|
11 | 11 | from ._param_validation import (
|
12 | 12 | validate_parameter_constraints,
|
13 | 13 | Interval,
|
14 |
| - Integral, |
15 | 14 | Real,
|
16 | 15 | check_consistent_length,
|
17 | 16 | check_1d,
|
@@ -396,15 +395,14 @@ def sccd_detect(
|
396 | 395 | ts_t: 1d array of shape(observation numbers), time series of thermal band
|
397 | 396 | qas: 1d array, the QA cfmask bands. '0' - clear; '1' - water; '2' - shadow; '3' - snow; '4' - cloud
|
398 | 397 | p_cg: probability threshold of change magnitude, 0.99
|
399 |
| - pos: position id of the pixel, i.e., (row -1) * ncols + col, row and col starts from 1 |
400 | 398 | conse: consecutive observation number
|
| 399 | + pos: position id of the pixel, i.e., (row -1) * ncols + col, row and col starts from 1 |
401 | 400 | b_c2: bool, a temporal parameter to indicate if collection 2. C2 needs ignoring thermal band for valid pixel
|
402 | 401 | test due to its current low quality
|
403 | 402 | b_pinpoint: bool, output pinpoint break where pinpoint is an overdetection of break using conse =3
|
404 | 403 | and threshold = gate_tcg, which are used to simulate the situation of NRT scenario and
|
405 | 404 | for training a machine-learning model
|
406 | 405 | gate_pcg: the gate change probability threshold for defining anomaly
|
407 |
| - b_output_state: indicate whether to output state variables |
408 | 406 | state_intervaldays: the day interval for output states (only b_output_state is True)
|
409 | 407 | b_fitting_coefs: True indicates using curve fitting to get global harmonic coefficients, otherwise use the local coefficients
|
410 | 408 | Returns
|
@@ -654,8 +652,6 @@ def cold_detect_flex(
|
654 | 652 | should have the same date, only for b_output_cm is True. Only b_output_cm == 'True'
|
655 | 653 | n_cm: the length of outputted change magnitude. Only b_output_cm == 'True'
|
656 | 654 | cm_output_interval: the temporal interval of outputting change magnitudes. Only b_output_cm == 'True'
|
657 |
| - b_c2: bool, a temporal parameter to indicate if collection 2. C2 needs ignoring thermal band for valid pixel |
658 |
| - test due to the current low quality |
659 | 655 | gap_days: define the day number of the gap year for determining i_dense. Setting a large value (e.g., 1500)
|
660 | 656 | if the gap year in the middle of the time range
|
661 | 657 | tmask_b1: the first band id for tmask
|
@@ -742,16 +738,15 @@ def sccd_detect_flex(
|
742 | 738 | dates: 1d array of shape(observation numbers), list of ordinal dates
|
743 | 739 | ts_stack: 2d array of shape (observation numbers), horizontally stacked multispectral time series.
|
744 | 740 | qas: 1d array, the QA cfmask bands. '0' - clear; '1' - water; '2' - shadow; '3' - snow; '4' - cloud
|
745 |
| - t_cg: threshold of change magnitude, default is chi2.ppf(0.99,5) |
746 |
| - pos: position id of the pixel, i.e., (row -1) * ncols + col, row and col starts from 1 |
| 741 | + p_cg: probaility threshold of change magnitude, default is 0.99 |
747 | 742 | conse: consecutive observation number
|
| 743 | + pos: position id of the pixel, i.e., (row -1) * ncols + col, row and col starts from 1 |
748 | 744 | b_c2: bool, a temporal parameter to indicate if collection 2. C2 needs ignoring thermal band for valid pixel
|
749 | 745 | test due to its current low quality
|
750 | 746 | b_pinpoint: bool, output pinpoint break where pinpoint is an overdetection of break using conse =3
|
751 | 747 | and threshold = gate_tcg, which are used to simulate the situation of NRT scenario and
|
752 | 748 | for training a machine-learning model
|
753 | 749 | gate_pcg: the gate change probability threshold for defining anomaly
|
754 |
| - b_output_state: indicate whether to output state variables |
755 | 750 | state_intervaldays: the day interval for output states (only b_output_state is True)
|
756 | 751 | tmask_b1: the first band id for tmask
|
757 | 752 | tmask_b2: the second band id for tmask
|
|
0 commit comments