forked from jvhs0706/zkllm-ccs2024
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfr-tensor.cu
953 lines (794 loc) · 33 KB
/
fr-tensor.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
#include "fr-tensor.cuh"
#include "ioutils.cuh"
using namespace std;
ostream& operator<<(ostream& os, const Fr_t& x)
{
os << "0x" << std::hex;
for (uint i = 8; i > 0; -- i)
{
os << std::setfill('0') << std::setw(8) << x.val[i - 1];
}
return os << std::dec << std::setw(0) << std::setfill(' ');
}
vector<Fr_t> random_vec(uint len)
{
std::random_device rd;
std::mt19937 mt(rd());
std::uniform_int_distribution<unsigned int> dist(0, UINT_MAX);
vector<Fr_t> out(len);
for (uint i = 0; i < len; ++ i) out[i] = {dist(mt), dist(mt), dist(mt), dist(mt), dist(mt), dist(mt), dist(mt), dist(mt) % 1944954707};
return out;
}
uint ceilLog2(uint num) {
if (num == 0) return 0;
// Decrease num to handle the case where num is already a power of 2
num--;
uint result = 0;
// Keep shifting the number to the right until it becomes zero.
// Each shift means the number is halved, which corresponds to
// a division by 2 in logarithmic terms.
while (num > 0) {
num >>= 1;
result++;
}
return result;
}
template<typename T>
std::vector<T> concatenate(const std::vector<std::vector<T>>& vecs) {
// First, compute the total size for the result vector.
size_t totalSize = 0;
for (const auto& v : vecs) {
totalSize += v.size();
}
// Allocate space for the result vector.
std::vector<T> result;
result.reserve(totalSize);
// Append each vector's contents to the result vector.
for (const auto& v : vecs) {
result.insert(result.end(), v.begin(), v.end());
}
return result;
}
// specify to the compiler that this function needs to be compiled for Fr_t otherwise it cannot be linked
template std::vector<Fr_t> concatenate(const std::vector<std::vector<Fr_t>>& vecs);
// define the kernels
// Elementwise addition
KERNEL void Fr_elementwise_add(GLOBAL Fr_t* arr1, GLOBAL Fr_t* arr2, GLOBAL Fr_t* arr_out, uint n)
{
const uint gid = GET_GLOBAL_ID();
if (gid >= n) return;
arr_out[gid] = blstrs__scalar__Scalar_add(arr1[gid], arr2[gid]);
}
// Broadcast addition
KERNEL void Fr_broadcast_add(GLOBAL Fr_t* arr, Fr_t x, GLOBAL Fr_t* arr_out, uint n)
{
const uint gid = GET_GLOBAL_ID();
if (gid >= n) return;
arr_out[gid] = blstrs__scalar__Scalar_add(arr[gid], x);
}
// Elementwise negation
KERNEL void Fr_elementwise_neg(GLOBAL Fr_t* arr, GLOBAL Fr_t* arr_out, uint n)
{
const uint gid = GET_GLOBAL_ID();
if (gid >= n) return;
arr_out[gid] = blstrs__scalar__Scalar_sub(blstrs__scalar__Scalar_ZERO, arr[gid]);
}
// Elementwise subtraction
KERNEL void Fr_elementwise_sub(GLOBAL Fr_t* arr1, GLOBAL Fr_t* arr2, GLOBAL Fr_t* arr_out, uint n) {
const uint gid = GET_GLOBAL_ID();
if (gid >= n) return;
arr_out[gid] = blstrs__scalar__Scalar_sub(arr1[gid], arr2[gid]);
}
// Broadcast subtraction
KERNEL void Fr_broadcast_sub(GLOBAL Fr_t* arr, Fr_t x, GLOBAL Fr_t* arr_out, uint n)
{
const uint gid = GET_GLOBAL_ID();
if (gid >= n) return;
arr_out[gid] = blstrs__scalar__Scalar_sub(arr[gid], x);
}
// To montegomery form
KERNEL void Fr_elementwise_mont(GLOBAL Fr_t* arr, GLOBAL Fr_t* arr_out, uint n)
{
const uint gid = GET_GLOBAL_ID();
if (gid >= n) return;
arr_out[gid] = blstrs__scalar__Scalar_mont(arr[gid]);
}
// From montgomery form
KERNEL void Fr_elementwise_unmont(GLOBAL Fr_t* arr, GLOBAL Fr_t* arr_out, uint n)
{
const uint gid = GET_GLOBAL_ID();
if (gid >= n) return;
arr_out[gid] = blstrs__scalar__Scalar_unmont(arr[gid]);
}
// Elementwise montegomery multiplication
KERNEL void Fr_elementwise_mont_mul(GLOBAL Fr_t* arr1, GLOBAL Fr_t* arr2, GLOBAL Fr_t* arr_out, uint n) {
const uint gid = GET_GLOBAL_ID();
if (gid >= n) return;
arr_out[gid] = blstrs__scalar__Scalar_mul(arr1[gid], arr2[gid]);
}
// Broadcast montegomery multiplication
KERNEL void Fr_broadcast_mont_mul(GLOBAL Fr_t* arr, Fr_t x, GLOBAL Fr_t* arr_out, uint n)
{
const uint gid = GET_GLOBAL_ID();
if (gid >= n) return;
arr_out[gid] = blstrs__scalar__Scalar_mul(arr[gid], x);
}
// Elementwise montegomery multiplication
KERNEL void Fr_elementwise_mul(GLOBAL Fr_t* arr1, GLOBAL Fr_t* arr2, GLOBAL Fr_t* arr_out, uint n) {
const uint gid = GET_GLOBAL_ID();
