-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcamera_utils.py
139 lines (122 loc) · 5.11 KB
/
camera_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
from scene.cameras import Camera
import numpy as np
from utils.general_utils import PILtoTorch, DepthMaptoTorch, XYZMaptoTorch, ObjectPILtoTorch
from utils.graphics_utils import fov2focal
import torch
WARNED = False
def loadCam(args, id, cam_info, resolution_scale):
orig_w, orig_h = cam_info.image.size
if args.resolution in [1, 2, 4, 8]:
resolution = round(orig_w/(resolution_scale * args.resolution)), round(orig_h/(resolution_scale * args.resolution))
else: # should be a type that converts to float
if args.resolution == -1:
if orig_w > 1600:
global WARNED
if not WARNED:
print("[ INFO ] Encountered quite large input images (>1.6K pixels width), rescaling to 1.6K.\n "
"If this is not desired, please explicitly specify '--resolution/-r' as 1")
WARNED = True
global_down = orig_w / 1600
else:
global_down = 1
else:
global_down = orig_w / args.resolution
scale = float(global_down) * float(resolution_scale)
resolution = (int(orig_w / scale), int(orig_h / scale))
resized_image_rgb = PILtoTorch(cam_info.image, resolution)
gt_image = resized_image_rgb[:3, ...]
loaded_mask = None
if resized_image_rgb.shape[1] == 4:
loaded_mask = resized_image_rgb[3:4, ...]
orig_w, orig_h = cam_info.image_input.size
resolution = (int(orig_w / scale), int(orig_h / scale))
image_input = PILtoTorch(cam_info.image_input, resolution)
image_input = image_input[:3, ...]
# for waymo
sky_mask = None
if cam_info.sky_mask is not None:
sky_mask = PILtoTorch(cam_info.sky_mask, resolution)
depth_map = None
if cam_info.depth_map is not None:
depth_map = DepthMaptoTorch(cam_info.depth_map)
xyz_map = None
if cam_info.xyz_map is not None:
xyz_map = XYZMaptoTorch(cam_info.xyz_map)
depth_any_map = None
if cam_info.depth_any_map is not None:
depth_any_map = XYZMaptoTorch(cam_info.depth_any_map)
semantic_mask = None
if cam_info.semantic_mask is not None:
semantic_mask = XYZMaptoTorch(cam_info.semantic_mask)
instance_mask = None
if cam_info.instance_mask is not None:
instance_mask = ObjectPILtoTorch(cam_info.instance_mask, resolution)
sam_mask = None
if cam_info.sam_mask is not None:
sam_mask = XYZMaptoTorch(cam_info.sam_mask)
feat_map = None
if cam_info.feat_map is not None:
feat_map = cam_info.feat_map
dynamic_mask = None
if cam_info.dynamic_mask is not None:
dynamic_mask = ObjectPILtoTorch(cam_info.dynamic_mask, resolution)
intrinsic = None
if cam_info.intrinsic is not None:
intrinsic = torch.from_numpy(cam_info.intrinsic).to(dtype=torch.float32)
c2w = None
if cam_info.c2w is not None:
c2w = torch.from_numpy(cam_info.c2w).to(dtype=torch.float32)
return Camera(colmap_id=cam_info.uid, R=cam_info.R, T=cam_info.T,
FoVx=cam_info.FovX, FoVy=cam_info.FovY,
image=gt_image, image_input=image_input,
gt_alpha_mask=loaded_mask,
image_name=cam_info.image_name, uid=id, data_device=args.data_device,
# for waymo
sky_mask = sky_mask,
depth_map = depth_map,
xyz_map = xyz_map,
depth_any_map = depth_any_map,
semantic_mask = semantic_mask, instance_mask = instance_mask,
sam_mask = sam_mask,
dynamic_mask = dynamic_mask,
feat_map = feat_map,
objects=torch.from_numpy(np.array(cam_info.objects)) if cam_info.objects is not None else None,
intrinsic = intrinsic,
c2w = c2w,
time = cam_info.time
)
def cameraList_from_camInfos(cam_infos, resolution_scale, args):
camera_list = []
for id, c in enumerate(cam_infos):
camera_list.append(loadCam(args, id, c, resolution_scale))
return camera_list
def camera_to_JSON(id, camera : Camera):
Rt = np.zeros((4, 4))
Rt[:3, :3] = camera.R.transpose()
Rt[:3, 3] = camera.T
Rt[3, 3] = 1.0
W2C = np.linalg.inv(Rt)
pos = W2C[:3, 3]
rot = W2C[:3, :3]
serializable_array_2d = [x.tolist() for x in rot]
camera_entry = {
'id' : id,
'img_name' : camera.image_name,
'width' : camera.width,
'height' : camera.height,
'position': pos.tolist(),
'rotation': serializable_array_2d,
'fy' : fov2focal(camera.FovY, camera.height),
'fx' : fov2focal(camera.FovX, camera.width)
}
return camera_entry