|
| 1 | + |
| 2 | +import os |
| 3 | +import numpy as np |
| 4 | +from pygeosx_tools import wrapper, parallel_io, plot_tools |
| 5 | +import hdf5_wrapper |
| 6 | +import matplotlib.pyplot as plt |
| 7 | +from matplotlib import cm |
| 8 | +from pyevtk.hl import gridToVTK |
| 9 | +from scipy import interpolate |
| 10 | + |
| 11 | + |
| 12 | +class InSAR_Analysis(): |
| 13 | + def __init__(self, restart_fname=''): |
| 14 | + """ |
| 15 | + InSAR Analysis class |
| 16 | + """ |
| 17 | + self.set_names = [] |
| 18 | + self.set_keys = [] |
| 19 | + self.local_insar_map = [] |
| 20 | + |
| 21 | + self.node_position_key = '' |
| 22 | + self.node_displacement_key = '' |
| 23 | + self.node_ghost_key = '' |
| 24 | + |
| 25 | + self.satellite_vector = [0.0, 0.0, 1.0] |
| 26 | + self.wavelength = 1.0 |
| 27 | + |
| 28 | + self.x_grid = [] |
| 29 | + self.y_grid = [] |
| 30 | + self.elevation = 0.0 |
| 31 | + self.times = [] |
| 32 | + self.mask = [] |
| 33 | + self.displacement = [] |
| 34 | + self.range_change = [] |
| 35 | + self.phase = [] |
| 36 | + |
| 37 | + if restart_fname: |
| 38 | + self.resume_from_restart(restart_fname) |
| 39 | + |
| 40 | + def resume_from_restart(self, fname): |
| 41 | + with hdf5_wrapper.hdf5_wrapper(fname) as r: |
| 42 | + for k in dir(self): |
| 43 | + if ('_' not in k): |
| 44 | + setattr(self, k, r[k]) |
| 45 | + |
| 46 | + def write_restart(self, fname): |
| 47 | + with hdf5_wrapper.hdf5_wrapper(fname, mode='w') as r: |
| 48 | + for k in dir(self): |
| 49 | + if ('_' not in k): |
| 50 | + r[k] = getattr(self, k) |
| 51 | + |
| 52 | + def setup_grid(self, problem, set_names=[], x_range=[], y_range=[], dx=1.0, dy=1.0): |
| 53 | + """ |
| 54 | + Setup the InSAR grid |
| 55 | +
|
| 56 | + Args: |
| 57 | + problem (pygeosx.group): GEOSX problem handle |
| 58 | + set_names (list): List of set names to apply to the analysis to |
| 59 | + x_range (list): Extents of the InSAR image in the x-direction (optional) |
| 60 | + y_range (list): Extents of the InSAR image in the y-direction (optional) |
| 61 | + dx (float): Resolution of the InSAR image in the x-direction (default=1) |
| 62 | + dy (float): Resolution of the InSAR image in the y-direction (default=1) |
| 63 | + """ |
| 64 | + # Determine pygeosx keys |
| 65 | + self.set_names = set_names |
| 66 | + self.set_keys = [wrapper.get_matching_wrapper_path(problem, ['nodeManager', s]) for s in set_names] |
| 67 | + self.node_position_key = wrapper.get_matching_wrapper_path(problem, ['nodeManager', 'ReferencePosition']) |
| 68 | + self.node_displacement_key = wrapper.get_matching_wrapper_path(problem, ['nodeManager', 'TotalDisplacement']) |
| 69 | + self.node_ghost_key = wrapper.get_matching_wrapper_path(problem, ['nodeManager', 'ghostRank']) |
| 70 | + |
| 71 | + # If not specified, then setup the grid extents |
| 72 | + ghost_rank = wrapper.get_wrapper(problem, self.node_ghost_key) |
| 73 | + x = wrapper.get_wrapper(problem, self.node_position_key) |
| 74 | + set_ids = np.concatenate([wrapper.get_wrapper(problem, k) for k in self.set_keys], axis=0) |
| 75 | + |
| 76 | + # Choose non-ghost set members |
| 77 | + xb = x[set_ids, :] |
| 78 | + gb = ghost_rank[set_ids] |