if (gid >= n) return;
arr_out[gid] = blstrs__scalar__Scalar_mont(blstrs__scalar__Scalar_mul(arr1[gid], arr2[gid]));
}
// Broadcast montegomery multiplication
KERNEL void Fr_broadcast_mul(GLOBAL Fr_t* arr, Fr_t x, GLOBAL Fr_t* arr_out, uint n)
{
const uint gid = GET_GLOBAL_ID();
if (gid >= n) return;
arr_out[gid] = blstrs__scalar__Scalar_mont(blstrs__scalar__Scalar_mul(arr[gid], x));
}
// implement the class FrTensor
FrTensor::FrTensor(uint size): size(size), gpu_data(nullptr)
{
cudaMalloc((void **)&gpu_data, sizeof(Fr_t) * size);
}
FrTensor::FrTensor(uint size, const Fr_t* cpu_data): size(size), gpu_data(nullptr)
{
cudaMalloc((void **)&gpu_data, sizeof(Fr_t) * size);
cudaMemcpy(gpu_data, cpu_data, sizeof(Fr_t) * size, cudaMemcpyHostToDevice);
}
FrTensor::FrTensor(const FrTensor& t): size(t.size), gpu_data(nullptr)
{
cudaMalloc((void **)&gpu_data, sizeof(Fr_t) * size);
cudaMemcpy(gpu_data, t.gpu_data, sizeof(Fr_t) * size, cudaMemcpyDeviceToDevice);
}
FrTensor::~FrTensor()
{
cudaFree(gpu_data);
gpu_data = nullptr;
}
void FrTensor::save(const string& filename) const
{
savebin(filename, gpu_data, sizeof(Fr_t) * size);
}
KERNEL void scalar_to_int_kernel(const Fr_t* scalar_ptr, int* int_ptr, uint n)
{
const uint gid = GET_GLOBAL_ID();
if (gid >= n) return;
int_ptr[gid] = scalar_to_int(scalar_ptr[gid]);
}
void FrTensor::save_int(const string& filename) const
{
int* int_gpu_data;
cudaMalloc((void **)&int_gpu_data, sizeof(int) * size);
scalar_to_int_kernel<<<(size+FrNumThread-1)/FrNumThread,FrNumThread>>>(gpu_data, int_gpu_data, size);
cudaDeviceSynchronize();
savebin(filename, int_gpu_data, sizeof(int) * size);
cudaFree(int_gpu_data);
}
KERNEL void scalar_to_long_kernel(const Fr_t* scalar_ptr, long* long_ptr, uint n)
{
const uint gid = GET_GLOBAL_ID();
if (gid >= n) return;
long_ptr[gid] = scalar_to_long(scalar_ptr[gid]);
}
void FrTensor::save_long(const string& filename) const
{
long* long_gpu_data;
cudaMalloc((void **)&long_gpu_data, sizeof(long) * size);
scalar_to_long_kernel<<<(size+FrNumThread-1)/FrNumThread,FrNumThread>>>(gpu_data, long_gpu_data, size);
cudaDeviceSynchronize();
savebin(filename, long_gpu_data, sizeof(long) * size);
cudaFree(long_gpu_data);
}
FrTensor::FrTensor(const string& filename): size(findsize(filename) / sizeof(Fr_t)), gpu_data(nullptr)
{
cudaMalloc((void **)&gpu_data, sizeof(Fr_t) * size);
loadbin(filename, gpu_data, sizeof(Fr_t) * size);
}
FrTensor FrTensor::from_int_bin(const string& filename)
{
auto size = findsize(filename) / sizeof(int);
FrTensor out(size);
int* int_gpu_data;
cudaMalloc((void **)&int_gpu_data, sizeof(int) * size);
loadbin(filename, int_gpu_data, sizeof(int) * size);
int_to_scalar_kernel<<<(size+FrNumThread-1)/FrNumThread,FrNumThread>>>(int_gpu_data, out.gpu_data, size);
cudaFree(int_gpu_data);
return out;
}
FrTensor FrTensor::from_long_bin(const string& filename)
{
auto size = findsize(filename) / sizeof(long);
FrTensor out(size);
long* long_gpu_data;
cudaMalloc((void **)&long_gpu_data, sizeof(int) * size);
loadbin(filename, long_gpu_data, sizeof(int) * size);
long_to_scalar_kernel<<<(size+FrNumThread-1)/FrNumThread,FrNumThread>>>(long_gpu_data, out.gpu_data, size);
cudaFree(long_gpu_data);
return out;
}
Fr_t FrTensor::operator()(uint idx) const
{
Fr_t out;
cudaMemcpy(&out, gpu_data + idx, sizeof(Fr_t), cudaMemcpyDeviceToHost);
return out;
}
FrTensor FrTensor::operator+(const FrTensor& t) const
{
if (size != t.size) throw std::runtime_error("Incompatible dimensions");
FrTensor out(size);
Fr_elementwise_add<<<(size+FrNumThread-1)/FrNumThread,FrNumThread>>>(gpu_data, t.gpu_data, out.gpu_data, size);
cudaDeviceSynchronize();
return out;
}
FrTensor FrTensor::operator+(const Fr_t& x) const
{
FrTensor out(size);
Fr_broadcast_add<<<(size+FrNumThread-1)/FrNumThread,FrNumThread>>>(gpu_data, x, out.gpu_data, size);
cudaDeviceSynchronize();
return out;
}
FrTensor& FrTensor::operator+=(const FrTensor& t)
{
if (size != t.size) throw std::runtime_error("Incompatible dimensions");
Fr_elementwise_add<<<(size+FrNumThread-1)/FrNumThread,FrNumThread>>>(gpu_data, t.gpu_data, gpu_data, size);
cudaDeviceSynchronize();
return *this;
}
FrTensor& FrTensor::operator+=(const Fr_t& x)
{
