forked from respec/HSPsquared
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathACIDPH.py
893 lines (748 loc) · 22.8 KB
/
ACIDPH.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
''' Copyright (c) 2020 by RESPEC, INC.
Author: Robert Heaphy, Ph.D.
License: LGPL2
'''
ERRMSG: [warning, fatal error]
def ACIDPH (FSTCAL):
VOL = ts['VOL']
''' Simulate acid-base chemistry of mine drainage-affected reaches'''
ACFLAG = ui['ACFLAG'] # table-type acid-flags; returns 14 values AC01 to AC14
ACPARM = ui['ACPARM'] # table-type acid-parms; returns 7 values ACPARM1 to ACPARM7
ACCONC = ui['ACCONC'] # table-type acid-init; returns 7 values ACCONC1 to ACCON7
ACSTOR[:,1] = ACCONC[:] * VOL
ACPH = -LOG10(ACCONC(5))
# initialize all computed fluxes
ACFLX1[:,1] = 0.0 # dimension 7
ACFLX3[:,1] = 0.0 # dimension 7
ACFLX2[J,I,1] = 0.0 # I dimension 7, J dimension 5
ACFLXC[:,1] = 0.0 # dimension 10
ACFLXG[:,1] = 0.0 # dimension 3
#$ACINIT()
''' Initialize common block versions of number of chemicals, number
of cons, number of gquals, chemical names, and molec wts'''
'''
C IMETHOD - method
C NCHEMS - number of chemical species
C NCONS - number of CONServatives
C NGQLS - number of GQUALs
C INAMES - chemical names
C MOLWT - molecular weights of chemicals
'''
IMETHOD = ACFLAG[2]
IF IMETHOD == 1 OR IMETHOD == 2 OR IMETHOD == 3:
NCHEMS = 7
NCONS = 2
NGQLS = 0
CNAMES(1) = ' TOTAL AL+3'
CNAMES(2) = ' FREE AL+3'
CNAMES(3) = ' TOTAL FE+3'
CNAMES(4) = ' FREE FE+3'
CNAMES(5) = ' H+'
CNAMES(6) = ' TOT INORG C'
CNAMES(7) = ' ALKALINITY'
MOLWT(1) = 26.98
MOLWT(2) = 26.98
MOLWT(3) = 55.85
MOLWT(4) = 55.85
MOLWT(5) = 1.008
MOLWT(6) = 12.01
MOLWT(7) = 50.04
ELIF IMETHOD == 4:
NCHEMS = 5
NCONS = 1
NGQLS = 0
CNAMES(1) = ' Al+3'
CNAMES(2) = ' Fe+3'
CNAMES(3) = ' Mn+2'
CNAMES(4) = ' ACIDITY'
CNAMES(5) = ' H+'
MOLWT(1) = 26.98
MOLWT(2) = 55.85
MOLWT(3) = 54.94
MOLWT(4) = 50.04
MOLWT(5) = 1.008
END IF
DO 10 I= 1, NCHEMS
READ (CNAMES(I),1000) (INAMES(I,J),J=1,3)
# 10 CONTINUE
# check number of chemicals, cons, and gquals
NCNTMP = NUMCON
IF NUMCON == 0:
NCNTMP = -999
END IF
NGQTMP = NUMGQL
IF NUMGQL == 0:
NGQTMP = -999
END IF
IF NCNTMP > NCONS OR NGQTMP > NGQUAL:
# ERRMSG: error - must simulate at least as many species in cons and gqual as are used in acidph section
END IF
################## END PACID
IF FSTCAL == 1:
# check ratio of co2 to atmospheric co2
IF (ACPARM(1) <= 0.0 OR ACPARM(1) > 2.0:
ACPARM(1) = 1.0
# ERRMSG: warn that ratio has been changed
END IF
END IF
# get average depth
AVDEP = ts['AVDEP']
# convert depth to english units
IF (UUNITS == 1: # english
AVDEPE = AVDEP
ELSE: # metric to english
AVDEPE = AVDEP * 3.28
END IF
# get inflows from pad - must convert to molar units
DO 10 I= 1, NUMCHM
ACINFL(I) = ts['ACINFL' + str(I)]
10 CONTINUE
# advect all chemicals
DO 20 I= 1, NUMCHM
DACCNC(I) = ACCONC(I)
DACCNC(I), ACFLX1(I,1), ACFLX2(1,I,1) = ADVECT(ACINFL(I,1), DACCNC(I), ACFLX1(I,1), ACFLX2(1,I,1)
ACCONC(I) = DACCNC(I)
# 20 CONTINUE
IF VOL > 0.0: # water in reach, attempt to simulate processes
# get water temperature
TW = ??? # from constant, user param(ACPARM(3) if ACPARM <= 0), etc.
