forked from respec/HSPsquared
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSEDTRN.py
958 lines (848 loc) · 37 KB
/
SEDTRN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
''' Copyright (c) 2020 by RESPEC, INC.
Authors: Robert Heaphy, Ph.D. and Paul Duda
License: LGPL2
'''
from numpy import array, zeros, where, int64
from math import log10, exp
from numba import njit
from HSP2.ADCALC import advect
from HSP2.utilities import make_numba_dict
ERRMSGS =('SEDTRN: Warning -- bed storage of sediment size fraction sand is empty', #ERRMSG0
'SEDTRN: Warning -- bed storage of sediment size fraction silt is empty', #ERRMSG1
'SEDTRN: Warning -- bed storage of sediment size fraction clay is empty', #ERRMSG2
'SEDTRN: Warning -- bed depth appears excessive', #ERRMSG3
'SEDTRN: Fatal error ocurred in colby method- variable outside valid range- switching to toffaleti method', #ERRMSG4
'SEDTRN: Simulation of sediment requires all 3 "auxiliary flags" (AUX1FG, etc) in section HYDR must be turned on', #ERRMSG5
'SEDTRN: When specifying the initial composition of the bed, the fraction of sand, silt, and clay must sum to a value close to 1.0.') #ERRMSG6
def sedtrn(io_manager, siminfo, uci, ts):
''' Simulate behavior of inorganic sediment'''
# simlen = siminfo['steps']
# delt = siminfo['delt']
delt60 = siminfo['delt'] / 60
delts = siminfo['delt'] * 60
uunits = siminfo['units']
advectData = uci['advectData']
(nexits, vol, VOL, SROVOL, EROVOL, SOVOL, EOVOL) = advectData
ts['VOL'] = VOL
ts['SROVOL'] = SROVOL
ts['EROVOL'] = EROVOL
for i in range(nexits):
ts['SOVOL' + str(i + 1)] = SOVOL[:, i]
ts['EOVOL' + str(i + 1)] = EOVOL[:, i]
ui = make_numba_dict(uci)
ui['simlen'] = siminfo['steps']
ui['uunits'] = siminfo['units']
ui['vol'] = vol
ui['delts'] = siminfo['delt'] * 60
ui['delt60'] = siminfo['delt'] / 60
ui['errlen'] = len(ERRMSGS)
ui_silt = uci['SILT']
if uunits == 1:
ui['silt_d'] = ui_silt['D'] * 0.0833
ui['silt_w'] = ui_silt['W'] * delts * 0.0254 # convert settling velocity from m/sec to m/ivl
else:
ui['silt_d'] = ui_silt['D'] * 0.001
ui['silt_w'] = ui_silt['W'] * delts * 0.001 # convert settling velocity from m/sec to m/ivl
ui['silt_rho'] = ui_silt['RHO']
ui['silt_taucd'] = ui_silt['TAUCD']
ui['silt_taucs'] = ui_silt['TAUCS']
ui['silt_m'] = ui_silt['M'] * delt60 / 24.0 * 4.880 # convert erodibility coeff from /day to /ivl
ui_clay = uci['CLAY']
if uunits == 1:
ui['clay_d'] = ui_clay['D'] * 0.0833
ui['clay_w'] = ui_clay['W'] * delts * 0.0254 # convert settling velocity from m/sec to m/ivl
else:
ui['clay_d'] = ui_clay['D'] * 0.001
ui['clay_w'] = ui_clay['W'] * delts * 0.001 # convert settling velocity from m/sec to m/ivl
ui['clay_rho'] = ui_clay['RHO']
ui['clay_taucd'] = ui_clay['TAUCD']
ui['clay_taucs'] = ui_clay['TAUCS']
ui['clay_m'] = ui_clay['M'] * delt60 / 24.0 * 4.880 # convert erodibility coeff from /day to /ivl
############################################################################
errors = _sedtrn_(ui, ts) # run SEDTRN simulation code
############################################################################
if nexits > 1:
u = uci['SAVE']
key1 = 'OSED1'
key2 = 'OSED2'
key3 = 'OSED3'
key4 = 'OSED4'
for i in range(nexits):
u[f'{key1}{i + 1}'] = u[key1]
u[f'{key2}{i + 1}'] = u[key2]
u[f'{key3}{i + 1}'] = u[key3]
u[f'{key4}{i + 1}'] = u[key4]
del u[key1]
del u[key2]
del u[key3]
del u[key4]
return errors, ERRMSGS
@njit(cache=True)
def _sedtrn_(ui, ts):
''' Simulate behavior of inorganic sediment'''
errorsV = zeros(int(ui['errlen'])).astype(int64)
simlen = int(ui['simlen'])
uunits = int(ui['uunits'])
delts = ui['delts']
delt60 = ui['delt60']
AFACT = 43560.0
if uunits == 2:
# si units conversion
AFACT = 1000000.0
vol = ui['vol'] * AFACT
svol = vol
nexits = int(ui['NEXITS'])
# table SANDFG
sandfg = ui['SANDFG'] # 1: Toffaleti method, 2:Colby method, 3:old HSPF power function
if ui['AUX3FG'] == 0:
errorsV[5] += 1 # error - sediment transport requires aux3fg to be on
# table SED-GENPARM
bedwid = ui['BEDWID']
bedwrn = ui['BEDWRN']
por = ui['POR']
# table SED-HYDPARM
if uunits == 1:
len_ = ui['LEN'] * 5280
db50 = ui['DB50'] * 0.0833
else:
len_ = ui['LEN'] * 1000
db50 = ui['DB50'] * 0.001
delth = ui['DELTH']
# evaluate some quantities used in colby and/or toffaleti sand transport simulation methods
if uunits == 1:
db50e = db50
db50m = db50 * 304.8
else:
db50e = db50 * 3.28
db50m = db50 * 1000.0
slope = delth / len_
# SAND PARAMETERS; table SAND-PM
if uunits == 1:
sand_d = ui['D'] * 0.0833
sand_w = ui['W'] * delts * 0.0254 # convert settling velocity from m/sec to m/ivl
else:
sand_d = ui['D'] * 0.001
sand_w = ui['W'] * delts * 0.001 # convert settling velocity from m/sec to m/ivl
sand_rho = ui['RHO']
sand_ksand = ui['KSAND']
sand_expsnd = ui['EXPSND']