Fr_broadcast_add<<<(size+FrNumThread-1)/FrNumThread,FrNumThread>>>(gpu_data, x, gpu_data, size);
cudaDeviceSynchronize();
return *this;
}
FrTensor FrTensor::operator-() const
{
FrTensor out(size);
Fr_elementwise_neg<<<(size+FrNumThread-1)/FrNumThread,FrNumThread>>>(gpu_data, out.gpu_data, size);
cudaDeviceSynchronize();
return out;
}
FrTensor FrTensor::operator-(const FrTensor& t) const
{
if (size != t.size) throw std::runtime_error("Incompatible dimensions");
FrTensor out(size);
Fr_elementwise_sub<<<(size+FrNumThread-1)/FrNumThread,FrNumThread>>>(gpu_data, t.gpu_data, out.gpu_data, size);
cudaDeviceSynchronize();
return out;
}
FrTensor FrTensor::operator-(const Fr_t& x) const
{
FrTensor out(size);
Fr_broadcast_sub<<<(size+FrNumThread-1)/FrNumThread,FrNumThread>>>(gpu_data, x, out.gpu_data, size);
cudaDeviceSynchronize();
return out;
}
FrTensor& FrTensor::operator-=(const FrTensor& t)
{
if (size != t.size) throw std::runtime_error("Incompatible dimensions");
Fr_elementwise_sub<<<(size+FrNumThread-1)/FrNumThread,FrNumThread>>>(gpu_data, t.gpu_data, gpu_data, size);
cudaDeviceSynchronize();
return *this;
}
FrTensor& FrTensor::operator-=(const Fr_t& x)
{
Fr_broadcast_sub<<<(size+FrNumThread-1)/FrNumThread,FrNumThread>>>(gpu_data, x, gpu_data, size);
cudaDeviceSynchronize();
return *this;
}
FrTensor& FrTensor::mont()
{
Fr_elementwise_mont<<<(size+FrNumThread-1)/FrNumThread,FrNumThread>>>(gpu_data, gpu_data, size);
cudaDeviceSynchronize();
return *this;
}
FrTensor& FrTensor::unmont()
{
Fr_elementwise_unmont<<<(size+FrNumThread-1)/FrNumThread,FrNumThread>>>(gpu_data, gpu_data, size);
cudaDeviceSynchronize();
return *this;
}
FrTensor FrTensor::operator*(const FrTensor& t) const
{
if (size != t.size) throw std::runtime_error("Incompatible dimensions");
FrTensor out(size);
Fr_elementwise_mul<<<(size+FrNumThread-1)/FrNumThread,FrNumThread>>>(gpu_data, t.gpu_data, out.gpu_data, size);
cudaDeviceSynchronize();
return out;
}
FrTensor FrTensor::operator*(const Fr_t& x) const
{
FrTensor out(size);
Fr_broadcast_mul<<<(size+FrNumThread-1)/FrNumThread,FrNumThread>>>(gpu_data, x, out.gpu_data, size);
cudaDeviceSynchronize();
return out;
}
FrTensor& FrTensor::operator*=(const FrTensor& t)
{
if (size != t.size) throw std::runtime_error("Incompatible dimensions");
Fr_elementwise_mul<<<(size+FrNumThread-1)/FrNumThread,FrNumThread>>>(gpu_data, t.gpu_data, gpu_data, size);
cudaDeviceSynchronize();
return *this;
}
FrTensor& FrTensor::operator*=(const Fr_t& x)
{
Fr_broadcast_mul<<<(size+FrNumThread-1)/FrNumThread,FrNumThread>>>(gpu_data, x, gpu_data, size);
cudaDeviceSynchronize();
return *this;
}
FrTensor& FrTensor::operator=(const FrTensor& t)
{
if (size != t.size) throw std::runtime_error("operator=: Incompatible dimensions");
cudaMemcpy(gpu_data, t.gpu_data, sizeof(Fr_t) * size, cudaMemcpyDeviceToDevice);
return *this;
}
KERNEL void Fr_sum_reduction(GLOBAL Fr_t *arr, GLOBAL Fr_t *output, uint n) {
extern __shared__ Fr_t frsum_sdata[];
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x * (2 * blockDim.x) + threadIdx.x;
// Load input into shared memory
frsum_sdata[tid] = (i < n) ? arr[i] : blstrs__scalar__Scalar_ZERO;
if (i + blockDim.x < n) frsum_sdata[tid] = blstrs__scalar__Scalar_add(frsum_sdata[tid], arr[i + blockDim.x]);
__syncthreads();
// Reduction in shared memory
for (unsigned int s = blockDim.x / 2; s > 0; s >>= 1) {
if (tid < s) {
frsum_sdata[tid] = blstrs__scalar__Scalar_add(frsum_sdata[tid], frsum_sdata[tid + s]);
}
__syncthreads();
}
// Write the result for this block to output
if (tid == 0) output[blockIdx.x] = frsum_sdata[0];
}
Fr_t FrTensor::sum() const
{
Fr_t *ptr_input, *ptr_output;
uint curSize = size;
cudaMalloc((void**)&ptr_input, size * sizeof(Fr_t));
cudaMalloc((void**)&ptr_output, ((size + 1)/ 2) * sizeof(Fr_t));
cudaMemcpy(ptr_input, gpu_data, size * sizeof(Fr_t), cudaMemcpyDeviceToDevice);
while(curSize > 1) {
uint gridSize = (curSize + FrNumThread - 1) / FrNumThread;
Fr_sum_reduction<<<gridSize, FrNumThread, FrSharedMemorySize>>>(ptr_input, ptr_output, curSize);
cudaDeviceSynchronize(); // Ensure kernel completion before proceeding
// Swap pointers. Use the output from this step as the input for the next step.
