forked from respec/HSPsquared
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutilities.py
519 lines (441 loc) · 19.2 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
''' Copyright (c) 2020 by RESPEC, INC.
Author: Robert Heaphy, Ph.D.
License: LGPL2
General routines for HSP2 '''
import pandas as pd
import numpy as np
from pandas import Series, date_range
from pandas.tseries.offsets import Minute
from numpy import zeros, full, tile, float64
from numba import types
from numba.typed import Dict
from HSP2IO.protocols import Category, SupportsReadTS, SupportsWriteTS
from typing import List
flowtype = {
# EXTERNAL FLOWS
'PREC','WIND','WINMOV','SOLRAD','PETINP','POTEV','SURLI','IFWLI','AGWLI',
'SLSED','IVOL','ICON',
# COMPUTED FLOWS
'PRECIP','SNOWF','PRAIN','SNOWE','WYIELD','MELT', #SNOW
'SUPY','SURO','IFWO','AGWO','PERO','IGWI','PET','CEPE','UZET','LZET', #PWATER
'AGWET','BASET','TAET','IFWI','UZI','INFIL','PERC','LZI','AGWI', #PWATER
'SOHT','IOHT','AOHT','POHT','SODOXM','SOCO2M','IODOXM','IOCO2M', #PWTGAS
'AODOXM','AOCO2M','PODOXM','POCO2M', #PWTGAS
'SUPY','SURO','PET','IMPEV' #IWATER
'SOSLD', #SOLIDS
'SOHT','SODOXM','SOCO2M', #IWTGAS
'SOQS','SOQO','SOQUAL', #IQUAL
'IVOL','PRSUPY','VOLEV','ROVOL','POTEV', #HYDR
'ICON','ROCON', #CONS
'IHEAT','HTEXCH','ROHEAT','QTOTAL','QSOLAR','QLONGW','QEVAP','QCON', #HTRCH
'QPREC','QBED', #HTRCH
}
# These are hardcoded series in HSPF that are used various modules
# Rather than have them become a IO requirement, carry them over as
# hard coded variables for the time being.
LAPSE = Series([0.0035, 0.0035, 0.0035, 0.0035, 0.0035, 0.0035, 0.0037,
0.0040, 0.0041, 0.0043, 0.0046, 0.0047, 0.0048, 0.0049, 0.0050, 0.0050,
0.0048, 0.0046, 0.0044, 0.0042, 0.0040, 0.0038, 0.0037, 0.0036])
SEASONS = Series([0,0,0,1,1,1,1,1,1,0,0,0]).astype(bool)
SVP = Series([1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005, 1.005,
1.005, 1.01, 1.01, 1.015, 1.02, 1.03, 1.04, 1.06, 1.08, 1.1, 1.29, 1.66,
2.13, 2.74,3.49, 4.40, 5.55,6.87, 8.36, 10.1,12.2,14.6, 17.5, 20.9, 24.8,
29.3, 34.6, 40.7, 47.7, 55.7, 64.9]).to_numpy()
def make_numba_dict(uci):
'''
Move UCI dictionary data to Numba dict for FLAGS, STATES, PARAMETERS.