TWKELV = TW + 273.16
# check for sufficient water (at least 2 inches) in reach
IF AVDEPE > 0.17: # enough water to warrant simulation of chemical processes
# get constants used by all routines
DACPM1 = ACPARM(1)
DACPM2 = ACPARM(2)
#$ACDATA()
'''initialize constants and assign temperature-dependent values to constants used by acidph routines'''
# al - oh and al - so4 complexation constants
rkal1 = 1.03d-5
rkal2 = 7.14d-6
rkal3 = 1.0d-14
rkal4 = 94.2
rkals1 = 1.63d3
rkals2 = 1.29d5
# al - f complexation constants
rkalf1 = 1.05d7
rkalf2 = 5.77d12
rkalf3 = 1.07d17
rkalf4 = 5.37d19
rkalf5 = 8.33d20
rkalf6 = 7.49d20
# fe - f complexation constants
rkfef1 = 1.0d6
rkfef2 = 1.585d9
rkfef3 = 5.012d11
# fe - oh and fe - so4 complexation constants
rkfe1 = 6.457d-3
rkfe2 = 3.162d-4
rkfe3 = 3.981d-8
rkfe4 = 3.162d-9
rkfes1 = 1.413d4
rkfes2 = 2.399d5
# atmospheric co2 (atm)
atmco2 = 3.16d-4
# first dissociation constant of h2co3
rkco21 = 10.0**(545.56 + 0.12675 * twkelv - 215.21 * log10(twkelv) - 17052.0 / twkelv)
# second dissociation constant of h2co3
rkco22 = 10.0**(-2902.39 / twkelv - 0.02379 * twkelv + 6.498)
# ion product of water (stumm and morgan, 1981, p. 127)
rkh2o = 10.0**(-4470.99 / twkelv + 6.0875 - 0.01706 * twkelv)
# -log(henry's law constant of co2) in units of mole/liter/atm
ta = -2385.73 / twkelv + 14.0184 - 0.0152642 * twkelv
# use ideal gas law to convert to dimensionless form
rkhco2 = 10.0**(-ta) * 0.082057 * twkelv
# compute co2 concentration as fraction of atmospheric value
co2 = fraco2 * atmco2 * 10.0**(-ta)
# ksp of solid MIN_eral
if OPTFLG == 1:
# gibbsite
if KSPFLG == 2: rksp = 2.308d-33 # microcrystalline
elif KSPFLG == 3: rksp = 6.068d-34 # natural
elif KSPFLG == 4: rksp = 1.329d-34 # synthetic
elif KSPFLG == 5: rksp = rkspin # user value
else: rksp = 6.501d-32 # amorphous
rksp *= exp(32.0632 - 9560.0 / twkelv)
elif OPTFLG == 2:
rksp = 2.7 # fe(oh)3
# end ACDATA()
# assign double-precision versions of concs and save previous time step values
DO 30 I= 1, NUMCHM
DACCNS(I) = ACCONC(I)
DACCNC(I) = ACCONC(I)
DMOLWT(I) = ACCONV(I)
# 30 CONTINUE
# call the simulation routines, depending on option flag
IF ACFLAG(2) == 1: # option 1: al(oh)3 (gibbsite) saturation and fe
CALL ACCAL1()
ELIF ACFLAG(2) == 2:
CALL ACCAL2()
ELIF ACFLAG(2) == 3: # option 3: no solid saturated and al and fe
CALL ACCAL3()
ELSE IF (ACFLAG(2) == 4: # option 4: WV method (Al, Fe, Mn, acidity, conductivity)
DACPM4 = ACPARM(4)
DACPM5 = ACPARM(5)