Fr_t *temp = ptr_input;
ptr_input = ptr_output;
ptr_output = temp;
curSize = gridSize; // The output size is equivalent to the grid size used in the kernel launch
}
Fr_t finalSum;
cudaMemcpy(&finalSum, ptr_input, sizeof(Fr_t), cudaMemcpyDeviceToHost);
cudaFree(ptr_input);
cudaFree(ptr_output);
return finalSum;
}
Fr_t FrTensor::operator()(const vector<Fr_t>& u) const
{
uint log_dim = u.size();
if (size <= ((1 << log_dim) / 2) || size > (1 << log_dim)) throw std::runtime_error("Incompatible dimensions");
return Fr_me(*this, u.begin(), u.end());
}
KERNEL void random_int_kernel(Fr_t* gpu_data, uint num_bits, uint n, unsigned long seed)
{
int tid = blockIdx.x * blockDim.x + threadIdx.x;
curandState state;
// Initialize the RNG state for this thread.
curand_init(seed, tid, 0, &state);
if (tid < n) {
gpu_data[tid] = {curand(&state) & ((1U << num_bits) - 1), 0, 0, 0, 0, 0, 0, 0};
gpu_data[tid] = blstrs__scalar__Scalar_sub(gpu_data[tid], {1U << (num_bits - 1), 0, 0, 0, 0, 0, 0, 0});
}
}
FrTensor FrTensor::random_int(uint size, uint num_bits)
{
// Create a random device
std::random_device rd;
// Initialize a 64-bit Mersenne Twister random number generator
// with a seed from the random device
std::mt19937_64 rng(rd());
// Define the range for your unsigned long numbers
std::uniform_int_distribution<unsigned long> distribution(0, ULONG_MAX);
// Generate a random unsigned long number
unsigned long seed = distribution(rng);
FrTensor out(size);
random_int_kernel<<<(size+FrNumThread-1)/FrNumThread,FrNumThread>>>(out.gpu_data, num_bits, size, seed);
cudaDeviceSynchronize();
return out;
}
KERNEL void random_kernel(Fr_t* gpu_data, uint n, unsigned long seed)
{
int tid = blockIdx.x * blockDim.x + threadIdx.x;
curandState state;
if (tid > n) return;
// Initialize the RNG state for this thread.
curand_init(seed, tid, 0, &state);
gpu_data[tid] = {curand(&state), curand(&state), curand(&state), curand(&state), curand(&state), curand(&state), curand(&state), curand(&state) % 1944954707};
}
FrTensor FrTensor::random(uint size)
{
// Create a random device
std::random_device rd;
// Initialize a 64-bit Mersenne Twister random number generator
// with a seed from the random device
std::mt19937_64 rng(rd());
// Define the range for your unsigned long numbers
std::uniform_int_distribution<unsigned long> distribution(0, ULONG_MAX);
// Generate a random unsigned long number
unsigned long seed = distribution(rng);
FrTensor out(size);
random_kernel<<<(size+FrNumThread-1)/FrNumThread,FrNumThread>>>(out.gpu_data, size, seed);
cudaDeviceSynchronize();
return out;
}
FrTensor FrTensor::partial_me(const vector<Fr_t>& u, uint window_size) const
{
if (size <= window_size * (1 << (u.size() - 1))) throw std::runtime_error("partial_me: Incompatible dimensions");
return Fr_partial_me(*this, u.begin(), u.end(), window_size);
}
KERNEL void Fr_multi_dim_partial_me_step(GLOBAL Fr_t* arr_in, GLOBAL Fr_t *arr_out, Fr_t x, uint other_dims, uint in_cur_dim, uint out_cur_dim, uint window_size)
{
const uint gid = GET_GLOBAL_ID();
if (gid >= other_dims * out_cur_dim * window_size) return;
uint ind0 = gid / (out_cur_dim * window_size);
uint ind1 = (gid / window_size) % out_cur_dim;
uint ind2 = gid % window_size;
x = blstrs__scalar__Scalar_mont(x);
uint gid0 = ind0 * in_cur_dim * window_size + (2 * ind1) * window_size + ind2;
if (2 * ind1 + 1 < in_cur_dim)
{
uint gid1 = ind0 * in_cur_dim * window_size + (2 * ind1 + 1) * window_size + ind2;
arr_out[gid] = blstrs__scalar__Scalar_add(arr_in[gid0], blstrs__scalar__Scalar_mul(x, blstrs__scalar__Scalar_sub(arr_in[gid1], arr_in[gid0])));
}
else
{
arr_out[gid] = blstrs__scalar__Scalar_sub(arr_in[gid0], blstrs__scalar__Scalar_mul(x, arr_in[gid0]));
}
}
FrTensor Fr_partial_me(const FrTensor& t, vector<Fr_t>::const_iterator begin, vector<Fr_t>::const_iterator end, uint cur_dim, uint window_size)
