, planes, i_downsample=ii_downsample, stride=stride))\n",
153
+ " self.in_channels = planes*ResBlock.expansion\n",
154
+ " \n",
155
+ " for i in range(blocks-1):\n",
156
+ " layers.append(ResBlock(self.in_channels, planes))\n",
157
+ " \n",
158
+ " return nn.Sequential(*layers)\n",
159
+ " \n",
160
+ "def ResNet50(num_classes, channels=3):\n",
161
+ " return ResNet(Bottleneck, [3,4,6,3], num_classes, channels)\n",
162
+ "\n",
163
+ "\n",
164
+ "class LSTMPyTorch(nn.Module):\n",
165
+ " def __init__(self):\n",
166
+ " super(LSTMPyTorch, self).__init__()\n",
167
+ " \n",
168
+ " self.lstm1 = nn.LSTM(input_size=512, hidden_size=512, batch_first=True, bidirectional=False)\n",
169
+ " self.lstm2 = nn.LSTM(input_size=512, hidden_size=256, batch_first=True, bidirectional=False)\n",
170
+ " self.fc = nn.Linear(256, 7)\n",
171
+ " self.softmax = nn.Softmax(dim=1)\n",
172
+ "\n",
173
+ " def forward(self, x):\n",
174
+ " x, _ = self.lstm1(x)\n",
175
+ " x, _ = self.lstm2(x) \n",
176
+ " x = self.fc(x[:, -1, :])\n",
177
+ " x = self.softmax(x)\n",
178
+ " return x"
179
+ ]
180
+ },
181
  {
182
  "cell_type": "markdown",
183
  "id": "fcbcf9fa-a7cc-4d4c-b723-6d7efd49b94b",
 
334
  "source": [
335
  "mp_face_mesh = mp.solutions.face_mesh\n",
336
  "\n",
337
+ "name_backbone_model = 'FER_static_ResNet50_AffectNet.pt'\n",
338
  "# name_LSTM_model = 'IEMOCAP'\n",
339
  "# name_LSTM_model = 'CREMA-D'\n",
340
  "# name_LSTM_model = 'RAMAS'\n",
 
343
  "name_LSTM_model = 'Aff-Wild2'\n",
344
  "\n",
345
  "# torch\n",
346
+ "\n",
347
+ "pth_backbone_model = ResNet50(7, channels=3)\n",
348
+ "pth_backbone_model.load_state_dict(torch.load(name_backbone_model))\n",
349
  "pth_backbone_model.eval()\n",
350
  "\n",
351
+ "pth_LSTM_model = LSTMPyTorch()\n",
352
+ "pth_LSTM_model.load_state_dict(torch.load('FER_dinamic_LSTM_{0}.pt'.format(name_LSTM_model)))\n",
353
  "pth_LSTM_model.eval()\n",
354
  "\n",
355
+ "\n",
356
  "DICT_EMO = {0: 'Neutral', 1: 'Happiness', 2: 'Sadness', 3: 'Surprise', 4: 'Fear', 5: 'Disgust', 6: 'Anger'}\n",
357
  "\n",
358
  "cap = cv2.VideoCapture(0)\n",
 
381
  " frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)\n",
382
  " results = face_mesh.process(frame_copy)\n",
383
  " frame_copy.flags.writeable = True\n",
384
+ "\n",
385
  " if results.multi_face_landmarks:\n",
386
  " for fl in results.multi_face_landmarks:\n",
387
  " startX, startY, endX, endY = get_box(fl, w, h)\n",