# SILT PARAMETERS; table SILT-CLAY-PM --- note: first occurance is silt
silt_d = ui['silt_d']
silt_w = ui['silt_w']
silt_rho = ui['silt_rho']
silt_taucd = ui['silt_taucd']
silt_taucs = ui['silt_taucs']
silt_m = ui['silt_m']
# CLAY PARAMETERS; table SILT-CLAY-PM --- note: second occurance is clay
clay_d = ui['clay_d']
clay_w = ui['clay_w']
clay_rho = ui['clay_rho']
clay_taucd = ui['clay_taucd']
clay_taucs = ui['clay_taucs']
clay_m = ui['clay_m']
# bed sediment conditions; table BED-INIT
beddep = ui['BEDDEP']
sand_bedfr = ui['SANDFR']
silt_bedfr = ui['SILTFR']
clay_bedfr = ui['CLAYFR']
total_bedfr = sand_bedfr + silt_bedfr + clay_bedfr
if abs(total_bedfr - 1.0) > 0.01:
errorsV[6] += 1 # error message: sum of bed sediment fractions is not close enough to 1.0
# suspended sediment concentrations; table ssed-init
sand_ssed1 = ui['SSED1']
silt_ssed2 = ui['SSED2']
clay_ssed3 = ui['SSED3']
total_ssed4 = sand_ssed1 + silt_ssed2 + clay_ssed3
# get input time series- inflow of sediment is in units of mg.ft3/l.ivl (english) or mg.m3/l.ivl (metric)
TAU = ts['TAU']
AVDEP = ts['AVDEP']
AVVEL = ts['AVVEL']
RO = ts['RO']
HRAD = ts['HRAD']
TWID = ts['TWID']
if not 'ISED1' in ts:
ts['ISED1'] = zeros(simlen)
if not 'ISED2' in ts:
ts['ISED2'] = zeros(simlen)
if not 'ISED3' in ts:
ts['ISED3'] = zeros(simlen)
ISED1 = ts['ISED1'] # if present, else ISED is identically zero; sand
ISED2 = ts['ISED2'] # if present, else ISED is identically zero; silt
ISED3 = ts['ISED3'] # if present, else ISED is identically zero; clay
ISED4 = ISED1 + ISED2 + ISED3
htfg = int(ui['HTFG'])
if htfg == 1:
TW = ts['TW']
if htfg == 0 and sandfg != 3:
TW = ts['TW']
TW = where(TW < -100.0, 20.0, TW)
# preallocate storage for computed time series
# WASH = ts['WASH'] = zeros(simlen) # washload concentration, state variable
# SAND = ts['SAND'] = zeros(simlen) # sandload oncentration, state variable
# BDSAND = ts['BDSAND'] = zeros(simlen) # bed storage of sand, state variable
# SDCF1_11 = ts['WASH'] = zeros(simlen) # deposition of washload on bed
# SDCF1_21 = ts['WASH'] = zeros(simlen) # total outflow of washload from RCHRES
# SDCF1_12 = ts['WASH'] = zeros(simlen) # exchange of sand between bed and suspended storage
# SDCF1_22 = ts['WASH'] = zeros(simlen) # total outflow of sandload from rchres
# SDCF2_1 = ts['SDCF2_1'] = zeros((simlen, nexits)) # washload outflow by gate
# SDCF2_2 = ts['SDCF2_2'] = zeros((simlen, nexits)) # sandload outflow by gate
# ossand = zeros(nexits)
SSED1 = ts['SSED1'] = zeros(simlen) # suspended sand concentration
SSED2 = ts['SSED2'] = zeros(simlen) # suspended silt concentration
SSED3 = ts['SSED3'] = zeros(simlen) # suspended clay concentration
SSED4 = ts['SSED4'] = zeros(simlen) # suspended sediment concentration
RSED1 = ts['RSED1'] = zeros(simlen) # sediment storages - suspended sand
RSED2 = ts['RSED2'] = zeros(simlen) # sediment storages - suspended silt
RSED3 = ts['RSED3'] = zeros(simlen) # sediment storages - suspended clay
RSED4 = ts['RSED4'] = zeros(simlen) # sediment storages - bed sand
RSED5 = ts['RSED5'] = zeros(simlen) # sediment storages - bed silt
RSED6 = ts['RSED6'] = zeros(simlen) # sediment storages - bed clay
RSED7 = ts['RSED7'] = zeros(simlen) # sediment storages - total sand
RSED8 = ts['RSED8'] = zeros(simlen) # sediment storages - total silt
RSED9 = ts['RSED9'] = zeros(simlen) # sediment storages - total clcay
RSED10 = ts['RSED10'] = zeros(simlen) # sediment storages - total sand silt clay
TSED1 = ts['TSED1'] = zeros(simlen) # Total sediment storages by fraction
TSED2 = ts['TSED2'] = zeros(simlen) # Total sediment storages by fraction
TSED3 = ts['TSED3'] = zeros(simlen) # Total sediment storages by fraction
BEDDEP= ts['BEDDEP']= zeros(simlen) # Bed depth
DEPSCR1 = ts['DEPSCR1'] = zeros(simlen) # Deposition (positive) or scour (negative) - sand
DEPSCR2 = ts['DEPSCR2'] = zeros(simlen) # Deposition (positive) or scour (negative) - silt
DEPSCR3 = ts['DEPSCR3'] = zeros(simlen) # Deposition (positive) or scour (negative) - clay
DEPSCR4 = ts['DEPSCR4'] = zeros(simlen) # Deposition (positive) or scour (negative) - total
ROSED1 = ts['ROSED1'] = zeros(simlen) # Total outflows of sediment from the rchres - sand
ROSED2 = ts['ROSED2'] = zeros(simlen) # Total outflows of sediment from the rchres - silt
ROSED3 = ts['ROSED3'] = zeros(simlen) # Total outflows of sediment from the rchres - clay
ROSED4 = ts['ROSED4'] = zeros(simlen) # Total outflows of sediment from the rchres - total
OSED1 = zeros((simlen, nexits))
OSED2 = zeros((simlen, nexits))
OSED3 = zeros((simlen, nexits))
OSED4 = zeros((simlen, nexits))
fact = 1.0 / total_bedfr # normalize fractions to sum to one
sand_bedfr *= fact
silt_bedfr *= fact
clay_bedfr *= fact
rhomn = sand_bedfr * sand_rho + silt_bedfr * silt_rho + clay_bedfr * clay_rho
