Skip to content

Commit 01394e8

Browse files
authored
Merge pull request #295 from Exabyte-io/feature/SOF-7507
Feature/SOF-7507 feature: Vacancy and Substitution Pair defect tutorial
2 parents 5c1991d + 19b4da8 commit 01394e8

File tree

9 files changed

+152
-0
lines changed

9 files changed

+152
-0
lines changed
Lines changed: 3 additions & 0 deletions
Loading
Lines changed: 3 additions & 0 deletions
Loading
Lines changed: 3 additions & 0 deletions
Loading
Lines changed: 3 additions & 0 deletions
Loading
Lines changed: 3 additions & 0 deletions
Loading
Lines changed: 3 additions & 0 deletions
Loading
Lines changed: 3 additions & 0 deletions
Loading
Lines changed: 130 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,130 @@
1+
---
2+
# YAML header
3+
render_macros: true
4+
---
5+
6+
# Nitrogen vacancy and Mg substitution in GaN
7+
8+
## Introduction
9+
10+
This tutorial demonstrates the process of creating material with nitrogen vacancies and magnesium substitution defects in GaN.
11+
12+
13+
!!!note "Manuscript"
14+
**Giacomo Miceli, Alfredo Pasquarello**,
15+
"Self-compensation due to point defects in Mg-doped GaN", Physical Review B, 2016.
16+
[DOI: 10.1103/PhysRevB.93.165207](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.165207){:target='_blank'}.
17+
18+
We use the [Materials Designer](../../../materials-designer/overview.md) to create a supercell of GaN, identify the crystal site positions for defects, and introduce nitrogen atoms and vacancies accordingly.
19+
20+
We will focus on creating GaN-nitrogen structures from the publication.
21+
Specifically, the material from FIG. 2. c) of the manuscript:
22+
23+
24+
![Point Pair Defects: Mg Substitution and Vacancy in GaN](/images/tutorials/materials/defects/defect_point_pair_gallium_nitride/0-figure-from-manuscript.webp "Point Defect Pair: Substitution, Vacancy in GaN, FIG. 2.")
25+
26+
27+
## 1. Create GaN Supercell
28+
29+
First, we navigate to [Materials Designer](../../../materials-designer/overview.md) and import the GaN material from the [Standata](../../../materials-designer/header-menu/input-output/standata-import.md).
30+
31+
![Standata GaN Import](/images/tutorials/materials/defects/defect_point_pair_gallium_nitride/1-standata-GaN.webp "Standata GaN Import")
32+
33+
We then use the [Advanced](../../../materials-designer/header-menu/advanced/supercell.md) menu to create a supercell of GaN with a size of 4x4x1.
34+
35+
![Supercell Creation for GaN](/images/tutorials/materials/defects/defect_point_pair_gallium_nitride/2-advanced-supercell.webp "Supercell GaN")
36+
37+
## 2. Identify Defect Sites
38+
39+
Next, we open the [3D editor](../../../materials-designer/3d-editor.md) to identify the crystal site positions for the defects.
40+
41+
![3D Editor](/images/tutorials/materials/defects/defect_point_pair_gallium_nitride/4-threejs-editor-coordinates.webp "3D Editor")
42+
43+
Hover over the atoms to get the coordinates of the atoms to replace. Then copy/paste these coordinates into a text file for later use.
44+
45+
`[1.608, 4.642, 5.240]` for the Mg substitution defect and `[1.608, 4.642, 7.210]` for the nitrogen vacancy.
46+
47+
## 3. Create Nitrogen Defects and Vacancies
48+
49+
For the defect creation, we will use the [JupyterLite](../../../jupyterlite/overview.md) environment with the corresponding notebook.
50+
51+
### 3.1. Launch JupyterLite Session
52+
53+
Select the "Advanced > [JupyterLite Transformation](../../../materials-designer/header-menu/advanced/jupyterlite-dialog.md)" menu item to launch the JupyterLite environment.
54+
55+
![JupyterLite Dialog](/images/jupyterlite/md-advanced-jl.webp "JupyterLite Dialog")
56+
57+
### 3.2. Open `create_point_defect_pair.ipynb` notebook
58+
59+
Find `create_point_defect_pair.ipynb` in the list of notebooks and click/double-click open it.
60+
61+
### 3.3. Open and modify the notebook
62+
63+