CALL ACCAL4()
ELSE:
# ERRMSG: error no. 2, invalid value of acflag(2) (this is a fatal error)
END IF
# assign fluxes, storages, and real*4 concs
DO 40 I= 1, NUMCHM
ACFLX3(I,1) = (DACCNC(I) - DACCNS(I))*VOL
ACSTOR(I,1) = DACCNC(I) * VOL
ACCONC(I) = DACCNC(I)
# 40 CONTINUE
ACPH = DPH
ELSE: # not enough water to warrant simulation of chemical processes fluxes set to zero
DO 50 I= 1, NUMCHM
ACSTOR(I,1) = DACCNC(I) * VOL
ACCONC(I) = DACCNC(I)
ACFLX3(I,1) = 0.0
# 50 CONTINUE
ACPH = -DLOG10(DACCNC(5))
END IF
ELSE: # reach is dry, set concentrations, storages and fluxes appropriately
DO 60 I= 1, NUMCHM
ACCONC(I) = -1.0E+30
ACSTOR(I,1) = 0.0
ACFLX3(I,1) = 0.0
# 60 CONTINUE
ACPH = -1.0E+30
END IF
RETURN
END
def ACCAL1 (TOTAL,TOTFE,ST,FT,CO2, RKAL1,RKAL2,RKAL3,RKAL4,RKALS1,RKALS2,
RKALF1,RKALF2,RKALF3,RKALF4,RKALF5,RKALF6, RKFE1,RKFE2,RKFE3,RKFE4,RKFES1,RKFES2,
RKFEF1,RKFEF2,RKFEF3,RKC1,RKC2,RKW,RKSP,TWKELV,RKHCO2,H,
PH,ALFREE,ALOH,ALS,ALF,FEFREE,FEOH,FES,FEF,ALK,ALKW,ALKC,ALKAL,ALKFE,TIC,F1,S1,INUM)
''' Estimate pH value based on total Al, Fe conc. and Gibbsite control'''
# initialize parameters used in pH deterMINing algorithm
ITER = 0
MIN_ = 0
MAX_ = 0
hMIN = 0.0
hMAX = 0.0
erMIN = 0.0
erMAX = 0.0
INUM = 0
# set initial estimate of [H+]
IF 1.0E-1 > H > 1.0E-14:
# use previous value
ELSE: # use ph=5
H = 10.0**(-5)
END IF
# compute free aluMIN_um conc. based on Gibbsite MIN_eral solubility
# 100 CONTINUE
INUM = INUM + 1
ALFREE = RKSP * (H / RKW)**3
# Al(+3) __ aloh(+2) __ al(oh)2(+1) __ al(oh)3(0) __ al(oh)4(-)
AAL0 = 1.0 / (1.0 + RKAL1 / H * (1.0 + RKAL2 / H * (1.0 + RKAL3 / H * (1.0 + RKAL4 / H))))
AAL1 = RKAL1 / H * AAL0
AAL2 = RKAL2 / H * AAL1
AAL3 = RKAL3 / H * AAL2
AAL4 = RKAL4 / H * AAL3
# Fe(+3) __ feoh(+2) __ fe(oh)2(+1) __ fe(oh)3(0) __ fe(oh)4(-)
AFE0 = 1.0 / (1.0 + RKFE1 / H * (1.0 + RKFE2 / H * (1.0 + RKFE3 / H * (1.0 + RKFE4/H))))
AFE1 = RKFE1 / H * AFE0
AFE2 = RKFE2 / H * AFE1
AFE3 = RKFE3 / H * AFE2
AFE4 = RKFE4 / H * AFE3
FETX(1) = TOTFE
200 CONTINUE
DO 300 I=1,2
FRTIO1 = 0.0
FRTIO2 = 0.0
SRTIO1 = 0.0
SRTIO2 = 0.0
FET = FETX(I)
# compute sulfate complexation
IF ST > 0.0:
A = RKALS2 * ALFREE + RKFES2 * FET * AFE0
B = 1.0 + RKALS1 * ALFREE + RKFES1 * FET * AFE0
C = -ST
S1 = (-B + SQRT(B * B - 4.0 * A * C)) / (2.0 * A)
SRTIO1 = AAL0 * (RKALS1 * S1 + RKALS2 * S1 * S1)
SRTIO2 = AFE0 * (RKFES1 * S1 + RKFES2 * S1 * S1)
END IF
# compute fluoride complexation
IF FT > 0.0:
A = -FT
B = 1.0 + RKALF1 * ALFREE + RKFEF1 * FET * AFE0