{
if (begin >= end) return t;
if (t.size % (cur_dim * window_size) != 0) throw std::runtime_error("t.size % (cur_dim * window_size) != 0");
uint cur_dim_out = (cur_dim + 1) / 2;
uint other_dims = t.size / (cur_dim * window_size);
uint out_size = other_dims * cur_dim_out * window_size;
FrTensor t_new(out_size);
Fr_multi_dim_partial_me_step<<<(t_new.size+FrNumThread-1)/FrNumThread,FrNumThread>>>(t.gpu_data, t_new.gpu_data, *begin, other_dims, cur_dim, cur_dim_out, window_size);
cudaDeviceSynchronize();
return Fr_partial_me(t_new, begin + 1, end, cur_dim_out, window_size);
}
FrTensor FrTensor::partial_me(const vector<Fr_t>& u, uint cur_dim, uint window_size) const
{
if (cur_dim <= ((1<<u.size()) >> 1)) throw std::runtime_error("cur_dim <= ((1<<u.size()) >> 1)");
if (cur_dim > (1<<u.size())) throw std::runtime_error("cur_dim > (1<<u.size())");
return Fr_partial_me(*this, u.begin(), u.end(), cur_dim, window_size);
}
KERNEL void Fr_split_by_window(GLOBAL Fr_t *arr_in, GLOBAL Fr_t *arr0, GLOBAL Fr_t *arr1, uint in_size, uint out_size, uint window_size)
{
const uint gid = GET_GLOBAL_ID();
if (gid >= out_size) return;
uint window_id = gid / window_size;
uint idx_in_window = gid % window_size;
uint gid0 = 2 * window_id * window_size + idx_in_window;
uint gid1 = (2 * window_id + 1) * window_size + idx_in_window;
arr0[gid] = (gid0 < in_size) ? arr_in[gid0] : blstrs__scalar__Scalar_ZERO;
arr1[gid] = (gid1 < in_size) ? arr_in[gid1] : blstrs__scalar__Scalar_ZERO;
}
std::pair<FrTensor, FrTensor> FrTensor::split(uint window_size) const
{
if (window_size < 1 || window_size >= size) throw std::runtime_error("Invalid window size.");
uint num_window_in = (size + window_size - 1) / window_size;
uint num_window_out = (num_window_in + 1) / 2;
uint out_size = num_window_out * window_size; // TODO: BUGGY
std::pair<FrTensor, FrTensor> out {out_size, out_size};
Fr_split_by_window<<<(out_size+FrNumThread-1)/FrNumThread,FrNumThread>>>(gpu_data, out.first.gpu_data, out.second.gpu_data, size, out_size, window_size);
cudaDeviceSynchronize();
return out;
}
// ALERT: CONVERTED TO WORK FOR NON-MONTGOMERY FORM
KERNEL void Fr_me_step(GLOBAL Fr_t *arr_in, GLOBAL Fr_t *arr_out, Fr_t x, uint in_size, uint out_size)
{
const uint gid = GET_GLOBAL_ID();
if (gid >= out_size) return;
uint gid0 = 2 * gid;
uint gid1 = 2 * gid + 1;
x = blstrs__scalar__Scalar_mont(x);
if (gid1 < in_size) arr_out[gid] = blstrs__scalar__Scalar_add(arr_in[gid0], blstrs__scalar__Scalar_mul(x, blstrs__scalar__Scalar_sub(arr_in[gid1], arr_in[gid0])));
else if (gid0 < in_size) arr_out[gid] = blstrs__scalar__Scalar_sub(arr_in[gid0], blstrs__scalar__Scalar_mul(x, arr_in[gid0]));
else arr_out[gid] = blstrs__scalar__Scalar_ZERO;
}
Fr_t Fr_me(const FrTensor& t, vector<Fr_t>::const_iterator begin, vector<Fr_t>::const_iterator end)
{
FrTensor t_new((t.size + 1) / 2);
if (begin >= end) return t(0);
Fr_me_step<<<(t_new.size+FrNumThread-1)/FrNumThread,FrNumThread>>>(t.gpu_data, t_new.gpu_data, *begin, t.size, t_new.size);
cudaDeviceSynchronize();
return Fr_me(t_new, begin + 1, end);
}
// ALERT: CONVERTED TO WORK FOR NON-MONTGOMERY FORM
KERNEL void Fr_partial_me_step(GLOBAL Fr_t *arr_in, GLOBAL Fr_t *arr_out, Fr_t x, uint in_size, uint out_size, uint window_size)
{
const uint gid = GET_GLOBAL_ID();
if (gid >= out_size) return;
uint window_id = gid / window_size;
uint idx_in_window = gid % window_size;
uint gid0 = 2 * window_id * window_size + idx_in_window;
uint gid1 = (2 * window_id + 1) * window_size + idx_in_window;
x = blstrs__scalar__Scalar_mont(x);
if (gid1 < in_size) arr_out[gid] = blstrs__scalar__Scalar_add(arr_in[gid0], blstrs__scalar__Scalar_mul(x, blstrs__scalar__Scalar_sub(arr_in[gid1], arr_in[gid0])));