| 79 | + xc = xb[gb < 0, :] |
| 80 | + global_min, global_max = parallel_io.get_global_array_range(xc) |
| 81 | + |
| 82 | + if (len(x_range) == 0): |
| 83 | + x_range = [global_min[0], global_max[0]] |
| 84 | + if (len(y_range) == 0): |
| 85 | + y_range = [global_min[1], global_max[1]] |
| 86 | + |
| 87 | + # Choose the grid |
| 88 | + Nx = int(np.ceil((x_range[1] - x_range[0]) / dx)) |
| 89 | + Ny = int(np.ceil((y_range[1] - y_range[0]) / dy)) |
| 90 | + self.x_grid = np.linspace(x_range[0], x_range[1], Nx + 1) |
| 91 | + self.y_grid = np.linspace(y_range[0], y_range[1], Ny + 1) |
| 92 | + |
| 93 | + # Save the average elevation for vtk outputs |
| 94 | + self.elevation = global_min[0] |
| 95 | + |
| 96 | + # Trigger the map build |
| 97 | + self.build_map(problem) |
| 98 | + |
| 99 | + def build_map(self, problem): |
| 100 | + """ |
| 101 | + Build the map between the mesh, InSAR image. |
| 102 | + Note: this method can be used to update the map after |
| 103 | + significant changes to the mesh. |
| 104 | +
|
| 105 | + Args: |
| 106 | + problem (pygeosx.group): GEOSX problem handle |
| 107 | + """ |
| 108 | + # Load the data |
| 109 | + ghost_rank = wrapper.get_wrapper(problem, self.node_ghost_key) |
| 110 | + x = wrapper.get_wrapper(problem, self.node_position_key) |
| 111 | + set_ids = np.concatenate([wrapper.get_wrapper(problem, k) for k in self.set_keys], axis=0) |
| 112 | + |
| 113 | + # Choose non-ghost set members |
| 114 | + xb = x[set_ids, :] |
| 115 | + gb = ghost_rank[set_ids] |
| 116 | + xc = xb[gb < 0, :] |
| 117 | + |
| 118 | + # Setup the node to insar map |
| 119 | + self.local_insar_map = [] |
| 120 | + dx = self.x_grid[1] - self.x_grid[0] |
| 121 | + dy = self.y_grid[1] - self.y_grid[0] |
| 122 | + x_bins = np.concatenate([[self.x_grid[0] - 0.5 * dx], |
| 123 | + 0.5*(self.x_grid[1:] + self.x_grid[:-1]), |
| 124 | + [self.x_grid[-1] + 0.5 * dx]]) |
| 125 | + y_bins = np.concatenate([[self.y_grid[0] - 0.5 * dy], |
| 126 | + 0.5*(self.y_grid[1:] + self.y_grid[:-1]), |
| 127 | + [self.y_grid[-1] + 0.5 * dy]]) |
| 128 | + if len(xc): |
| 129 | + Ix = np.digitize(np.squeeze(xc[:, 0]), x_bins) - 1 |
| 130 | + Iy = np.digitize(np.squeeze(xc[:, 1]), y_bins) - 1 |
| 131 | + for ii in range(len(self.x_grid)): |
| 132 | + for jj in range(len(self.y_grid)): |
| 133 | + tmp = np.where((Ix == ii) & (Iy == jj))[0] |
| 134 | + if len(tmp): |
| 135 | + self.local_insar_map.append([ii, jj, tmp]) |
| 136 | + |
| 137 | + def extract_insar(self, problem): |
| 138 | + """ |
| 139 | + Extract InSAR image for current step |
| 140 | +
|
| 141 | + Args: |
| 142 | + problem (pygeosx.group): GEOSX problem handle |
| 143 | + """ |
| 144 | + # Load values |
| 145 | + time = wrapper.get_wrapper(problem, 'Events/time')[0] |
| 146 | + ghost_rank = wrapper.get_wrapper(problem, self.node_ghost_key) |
| 147 | + x = wrapper.get_wrapper(problem, self.node_displacement_key) |
| 148 | + set_ids = np.concatenate([wrapper.get_wrapper(problem, k) for k in self.set_keys], axis=0) |
| 149 | + |
| 150 | + # Choose non-ghost set members |
| 151 | + xb = x[set_ids, :] |
| 152 | + gb = ghost_rank[set_ids] |
| 153 | + xc = xb[gb < 0, :] |
| 154 | + |
| 155 | + # Find local displacements |