C = RKALF2 * ALFREE + RKFEF2 * FET * AFE0
D = RKALF3 * ALFREE + RKFEF3 * FET * AFE0
E = RKALF4 * ALFREE
F = RKALF5 * ALFREE
G = RKALF6 * ALFREE
NXX = 6
F1 = NEWTON(NXX,FT,A,B,C,D,E,F,G)
FRTIO1 = AAL0 * (RKALF1 * F1 + RKALF2 * F1**2 + RKALF3 *F1**3 + RKALF4 * F1**4 + RKALF5 * F1**5 + RKALF6 * F1**6)
FRTIO2 = AFE0 * (RKFEF1 * F1 + RKFEF2 * F1**2 + RKFEF3 *F1**3)
END IF
FETX(I+1) = TOTFE / (1.0 + FRTIO2 + SRTIO2)
IF ABS((FETX(I+1) - FETX(I)) / FETX(I)) < 0.001:
GO TO 400
300 CONTINUE
SLOPE1 = (FETX(3) - FETX(2)) / (FETX(2) - FETX(1))
FETX(1) = FETX(3) + SLOPE1 / (1.0 - SLOPE1) * (FETX(3) - FETX(2))
GO TO 200
400 CONTINUE
FEFREE = FET * AFE0
FEOH = FET - FEFREE
FEF = FET * FRTIO2
FES = FET * SRTIO2
ALOH = (ALFREE / AAL0) - ALFREE
ALF = (ALFREE + ALOH) * FRTIO1
ALS = (ALFREE + ALOH) * SRTIO1
# compute total aluMIN_um concentration
ALtMAX = ALOH + ALF + ALS + ALFREE
ERROR = ALtMAX - TOTAL
IF ABS(ERROR) <= 1.0e-8:
GO TO 600
IF (MIN_*MAX_ .NE. 1) THEN
IF (ERROR .LT. 0.0) THEN
hMAX = H
erMAX = ERROR
MAX_ = 1
IF (MIN_ .EQ. 1)
GO TO 500
H = H * 2.0
ELSE:
hMIN = H
erMIN = ERROR
MIN_ = 1
IF (MAX_ .EQ. 1)
GO TO 500
H = H * 0.5
END IF
GO TO 100
END IF
500 CONTINUE
ITER = ITER + 1
IF ITER <= 1:
SLOPE = (erMAX - erMIN) / (hMAX - hMIN)
H = hMAX - erMAX / SLOPE
ELSE:
CONV(hMIN,hMAX,erMIN,erMAX,ERROR, H)
END IF
GO TO 100
600 CONTINUE
PH = -LOG10(H)
# H2c03(*) __ hco3(-) __ co3(-2)
AC0 = 1.0/(1.0 + RKC1/H*(1.0 + RKC2/H))
AC1 = RKC1 / H * AC0
AC2 = RKC2 / H * AC1
TIC = CO2 * (273.15 / TWKELV) * RKHCO2 / AC0
# compute components of alkalinity CO3--AL--H2O
ALKC = (AC1 + 2.0 * AC2) * TIC
ALKAL = (4.0 * AAL4 + 3.0 * AAL3 + 2.0 * AAL2 + AAL1) * (ALOH + ALFREE)
ALKFE = (4.0 * AFE4 + 3.0 * AFE3 + 2.0 * AFE2 + AFE1) * FET
ALKW = RKW / H - H
ALK = ALKC + ALKW + ALKAL + ALKFE
RETURN H,PH,ALFREE,ALOH,ALS,ALF,FEFREE,FEOH,FES,FEF,ALK,ALKW,ALKC,ALKAL,ALKFE,TIC,F1,S1,INUM)
END
def ACCAL2(TOTAL,TOTFE,ST,FT,CO2,RKAL1,RKAL2,RKAL3,RKAL4,RKALS1,RKALS2,
RKALF1,RKALF2,RKALF3,RKALF4,RKALF5,RKALF6,RKFE1,RKFE2,RKFE3,RKFE4,RKFES1,RKFES2,
RKFEF1,RKFEF2,RKFEF3,RKC1,RKC2,RKW,RKSP,TWKELV,RKHCO2,H,
PH,ALFREE,ALOH,ALS,ALF,FEFREE,FEOH,FES,FEF, ALK,ALKW,ALKC,ALKAL,ALKFE,TIC,F1,S1,INUM):
''' Estimate pH value based on total Al, Fe conc. and Fe(OH)3 control '''
ITER = 0
MIN_ = 0
MAX_ = 0
hMIN = 0.0
hMAX = 0.0
erMIN= 0.0
erMAX= 0.0
INUM = 0
# set initial estimate of [H+]
IF 1.0E-1 > H > 1.0E-14: # use previous h
H = H
ELSE: # use ph = 5
H = 1E-5
END IF