volsed = len_ * bedwid * beddep * (1.0 - por) # total volume of sediment particles- ft3 or m3
rwtsed = volsed * rhomn # total weight relative to water- rhomn is in parts/part (same as kg/l)
rwtsed = rwtsed * 1.0E06 # converts from kg/l to mg/l
# find the weight of each fraction- units are (mg/l)*ft3 or (mg/l)*m3
sand_wt_rsed4 = sand_bedfr * rwtsed
silt_wt_rsed5 = silt_bedfr * rwtsed
clay_wt_rsed6 = clay_bedfr * rwtsed
# find the total quantity (bed and suspended) of each sediment size fraction
sand_rsed1 = sand_ssed1 * vol
sand_rssed1 = sand_t_rsed7 = sand_rsed1 + sand_wt_rsed4
silt_rsed2 = silt_ssed2 * vol
silt_rssed2 = silt_t_rsed8 = silt_rsed2 + silt_wt_rsed5
clay_rsed3 = clay_ssed3 * vol
clay_rssed3 = clay_t_rsed9 = clay_rsed3 + clay_wt_rsed6
tsed1 = sand_rsed1 + silt_rsed2 + clay_rsed3
tsed2 = sand_wt_rsed4 + silt_wt_rsed5 + clay_wt_rsed6
tsed3 = total_rsed10 = sand_t_rsed7 + silt_t_rsed8 + clay_t_rsed9
wsande = sand_w * 3.28 / delts # convert fall velocity from m/ivl to ft/sec
VOL = ts['VOL']
SROVOL = ts['SROVOL']
EROVOL = ts['EROVOL']
SOVOL = zeros((simlen, nexits))
EOVOL = zeros((simlen, nexits))
for i in range(nexits):
SOVOL[:, i] = ts['SOVOL' + str(i + 1)]
EOVOL[:, i] = ts['EOVOL' + str(i + 1)]
#################### END PSED
for loop in range(simlen):
# perform any necessary unit conversions
if uunits == 2: # uci is in metric units
avvele = AVVEL[loop] * 3.28
avdepm = AVDEP[loop]
avdepe = AVDEP[loop] * 3.28
rom = RO[loop]
hrade = HRAD[loop] * 3.28
twide = TWID[loop] * 3.28
ised1 = ISED1[loop] / 2.83E-08
ised2 = ISED2[loop] / 2.83E-08
ised3 = ISED3[loop] / 2.83E-08
else: # uci is in english units
avvele = AVVEL[loop]
avdepm = AVDEP[loop] * 0.3048
avdepe = AVDEP[loop]
rom = RO[loop] * 0.0283
hrade = HRAD[loop]
twide = TWID[loop]
ised1 = ISED1[loop] / 3.121E-08
ised2 = ISED2[loop] / 3.121E-08
ised3 = ISED3[loop] / 3.121E-08
tau = TAU[loop]
tw = TW[loop]
tw = (tw - 32.0) * 0.5555
# Following is routine #&COHESV() to simulate behavior of cohesive sediments (silt and clay)
# compute bed fractions based on relative storages
totbed = silt_wt_rsed5 + clay_wt_rsed6
frcsed1 = silt_wt_rsed5 / totbed if totbed > 0.0 else 0.5
frcsed2 = clay_wt_rsed6 / totbed if totbed > 0.0 else 0.5
vol = VOL[loop] * AFACT
srovol = SROVOL[loop]
erovol = EROVOL[loop]
sovol = SOVOL[loop, :]
eovol = EOVOL[loop, :]
silt_ssed2, rosed2, osed2 = advect(ised2, silt_ssed2, nexits, svol, vol, srovol, erovol, sovol, eovol)
silt_rsed2 = silt_ssed2 * vol # calculate exchange between bed and suspended sediment
# vols = svol
# consider deposition and scour
if avdepe > 0.17:
depscr2, silt_rsed2, silt_wt_rsed5 = bdexch(avdepm, silt_w, tau, silt_taucd, silt_taucs, silt_m, vol, frcsed1, silt_rsed2, silt_wt_rsed5)
else:
depscr2 = 0.0
silt_ssed2 = silt_rsed2 / vol if vol > 0.0 else -1.0e30
clay_ssed3, rosed3, osed3 = advect(ised3, clay_ssed3, nexits, svol, vol, srovol, erovol, sovol, eovol)
clay_rsed3 = clay_ssed3 * vol # calculate exchange between bed and suspended sediment
# consider deposition and scour
if avdepe > 0.17:
depscr3, clay_rsed3, clay_wt_rsed6 = bdexch(avdepm, clay_w, tau, clay_taucd, clay_taucs, clay_m, vol, frcsed2, clay_rsed3, clay_wt_rsed6)
else:
depscr3 = 0.0
clay_ssed3 = clay_rsed3 / vol if vol > 0.0 else -1.0e30
# end COHESV()
# compute fine sediment load
fsl = silt_ssed2 + clay_ssed3
ksand = sand_ksand
expsnd = sand_expsnd
# simulate sandload. done after washload because washload affects sand transport if the colby method is used
# Following code is #$SANDLD()
sands = sand_ssed1 # save starting concentration value
if vol > 0.0: # rchres contains water
if rom > 0.0 and avdepe > 0.17: # there is outflow from the rchres- perform advection
# calculate potential value of sand
if sandfg == 1: # case 1 toffaleti equation
gsi = toffaleti(avvele, db50e, hrade, slope, tw, wsande)
psand = (gsi * twide * 10.5) / rom # convert potential sand transport rate to a concentration in mg/l
elif sandfg == 2: # case 2 colby equation
gsi, ferror, d50err, hrerr, velerr = colby(avvele, db50m, hrade, fsl, tw)
if ferror == 1:
pass # ERRMSG: fatal error ocurred in colby method- one or more variables went outside valid range- warn and switch to toffaleti method
gsi = toffaleti(avvele, db50e, hrade, slope, tw, wsande) # switch to toffaleti method
psand = (gsi * twide * 10.5) / rom # convert potential sand transport rate to conc in mg/l
elif sandfg == 3: # case 3 input power function
psand = ksand * avvele**expsnd
prosnd = (sands * srovol) + (psand * erovol) # calculate potential outflow of sand during ivl
pscour = (vol * psand) - (svol * sands) + prosnd - ised1 # qty.vol/l.ivl # calculate potential bed scour from, or to deposition
if pscour < sand_wt_rsed4: # potential scour is satisfied by bed storage;
