forked from jvhs0706/zkllm-ccs2024
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproof.cu
241 lines (207 loc) · 10.2 KB
/
proof.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#include "proof.cuh"
void verifyWeightClaim(const Weight& w, const Claim& c)
{
vector<Fr_t> u_cat = concatenate(vector<vector<Fr_t>>({c.u[1], c.u[0]}));
auto w_padded = w.weight.pad({w.in_dim, w.out_dim});
auto opening = w.generator.open(w_padded, w.com, u_cat);
if (opening != c.claim) throw std::runtime_error("verifyWeightClaim: opening != c.claim");
cout << "Opening complete" << endl;
}
KERNEL void Fr_ip_sc_step(GLOBAL Fr_t *a, GLOBAL Fr_t *b, GLOBAL Fr_t *out0, GLOBAL Fr_t *out1, GLOBAL Fr_t *out2, uint in_size, uint out_size)
{
const uint gid = GET_GLOBAL_ID();
if (gid >= out_size) return;
uint gid0 = 2 * gid;
uint gid1 = 2 * gid + 1;
Fr_t a0 = (gid0 < in_size) ? a[gid0] : blstrs__scalar__Scalar_ZERO;
Fr_t b0 = (gid0 < in_size) ? b[gid0] : blstrs__scalar__Scalar_ZERO;
Fr_t a1 = (gid1 < in_size) ? a[gid1] : blstrs__scalar__Scalar_ZERO;
Fr_t b1 = (gid1 < in_size) ? b[gid1] : blstrs__scalar__Scalar_ZERO;
out0[gid] = blstrs__scalar__Scalar_mul(a0, b0);
out1[gid] = blstrs__scalar__Scalar_add(blstrs__scalar__Scalar_mul(a0, blstrs__scalar__Scalar_sub(b1, b0)),
blstrs__scalar__Scalar_mul(b0, blstrs__scalar__Scalar_sub(a1, a0)));
out2[gid] = blstrs__scalar__Scalar_mul(blstrs__scalar__Scalar_sub(a1, a0), blstrs__scalar__Scalar_sub(b1, b0));
}
void Fr_ip_sc(const FrTensor& a, const FrTensor& b, vector<Fr_t>::const_iterator begin, vector<Fr_t>::const_iterator end, vector<Fr_t>& proof)
{
if (a.size != b.size) throw std::runtime_error("Incompatible dimensions");
if (begin >= end) {
proof.push_back(a(0));
proof.push_back(b(0));
return;
}
auto in_size = a.size;
auto out_size = (in_size + 1) / 2;
FrTensor out0(out_size), out1(out_size), out2(out_size);
Fr_ip_sc_step<<<(out_size+FrNumThread-1)/FrNumThread,FrNumThread>>>(a.gpu_data, b.gpu_data, out0.gpu_data, out1.gpu_data, out2.gpu_data, in_size, out_size);
cudaDeviceSynchronize();
proof.push_back(out0.sum());
proof.push_back(out1.sum());
proof.push_back(out2.sum());
FrTensor a_new(out_size), b_new(out_size);
Fr_me_step<<<(out_size+FrNumThread-1)/FrNumThread,FrNumThread>>>(a.gpu_data, a_new.gpu_data, *begin, in_size, out_size);
cudaDeviceSynchronize();
Fr_me_step<<<(out_size+FrNumThread-1)/FrNumThread,FrNumThread>>>(b.gpu_data, b_new.gpu_data, *begin, in_size, out_size);
cudaDeviceSynchronize();
Fr_ip_sc(a_new, b_new, begin + 1, end, proof);
}
vector<Fr_t> inner_product_sumcheck(const FrTensor& a, const FrTensor& b, vector<Fr_t> u)
{
vector<Fr_t> proof;
uint log_size = u.size();
if (a.size != b.size) throw std::runtime_error("Incompatible dimensions");
if (a.size <= (1 << (log_size))/2) throw std::runtime_error("Incompatible dimensions");
if (a.size > (1 << log_size)) throw std::runtime_error("Incompatible dimensions");
Fr_ip_sc(a, b, u.begin(), u.end(), proof);
return proof;
}
void Fr_hp_sc(const FrTensor& a, const FrTensor& b, vector<Fr_t>::const_iterator u_begin, vector<Fr_t>::const_iterator u_end, vector<Fr_t>::const_iterator v_begin, vector<Fr_t>::const_iterator v_end, vector<Fr_t>& proof)
{
if (a.size != b.size) throw std::runtime_error("Incompatible dimensions 5");