else if (gid0 < in_size) arr_out[gid] = blstrs__scalar__Scalar_sub(arr_in[gid0], blstrs__scalar__Scalar_mul(x, arr_in[gid0]));
else arr_out[gid] = blstrs__scalar__Scalar_ZERO;
}
FrTensor Fr_partial_me(const FrTensor& t, vector<Fr_t>::const_iterator begin, vector<Fr_t>::const_iterator end, uint window_size)
{
if (begin >= end) return t;
uint num_windows = (t.size + 2 * window_size - 1) / (2 * window_size);
uint out_size = window_size * num_windows;
FrTensor t_new(out_size);
Fr_partial_me_step<<<(t_new.size+FrNumThread-1)/FrNumThread,FrNumThread>>>(t.gpu_data, t_new.gpu_data, *begin, t.size, t_new.size, window_size);
cudaDeviceSynchronize();
return Fr_partial_me(t_new, begin + 1, end, window_size);
}
Fr_t FrTensor::multi_dim_me(const vector<vector<Fr_t>>& us, const vector<uint>& shape) const
{
if (shape.size() != us.size()) throw std::runtime_error("Incompatible dimensions");
if (shape.size() == 0) return (*this)(0);
else if (shape.size() == 1) return (*this)(us[0]);
else {
FrTensor t_new = this -> partial_me(us.back(), shape.back(), 1);
return t_new.multi_dim_me({us.begin(), us.end() - 1}, {shape.begin(), shape.end() - 1});
}
}
ostream& operator<<(ostream& os, const FrTensor& A)
{
os << '[';
for (uint i = 0; i < A.size - 1; ++ i) os << A(i) << '\n';
os << A(A.size-1) << ']';
return os;
}
// Input: x is in montgomery form
// Output: x^{-1} = x^{P-2} in montgomery form
DEVICE Fr_t modular_inverse(Fr_t x){
Fr_t P_sub2 = blstrs__scalar__Scalar_sub(blstrs__scalar__Scalar_P, {2,0,0,0,0,0,0,0});
// for each bit of P_sub2, compute x^i
Fr_t res = blstrs__scalar__Scalar_ONE;
for(int i = 0; i < blstrs__scalar__Scalar_LIMBS -1 ; i++){
uint32_t exponent = P_sub2.val[i];
for(int j = 0; j < blstrs__scalar__Scalar_LIMB_BITS; j++){
if(exponent & 1){
res = blstrs__scalar__Scalar_mul(res, x);
}
exponent = exponent >> 1;
x = blstrs__scalar__Scalar_sqr(x);
}
}
uint32_t exponent = P_sub2.val[blstrs__scalar__Scalar_LIMBS - 1];
while(exponent > 0){
if(exponent & 1){
res = blstrs__scalar__Scalar_mul(res, x);
}
exponent = exponent >> 1;
x = blstrs__scalar__Scalar_sqr(x);
}
return res;
}
DEVICE Fr_t ulong_to_scalar(unsigned long num)
{
return {static_cast<uint>(num), static_cast<uint>(num >> 32), 0, 0, 0, 0, 0, 0};
}
DEVICE Fr_t long_to_scalar(long num)
{
if (num >= 0) return ulong_to_scalar(static_cast<unsigned long>(num));
else return blstrs__scalar__Scalar_sub({0,0,0,0,0,0,0,0}, ulong_to_scalar(static_cast<unsigned long>(-num)));
}
DEVICE Fr_t uint_to_scalar(uint num)
{
return {num, 0, 0, 0, 0, 0, 0, 0};
}
DEVICE Fr_t int_to_scalar(int num)
{
if (num >= 0) return uint_to_scalar(static_cast<uint>(num));
else return blstrs__scalar__Scalar_sub({0,0,0,0,0,0,0,0}, uint_to_scalar(static_cast<uint>(-num)));
}
KERNEL void int_to_scalar_kernel(int* int_ptr, Fr_t* scalar_ptr, uint n)
{
const uint gid = GET_GLOBAL_ID();
if (gid >= n) return;
scalar_ptr[gid] = int_to_scalar(int_ptr[gid]);
}
KERNEL void long_to_scalar_kernel(long* long_ptr, Fr_t* scalar_ptr, uint n)
{
const uint gid = GET_GLOBAL_ID();
if (gid >= n) return;
scalar_ptr[gid] = long_to_scalar(long_ptr[gid]);
}
FrTensor::FrTensor(uint size, const int* cpu_data): size(size), gpu_data(nullptr)
{
cudaMalloc((void **)&gpu_data, sizeof(Fr_t) * size);
int* int_gpu_data;
cudaMalloc((void **)&int_gpu_data, sizeof(int) * size);
cudaMemcpy(int_gpu_data, cpu_data, sizeof(int) * size, cudaMemcpyHostToDevice);
int_to_scalar_kernel<<<(size+FrNumThread-1)/FrNumThread,FrNumThread>>>(int_gpu_data, gpu_data, size);
cudaDeviceSynchronize();
cudaFree(int_gpu_data);
}
FrTensor::FrTensor(uint size, const long* cpu_data): size(size), gpu_data(nullptr)
{
cudaMalloc((void **)&gpu_data, sizeof(Fr_t) * size);
long* long_gpu_data;
cudaMalloc((void **)&long_gpu_data, sizeof(long) * size);