# new conc. of sandload is potential conc.
scour = pscour
sand_ssed1 = psand
sand_rsed1 = sand_ssed1 * vol
sand_wt_rsed4 -= scour
else: # potential scour cannot be satisfied; all of the available bed storage is scoured
scour = sand_wt_rsed4
sand_wt_rsed4 = 0.0
sand_ssed1 = (ised1 + scour + sands * (svol - srovol)) / (vol + erovol) # calculate new conc. of suspended sandload
sand_rsed1 = sand_ssed1 * vol # calculate new storage of suspended sandload
rosed1 = (srovol * sands) + (erovol * sand_ssed1) # calculate total amount of sand leaving rchres during ivl
osed1 = sovol * sands + eovol * sand_ssed1 # calculate amount of sand leaving through each exit gate in qty.vol/l.ivl
else: # no outflow (still water) or water depth less than two inches
sand_ssed1 = 0.0
sand_rsed1 = 0.0
scour = -ised1 - (sands * svol)
sand_wt_rsed4 -= scour
rosed1 = 0.0
osed1 = zeros(nexits)
else: # rchres is dry; set sand equal to an undefined number
sand_ssed1 = -1.0e30
sand_rsed1 = 0.0
scour = -ised1 - (sands * svol) # calculate total amount of sand settling out during interval; this is equal to sand inflow + sand initially present
sand_wt_rsed4 -= scour # update bed storage
rosed1 = 0.0
osed1 = zeros(nexits)
depscr1 = -scour # calculate depth of bed scour or deposition; positive for deposition
# end SANDLD()
# set small concentrations to zero
if abs(sand_ssed1) < 1.0e-15: # small conc., set to zero
if depscr1 > 0.0: # deposition has occurred, add small storage to deposition
depscr1 += sand_rsed1
sand_wt_rsed4 += sand_rsed1
else: # add small storage to outflow
rosed1 += sand_rsed1
depscr1 = 0.0
if nexits > 1:
for n in range(0,nexits):
if osed1[n] > 0.0:
osed1[n] += sand_rsed1
break
sand_rsed1 = 0.0
sand_ssed1 = 0.0
if abs(silt_ssed2) < 1.0e-15: # small conc., set to zero
if depscr2 > 0.0: # deposition has occurred, add small storage to deposition
depscr2 += silt_rsed2
silt_wt_rsed5 += silt_rsed2
else: # add small storage to outflow
rosed2 += silt_rsed2
depscr2 = 0.0
if nexits > 1:
for n in range(0, nexits):
if osed2[n] > 0.0:
osed2[n] += silt_rsed2
break
silt_rsed2 = 0.0
silt_ssed2 = 0.0
if abs(clay_ssed3) < 1.0e-15: # small conc., set to zero
if depscr3 > 0.0: # deposition has occurred, add small storage to deposition
depscr3 += clay_rsed3
clay_wt_rsed6 += clay_rsed3
else: # add small storage to outflow
rosed3 += clay_rsed3
depscr3 = 0.0
if nexits > 1:
for n in range(0, nexits):
if osed3[n] > 0.0:
osed3[n] += clay_rsed3
break
clay_rsed3 = 0.0
clay_ssed3 = 0.0
osed4 = zeros(nexits)
# calculate total quantity of material in suspension and in the bed; check bed conditions
osed4 += osed1
sand_rssed1 = sand_t_rsed7 = sand_rsed1 + sand_wt_rsed4 # total storage in mg.vol/l
if sand_wt_rsed4 == 0.0: # warn that bed is empty
# errmsg
errorsV[0] += 1 # The bed storage of sediment size fraction sand is empty.
osed4 += osed2
silt_rssed2 = silt_t_rsed8 = silt_rsed2 + silt_wt_rsed5 # total storage in mg.vol/l
if silt_wt_rsed5 == 0.0: # warn that bed is empty
# errmsg
errorsV[1] += 1 # The bed storage of sediment size fraction silt is empty.
osed4 += osed3
clay_rssed3 = clay_t_rsed9 = clay_rsed3 + clay_wt_rsed6 # total storage in mg.vol/l
if clay_wt_rsed6 == 0.0: # warn that bed is empty
# errmsg
errorsV[2] += 1 # The bed storage of sediment size fraction clay is empty.
# find the volume occupied by each fraction of bed sediment- ft3 or m3
volsed = (sand_wt_rsed4 / (sand_rho * 1.0e06)
+ silt_wt_rsed5 / (silt_rho * 1.0e06)
+ clay_wt_rsed6 / (clay_rho * 1.0e06))
total_ssed4 = sand_ssed1 + silt_ssed2 + clay_ssed3
tsed1 = sand_rsed1 + silt_rsed2 + clay_rsed3
tsed2 = sand_wt_rsed4 + silt_wt_rsed5 + clay_wt_rsed6
tsed3 = total_rsed10 = sand_t_rsed7 + silt_t_rsed8 + clay_t_rsed9
depscr4 = depscr1 + depscr2 + depscr3
rosed4 = rosed1 + rosed2 + rosed3
# find total depth of sediment
volsed = volsed / (1.0 - por) # allow for porosit
beddep = volsed / (len_ * bedwid) # calculate thickness of bed- ft or m
if beddep > bedwrn:
# Errormsg: warn that bed depth appears excessive
errorsV[3] += 1
svol = vol # svol is volume at start of time step, update for next time thru
SSED1[loop] = sand_ssed1
SSED2[loop] = silt_ssed2
SSED3[loop] = clay_ssed3
SSED4[loop] = total_ssed4
BEDDEP[loop]= beddep
if uunits == 1:
RSED1[loop] = sand_rsed1 * 3.121E-08
RSED2[loop] = silt_rsed2 * 3.121E-08
RSED3[loop] = clay_rsed3 * 3.121E-08
RSED4[loop] = sand_wt_rsed4 * 3.121E-08
RSED5[loop] = silt_wt_rsed5 * 3.121E-08
RSED6[loop] = clay_wt_rsed6 * 3.121E-08
RSED7[loop] = sand_t_rsed7 * 3.121E-08
RSED8[loop] = silt_t_rsed8 * 3.121E-08
RSED9[loop] = clay_t_rsed9 * 3.121E-08
RSED10[loop] = total_rsed10 * 3.121E-08
TSED1[loop] = tsed1 * 3.121E-08
TSED2[loop] = tsed2 * 3.121E-08
TSED3[loop] = tsed3 * 3.121E-08
DEPSCR1[loop] = depscr1 * 3.121E-08
DEPSCR2[loop] = depscr2 * 3.121E-08
DEPSCR3[loop] = depscr3 * 3.121E-08
DEPSCR4[loop] = depscr4 * 3.121E-08
ROSED1[loop] = rosed1 * 3.121E-08
ROSED2[loop] = rosed2 * 3.121E-08
ROSED3[loop] = rosed3 * 3.121E-08
ROSED4[loop] = rosed4 * 3.121E-08
OSED1[loop] = osed1 * 3.121E-08
OSED2[loop] = osed2 * 3.121E-08
OSED3[loop] = osed3 * 3.121E-08
OSED4[loop] = osed4 * 3.121E-08
else:
RSED1[loop] = sand_rsed1 * 1E-06
RSED2[loop] = silt_rsed2 * 1E-06
RSED3[loop] = clay_rsed3 * 1E-06
RSED4[loop] = sand_wt_rsed4 * 1E-06
RSED5[loop] = silt_wt_rsed5 * 1E-06
RSED6[loop] = clay_wt_rsed6 * 1E-06
RSED7[loop] = sand_t_rsed7 * 1E-06
RSED8[loop] = silt_t_rsed8 * 1E-06
RSED9[loop] = clay_t_rsed9 * 1E-06
RSED10[loop] = total_rsed10 * 1E-06
TSED1[loop] = tsed1 * 1E-06
TSED2[loop] = tsed2 * 1E-06
TSED3[loop] = tsed3 * 1E-06
DEPSCR1[loop] = depscr1 * 1E-06
DEPSCR2[loop] = depscr2 * 1E-06
DEPSCR3[loop] = depscr3 * 1E-06
DEPSCR4[loop] = depscr4 * 1E-06
ROSED1[loop] = rosed1 * 1E-06 # 2.83E-08
ROSED2[loop] = rosed2 * 1E-06
ROSED3[loop] = rosed3 * 1E-06
ROSED4[loop] = rosed4 * 1E-06
OSED1[loop] = osed1 * 1E-06
OSED2[loop] = osed2 * 1E-06
OSED3[loop] = osed3 * 1E-06
OSED4[loop] = osed4 * 1E-06
if nexits > 1:
for i in range(nexits):
ts['OSED1' + str(i+1)] = OSED1[:, i]
ts['OSED2' + str(i + 1)] = OSED2[:, i]
ts['OSED3' + str(i + 1)] = OSED3[:, i]
ts['OSED4' + str(i + 1)] = OSED4[:, i]
return errorsV
@njit(cache=True)
def bdexch (avdepm, w, tau, taucd, taucs, m, vol, frcsed, susp, bed):
''' simulate deposition and scour of a cohesive sediment fraction- silt or clay'''
if w > 0.0 and tau < taucd and susp > 1.0e-30: # deposition will occur
expnt = -w / avdepm * (1.0 - tau / taucd)
depmas = susp * (1.0 - exp(expnt))
susp -= depmas
bed += depmas
else:
depmas = 0.0 # no deposition- concentrations unchanged
if tau > taucs and m > 0.0: # scour can occur- units are: m- kg/m2.ivl avdepm- m scr- mg/l
scr = frcsed * m / avdepm * 1000.0 * (tau/taucs - 1.0)
scrmas = min(bed, scr * vol) # check availability of material ???
# update storages
susp += scrmas
bed -= scrmas
else: # no scour
scrmas = 0.0
return depmas - scrmas, susp, bed # net deposition or scour, susp, bed
''' Sediment Transport in Alluvial Channels, 1963-65 by Bruce Colby.
This report explains the following empirical algorithm.'''
@njit(cache=True)
def colby(v, db50, fhrad, fsl, tempr):
# Colby's method to calculate the capacity of the flow to transport sand.
#
# The colby method has the following units and applicable ranges of variables.
# average velocity.............v.......fps.........1-10 fps
# hydraulic radius.............fhrad...ft..........1-100 ft
# median bed material size.....db50....mm..........0.1-0.8 mm
# temperature..................tmpr....deg f.......32-100 deg.
# fine sediment concentration..fsl.....mg/liter....0-200000 ppm
# total sediment load..........gsi.....ton/day.ft..
G = zeros((5,9,7)) # defined by Figure 26
G[1, 1, 1], G[2, 1, 1], G[3, 1, 1], G[4, 1, 1] = 1.0, 0.30, 0.06, 0.00
G[1, 2, 1], G[2, 2, 1], G[3, 2, 1], G[4, 2, 1] = 3.00, 3.30, 2.50, 2.00
G[1, 3, 1], G[2, 3, 1], G[3, 3, 1], G[4, 3, 1] = 5.40, 9.0, 10.0, 20.0
G[1, 4, 1], G[2, 4, 1], G[3, 4, 1], G[4, 4, 1] = 11.0, 26.0, 50.0, 150.0
G[1, 5, 1], G[2, 5, 1], G[3, 5, 1], G[4, 5, 1] = 17.0, 49.0, 130.0, 500.0
G[1, 6, 1], G[2, 6, 1], G[3, 6, 1], G[4, 6, 1] = 29.0, 101.0, 400.0, 1350.0
G[1, 7, 1], G[2, 7, 1], G[3, 7, 1], G[4, 7, 1] = 44.0, 160.0, 700.0, 2500.0
G[1, 8, 1], G[2, 8, 1], G[3, 8, 1], G[4, 8, 1] = 60.0, 220.0, 1000.0, 4400.0
G[1, 1, 2], G[2, 1, 2], G[3, 1, 2], G[4, 1, 2] = 0.38, 0.06, 0.0, 0.0
G[1, 2, 2], G[2, 2, 2], G[3, 2, 2], G[4, 2, 2] = 1.60, 1.20, 0.65, 0.10
G[1, 3, 2], G[2, 3, 2], G[3, 3, 2], G[4, 3, 2] = 3.70, 5.0, 4.0, 3.0