# compute free AluMIN_um conc. based on Gibbsite MIN_eral solubility
# 100 CONTINUE
INUM = INUM + 1
FEFREE = 10.0**RKSP * H**3
# Al(+3) __ aloh(+2) __ al(oh)2(+1) __ al(oh)3(0) __ al(oh)4(-)
AAL0 = 1.0 / (1.0 + RKAL1 / H * (1.0 + RKAL2 / H * (1.0 + RKAL3 / H * (1.0 + RKAL4 / H))))
AAL1 = RKAL1 /H * AAL0
AAL2 = RKAL2 /H * AAL1
AAL3 = RKAL3 /H * AAL2
AAL4 = RKAL4 /H * AAL3
# Fe(+3) __ feoh(+2) __ fe(oh)2(+1) __ fe(oh)3(0) __ fe(oh)4(-)
AFE0 = 1.0 / (1.0 + RKFE1 / H * (1.0 + RKFE2 / H * (1.0 + RKFE3 / H * (1.0 + RKFE4 / H))))
AFE1 = RKFE1 / H * AFE0
AFE2 = RKFE2 / H * AFE1
AFE3 = RKFE3 / H * AFE2
AFE4 = RKFE4 / H * AFE3
ALTX(1) = TOTAL
200 CONTINUE
DO 300 I= 1, 2
FRTIO1 = 0.0
FRTIO2 = 0.0
SRTIO1 = 0.0
SRTIO2 = 0.0
ALT = ALTX(I)
# compute sulfate complexation
IF ST > 0.0:
A = RKALS2 * ALT * AAL0 + RKFES2 * FEFREE
B = 1.0 + RKALS1 * ALT * AAL0 + RKFES1 * FEFREE
C = -ST
S1 = (-B + SQRT(B*B - 4.0 * A * C)) / (2.0 * A)
SRTIO1 = AAL0 * (RKALS1 * S1 + RKALS2 * S1 * S1)
SRTIO2 = AFE0 * (RKFES1 * S1 + RKFES2 * S1 * S1)
END IF
# compute fluoride complexation
IF FT > 0.0:
A = -FT
B = 1.0 + RKALF1 * ALT * AAL0 + RKFEF1 * FEFREE
C = RKALF2 * ALT * AAL0 + RKFEF2 * FEFREE
D = RKALF3 * ALT * AAL0 + RKFEF3 * FEFREE
E = RKALF4 * ALT * AAL0
F = RKALF5 * ALT * AAL0
G = RKALF6 * ALT * AAL0
NXX = 6
F1 = NEWTON(NXX,FT,A,B,C,D,E,F,G)
FRTIO1 = AAL0 * (RKALF1 * F1 + RKALF2 *F1**2 + RKALF3 * F1**3 + RKALF4 * F1**4 + RKALF5 * F1**5 + RKALF6 * F1**6)
FRTIO2 = AFE0 * (RKFEF1 * F1 + RKFEF2 *F1**2 + RKFEF3 * F1**3)
END IF
ALTX(I+1) = TOTAL / (1.0 + FRTIO1 + SRTIO1)
IF ABS((ALTX(I+1) - ALTX(I)) / ALTX(I)) < 0.001:
GO TO 400
# 300 CONTINUE
SLOPE1 = (ALTX(3) - ALTX(2)) / (ALTX(2) - ALTX(1))
ALTX(1) = ALTX(3) + SLOPE1 / (1.0 - SLOPE1) * (ALTX(3) - ALTX(2))
# GO TO 200
# 400 CONTINUE
FEOH = (FEFREE / AFE0) - FEFREE
FEF = (FEFREE + FEOH) * FRTIO2
FES = (FEFREE + FEOH) * SRTIO2
ALFREE = ALT * AAL0
ALOH = ALT - ALFREE
ALF = ALT * FRTIO1
ALS = ALT * SRTIO1
# compute total aluMIN_um concentration
FEtMAX = FEOH + FEF + FES + FEFREE
ERROR = FEtMAX - TOTFE
IF ABS(ERROR) <= 1.0E-8:
GO TO 600
IF MIN_ * MAX_ != 1:
IF ERROR < 0.0:
hMAX = H
erMAX = ERROR
MAX_ = 1
IF MIN_ == 1:
GO TO 500
H = H * 2.0
ELSE:
hMIN = H
erMIN = ERROR
MIN_ = 1
IF MAX_ == 1:
GO TO 500
H = H * 0.5
END IF
# GO TO 100
END IF
# 500 CONTINUE
ITER = ITER + 1
IF ITER <= 1:
SLOPE = (erMAX - erMIN) / (hMAX - hMIN)
H = hMAX - erMAX / SLOPE
ELSE:
H = CONV(hMIN,hMAX,erMIN,erMAX,ERROR,H)
ENDIF
# GO TO 100
# 600 CONTINUE
PH = -LOG10(H)