cudaMemcpy(long_gpu_data, cpu_data, sizeof(long) * size, cudaMemcpyHostToDevice);
long_to_scalar_kernel<<<(size+FrNumThread-1)/FrNumThread,FrNumThread>>>(long_gpu_data, gpu_data, size);
cudaDeviceSynchronize();
cudaFree(long_gpu_data);
}
DEVICE Fr_t float_to_scalar(float x, unsigned long scaling_factor)
{
x = x * scaling_factor;
if (x >= 0) return long_to_scalar(static_cast<long>(x + 0.5));
else return long_to_scalar(static_cast<long>(x - 0.5));
}
KERNEL void float_to_scalar_kernel(float* float_ptr, Fr_t* scalar_ptr, unsigned long scaling_factor, uint n)
{
const uint gid = GET_GLOBAL_ID();
if (gid >= n) return;
scalar_ptr[gid] = float_to_scalar(float_ptr[gid], scaling_factor);
}
DEVICE Fr_t double_to_scalar(double x, unsigned long scaling_factor)
{
x = x * scaling_factor;
if (x >= 0) return long_to_scalar(static_cast<long>(x + 0.5));
else return long_to_scalar(static_cast<long>(x - 0.5));
}
KERNEL void double_to_scalar_kernel(double* double_ptr, Fr_t* scalar_ptr, unsigned long scaling_factor, uint n)
{
const uint gid = GET_GLOBAL_ID();
if (gid >= n) return;
scalar_ptr[gid] = double_to_scalar(double_ptr[gid], scaling_factor);
}
FrTensor::FrTensor(uint size, const float* cpu_data, unsigned long scaling_factor): size(size), gpu_data(nullptr)
{
cudaMalloc((void **)&gpu_data, sizeof(Fr_t) * size);
float* float_gpu_data;
cudaMalloc((void **)&float_gpu_data, sizeof(float) * size);
cudaMemcpy(float_gpu_data, cpu_data, sizeof(float) * size, cudaMemcpyHostToDevice);
float_to_scalar_kernel<<<(size+FrNumThread-1)/FrNumThread,FrNumThread>>>(float_gpu_data, gpu_data, scaling_factor, size);
cudaDeviceSynchronize();
cudaFree(float_gpu_data);
}
FrTensor::FrTensor(uint size, const double* cpu_data, unsigned long scaling_factor): size(size), gpu_data(nullptr)
{
cudaMalloc((void **)&gpu_data, sizeof(Fr_t) * size);
double* double_gpu_data;
cudaMalloc((void **)&double_gpu_data, sizeof(double) * size);
cudaMemcpy(double_gpu_data, cpu_data, sizeof(double) * size, cudaMemcpyHostToDevice);
double_to_scalar_kernel<<<(size+FrNumThread-1)/FrNumThread,FrNumThread>>>(double_gpu_data, gpu_data, scaling_factor, size);
cudaDeviceSynchronize();
cudaFree(double_gpu_data);
}
KERNEL void FrTensor_pad_kernel(GLOBAL Fr_t* arr_in, GLOBAL Fr_t* arr_out, uint N, uint last_dim_in, uint last_dim_out, Fr_t pad_val)
{
const uint gid = GET_GLOBAL_ID();
if (gid >= N) return;
auto gid0 = gid / last_dim_out, gid1 = gid % last_dim_out;
if (gid1 >= last_dim_in) arr_out[gid] = pad_val;
else arr_out[gid] = arr_in[gid0 * last_dim_in + gid1];
}
FrTensor FrTensor::pad(const vector<uint>& shape, const Fr_t& pad_val) const
{
uint cum_shape = 1;
for (auto& s: shape) cum_shape *= s;
if (cum_shape != size) throw std::runtime_error("pad: cum_shape != size");
uint last_dim = shape.back();
uint last_dim_padded = 1 << ceilLog2(last_dim);
FrTensor out((cum_shape / last_dim) * last_dim_padded);
FrTensor_pad_kernel<<<(out.size+FrNumThread-1)/FrNumThread,FrNumThread>>>(gpu_data, out.gpu_data, out.size, last_dim, last_dim_padded, pad_val);
cudaDeviceSynchronize();
if (shape.size() == 1) return out;
else {
vector<uint> shape_new(shape.begin(), shape.end() - 1);
shape_new.back() *= last_dim_padded;
return out.pad(shape_new, pad_val);
}
}
KERNEL void matrixMultiplyOptimized(Fr_t* A, Fr_t* B, Fr_t* C, int rowsA, int colsA, int colsB) {
__shared__ Fr_t A_tile[TILE_WIDTH][TILE_WIDTH];
__shared__ Fr_t B_tile[TILE_WIDTH][TILE_WIDTH];
int row = blockIdx.y * TILE_WIDTH + threadIdx.y;
int col = blockIdx.x * TILE_WIDTH + threadIdx.x;
Fr_t sum = blstrs__scalar__Scalar_ZERO;
// Loop over the tiles of A and B required to compute the block sub-matrix
for (int t = 0; t < (colsA - 1)/TILE_WIDTH + 1; ++t) {
// Load the matrices from device memory to shared memory; each thread loads
// one element of each matrix
