|
| 1 | +--- |
| 2 | +# YAML header |
| 3 | +render_macros: true |
| 4 | +--- |
| 5 | + |
| 6 | +# Nitrogen vacancy and Mg substitution in GaN |
| 7 | + |
| 8 | +## Introduction |
| 9 | + |
| 10 | +This tutorial demonstrates the process of creating material with nitrogen vacancies and magnesium substitution defects in GaN. |
| 11 | + |
| 12 | + |
| 13 | +!!!note "Manuscript" |
| 14 | + **Giacomo Miceli, Alfredo Pasquarello**, |
| 15 | + "Self-compensation due to point defects in Mg-doped GaN", Physical Review B, 2016. |
| 16 | + [DOI: 10.1103/PhysRevB.93.165207](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.165207){:target='_blank'}. |
| 17 | + |
| 18 | +We use the [Materials Designer](../../../materials-designer/overview.md) to create a supercell of GaN, identify the crystal site positions for defects, and introduce nitrogen atoms and vacancies accordingly. |
| 19 | + |
| 20 | +We will focus on creating GaN-nitrogen structures from the publication. |
| 21 | +Specifically, the material from FIG. 2. c) of the manuscript: |
| 22 | + |
| 23 | + |
| 24 | + |
| 25 | + |
| 26 | + |
| 27 | +## 1. Create GaN Supercell |
| 28 | + |
| 29 | +First, we navigate to [Materials Designer](../../../materials-designer/overview.md) and import the GaN material from the [Standata](../../../materials-designer/header-menu/input-output/standata-import.md). |
| 30 | + |
| 31 | + |
| 32 | + |
| 33 | +We then use the [Advanced](../../../materials-designer/header-menu/advanced/supercell.md) menu to create a supercell of GaN with a size of 4x4x1. |
| 34 | + |
| 35 | + |
| 36 | + |
| 37 | +## 2. Identify Defect Sites |
| 38 | + |
| 39 | +Next, we open the [3D editor](../../../materials-designer/3d-editor.md) to identify the crystal site positions for the defects. |
| 40 | + |
| 41 | + |
| 42 | + |
| 43 | +Hover over the atoms to get the coordinates of the atoms to replace. Then copy/paste these coordinates into a text file for later use. |
| 44 | + |
| 45 | +`[1.608, 4.642, 5.240]` for the Mg substitution defect and `[1.608, 4.642, 7.210]` for the nitrogen vacancy. |
| 46 | + |
| 47 | +## 3. Create Nitrogen Defects and Vacancies |
| 48 | + |
| 49 | +For the defect creation, we will use the [JupyterLite](../../../jupyterlite/overview.md) environment with the corresponding notebook. |
| 50 | + |
| 51 | +### 3.1. Launch JupyterLite Session |
| 52 | + |
| 53 | +Select the "Advanced > [JupyterLite Transformation](../../../materials-designer/header-menu/advanced/jupyterlite-dialog.md)" menu item to launch the JupyterLite environment. |
| 54 | + |
| 55 | + |
| 56 | + |
| 57 | +### 3.2. Open `create_point_defect_pair.ipynb` notebook |
| 58 | + |
| 59 | +Find `create_point_defect_pair.ipynb` in the list of notebooks and click/double-click open it. |
| 60 | + |
| 61 | +### 3.3. Open and modify the notebook |
| 62 | + |
| 63 | +Next, edit `create_point_defect_pair.ipynb` notebook to modify the parameters by adding a list of [defect configuration objects](https://github.com/Exabyte-io/made/blob/3d938b4d91a31323dca7a02acb12b646dbb26634/src/py/mat3ra/made/tools/build/defect/configuration.py#L257) containing the approximate coordinates of the atoms to replace. |
| 64 | + |
| 65 | +Copy the below content and edit the "1.1. Set up defect parameters" cell in the notebook as follows: |
| 66 | + |
| 67 | +```python |
| 68 | +SUPERCELL_MATRIX = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] |
| 69 | + |
| 70 | +# List of dictionaries with defect parameters |
| 71 | +PRIMARY_DEFECT_CONFIG = { |
| 72 | + "defect_type": "substitution", |
| 73 | + "approximate_coordinate": [1.608, 4.642, 5.240], |
| 74 | + "chemical_element": "Mg", |
| 75 | + "use_cartesian_coordinates": True, |
| 76 | +} |
| 77 | + |
| 78 | +SECONDARY_DEFECT_CONFIG = { |
| 79 | + "defect_type": "vacancy", |
| 80 | + "approximate_coordinate": [1.608, 4.642, 7.210], |
| 81 | + "use_cartesian_coordinates": True, |
| 82 | +} |
| 83 | +``` |
| 84 | + |
| 85 | +Here's the visual of the updated content: |
| 86 | + |
| 87 | + |
| 88 | + |
| 89 | +## 4. Run the Notebook |
| 90 | + |
| 91 | +Run the notebook by clicking `Run` > `Run All` in the top menu to run cells and wait for the results to appear. |
| 92 | + |
| 93 | + |
| 94 | + |
| 95 | +## 5. Analyze the Results |
| 96 | + |
| 97 | +After running the notebook, the user will be able to visualize the structure of GaN with substitution and vacancy defects. |
| 98 | + |
| 99 | + |
| 100 | + |
| 101 | +## 6. Pass the Material to Materials Designer |
| 102 | + |
| 103 | +The user can pass the resulting material in the current Materials Designer environment and save it. |
| 104 | + |
| 105 | + |
| 106 | + |
| 107 | +Or the user can [save or download](../../../materials-designer/header-menu/input-output.md) the material in Material JSON format or POSCAR format. |
| 108 | + |
| 109 | + |
| 110 | +## Interactive JupyterLite Notebook |
| 111 | + |
| 112 | +The following JupyterLite notebook demonstrates the process of creating materials with substitution defects in GaN. Select "Run" > "Run All Cells". |
| 113 | + |
| 114 | +{% with origin_url=config.extra.jupyterlite.origin_url %} |
| 115 | +{% with notebooks_path_root=config.extra.jupyterlite.notebooks_path_root %} |
| 116 | +{% with notebook_name='specific_examples/defect_point_substitution_gallium_nitride.ipynb' %} |
| 117 | +{% include 'jupyterlite_embed.html' %} |
| 118 | +{% endwith %} |
| 119 | +{% endwith %} |
| 120 | +{% endwith %} |
| 121 | + |
| 122 | +## References |
| 123 | + |
| 124 | +1. **Giacomo Miceli, Alfredo Pasquarello**, |
| 125 | + "Self-compensation due to point defects in Mg-doped GaN", Physical Review B, 2016. |
| 126 | + [DOI: 10.1103/PhysRevB.93.165207](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.165207){:target='_blank'}. |
| 127 | + |
| 128 | +## Tags |
| 129 | + |
| 130 | +`defects`, `defect pair`, `substitutional`, `vacancy`, `point defects`, `impurities`, `doped semiconductors`, `nitrogen`, `GaN`, `gallium nitride` |
0 commit comments