# H2c03(*) __ hco3(-) __ co3(-2)
AC0 = 1.0 / (1.0 + RKC1 / H * (1.0 + RKC2 / H))
AC1 = RKC1 / H * AC0
AC2 = RKC2 / H * AC1
TIC = CO2 * (273.15 / TWKELV) * RKHCO2 / AC0
# compute components of alkalinity CO3--AL--H2O
ALKC = (AC1 + 2.0 * AC2) * TIC
ALKAL = (4.0 * AAL4 + 3.0 * AAL3 + 2.0 * AAL2 + AAL1) * (ALOH + ALFREE)
ALKFE = (4.0 * AFE4 + 3.0 * AFE3 + 2.0 * AFE2 + AFE1) * (FEOH + FEFREE)
ALKW = RKW / H - H
ALK = ALKC + ALKW + ALKAL + ALKFE
RETURN H,PH,ALFREE,ALOH,ALS,ALF,FEFREE,FEOH,FES,FEF,ALK,ALKW,ALKC,ALKAL,ALKFE,TIC,F1,S1,INUM)
END
DEF ACCAL3 (TOTAL,TOTFE,ST,FT,ALK,CO2,RKAL1,RKAL2,RKAL3,RKAL4,RKALS1,RKALS2,
RKALF1,RKALF2,RKALF3,RKALF4,RKALF5,RKALF6,RKFE1,RKFE2,RKFE3,RKFE4,RKFES1,RKFES2,
RKFEF1,RKFEF2,RKFEF3,RKC1,RKC2,RKW,TWKELV,RKHCO2,H,
PH,ALFREE,ALOH,ALS,ALF,FEFREE,FEOH,FES,FEF,ALKW,ALKC,ALKAL,ALKFE,TIC,F1,S1,INUM)
''' Estimate pH value based on total Al and Fe concs. and alkalinity'''
# initialize parameters used in pH deterMINing algorithm
ITER = 0
MIN_ = 0
MAX_ = 0
hMIN = 0.0
hMAX = 0.0
erMIN = 0.0
erMAX = 0.0
INUM = 0
# set initial estimate of [H+]
IF 1.0E-1 > H > 1.0E-14:
# use previous ph
ELSE: # use ph = 5
H = 1E-5
END IF
# 100 CONTINUE
INUM = INUM + 1
# Al(+3) __ aloh(+2) __ al(oh)2(+1) __ al(oh)3(0) __ al(oh)4(-)
AAL0 = 1.E0/(1.E0 + RKAL1/H*(1.E0 + RKAL2/H*(1.E0 + RKAL3/H*(1.E0 + RKAL4/H))))
AAL1 = RKAL1 / H * AAL0
AAL2 = RKAL2 / H * AAL1
AAL3 = RKAL3 / H * AAL2
AAL4 = RKAL4 / H * AAL3
# Fe(+3) __ feoh(+2) __ fe(oh)2(+1) __ fe(oh)3(0) __ fe(oh)4(-)
AFE0 = 1.D0/(1.D0 + RKFE1/H*(1.D0 + RKFE2/H*(1.D0 + RKFE3/H* (1.D0 + RKFE4/H))))
AFE1 = RKFE1 / H * AFE0
AFE2 = RKFE2 / H * AFE1
AFE3 = RKFE3 / H * AFE2
AFE4 = RKFE4 / H * AFE3
ALTX(1) = TOTAL
FETX(1) = TOTFE
# 200 CONTINUE
DO 300 I= 1, 2
FRTIO1 = 0.0
FRTIO2 = 0.0
SRTIO1 = 0.0
SRTIO2 = 0.0
ALT1 = ALTX(I)
FET1 = FETX(I)
# compute sulfate complexation
IF ST > 0.0:
A = RKALS2 * ALT1 * AAL0 + RKFES2 * FET1 * AFE0
B = 1.0 + RKALS1 * ALT1 * AAL0 + RKFES1 * FET1 * AFE0
C = -ST
S1 = (-B + SQRT(B*B - 4.0 * A * C)) / (2.0 * A)
SRTIO1 = AAL0 * (RKALS1 * S1 + RKALS2 * S1 * S1)
SRTIO2 = AFE0 * (RKFES1 * S1 + RKFES2 * S1 * S1)
END IF
# compute fluoride complexation
IF FT > 0.0:
A = -FT
B = 1.0 + RKALF1 * ALT1 * AAL0 + RKFEF1 * FET1 * AFE0
C = RKALF2 * ALT1 * AAL0 + RKFEF2 *FET1 * AFE0
D = RKALF3 * ALT1 * AAL0 + RKFEF3 *FET1 * AFE0
E = RKALF4 * ALT1 * AAL0
F = RKALF5 * ALT1 * AAL0
G = RKALF6 * ALT1 * AAL0
NXX = 6
F1 = NEWTON(NXX,FT,A,B,C,D,E,F,G)