if (row < rowsA && t*TILE_WIDTH + threadIdx.x < colsA) {
A_tile[threadIdx.y][threadIdx.x] = A[row*colsA + t*TILE_WIDTH + threadIdx.x];
} else {
A_tile[threadIdx.y][threadIdx.x] = blstrs__scalar__Scalar_ZERO;
}
if (t*TILE_WIDTH + threadIdx.y < colsA && col < colsB) {
B_tile[threadIdx.y][threadIdx.x] = B[(t*TILE_WIDTH + threadIdx.y)*colsB + col];
} else {
B_tile[threadIdx.y][threadIdx.x] = blstrs__scalar__Scalar_ZERO;
}
// Synchronize to ensure all the data in shared memory is available
__syncthreads();
// Multiply the two matrices together;
for (int k = 0; k < TILE_WIDTH; ++k) {
sum = blstrs__scalar__Scalar_add(sum, blstrs__scalar__Scalar_mul(A_tile[threadIdx.y][k], B_tile[k][threadIdx.x]));
}
// Synchronize to ensure that the preceding computation is done before loading two new sub-matrices of A and B in the next iteration
__syncthreads();
}
if (row < rowsA && col < colsB) {
C[row*colsB + col] = blstrs__scalar__Scalar_mont(sum);
}
}
FrTensor FrTensor::matmul(const FrTensor& x, const FrTensor& y, uint M, uint N, uint P)
{
if (x.size != M * N || y.size != N * P) throw std::runtime_error("matmul: incompatible dimensions");
FrTensor out(M * P);
matrixMultiplyOptimized<<<dim3((P-1)/TILE_WIDTH + 1, (M-1)/TILE_WIDTH + 1), dim3(TILE_WIDTH, TILE_WIDTH)>>>(x.gpu_data, y.gpu_data, out.gpu_data, M, N, P);
cudaDeviceSynchronize();
return out;
}
// implement a kernel to transpose a matrix of size M by N
KERNEL void transpose_kernel(Fr_t* in_ptr, Fr_t* out_ptr, int M, int N) {
uint gid = GET_GLOBAL_ID();
if (gid >= M*N) return;
int row = gid / N;
int col = gid % N;
out_ptr[col*M + row] = in_ptr[row*N + col];
}
FrTensor FrTensor::transpose(uint M, uint N) const
{
if (size != M * N) throw std::runtime_error("transpose: incompatible dimensions");
FrTensor out(N * M);
transpose_kernel<<<(M*N+FrNumThread-1)/FrNumThread,FrNumThread>>>(gpu_data, out.gpu_data, M, N);
cudaDeviceSynchronize();
return out;
}
FrTensor catTensors(const vector<FrTensor>& vec){
// make sure all tensors have the same size
uint size = vec[0].size;
for (uint i = 1; i < vec.size(); i++){
if (vec[i].size != size){
cout << "tensor size does not match: vec[0].size = "<<size<<", vec["<<i<<"].size = "<<vec[i].size<<"!" << endl;
throw std::runtime_error("tensor size does not match!");
}
}
uint num = vec.size();
FrTensor out(num * size);
// copy data to out
for (uint i = 0; i < num; i++){
cudaMemcpy(out.gpu_data + i * size, vec[i].gpu_data, size * sizeof(Fr_t), cudaMemcpyDeviceToDevice);
}
return out;
}
DEVICE unsigned int scalar_to_uint(Fr_t x)
{
if (!x.val[7] && !x.val[6] && !x.val[5] && !x.val[4] && !x.val[3] && !x.val[2] && !x.val[1]) return static_cast<unsigned int>(x.val[0]);
return 0U;
}
DEVICE int scalar_to_int(Fr_t x)
{
if (!x.val[7] && !x.val[6] && !x.val[5] && !x.val[4] && !x.val[3] && !x.val[2] && !x.val[1] && !(x.val[0] >> 31)) return static_cast<int>(scalar_to_uint(x));
else return -static_cast<int>(scalar_to_uint(blstrs__scalar__Scalar_sub({0,0,0,0,0,0,0,0}, x)));
}
DEVICE unsigned long scalar_to_ulong(Fr_t x)
{
if (!x.val[7] && !x.val[6] && !x.val[5] && !x.val[4] && !x.val[3] && !x.val[2]) return static_cast<unsigned long>(x.val[0]) | (static_cast<unsigned long>(x.val[1]) << 32);
return 0UL;
}
DEVICE long scalar_to_long(Fr_t x)
{
if (!x.val[7] && !x.val[6] && !x.val[5] && !x.val[4] && !x.val[3] && !x.val[2] && !(x.val[1] >> 31)) return static_cast<long>(scalar_to_ulong(x));
else return -static_cast<long>(scalar_to_ulong(blstrs__scalar__Scalar_sub({0,0,0,0,0,0,0,0}, x)));
}
FrTensor FrTensor::trunc(uint begin_idx, uint end_idx) const
{
if (begin_idx >= end_idx || end_idx > size) throw std::runtime_error("trunc: invalid indices");
FrTensor out(end_idx - begin_idx);
cudaMemcpy(out.gpu_data, gpu_data + begin_idx, out.size * sizeof(Fr_t), cudaMemcpyDeviceToDevice);
return out;
}