if (v_end - v_begin != u_end - u_begin) throw std::runtime_error("Incompatible dimensions 6");
if (v_begin >= v_end) {
proof.push_back(a(0));
proof.push_back(b(0));
return;
}
auto in_size = a.size;
auto out_size = (in_size + 1) / 2;
FrTensor out0(out_size), out1(out_size), out2(out_size);
Fr_ip_sc_step<<<(out_size+FrNumThread-1)/FrNumThread,FrNumThread>>>(a.gpu_data, b.gpu_data, out0.gpu_data, out1.gpu_data, out2.gpu_data, in_size, out_size);
cudaDeviceSynchronize();
vector<Fr_t> u_(u_begin + 1, u_end);
//std::cout << u_.size() << "\t" << out0.size << "\t" << out1.size << "\t" << out2.size << std::endl;
proof.push_back(out0(u_));
proof.push_back(out1(u_));
proof.push_back(out2(u_));
FrTensor a_new(out_size), b_new(out_size);
Fr_me_step<<<(out_size+FrNumThread-1)/FrNumThread,FrNumThread>>>(a.gpu_data, a_new.gpu_data, *v_begin, in_size, out_size);
cudaDeviceSynchronize();
Fr_me_step<<<(out_size+FrNumThread-1)/FrNumThread,FrNumThread>>>(b.gpu_data, b_new.gpu_data, *v_begin, in_size, out_size);
cudaDeviceSynchronize();
Fr_hp_sc(a_new, b_new, u_begin + 1, u_end, v_begin + 1, v_end, proof);
}
vector<Fr_t> hadamard_product_sumcheck(const FrTensor& a, const FrTensor& b, vector<Fr_t> u, vector<Fr_t> v)
{
vector<Fr_t> proof;
if (u.size() != v.size()) throw std::runtime_error("Incompatible dimensions 1");
uint log_size = u.size();
if (a.size != b.size) throw std::runtime_error("Incompatible dimensions 2");
if (a.size <= (1 << (log_size - 1))) throw std::runtime_error("Incompatible dimensions 3");
if (a.size > (1 << log_size)) throw std::runtime_error("Incompatible dimensions 4");
Fr_hp_sc(a, b, u.begin(), u.end(), v.begin(), v.end(), proof);
return proof;
}
KERNEL void Fr_bin_sc_step(GLOBAL Fr_t *a, GLOBAL Fr_t *out0, GLOBAL Fr_t *out1, GLOBAL Fr_t *out2, uint in_size, uint out_size)
{
const uint gid = GET_GLOBAL_ID();
if (gid >= out_size) return;
Fr_t a0 = (2 * gid < in_size) ? a[2 * gid] : blstrs__scalar__Scalar_ZERO;
Fr_t a1 = (2 * gid + 1 < in_size) ? a[2 * gid + 1] : blstrs__scalar__Scalar_ZERO;
out0[gid] = blstrs__scalar__Scalar_sub(blstrs__scalar__Scalar_mul(a0, a0), a0);
Fr_t diff = blstrs__scalar__Scalar_sub(a1, a0);
out1[gid] = blstrs__scalar__Scalar_sub(blstrs__scalar__Scalar_mul(blstrs__scalar__Scalar_double(a0), diff), diff);
out2[gid] = blstrs__scalar__Scalar_sqr(diff);
}
void Fr_bin_sc(const FrTensor& a, vector<Fr_t>::const_iterator u_begin, vector<Fr_t>::const_iterator u_end, vector<Fr_t>::const_iterator v_begin, vector<Fr_t>::const_iterator v_end, vector<Fr_t>& proof)
{
if (v_end - v_begin != u_end - u_begin) throw std::runtime_error("Incompatible dimensions 6");
if (v_begin >= v_end) {
proof.push_back(a(0));
return;
}
auto in_size = a.size;
auto out_size = (in_size + 1) / 2;
FrTensor out0(out_size), out1(out_size), out2(out_size);
Fr_bin_sc_step<<<(out_size+FrNumThread-1)/FrNumThread,FrNumThread>>>(a.gpu_data, out0.gpu_data, out1.gpu_data, out2.gpu_data, in_size, out_size);
cudaDeviceSynchronize();
vector<Fr_t> u_(u_begin + 1, u_end);
//std::cout << u_.size() << "\t" << out0.size << "\t" << out1.size << "\t" << out2.size << std::endl;
proof.push_back(out0(u_));
proof.push_back(out1(u_));
proof.push_back(out2(u_));
FrTensor a_new(out_size);
Fr_me_step<<<(out_size+FrNumThread-1)/FrNumThread,FrNumThread>>>(a.gpu_data, a_new.gpu_data, *v_begin, in_size, out_size);