G[1, 4, 2], G[2, 4, 2], G[3, 4, 2], G[4, 4, 2] = 10.0, 18.0, 30.0, 52.0
G[1, 5, 2], G[2, 5, 2], G[3, 5, 2], G[4, 5, 2] = 17.0, 40.0, 80.0, 160.0
G[1, 6, 2], G[2, 6, 2], G[3, 6, 2], G[4, 6, 2] = 36.0, 95.0, 230.0, 650.0
G[1, 7, 2], G[2, 7, 2], G[3, 7, 2], G[4, 7, 2] = 60.0, 150.0, 415.0, 1200.0
G[1, 8, 2], G[2, 8, 2], G[3, 8, 2], G[4, 8, 2] = 81.0, 215.0, 620.0, 1500.0
G[1, 1, 3], G[2, 1, 3], G[3, 1, 3], G[4, 1, 3] = 0.14, 0.0, 0.0, 0.0
G[1, 2, 3], G[2, 2, 3], G[3, 2, 3], G[4, 2, 3] = 1.0, 0.60, 0.15, 0.0
G[1, 3, 3], G[2, 3, 3], G[3, 3, 3], G[4, 3, 3] = 3.30, 3.00, 1.70, 0.50
G[1, 4, 3], G[2, 4, 3], G[3, 4, 3], G[4, 4, 3] = 11.0, 15.0, 17.0, 14.0
G[1, 5, 3], G[2, 5, 3], G[3, 5, 3], G[4, 5, 3] = 20.0, 35.0, 49.0, 70.0
G[1, 6, 3], G[2, 6, 3], G[3, 6, 3], G[4, 6, 3] = 44.0, 85.0, 150.0, 250.0
G[1, 7, 3], G[2, 7, 3], G[3, 7, 3], G[4, 7, 3] = 71.0, 145.0, 290.0, 500.0
G[1, 8, 3], G[2, 8, 3], G[3, 8, 3], G[4, 8, 3] = 100.0, 202.0, 400.0, 700.0
G[1, 1, 4], G[2, 1, 4], G[3, 1, 4], G[4, 1, 4] = 0.0, 0.0, 0.0, 0.0
G[1, 2, 4], G[2, 2, 4], G[3, 2, 4], G[4, 2, 4] = 0.70, 0.30, 0.06, 0.0
G[1, 3, 4], G[2, 3, 4], G[3, 3, 4], G[4, 3, 4] = 2.9, 2.3, 1.0, 0.06
G[1, 4, 4], G[2, 4, 4], G[3, 4, 4], G[4, 4, 4] = 11.5, 13.0, 12.0, 7.0
G[1, 5, 4], G[2, 5, 4], G[3, 5, 4], G[4, 5, 4] = 22.0, 31.0, 40.0, 50.0
G[1, 6, 4], G[2, 6, 4], G[3, 6, 4], G[4, 6, 4] = 47.0, 84.0, 135.0, 210.0
G[1, 7, 4], G[2, 7, 4], G[3, 7, 4], G[4, 7, 4] = 75.0, 140.0, 240.0, 410.0
G[1, 8, 4], G[2, 8, 4], G[3, 8, 4], G[4, 8, 4] = 106.0, 190.0, 350.0, 630.0
G[1, 1, 5], G[2, 1, 5], G[3, 1, 5], G[4, 1, 5] = 0.0, 0.0, 0.0, 0.0
G[1, 2, 5], G[2, 2, 5], G[3, 2, 5], G[4, 2, 5] = 0.44, 0.06, 0.0, 0.0
G[1, 3, 5], G[2, 3, 5], G[3, 3, 5], G[4, 3, 5] = 2.8, 1.8, 0.6, 0.0
G[1, 4, 5], G[2, 4, 5], G[3, 4, 5], G[4, 4, 5] = 12.0, 12.5, 10.0, 4.5
G[1, 5, 5], G[2, 5, 5], G[3, 5, 5], G[4, 5, 5] = 24.0, 30.0, 35.0, 37.0
G[1, 6, 5], G[2, 6, 5], G[3, 6, 5], G[4, 6, 5] = 52.0, 78.0, 120.0, 190.0
G[1, 7, 5], G[2, 7, 5], G[3, 7, 5], G[4, 7, 5] = 83.0, 180.0, 215.0, 380.0
G[1, 8, 5], G[2, 8, 5], G[3, 8, 5], G[4, 8, 5] = 120.0, 190.0, 305.0, 550.0
G[1, 1, 6], G[2, 1, 6], G[3, 1, 6], G[4, 1, 6] = 0.0, 0.0, 0.0, 0.0
G[1, 2, 6], G[2, 2, 6], G[3, 2, 6], G[4, 2, 6] = 0.3, 0.0, 0.0, 0.0
G[1, 3, 6], G[2, 3, 6], G[3, 3, 6], G[4, 3, 6] = 2.9, 1.4, 0.3, 0.0
G[1, 4, 6], G[2, 4, 6], G[3, 4, 6], G[4, 4, 6] = 14.0, 11.0, 7.7, 3.0
G[1, 5, 6], G[2, 5, 6], G[3, 5, 6], G[4, 5, 6] = 27.0, 29.0, 30.0, 30.0
G[1, 6, 6], G[2, 6, 6], G[3, 6, 6], G[4, 6, 6] = 57.0, 75.0, 110.0, 170.0
G[1, 7, 6], G[2, 7, 6], G[3, 7, 6], G[4, 7, 6] = 90.0, 140.0, 200.0, 330.0
G[1, 8, 6], G[2, 8, 6], G[3, 8, 6], G[4, 8, 6] = 135.0, 190.0, 290.0, 520.0
F = zeros((6,11)) # defined by Figure 24
F[1, 1], F[2, 1], F[3, 1], F[4, 1], F[5, 1] = 1.0, 1.1, 1.6, 2.6, 4.2
F[1, 2], F[2, 2], F[3, 2], F[4, 2], F[5, 2] = 1.0, 1.1, 1.65, 2.75, 4.9
F[1, 3], F[2, 3], F[3, 3], F[4, 3], F[5, 3] = 1.0, 1.1, 1.7, 3.0, 5.5
F[1, 4], F[2, 4], F[3, 4], F[4, 4], F[5, 4] = 1.0, 1.12, 1.9, 3.6, 7.0
F[1, 5], F[2, 5], F[3, 5], F[4, 5], F[5, 5] = 1.0, 1.17, 2.05, 4.3, 8.7
F[1, 6], F[2, 6], F[3, 6], F[4, 6], F[5, 6] = 1.0, 1.2, 2.3, 5.5, 11.2
F[1, 7], F[2, 7], F[3, 7], F[4, 7], F[5, 7] = 1.0, 1.22, 2.75, 8.0, 22.0
F[1, 8], F[2, 8], F[3, 8], F[4, 8], F[5, 8] = 1.0, 1.25, 3.0, 9.6, 29.0
F[1, 9], F[2, 9], F[3, 9], F[4, 9], F[5, 9] = 1.0, 1.3, 3.5, 12.0, 43.0
F[1, 10], F[2, 10], F[3, 10], F[4, 10], F[5, 10] = 1.0, 1.4, 4.9, 22.0, 120.0
# T = array([[-999, -999, -999, -999, -999, -999, -999, -999],
# [-999, 1.2, 1.15, 1.10, 0.96, 0.90, 0.85, 0.82],
# [-999, 1.35, 1.25, 1.12, 0.92, 0.86, 0.80, 0.75],
# [-999, 1.60, 1.40, 1.20, 0.89, 0.80, 0.72, 0.66],
# [-999, 2.00, 1.65, 1.30, 0.85, 0.72, 0.63, 0.55]]).T # Temperature adjustment, Figure 24
T = zeros((8,5))
T[0, 0], T[0, 1], T[0, 2], T[0, 3], T[0, 4] = -999, -999, -999, -999, -999
T[1, 0], T[1, 1], T[1, 2], T[1, 3], T[1, 4] = -999, 1.2, 1.35, 1.60, 2.00
T[2, 0], T[2, 1], T[2, 2], T[2, 3], T[2, 4] = -999, 1.15, 1.25, 1.40, 1.65
T[3, 0], T[3, 1], T[3, 2], T[3, 3], T[3, 4] = -999, 1.10, 1.12, 1.20, 1.30
T[4, 0], T[4, 1], T[4, 2], T[4, 3], T[4, 4] = -999, 0.96, 0.92, 0.89, 0.85
T[5, 0], T[5, 1], T[5, 2], T[5, 3], T[5, 4] = -999, 0.90, 0.86, 0.80, 0.72