| 156 | + Nx = len(self.x_grid) |
| 157 | + Ny = len(self.y_grid) |
| 158 | + local_displacement_sum = np.zeros((Nx, Ny, 3)) |
| 159 | + local_N = np.zeros((Nx, Ny), dtype='int') |
| 160 | + for m in self.local_insar_map: |
| 161 | + local_N[m[0], m[1]] += len(m[2]) |
| 162 | + for ii in m[2]: |
| 163 | + local_displacement_sum[m[0], m[1], :] += xc[ii, :] |
| 164 | + |
| 165 | + # Communicate values |
| 166 | + global_displacement_sum = np.sum(np.array(parallel_io.gather_array(local_displacement_sum, concatenate=False)), axis=0) |
| 167 | + global_N = np.sum(np.array(parallel_io.gather_array(local_N, concatenate=False)), axis=0) |
| 168 | + |
| 169 | + # Find final 3D displacement |
| 170 | + global_displacement = np.zeros((Nx, Ny, 3)) |
| 171 | + if (parallel_io.rank == 0): |
| 172 | + range_change = np.zeros((Nx, Ny)) |
| 173 | + for ii in range(3): |
| 174 | + d = np.squeeze(global_displacement_sum[:, :, ii]) / (global_N + 1e-10) |
| 175 | + d[global_N == 0] = np.NaN |
| 176 | + global_displacement[:, :, ii] = self.fill_nan_gaps(d) |
| 177 | + range_change += global_displacement[:, :, ii] * self.satellite_vector[ii] |
| 178 | + |
| 179 | + # Filter nans |
| 180 | + self.displacement.append(global_displacement) |
| 181 | + self.range_change.append(range_change) |
| 182 | + self.phase.append(np.angle(np.exp(2j * np.pi * range_change / self.wavelength))) |
| 183 | + self.mask.append(global_N > 0) |
| 184 | + self.times.append(time) |
| 185 | + |
| 186 | + def fill_nan_gaps(self, values): |
| 187 | + """ |
| 188 | + Fill gaps in the insar data which are specified via NaN's |
| 189 | + """ |
| 190 | + z = np.isnan(values) |
| 191 | + if np.sum(z): |
| 192 | + N = np.shape(values) |
| 193 | + grid = np.meshgrid(self.x_grid, self.y_grid, indexing='ij') |
| 194 | + |
| 195 | + # Filter out values in flattened arrays |
| 196 | + x_flat = np.reshape(grid[0], (-1)) |
| 197 | + y_flat = np.reshape(grid[1], (-1)) |
| 198 | + v_flat = np.reshape(values, (-1)) |
| 199 | + t_flat = np.reshape(z, (-1)) |
| 200 | + I_valid = np.where(~t_flat)[0] |
| 201 | + x_valid = x_flat[I_valid] |
| 202 | + y_valid = y_flat[I_valid] |
| 203 | + v_valid = v_flat[I_valid] |
| 204 | + |
| 205 | + # Re-interpolate values |
| 206 | + vb = interpolate.griddata((x_valid, y_valid), v_valid, tuple(grid), method='linear') |
| 207 | + values = np.reshape(vb, N) |
| 208 | + return values |
| 209 | + |
| 210 | + def save_hdf5(self, header='insar', output_root='./results'): |
| 211 | + if (parallel_io.rank == 0): |
| 212 | + os.makedirs(output_root, exist_ok=True) |
| 213 | + with hdf5_wrapper.hdf5_wrapper('%s/%s.hdf5' % (output_root, header), mode='w') as data: |
| 214 | + data['x'] = self.x_grid |
| 215 | + data['y'] = self.y_grid |
| 216 | + data['time'] = self.times |
| 217 | + data['displacement'] = np.array(self.displacement) |
| 218 | + data['range_change'] = np.array(self.range_change) |
| 219 | + data['phase'] = np.array(self.phase) |
| 220 | + |
| 221 | + def save_csv(self, header='insar', output_root='./results'): |
| 222 | + if (parallel_io.rank == 0): |
| 223 | + os.makedirs(output_root, exist_ok=True) |
| 224 | + np.savetxt('%s/%s_x_grid.csv' % (output_root, header), |
