-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
39 lines (35 loc) · 1.48 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import sys
import os
import argparse
sys.path.insert(0,'../incubator-mxnet/python')
import mxnet as mx
import utils
from mxnet.gluon import Trainer
from capsule_net import CapsNet, ClsNet, ReconNet, CapLoss, RecLoss
if __name__ == "__main__":
# setting the hyper parameters
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--recon', action='store_true')
args = parser.parse_args()
print(args)
print_batches = 250
ctx = mx.gpu(0)
train_data, test_data = utils.load_data_mnist(batch_size=args.batch_size,resize=28)
capnet = CapsNet(args.batch_size, ctx)
clsnet = ClsNet(args.batch_size, ctx)
captrainer = Trainer(capnet.collect_params(),'adam', {'learning_rate': 0.001})
if args.recon:
recnet = ReconNet(args.batch_size, ctx)
rectrainer = Trainer(recnet.collect_params(),'adam', {'learning_rate': 0.001})
utils.train_caprec(train_data, test_data, capnet, clsnet, recnet, CapLoss, RecLoss,
captrainer, rectrainer, ctx,
num_epochs=args.epochs, print_batches=print_batches)
else:
utils.train(train_data, test_data, capnet, clsnet,
CapLoss, captrainer, ctx,
num_epochs=args.epochs, print_batches=print_batches)
capnet.save_params('capnet.params')
if args.recon:
recnet.save_params('recnet.params')