cudaDeviceSynchronize();
Fr_bin_sc(a_new, u_begin + 1, u_end, v_begin + 1, v_end, proof);
}
vector<Fr_t> binary_sumcheck(const FrTensor& a, vector<Fr_t> u, vector<Fr_t> v)
{
vector<Fr_t> proof;
if (u.size() != v.size()) throw std::runtime_error("Incompatible dimensions");
uint log_size = u.size();
if (a.size <= (1 << (log_size))/2) throw std::runtime_error("Incompatible dimensions");
if (a.size > (1 << log_size)) throw std::runtime_error("Incompatible dimensions");
Fr_bin_sc(a, u.begin(), u.end(), v.begin(), v.end(), proof);
return proof;
}
// TODO: DEPRECATE ABOVE
bool operator==(const Fr_t& a, const Fr_t& b)
{
return (a.val[0] == b.val[0] && a.val[1] == b.val[1] && a.val[2] == b.val[2] && a.val[3] == b.val[3] && a.val[4] == b.val[4] && a.val[5] == b.val[5] && a.val[6] == b.val[6] && a.val[7] == b.val[7]);
}
bool operator!=(const Fr_t& a, const Fr_t& b)
{
return !(a == b);
}
KERNEL void hadamard_split_kernel(const Fr_t* in_ptr, Fr_t* out0, Fr_t* out1, uint N_out)
{
uint gid = GET_GLOBAL_ID();
if (gid >= N_out) return;
out0[gid] = in_ptr[gid];
out1[gid] = blstrs__scalar__Scalar_sub(in_ptr[gid + N_out], in_ptr[gid]);
}
KERNEL void hadamard_reduce_kernel(const Fr_t* in_ptr, Fr_t v, Fr_t* out, uint N_out)
{
uint gid = GET_GLOBAL_ID();
if (gid >= N_out) return;
auto v_mont = blstrs__scalar__Scalar_mont(v);
auto temp0 = in_ptr[gid];
auto temp1 = blstrs__scalar__Scalar_sub(in_ptr[gid + N_out], in_ptr[gid]);
out[gid] = blstrs__scalar__Scalar_add(blstrs__scalar__Scalar_mul(v_mont, temp1), temp0);
}
// Hadamard of multiple ones, Y and Xs should have been padded if their shapes are not a multiple of 2
Fr_t multi_hadamard_sumchecks(const Fr_t& claim, const vector<FrTensor>& Xs, const vector<Fr_t>& u, const vector<Fr_t>& v, vector<Polynomial>& proof)
{
auto N = Xs[0].size;
//ensure N is a power of 2
if (N == 1) return claim;
if ((N & (N - 1)) != 0) throw std::runtime_error("N is not a power of 2");
uint N_out = N >> 1;
vector<FrTensor> out;
FrTensor X0(N_out), X1(N_out);
hadamard_split_kernel<<<(N_out+FrNumThread-1)/FrNumThread,FrNumThread>>>(Xs[0].gpu_data, X0.gpu_data, X1.gpu_data, N_out);
cudaDeviceSynchronize();
out.push_back(X0);
out.push_back(X1);
for (uint i = 1; i < Xs.size(); ++ i)
{
if (Xs[i].size != N) throw std::runtime_error("Xs[i] size is not N");
FrTensor X0(N_out), X1(N_out);
hadamard_split_kernel<<<(N_out+FrNumThread-1)/FrNumThread,FrNumThread>>>(Xs[i].gpu_data, X0.gpu_data, X1.gpu_data, N_out);
cudaDeviceSynchronize();
out.push_back(out.back() * X1);
for (int j = i; j >= 1; -- j)
{
out[j] *= X0;
out[j] += out[j - 1] * X1;
}
out[0] *= X0;
}
vector<Fr_t> coefs;
vector<Fr_t> u_(u.begin(), u.end() - 1);
for (auto& x : out) coefs.push_back(x(u_));
proof.push_back(Polynomial(coefs));
auto p = proof.back() * Polynomial::eq(u.back());
if (claim != p({0, 0, 0, 0, 0, 0, 0, 0}) + p({1, 0, 0, 0, 0, 0, 0, 0})) throw std::runtime_error("multi_hadamard_sumchecks: claim != p(0) + p(1)");
auto new_claim = proof.back()(v.back());
vector<FrTensor> new_Xs;
for (auto& X: Xs)
{
FrTensor new_X(N_out);
hadamard_reduce_kernel<<<(N_out+FrNumThread-1)/FrNumThread,FrNumThread>>>(X.gpu_data, v.back(), new_X.gpu_data, N_out);
cudaDeviceSynchronize();
new_Xs.push_back(new_X);
}
return multi_hadamard_sumchecks(new_claim, new_Xs, u_, {v.begin(), v.end() - 1}, proof);
}