Parameters
----------
uci : Python dictionary
The uci dictionary contains xxxx.uci file data
Returns
-------
ui : Numba dictionary
Same content as uci except for strings
'''
ui = Dict.empty(key_type=types.unicode_type, value_type=types.float64)
for name in set(uci.keys()) & {'FLAGS', 'PARAMETERS', 'STATES'}:
for key, value in uci[name].items():
if isinstance(value, (int, float)):
ui[key] = float(value)
return ui
def transform(ts, name, how, siminfo):
'''
upsample (disaggregate) /downsample (aggregate) ts to freq and trim to [start:stop]
how methods (default is SAME)
disaggregate: LAST, SAME, DIV, ZEROFILL, INTERPOLATE
aggregate: MEAN, SUM, MAX, MIN
NOTE: these routines work for both regular and sparse timeseries input
'''
tsfreq = ts.index.freq
freq = Minute(siminfo['delt'])
stop = siminfo['stop']
# append duplicate of last point to force processing last full interval
if ts.index[-1] < stop:
ts[stop] = ts[-1]
if freq == tsfreq:
pass
elif tsfreq == None: # Sparse time base, frequency not defined
ts = ts.reindex(siminfo['tbase']).ffill().bfill()
elif how == 'SAME':
ts = ts.resample(freq).ffill() # tsfreq >= freq assumed, or bad user choice
elif not how:
if name in flowtype:
if 'Y' in str(tsfreq) or 'M' in str(tsfreq) or tsfreq > freq:
if 'M' in str(tsfreq): ratio = 1.0/730.5
elif 'Y' in str(tsfreq): ratio = 1.0/8766.0
else: ratio = freq / tsfreq
ts = (ratio * ts).resample(freq).ffill() # HSP2 how = div
else:
ts = ts.resample(freq).sum()
else:
if 'Y' in str(tsfreq) or 'M' in str(tsfreq) or tsfreq > freq:
ts = ts.resample(freq).ffill()
else:
ts = ts.resample(freq).mean()
elif how == 'MEAN': ts = ts.resample(freq).mean()
elif how == 'SUM': ts = ts.resample(freq).sum()
elif how == 'MAX': ts = ts.resample(freq).max()
elif how == 'MIN': ts = ts.resample(freq).min()
elif how == 'LAST': ts = ts.resample(freq).ffill()
elif how == 'DIV': ts = (ts * (freq / ts.index.freq)).resample(freq).ffill()
elif how == 'ZEROFILL': ts = ts.resample(freq).fillna(0.0)
elif how == 'INTERPOLATE': ts = ts.resample(freq).interpolate()
else:
print(f'UNKNOWN method in TRANS, {how}')
return zeros(1)
start, steps = siminfo['start'], siminfo['steps']
return ts[start:stop].to_numpy().astype(float64)[0:steps]
def hoursval(siminfo, hours24, dofirst=False, lapselike=False):
'''create hours flags, flag on the hour or lapse table over full simulation'''
start = siminfo['start']
stop = siminfo['stop']
freq = Minute(siminfo['delt'])
dr = date_range(start=f'{start.year}-01-01', end=f'{stop.year}-12-31', freq=Minute(60))
hours = tile(hours24, (len(dr) + 23) // 24).astype(float)
if dofirst:
hours[0] = 1
ts = Series(hours[0:len(dr)], dr)
if lapselike:
if ts.index.freq > freq: # upsample
ts = ts.resample(freq).asfreq().ffill()
elif ts.index.freq < freq: # downsample
ts = ts.resample(freq).mean()
else:
if ts.index.freq > freq: # upsample
ts = ts.resample(freq).asfreq().fillna(0.0)
elif ts.index.freq < freq: # downsample
ts = ts.resample(freq).max()
return ts.truncate(start, stop).to_numpy()
def hourflag(siminfo, hourfg, dofirst=False):
'''timeseries with 1 at desired hour and zero otherwise'''
hours24 = zeros(24)
hours24[hourfg] = 1.0
return hoursval(siminfo, hours24, dofirst)
def monthval(siminfo, monthly):
''' returns value at start of month for all times within the month'''
start = siminfo['start']
stop = siminfo['stop']
