|
| 1 | +--- |
| 2 | +# YAML header |
| 3 | +render_macros: true |
| 4 | +--- |
| 5 | + |
| 6 | +# Graphene/Ni(111) Interface Optimization |
| 7 | + |
| 8 | +## Introduction |
| 9 | + |
| 10 | +This tutorial demonstrates how to create and optimize a Graphene/Ni(111) interface structure following the experimental observations presented in the literature. We will focus on finding the most energetically favorable position of graphene on the Ni(111) surface. |
| 11 | + |
| 12 | +!!!note "Manuscript" |
| 13 | + Arjun Dahal, Matthias Batzill |
| 14 | + "Graphene–nickel interfaces: a review" |
| 15 | + Nanoscale, 6(5), 2548. (2014) |
| 16 | + [DOI: 10.1039/c3nr05279f](https://doi.org/10.1039/c3nr05279f){:target='_blank'}. |
| 17 | + |
| 18 | +We will recreate the interface structure and optimize the film position to match the experimental findings shown in the figure below: |
| 19 | + |
| 20 | +") |
| 21 | + |
| 22 | +## 1. Create Interface Structure |
| 23 | + |
| 24 | +### 1.1. Load Base Materials |
| 25 | + |
| 26 | +Navigate to [Materials Designer](../../../materials-designer/overview.md) and import both graphene and nickel materials from the [Standata](../../../materials-designer/header-menu/input-output/standata-import.md). |
| 27 | + |
| 28 | + |
| 29 | + |
| 30 | +### 1.2. Launch JupyterLite Session |
| 31 | + |
| 32 | +Select the "Advanced > [JupyterLite Transformation](../../../materials-designer/header-menu/advanced/jupyterlite-dialog.md)" menu item to launch the JupyterLite environment. |
| 33 | + |
| 34 | +### 1.3. Open `create_interface_with_min_strain_zsl.ipynb` notebook |
| 35 | + |
| 36 | +Find and open the `create_interface_with_min_strain_zsl.ipynb` notebook. This notebook will help us create the initial interface structure. |
| 37 | + |
| 38 | +### 1.4. Set up interface parameters |
| 39 | + |
| 40 | +Edit the notebook parameters to create the Gr/Ni(111) interface: |
| 41 | + |
| 42 | +```python |
| 43 | +# Material selection |
| 44 | +SUBSTRATE_NAME = "Nickel" |
| 45 | +FILM_NAME = "Graphene" |
| 46 | + |
| 47 | +# Slab parameters |
| 48 | +SUBSTRATE_MILLER_INDICES = (1, 1, 1) |
| 49 | +SUBSTRATE_THICKNESS = 4 # in atomic layers |
| 50 | +FILM_THICKNESS = 1 # in atomic layers |
| 51 | + |
| 52 | +# Interface parameters |
| 53 | +MAX_AREA = 50 # in Angstrom^2 |
| 54 | +INTERFACE_DISTANCE = 2.58 # in Angstrom from literature |
| 55 | +INTERFACE_VACUUM = 20.0 # in Angstrom |
| 56 | +``` |
| 57 | + |
| 58 | +") |
| 59 | + |
| 60 | +### 1.5. Run interface creation |
| 61 | + |
| 62 | +Run the notebook using "Run > Run All Cells". This will: |
| 63 | + |
| 64 | +1. Create slabs from both materials |
| 65 | +2. Find the optimal lattice matching using the ZSL algorithm |
| 66 | +3. Generate the initial interface structure |
| 67 | + |
| 68 | +## 2. Optimize Film Position |
| 69 | + |
| 70 | +### 2.1. Open `optimize_film_position.ipynb` notebook |
| 71 | + |
| 72 | +Find and open the `optimize_film_position.ipynb` notebook which will help us find the optimal position of the graphene layer. |
| 73 | + |
| 74 | +### 2.2. Set optimization parameters |
| 75 | + |
| 76 | +Configure the optimization parameters: |
| 77 | + |
| 78 | +```python |
| 79 | +# Grid parameters |
| 80 | +GRID_SIZE = (20, 20) # Resolution of the x-y grid |
| 81 | +GRID_RANGE_X = (-0.5, 0.5) # Range in crystal coordinates |
| 82 | +GRID_RANGE_Y = (-0.5, 0.5) |
| 83 | +USE_CARTESIAN = False # Use crystal coordinates |
| 84 | + |