T[6, 0], T[6, 1], T[6, 2], T[6, 3], T[6, 4] = -999, 0.85, 0.80, 0.72, 0.63
T[7, 0], T[7, 1], T[7, 2], T[7, 3], T[7, 4] = -999, 0.82, 0.75, 0.66, 0.55
DF = array([-999, 0.10, 0.20, 0.30, 0.60, 1.00, 2.00, 6.00, 10.00, 20.00, 1.E2]) # Depths for Figure 24
CF = array([-999, 0.00, 1.E4, 5.E4, 1.E5, 1.5E5]) # Concentrations of sediment for Figure 24
P = array([-999, 0.60, 0.90, 1.0, 1.0, 0.83, 0.60, 0.40, 0.25, 0.15, 0.09, 0.05]) # Percentage Effect for Figure 24
DP = array([-999, 0.10, 0.15, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00]) # Median diameters for Figure 24
DG = array([-999, 0.10, 1.00, 10.0, 100.0]) # Depth values for Figure 26
VG = array([-999, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, 10.0]) # Velocity values for Figure 26
D50G = array([-999, 0.10, 0.20, 0.30, 0.40, 0.60, 0.80]) # Median values for figure 26
TEMP = array([-999, 32.0, 40.0, 50.0, 70.0, 80.0, 90.0, 100.0]) # Temperatures for lookup in Figure 26
ferror = 0
d50err = 0
hrerr = 0
velerr = 0
id501 = 0
id502 = 0
id1 = 0
iv1 = 0
it1 = 0
if not 0.80 >= db50 >= 0.10: # D50G limits
ferror = 1
d50err = 1
return 0.0, ferror, d50err, hrerr, velerr
for id501, db50x in enumerate(D50G):
if db50x > db50:
break
id501 -= 1
id502 = id501 + 1
zz1 = log10(D50G[id501])
zz2 = log10(D50G[id502])
zzratio = (log10(db50) - zz1) / (zz2 - zz1)
if not 100.0 >= fhrad >= 0.10: # DG limits
ferror = 1
hrerr = 1
return 0.0, ferror, d50err, hrerr, velerr
for id1,dgx in enumerate(DG):
if fhrad > dgx:
break
id1 = id1 + 1
id2 = id1 + 1
xx1 = log10(DG[id1])
xx2 = log10(DG[id2])
xxratio = (log10(fhrad) - xx1) / ((xx2 - xx1))
if not 10.0 >= v >= 1.0: # VG limits
ferror = 1
velerr = 1
return 0.0, ferror, d50err, hrerr, velerr
for iv1, vx in enumerate(VG):
if vx > v:
break
iv1 -= 1
iv2 = iv1 + 1
yy1 = log10(VG[iv1])
yy2 = log10(VG[iv2])
yyratio = (log10(v) - yy1) / (yy2 - yy1)
tmpr = min(100.0, max(32.0, tempr * 1.8 + 32.0))
x = zeros((3,3))
xa= zeros(3)
xg= zeros(3)
for i,i1 in [(1, id1), (2, id2)]: # DO 200 I= 1,2; I1 = II(I)
for j, j1 in [(1, iv1), (2, iv2)]: # DO 190 J= 1,2; J1 = JJ(J)
for k, k1 in [(1, id501), (2, id502)]: # DO 180 K= 1,2; K1 = KK(K)
if G[i1,j1,k1] > 0.0:
x[j,k] = log10(G[i1,j1,k1])
else:
for j3 in range(j1,8): # DO 140 J3= J1,7
if G[i1,j3,k1] > 0.0:
break
x[j,k] = log10(G[i1,j3,k1]) + (log10(VG[j1] / VG[j3])) * (log10(G[i1,j3+1,k1] / G[i1,j3,k1])) / (log10(VG[j3+1] / VG[j3]))
xa[1] = x[1,1] + (x[1,2] - x[1,1]) * zzratio
xa[2] = x[2,1] + (x[2,2] - x[2,1]) * zzratio
xn3 = xa[2] - xa[1]
xg[i] = xa[1] + xn3 * yyratio
xn4 = xg[2] - xg[1]
gtuc = 10.0**(xg[1] + (xn4 * xxratio)) # uncorrected gt in lb/sec/ft
# Adjustment coefficient for temperature
if abs(tmpr - 60.0) <= 1.0e-5:
cft = 1.0
else:
for it1, tempx in enumerate(TEMP):
if tempx > tmpr:
break
it2 = it1
it1 -= 1
xt11 = log10(T[it1][id1])
xt21 = log10(T[it2][id1])
xt12 = log10(T[it1][id2])
xt22 = log10(T[it2][id2])
xnt = log10(tmpr / TEMP[it1]) / log10(TEMP[it2] / TEMP[it1])
xct1 = xt11 + xnt * (xt21 - xt11)
xct2 = xt12 + xnt * (xt22 - xt12)
cft = 10.0**(xct1 + (xct2 - xct1) * xxratio)
# fine sediment load correction; (i.e. cohesive sediment or wash) load in mg/liter
if fsl <= 10.0:
cff = 1.0
else:
for id1, dfx in enumerate(DF):
if dfx > fhrad:
break
id2 = id1 + 1
if1 = 0
if fsl > 1.0E+4:
if1 = 4
if2 = 5
ERRMSG = '***** SUBROUTINE COLBY -- FSL WENT > 1.E+4'
else:
for if1, cfx in enumerate(CF):
if cfx > fsl:
break
if2 = if1 + 1
xf11 = log10(F[if1,id1])
xf22 = log10(F[if2,id2])
xf12 = log10(F[if1,id2])
xf21 = log10(F[if2,id1])
xnt = (fsl - CF[if1]) / (CF[if2] - CF[if1])
xct1 = xf11 + xnt * (xf21 - xf11)
xct2 = xf12 + xnt * (xf22 - xf12)
xnt = log10(fhrad / DF[id1]) / log10(DF[id2] / DF[id1])
cff = 10.0**(xct1 + xnt * (xct2 - xct1))
tcf = cft * cff - 1.0
# Percent effect correction for median diameter'''
if 0.30 >= db50 >= 0.20:
cfd = 1.0
else:
for ip1, db50x in enumerate(DP):
if db50x > db50:
break
ip2 = ip1 + 1
p1 = log10(P[ip1])
p2 = log10(P[ip2])
xnt = log10(db50 / DP[ip1]) / log10(DP[ip2] / DP[ip1])
cfd = 10.0**(p1 + xnt * (p2 -p1))
return gtuc * (cfd * tcf + 1.0), ferror, d50err, hrerr, velerr
@njit(cache=True)
def toffaleti(v, fdiam, fhrad, slope, tempr, vset):
''' Toffaleti's method to calculate the capacity of the flow to transport sand.'''