freq = Minute(siminfo['delt'])
months = tile(monthly, stop.year - start.year + 1).astype(float)
dr = date_range(start=f'{start.year}-01-01', end=f'{stop.year}-12-31',
freq='MS')
ts = Series(months, index=dr).resample('D').ffill()
if ts.index.freq > freq: # upsample
ts = ts.resample(freq).asfreq().ffill()
elif ts.index.freq < freq: # downsample
ts = ts.resample(freq).mean()
return ts.truncate(start, stop).to_numpy()
def dayval(siminfo, monthly):
'''broadcasts HSPF monthly data onto timeseries at desired freq with HSPF
interpolation to day, but constant within day'''
start = siminfo['start']
stop = siminfo['stop']
freq = Minute(siminfo['delt'])
months = tile(monthly, stop.year - start.year + 1).astype(float)
dr = date_range(start=f'{start.year}-01-01', end=f'{stop.year}-12-31',
freq='MS')
ts = Series(months, index=dr).resample('D').interpolate('time')
if ts.index.freq > freq: # upsample
ts = ts.resample(freq).ffill()
elif ts.index.freq < freq: # downsample
ts = ts.resample(freq).mean()
return ts.truncate(start, stop).to_numpy()
def initm(siminfo, ui, flag, monthly, default):
''' initialize timeseries with HSPF interpolation of monthly array or with fixed value'''
if flag and monthly in ui:
month = ui[monthly].values()
return dayval(siminfo, list(month))
else:
return full(siminfo['steps'], default)
def initmdiv(siminfo, ui, flag, monthly1, monthly2, default1, default2):
''' initialize timeseries with HSPF interpolation of monthly array or with fixed value'''
# special case for 'ACQOP' divided by 'SQOLIM'
if flag and monthly1 and monthly2 in ui:
month1 = list(ui[monthly1].values())
month2 = list(ui[monthly2].values())
month = zeros(12)
for m in range(0, 12):
month[m] = month1[m] / month2[m]
return dayval(siminfo, list(month))
else:
return full(siminfo['steps'], default1 / default2)
def initmd(siminfo, monthdata, monthly, default):
''' initialize timeseries from HSPF month data table'''
if monthly in monthdata:
month = monthdata[monthly].values[0]
return dayval(siminfo, list(month))
else:
return full(siminfo['steps'], default)
def versions(import_list=[]):
'''
Versions of libraries required by HSP2
Parameters
----------
import_list : list of strings, optional
DESCRIPTION. The default is [].
Returns
-------
Pandas DataFrame
Libary verson strings.
'''
import sys
import platform
import pandas
import importlib
import datetime
names = ['Python']
data = [sys.version]
import_list = ['HSP2', 'numpy', 'numba', 'pandas'] + list(import_list)
for import_ in import_list:
imodule = importlib.import_module(import_)
names.append(import_)
data.append(imodule.__version__)
names.extend(['os', 'processor', 'Date/Time'])
data.extend([platform.platform(), platform.processor(),
str(datetime.datetime.now())[0:19]])
return pandas.DataFrame(data, index=names, columns=['version'])
def get_timeseries(timeseries_inputs:SupportsReadTS, ext_sourcesdd, siminfo):
''' makes timeseries for the current timestep and trucated to the sim interval'''
# explicit creation of Numba dictionary with signatures
ts = Dict.empty(key_type=types.unicode_type, value_type=types.float64[:])
for row in ext_sourcesdd:
data_frame = timeseries_inputs.read_ts(category=Category.INPUTS,segment=row.SVOLNO)
if row.MFACTOR != 1.0:
data_frame *= row.MFACTOR
t = transform(data_frame, row.TMEMN, row.TRAN, siminfo)
tname = clean_name(row.TMEMN,row.TMEMSB)
if tname in ts:
ts[tname] += t
else:
ts[tname] = t
return ts
def save_timeseries(timeseries:SupportsWriteTS, ts, savedict, siminfo, saveall, operation, segment, activity, compress=True):
df = pd.DataFrame(index=siminfo['tindex'])
if (operation == 'IMPLND' and activity == 'IQUAL') or (operation == 'PERLND' and activity == 'PQUAL'):
for y in savedict.keys():
for z in set(ts.keys()):
if '/' + y in z:
zrep = z.replace('/','_')
zrep2 = zrep.replace(' ', '')
df[zrep2] = ts[z]
if '_' + y in z:
df[z] = ts[z]
elif (operation == 'RCHRES' and (activity == 'CONS' or activity == 'GQUAL')):
for y in savedict.keys():
for z in set(ts.keys()):
if '_' + y in z:
df[z] = ts[z]
for y in (savedict.keys() & set(ts.keys())):
df[y] = ts[y]
else:
for y in (savedict.keys() & set(ts.keys())):
df[y] = ts[y]
df = df.astype(np.float32).sort_index(axis='columns')
if saveall:
save_columns = df.columns
else:
save_columns = [key for key,value in savedict.items() if value or saveall]
if not df.empty:
timeseries.write_ts(
data_frame=df,
save_columns=save_columns,
category = Category.RESULTS,
operation=operation,
segment=segment,
activity=activity,
compress=compress
)
else:
print(f'DataFrame Empty for {operation}|{activity}|{segment}')
return
def expand_timeseries_names(sgrp, smemn, smemsb1, smemsb2, tmemn, tmemsb1, tmemsb2):
#special cases to expand timeseries names to resolve with output names in hdf5 file
if tmemn == 'ICON':
if tmemsb1 == '':
tmemn = 'CONS1_ICON'
else:
tmemn = 'CONS' + tmemsb1 + '_ICON'
if smemn == 'OCON':
if smemsb2 == '':
smemn = 'CONS1_OCON' + smemsb1
else:
smemn = 'CONS' + smemsb2 + '_OCON' + smemsb1
if smemn == 'ROCON':
if smemsb1 == '':
smemn = 'CONS1_ROCON'
else:
smemn = 'CONS' + smemsb1 + '_ROCON'
# GQUAL:
if tmemn == 'IDQAL':
if tmemsb1 == '':
tmemn = 'GQUAL1_IDQAL'
else:
tmemn = 'GQUAL' + tmemsb1 + '_IDQAL'
if tmemn == 'ISQAL1' or tmemn == 'ISQAL2' or tmemn == 'ISQAL3':
if tmemsb2 == '':
tmemn = 'GQUAL1_' + tmemn
else:
tmemn = 'GQUAL' + tmemsb2 + '_' + tmemn
if tmemn == 'ISQAL':
if tmemsb2 == '':
tmemn = 'GQUAL1_' + 'ISQAL' + tmemsb1
else:
tmemn = 'GQUAL' + tmemsb2 + '_' + 'ISQAL' + tmemsb1
if smemn == 'ODQAL':
smemn = 'GQUAL' + smemsb1 + '_ODQAL' + smemsb2 # smemsb2 is exit number
if smemn == 'OSQAL':
smemn = 'GQUAL' + smemsb1 + '_OSQAL' + smemsb2 # smemsb2 is ssc plus exit number
if smemn == 'RODQAL':
smemn = 'GQUAL' + smemsb1 + '_RODQAL'
if smemn == 'ROSQAL':
smemn = 'GQUAL' + smemsb2 + '_ROSQAL' + smemsb1 # smemsb1 is ssc
# OXRX:
if smemn == 'OXCF1':
smemn = 'OXCF1_' + smemsb1
if smemn == 'OXCF2':
smemn = 'OXCF2_' + smemsb1 + smemsb2 # smemsb1 is exit #
if tmemn == 'OXIF':
tmemn = 'OXIF' + tmemsb1
if sgrp == "PQUAL" or sgrp == "IQUAL": # could be from pqual or iqual
if smemsb1 == '':
smemsb1 = '1'
smemn = sgrp + smemsb1 + '_' + smemn
# NUTRX - dissolved species:
if smemn == 'NUCF1': # total outflow
smemn = 'NUCF1_' + smemsb1
if smemn == 'NUCF9': # exit-specific outflow
smemn = 'NUCF9_' + smemsb1 + smemsb2 # smemsb1 is exit #
if tmemn == 'NUIF1':
tmemn = 'NUIF1_' + tmemsb1
if sgrp == "PQUAL" or sgrp == "IQUAL": # could be from pqual or iqual
if smemsb1 == '':
smemsb1 = '1'
smemn = sgrp + smemsb1 + '_' + smemn
# NUTRX - particulate species:
if smemn == 'NUCF2': # total outflow
smemn = 'NUCF2_' + smemsb1 + smemsb2 # smemsb1 is sediment class
if smemn == 'OSNH4' or smemn == 'OSPO4': # exit-specific outflow