| 85 | +# Visualization parameters |
| 86 | +STRUCTURE_REPETITIONS = [3, 3, 1] |
| 87 | +``` |
| 88 | + |
| 89 | +Key parameters explained: |
| 90 | +- `GRID_SIZE`: Controls the resolution of position sampling |
| 91 | +- `GRID_RANGE`: Search range in crystal coordinates |
| 92 | +- `USE_CARTESIAN`: Set to False for hexagonal systems |
| 93 | + |
| 94 | +") |
| 95 | + |
| 96 | +### 2.3. Run optimization |
| 97 | + |
| 98 | +Run all cells in the notebook. The optimization will: |
| 99 | + |
| 100 | +1. Calculate energy landscape across different positions |
| 101 | +2. Find the global minimum energy position |
| 102 | +3. Generate visualizations of the results |
| 103 | + |
| 104 | + |
| 105 | + |
| 106 | + |
| 107 | + |
| 108 | +## 3. Analyze Results |
| 109 | + |
| 110 | +Compare the original and optimized interface structures to see the difference in the graphene position. |
| 111 | + |
| 112 | + |
| 113 | + |
| 114 | + |
| 115 | + |
| 116 | + |
| 117 | +## 4. Save Optimized Structure |
| 118 | + |
| 119 | +The optimized interface structure will be automatically passed back to Materials Designer where you can: |
| 120 | +1. Save it in the workspace |
| 121 | +2. Export it in various formats (JSON, POSCAR, etc.) |
| 122 | +3. Use it for further calculations |
| 123 | + |
| 124 | +## Interactive JupyterLite Notebook |
| 125 | + |
| 126 | +The following JupyterLite notebook demonstrates the complete process. Select "Run" > "Run All Cells". |
| 127 | + |
| 128 | +{% with origin_url=config.extra.jupyterlite.origin_url %} |
| 129 | +{% with notebooks_path_root=config.extra.jupyterlite.notebooks_path_root %} |
| 130 | +{% with notebook_name='specific_examples/optimize_film_position_graphene_nickel_interface.ipynb' %} |
| 131 | +{% include 'jupyterlite_embed.html' %} |
| 132 | +{% endwith %} |
| 133 | +{% endwith %} |
| 134 | +{% endwith %} |
| 135 | + |
| 136 | +## Parameter Fine-tuning |
| 137 | + |
| 138 | +To adjust the interface optimization: |
| 139 | + |
| 140 | +1. Interface Creation: |
| 141 | + - Adjust `SUBSTRATE_THICKNESS` for more Ni layers |
| 142 | + - Modify `MAX_AREA` to control supercell size |
| 143 | + - Change `INTERFACE_DISTANCE` if needed |
| 144 | + |
| 145 | +2. Position Optimization: |
| 146 | + - Increase `GRID_SIZE` for finer sampling |
| 147 | + - Adjust `GRID_RANGE` to search different areas |
| 148 | + - Enable 3D visualization with `SHOW_3D_LANDSCAPE = True` |
| 149 | + |
| 150 | +## References |
| 151 | + |
| 152 | +1. Dahal, A., & Batzill, M. (2014). Graphene–nickel interfaces: a review. Nanoscale, 6(5), 2548-2562. [DOI: 10.1039/c3nr05279f](https://doi.org/10.1039/c3nr05279f) |
| 153 | + |
| 154 | +2. Gamo, Y., Nagashima, A., Wakabayashi, M., Terai, M., & Oshima, C. (1997). Atomic structure of monolayer graphite formed on Ni(111). Surface Science, 374(1-3), 61-64. [DOI: 10.1016/S0039-6028(96)01307-3](https://www.sciencedirect.com/science/article/abs/pii/S0039602896007856) |
| 155 | + |
| 156 | +3. Bertoni, G., Calmels, L., Altibelli, A., & Serin, V. (2004). First-principles calculation of the electronic structure and EELS spectra at the graphene/Ni(111) interface. Physical Review B, 71(7). [DOI: 10.1103/PhysRevB.71.075402](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.075402) |
| 157 | + |
| 158 | +## Tags |
| 159 | + |
| 160 | +`graphene`, `nickel`, `interface`, `optimization`, `2D materials`, `surface science`, `Gr/Ni(111)`, `C`, `Ni` |
0 commit comments