tmpr = tempr * 1.80 + 32.0 # degrees c to degrees f
# For water temperatures greater than 32f and less than 100f the kinematic viscosity is
vis = 4.106e-4 * tmpr**-0.864
# Assuming the d50 grain size is approximately equal to the Geometric mean grain size
# and sigma-g = 1.5, the d65 grain size can be determined as 1.17*d50.
d65 = 1.17 * fdiam
cnv = 0.1198 + 0.00048 * tmpr
cz = 260.67 - 0.667 * tmpr
tt = 1.10 * (0.051 + 0.00009 * tmpr)
zi = vset * v / (cz * fhrad * slope)
if zi < cnv:
zi = 1.5 * cnv
# The manning-strickler equation is used here to Determine the hydraulic radius
# component due to Grain roughness (r'). Taken from the 1975 asce
# "sedimentation engineering",pg. 128.
rprime = ((v**1.5) * (d65**0.25) / (slope**0.75)) * 0.00349
ustar = (rprime * slope * 32.2)**0.5
afunc = (vis * 1.0e5)**0.333 / (10.0 * ustar)
if afunc <= 0.500: ac = (afunc / 4.89)**-1.45
elif afunc <= 0.660: ac = (afunc / 0.0036)**0.67
elif afunc <= 0.720: ac = (afunc / 0.29)**4.17
elif afunc <= 1.25: ac = 48.0
elif afunc > 1.25: ac = (afunc / 0.304)**2.74
k4func = afunc * slope * d65 * 1.0e5
if k4func <= 0.24: k4 = 1.0
elif k4func <= 0.35: k4 = (k4func**1.10) * 4.81
elif k4func > 0.35: k4 = (k4func** (-1.05)) * 0.49
ack4 = ac * k4
if ack4 - 16.0 < 0.0:
ack4 = 16.0
k4 = 16.0 / ac
oczu = 1.0 + cnv - 1.5 * zi
oczm = 1.0 + cnv - zi
oczl= 1.0 + cnv - 0.756 * zi
zinv = cnv - 0.758 * zi
zm = -zinv
zn = 1.0 + zinv
zo = -0.736 * zi
zp = 0.244 * zi
zq = 0.5 * zi
# Cli has been multiplied by 1.0e30 to keep it from Exceeding the computer overflow limit
cli = (5.6e+22 * oczl * (v**2.333) / fhrad**(zm) / ((tt * ac * k4 * fdiam)**1.667)
/ (1.0 + cnv) / ((fhrad / 11.24)**(zn) - (2.0 * fdiam)**oczl))
p1 = (2.0 * fdiam / fhrad)**(zo / 2.0)
c2d = cli * p1 * p1 / 1.0e+30
# Check to see if the calculated value is reasonable (< 100.0), and adjust it if it is not.
if c2d > 100.0:
cli = cli * 100.0 / c2d
cmi = 43.2 * cli * (1.0 + cnv) * v * (fhrad**zm) # Cmi has been multiplied by 1.0e30 to keep it from computer overflow
# upper layer transport capacity
fd11 = fhrad / 11.24
fd25 = fhrad / 2.5
gsu = (cmi * (fd11**zp) * (fd25**zq) * (fhrad**oczu - (fd25**oczu)))/(oczu * 1.0e+30)
gsm = (cmi * (fd11**zp) * (fd25**(oczm) - (fd11**oczm))) / (oczm * 1.0e+30) # middle layer transport capacity
gsl = (cmi * ((fd11**(zn)) - ((2.0 * fdiam)**(oczl)))) / (oczl * 1.0e+30) # lower layer transport capacity
gsb = (cmi * ((2.0 * fdiam)**(zn))) / 1.0e+30 # bed layer transport capacity
return max(0.0, gsu + gsm + gsl + gsb) # Total transport capacity of the rchres (tons/day/ft)
def expand_SEDTRN_masslinks(flags, uci, dat, recs):
if flags['SEDTRN']:
# ISED1
rec = {}
rec['MFACTOR'] = dat.MFACTOR
rec['SGRPN'] = 'SEDTRN'
if dat.SGRPN == "ROFLOW":
rec['SMEMN'] = 'ROSED'
rec['SMEMSB1'] = '1'
rec['SMEMSB2'] = ''
else:
rec['SMEMN'] = 'OSED'
rec['SMEMSB1'] = '1'
rec['SMEMSB2'] = dat.SMEMSB1
rec['TMEMN'] = 'ISED1'
rec['TMEMSB1'] = dat.TMEMSB1
rec['TMEMSB2'] = dat.TMEMSB2
rec['SVOL'] = dat.SVOL
recs.append(rec)
# ISED2
rec = {}
rec['MFACTOR'] = dat.MFACTOR
rec['SGRPN'] = 'SEDTRN'
if dat.SGRPN == "ROFLOW":
rec['SMEMN'] = 'ROSED'
rec['SMEMSB1'] = '2'
rec['SMEMSB2'] = ''
else:
rec['SMEMN'] = 'OSED'
rec['SMEMSB1'] = '2'
rec['SMEMSB2'] = dat.SMEMSB1
rec['TMEMN'] = 'ISED2'
rec['TMEMSB1'] = dat.TMEMSB1
rec['TMEMSB2'] = dat.TMEMSB2
rec['SVOL'] = dat.SVOL
recs.append(rec)
# ISED3
rec = {}
rec['MFACTOR'] = dat.MFACTOR
rec['SGRPN'] = 'SEDTRN'
if dat.SGRPN == "ROFLOW":
rec['SMEMN'] = 'ROSED'
rec['SMEMSB1'] = '3'
rec['SMEMSB2'] = ''
else:
rec['SMEMN'] = 'OSED'
rec['SMEMSB1'] = '3'
rec['SMEMSB2'] = dat.SMEMSB1
rec['TMEMN'] = 'ISED3'
rec['TMEMSB1'] = dat.TMEMSB1
rec['TMEMSB2'] = dat.TMEMSB2
rec['SVOL'] = dat.SVOL
recs.append(rec)
return recs