smemn = smemn + '_' + smemsb1 + smemsb2 # smemsb1 is exit #, smemsb2 is sed class
if tmemn == 'NUIF2':
tmemn = 'NUIF2_' + tmemsb1 + tmemsb2
if sgrp == "PQUAL" or sgrp == "IQUAL": # could be from pqual or iqual
if smemsb1 == '':
smemsb1 = '1'
smemn = sgrp + smemsb1 + '_' + smemn
# PLANK:
if smemn == 'PKCF1': # total outflow
smemn = 'PKCF1_' + smemsb1 # smemsb1 is species index
if smemn == 'PKCF2': # exit-specific outflow
smemn = 'PKCF2_' + smemsb1 + smemsb2 # smemsb1 is exit #, smemsb2 is species index
if tmemn == 'PKIF':
tmemn = 'PKIF' + tmemsb1 # tmemsb1 is species index
if sgrp == "PQUAL" or sgrp == "IQUAL": # could be from pqual or iqual
if smemsb1 == '':
smemsb1 = '1'
smemn = sgrp + smemsb1 + '_' + smemn
# PHCARB:
if smemn == 'PHCF1' and smemsb1 == 1: # total outflow
smemn = 'ROTIC'
if smemn == 'PHCF1' and smemsb1 == 2: # total outflow
smemn = 'ROCO2'
if smemn == 'PHCF2' and smemsb2 == 1: # exit-specific outflow
smemn = 'OTIC' + smemsb1 # smemsb1 is exit #, smemsb2 is species index
if smemn == 'PHCF2' and smemsb2 == 2: # exit-specific outflow
smemn = 'OCO2' + smemsb1 # smemsb1 is exit #, smemsb2 is species index
if tmemn == 'PHIF':
tmemn = 'PHIF' + tmemsb1 # tmemsb1 is species index
return smemn, tmemn
def get_gener_timeseries(ts: Dict, gener_instances: Dict, ddlinks: List, ddmasslinks) -> Dict:
"""
Uses links tables to load necessary TimeSeries from Gener class instances to TS dictionary
"""
for link in ddlinks:
if link.SVOL == 'GENER':
if link.SVOLNO in gener_instances:
gener = gener_instances[link.SVOLNO]
series = zeros(len(gener.ts_output)) + gener.ts_output
if type(link.MFACTOR) == float and link.MFACTOR != 1:
series *= link.MFACTOR
key = f'{link.TMEMN}{link.TMEMSB1} {link.TMEMSB2}'.rstrip()
if key != '':
key = clean_name(link.TMEMN,link.TMEMSB1 + link.TMEMSB2)
if key in ts:
ts[key] = ts[key] + series
else:
ts[key] = series
else:
# have to use ML
mldata = ddmasslinks[link.MLNO]
for dat in mldata:
mfactor = dat.MFACTOR
sgrpn = dat.SGRPN
smemn = dat.SMEMN
smemsb1 = dat.SMEMSB1
smemsb2 = dat.SMEMSB2
tmemn = dat.TMEMN
tmemsb1 = dat.TMEMSB1
tmemsb2 = dat.TMEMSB2
afactr = link.AFACTR
factor = afactr * mfactor
# may need to do something in here for special cases like in get_flows
smemn, tmemn = expand_timeseries_names(sgrpn, smemn, smemsb1, smemsb2, tmemn, tmemsb1,
tmemsb2)
t = series * factor
if tmemn in ts:
ts[tmemn] += t
else:
ts[tmemn] = t
return ts
def clean_name (TMEMN,TMEMSB):
# in some cases the subscript is irrelevant, like '1' or '1 1', and we can leave it off.
# there are other cases where it is needed to distinguish, such as ISED and '1' or '1 1'.
tname = f'{TMEMN}{TMEMSB}'
if TMEMN in {'GATMP', 'PREC', 'DTMPG', 'WINMOV', 'DSOLAR', 'SOLRAD', 'CLOUD', 'PETINP', 'IRRINP', 'POTEV',
'DEWTMP', 'WIND',
'IVOL', 'IHEAT'}:
tname = f'{TMEMN}'
elif TMEMN == 'ISED':
if TMEMSB == '1 1' or TMEMSB == '1' or TMEMSB == '':
tname = 'ISED1'
else:
tname = 'ISED' + TMEMSB[0]
elif TMEMN == 'NUIF1':
if len(TMEMSB) > 0:
tname = TMEMN + '_' + TMEMSB[0]
else:
tname = TMEMN + '_1'
elif TMEMN in {'ICON', 'IDQAL', 'ISQAL'}:
tmemsb1 = '1'
tmemsb2 = '1'
if len(TMEMSB) > 0:
tmemsb1 = TMEMSB[0]
if len(TMEMSB) > 2:
tmemsb2 = TMEMSB[-1]
sname, tname = expand_timeseries_names('', '', '', '', TMEMN, tmemsb1, tmemsb2)
elif TMEMN == 'PKIF':
if len(TMEMSB) > 0:
tname = TMEMN + TMEMSB[0]
else:
tname = TMEMN + '1'
return tname