FRTIO1 = AAL0 * (RKALF1 * F1 + RKALF2 * F1**2 + RKALF3 * F1**3 + RKALF4 * F1**4 + RKALF5 * F1**5 + RKALF6 * F1**6)
FRTIO2 = AFE0 * (RKFEF1 * F1 + RKFEF2 * F1**2 + RKFEF3 * F1**3)
ENDIF
ALTX(I+1) = TOTAL / (1.0 + FRTIO1 + SRTIO1)
FETX(I+1) = TOTFE / (1.0 + FRTIO2 + SRTIO2)
IF ABS((ALTX(I+1) - ALTX(I)) /ALTX(I)) < 0.001:
IF TOTFE <= 0.0:
GO TO 400
IF ABS((FETX(I+1) - FETX(I)) / FETX(I) < 0.001:
GO TO 400
END IF
# 300 CONTINUE
SLOPE1 = (ALTX(3) - ALTX(2)) / (ALTX(2) - ALTX(1))
IF TOTFE > 0.0:
SLOPE2 = (FETX(3) - FETX(2)) / (FETX(2) - FETX(1))
END IF
ALTX(1) = ALTX(3) + SLOPE1 / (1.0 - SLOPE1) * (ALTX(3) - ALTX(2))
IF (TOTFE > 0.0:
FETX(1) = FETX(3) + SLOPE2 / (1.0 - SLOPE2) * (FETX(3) - FETX(2))
END IF
# GO TO 200
400 CONTINUE
# H2c03(*) __ hco3(-) __ co3(-2)
AC0 = 1.D / (1.0 + RKC1 / H * (1.0 + RKC2 / H))
AC1 = RKC1 / H * AC0
AC2 = RKC2 / H * AC1
TIC = CO2 * (273.15 / TWKELV) * RKHCO2 / AC0
# compute components of alkalinity CO3--AL--H2O
ALKC = (AC1 + 2.0 * AC2) * TIC
ALKAL = (4.0 * AAL4 + 3.0 * AAL3 + 2.0 * AAL2 + AAL1) * ALT1
ALKFE = (4.0 * AFE4 + 3.0 * AFE3 + 2.0 * AFE2 + AFE1) * FET1
ALKW = RKW / H - H
ALKT = ALKC + ALKAL + ALKW + ALKFE
ERROR = ALKT - ALK
IF ABS(ERROR) < 1.0E-8
GO TO 600
IF MIN_ * MAX_ != 1:
IF ERROR < 0.0: # under-estimate, set upper limit, set MAX_ = 1
hMAX = H
erMAX = ERROR
MAX_ = 1
IF MIN_ == 1:
GO TO 500
H = H * 0.5
ELSE: # over-estimate, set lower limit, set MIN_ = 1
hMIN = H
erMIN = ERROR
MIN_ = 1
IF MAX_ == 1:
GO TO 500
H = H * 2.0
END IF
# GO TO 100
ENDIF
# 500 CONTINUE
ITER = ITER + 1
IF ITER <= 1:
SLOPE = (erMAX - erMIN)/(hMAX - hMIN)
H = hMAX - erMAX / SLOPE
ELSE:
h = CONV(hMIN,hMAX,erMIN,erMAX,ERROR, H)
ENDIF
# GO TO 100
# 600 CONTINUE
PH = -LOG10(H)
FEFREE = FET1 * AFE0
FEOH = FET1 - FEFREE
FEF = FET1 * FRTIO2
FES = FET1 * SRTIO2
ALFREE = ALT1 * AAL0
ALOH = ALT1 - ALFREE
ALF = ALT1 * FRTIO1
ALS = ALT1 * SRTIO1
RETURN H,PH,ALFREE,ALOH,ALS,ALF,FEFREE,FEOH,FES,FEF,ALKW,ALKC,ALKAL,ALKFE,TIC,F1,S1,INUM
END
def accal4 (total,totfe,totmn,totac,cond, rmlwal,rmlwfe,rmlwmn,rcoefm,rcoefh,
h, ph,newal,newfe,newmn,newac)
'''estimates ph value based on total al, final ferric iron conc. (fe 3+), manganese (mn 2+)'''
# initialize constants used in ph deterMINing algorithm
ivalfe = 3
ivalal = 3
ivalmn = 2
rfacta = 0.5029
rfactd = 10.0**(-3.0)
rfactb = 0.014 * rfactd
rfactc = 0.24
rstdpot = -0.615
rpartps = 0.21
rksp1 = 10**(-33.00)
rksp2 = 10**(-38.46)
# set initial estimate of [h+]
if h < 10.0e-2: # use previous value
rih = h
else: # use ph=6.5
rih = 10.0**(-6.5)