| 225 | + self.x_grid, |
| 226 | + delimiter=', ') |
| 227 | + np.savetxt('%s/%s_y_grid.csv' % (output_root, header), |
| 228 | + self.y_grid, |
| 229 | + delimiter=', ') |
| 230 | + for ii, t in enumerate(self.times): |
| 231 | + comments = 'T (days), %1.8e' % (t / (60 * 60 * 24)) |
| 232 | + np.savetxt('%s/%s_range_change_%03d.csv' % (output_root, header, ii), |
| 233 | + self.range_change[ii], |
| 234 | + delimiter=', ', |
| 235 | + header=comments) |
| 236 | + np.savetxt('%s/%s_phase_%03d.csv' % (output_root, header, ii), |
| 237 | + self.phase[ii], |
| 238 | + delimiter=', ', |
| 239 | + header=comments) |
| 240 | + |
| 241 | + def save_vtk(self, header='insar', output_root='./results'): |
| 242 | + if (parallel_io.rank == 0): |
| 243 | + os.makedirs(output_root, exist_ok=True) |
| 244 | + x = np.ascontiguousarray(self.x_grid) |
| 245 | + y = np.ascontiguousarray(self.y_grid) |
| 246 | + z = np.array([self.elevation]) |
| 247 | + |
| 248 | + for ii, t in enumerate(self.times): |
| 249 | + data = {'range_change': np.ascontiguousarray(np.expand_dims(self.range_change[ii], -1)), |
| 250 | + 'phase': np.ascontiguousarray(np.expand_dims(self.phase[ii], -1)), |
| 251 | + 'dx': np.ascontiguousarray(np.expand_dims(self.displacement[ii][:, :, 0], -1)), |
| 252 | + 'dy': np.ascontiguousarray(np.expand_dims(self.displacement[ii][:, :, 1], -1)), |
| 253 | + 'dz': np.ascontiguousarray(np.expand_dims(self.displacement[ii][:, :, 2], -1))} |
| 254 | + |
| 255 | + gridToVTK('%s/%s_%03d' % (output_root, header, ii), |
| 256 | + x, |
| 257 | + y, |
| 258 | + z, |
| 259 | + pointData=data) |
| 260 | + |
| 261 | + def save_image(self, header='insar', output_root='./results', interp_method='quadric'): |
| 262 | + if (parallel_io.rank == 0): |
| 263 | + os.makedirs(output_root, exist_ok=True) |
| 264 | + fig = plot_tools.HighResPlot() |
| 265 | + |
| 266 | + for ii, t in enumerate(self.times): |
| 267 | + # Range change |
| 268 | + fig.reset() |
| 269 | + extents = [self.x_grid[0], self.x_grid[-1], self.y_grid[0], self.y_grid[-1]] |
| 270 | + ca = plt.imshow(np.transpose(np.flipud(self.range_change[ii])), |
| 271 | + extent=extents, |
| 272 | + cmap=cm.jet, |
| 273 | + aspect='auto', |
| 274 | + interpolation=interp_method) |
| 275 | + plt.title('T = %1.4e (days)' % (t / (60 * 60 * 24))) |
| 276 | + plt.xlabel('X (m)') |
| 277 | + plt.ylabel('Y (m)') |
| 278 | + cb = plt.colorbar(ca) |
| 279 | + cb.set_label('Range Change (m)') |
| 280 | + fig.save('%s/%s_range_change_%03d' % (output_root, header, ii)) |
| 281 | + |
| 282 | + # Wrapped phase |
| 283 | + fig.reset() |
| 284 | + extents = [self.x_grid[0], self.x_grid[-1], self.y_grid[0], self.y_grid[-1]] |
| 285 | + ca = plt.imshow(np.transpose(np.flipud(self.phase[ii])), |
| 286 | + extent=extents, |
| 287 | + cmap=cm.jet, |
| 288 | + aspect='auto', |
| 289 | + interpolation=interp_method) |
| 290 | + plt.title('T = %1.4e (days)' % (t / (60 * 60 * 24))) |
| 291 | + plt.xlabel('X (m)') |
| 292 | + plt.ylabel('Y (m)') |
| 293 | + cb = plt.colorbar(ca) |
| 294 | + cb.set_label('Phase (radians)') |
| 295 | + fig.save('%s/%s_wrapped_phase_%03d' % (output_root, header, ii)) |
| 296 | + |
| 297 | + |
0 commit comments