Next, edit `create_point_defect_pair.ipynb` notebook to modify the parameters by adding a list of [defect configuration objects](https://github.com/Exabyte-io/made/blob/3d938b4d91a31323dca7a02acb12b646dbb26634/src/py/mat3ra/made/tools/build/defect/configuration.py#L257) containing the approximate coordinates of the atoms to replace.
64+
65+
Copy the below content and edit the "1.1. Set up defect parameters" cell in the notebook as follows:
66+
67+
```python
68+
SUPERCELL_MATRIX = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
69+
70+
# List of dictionaries with defect parameters
71+
PRIMARY_DEFECT_CONFIG = {
72+
"defect_type": "substitution",
73+
"approximate_coordinate": [1.608, 4.642, 5.240],
74+
"chemical_element": "Mg",
75+
"use_cartesian_coordinates": True,
76+
}
77+
78+
SECONDARY_DEFECT_CONFIG = {
79+
"defect_type": "vacancy",
80+
"approximate_coordinate": [1.608, 4.642, 7.210],
81+
"use_cartesian_coordinates": True,
82+
}
83+
```
84+
85+
Here's the visual of the updated content:
86+
87+
![Notebook setup](/images/tutorials/materials/defects/defect_point_pair_gallium_nitride/5-jl-setup.webp "Notebook setup")
88+
89+
## 4. Run the Notebook
90+
91+
Run the notebook by clicking `Run` > `Run All` in the top menu to run cells and wait for the results to appear.
92+
93+
![Run All](/images/jupyterlite/run-all.webp "Run All")
94+
95+
## 5. Analyze the Results
96+
97+
After running the notebook, the user will be able to visualize the structure of GaN with substitution and vacancy defects.
98+
99+
![Review the Results](/images/tutorials/materials/defects/defect_point_pair_gallium_nitride/6-jl-result-preview.webp "Review the Results")
100+
101+
## 6. Pass the Material to Materials Designer
102+
103+
The user can pass the resulting material in the current Materials Designer environment and save it.
104+
105+
![Final Material](/images/tutorials/materials/defects/defect_point_pair_gallium_nitride/7-wave-result.webp "Vacancy and Mg Substitution in GaN")
106+
107+
Or the user can [save or download](../../../materials-designer/header-menu/input-output.md) the material in Material JSON format or POSCAR format.
108+
109+
110+
## Interactive JupyterLite Notebook
111+
112+
The following JupyterLite notebook demonstrates the process of creating materials with substitution defects in GaN. Select "Run" > "Run All Cells".
113+
114+
{% with origin_url=config.extra.jupyterlite.origin_url %}
115+
{% with notebooks_path_root=config.extra.jupyterlite.notebooks_path_root %}
116+
{% with notebook_name='specific_examples/defect_point_substitution_gallium_nitride.ipynb' %}
117+
{% include 'jupyterlite_embed.html' %}
118+
{% endwith %}
119+
{% endwith %}
120+
{% endwith %}
121+
122+
## References
123+
124+
1. **Giacomo Miceli, Alfredo Pasquarello**,
125+
"Self-compensation due to point defects in Mg-doped GaN", Physical Review B, 2016.
126+
[DOI: 10.1103/PhysRevB.93.165207](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.165207){:target='_blank'}.
127+
128+
## Tags
129+
130+
`defects`, `defect pair`, `substitutional`, `vacancy`, `point defects`, `impurities`, `doped semiconductors`, `nitrogen`, `GaN`, `gallium nitride`

mkdocs.yml

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -221,6 +221,7 @@ nav:
221221

222222
- Specific:
223223
- Substitutional Point Defects in Graphene: tutorials/materials/specific/defect-point-substitution-graphene.md
224+
- Vacancy-Substitution Pair Defects in GaN: tutorials/materials/specific/defect-point-pair-gallium-nitride.md
224225
- Island Surface Defect Formation in TiN: tutorials/materials/specific/defect-surface-island-titanium-nitride.md
225226
- Twisted Bilayer h-BN nanoribbons: tutorials/materials/specific/interface-bilayer-twisted-nanoribbons-boron-nitride.md
226227
- Twisted Bilayer MoS2 commensurate lattices: tutorials/materials/specific/interface-bilayer-twisted-commensurate-lattices-molybdenum-disulfide.md

0 commit comments

Comments
 (0)