riph = -log10(h) # calculate initial ph
# compute free aluMIN_um conc.
rion = cond * rfactb
rkpow = -rfacta * (ivalal**2.0) * ((sqrt(rion) / (1.0 + sqrt(rion))) - rfactc * rion)
rgamma = 10.0**rkpow
racth = h
ractoh = 10.0**(-14) / racth
ral = (rksp1 / (rgamma * ractoh**3.0)) * total
if rih < 10.0-7:
tmpal = total * (1.0 - rcoefm)
rcal = tmpal
else
tmpalr = total * rgamma
if tmpalr >= ral:
tmpal = ral
rcal = total - tmpalr
else:
rcal = 0.0
newal = total - rcal
# compute ferric iron concentration
rkpow = -rfacta * (ivalfe**2.0) * ((sqrt(rion) / (1.0 + sqrt(rion))) - rfactc * rion)
rgamma = 10.0**rkpow
racth = h
ractoh = 10.0**(-14) / racth
rfe = (rksp2 / (rgamma * ractoh**3.0)) * totfe
if rih < 10.0e-7:
tmpfe = totfe * (1.0 - rcoefm)
rcfe = tmpfe
else:
tmpfer = totfe * rgamma
if totfe >= rfe:
tmpfe = rfe
rcfe = totfe - tmpfer
else:
rcfe = 0.
newfe = totfe - rcfe
# compute manganese concentration
rkpow = -rfacta * (ivalmn**2.0) * ((sqrt(rion) / (1.0 + sqrt(rion))) - rfactc * rion)
rgamma = 10.0**rkpow
racth = h
rk = 10.0**(2.e0 * rstdpot / rfacta)
rmn = (rk * (racth**2.0)) / (rgamma * (rpartps**(0.5)))
if rih < 10.0e-7:
tmpmn = totmn * (1.0 - rcoefm)
rcmn = tmpmn
else:
tmpmnr = totmn * rgamma
if (totmn .ge. rmn) then
tmpmn = rmn
rcmn = totmn - tmpmnr
else
rcmn = 0.
newmn = totmn - rcmn
# recalculate ph
rhpow = log10(rih)
racth = 10.0**rhpow
rkpow = -rfacta * ((sqrt(rion) / (1.0 + sqrt(rion))) - rfactc * rion)
# use the change in conc. values
rgamma = 10.0**rkpow
tmpmc = ((3.0 * rcfe) + (3.0 * rcal) + (2.0 * rcmn)) * rgamma * (1.0 - ((riph + rcoefh) / 10.0))
ph = - log10(racth + tmpmc)
h = 10.0**(-ph)
# compute acidity
# use the initial conc. of the metals
rac = (3.0 * totfe) + (3.0 * total) + (2.0 * totmn) + 10.0**(-riph)
# use the change in conc. of the metals
rcac = (3.0 * rcfe) + (3.0 * rcal) + (2.0 * rcmn) + 10.0**(-ph)
if ph > 7.0:
newac = 0.0
else:
if ph < 2.0:
# use the new acidity calculated from the recalculated conc. of metals
newac = rcac
else
newac = (rcac * totac) / rac
return h, ph,newal,newfe,newmn,newac)
def conv(hMIN, hMAX, erMIN, erMAX, error, h)
''' convergence algorithm for acid ph module'''
MIN_ = 0
MAX_ = 0
if (error < 0.0)
MIN_ = 1
elif (error > 0.0)
MAX_ = 1
sMIN = (erMIN - error) / (hMIN - h)
sMAX = (erMAX - error) / (hMAX - h)
xMIN = hMIN - erMIN / sMIN
xMAX = hMAX - erMAX / sMAX
tMAX = abs(h - hMIN)
tMIN = abs(h - hMAX)
if MIN_ == 1:
erMIN = error
hMIN = h
if MAX__ == 1:
erAX = error
hMAX = h
if (xMAX - hMAX) * (xMAX - hMIN) >= 0.0:
xMAX = hMIN
tMAX = 1.0
tMIN = 2.0
elif (xMIN - hMAX) * (xMIN - hMIN) >= 0.0:
xMIN = hMAX
tMIN = 1.0
tMAX = 2.0
h = (tMAX * xMAX + tMIN * xMIN) / (tMAX + tMIN)
return h
def newton(m, xMAX, a, b, c, d, e, f, g)
'''performs newton-raphson solution for acid ph module'''
xton = zeros(6)
x = xMAX / 2.0
while abs((x - x0) / x0) > .001:
x0 = x
xton[0] = x0
for i in range(2,m) # do 30 i= 2, m
xton[i] = xton[i-1] * x0
# 30 continue
y0 = a + b * xton[0] + c * xton[1] + d * xton[2] + e * xton[3] + f * xton[4] + g * xton[5]
slope = b + 2.0 * c * xton[0] + 3.0 * d * xton[1] + 4.0 * e * xton[2] + 5.0 * f * xton[3] + 6.0 * g * xton[4]
x = x0 - y0 / slope
return x