-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSmoothing _Images_tut.py
53 lines (40 loc) · 1.43 KB
/
Smoothing _Images_tut.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 24 13:02:18 2019
@author: garima.misra
"""
import cv2
import numpy as np
import random
import matplotlib.pyplot as plt
img = cv2.imread("commodity.jpg", 0)
def sNp(image, prob):
out = np.zeros(image.shape, np.uint8)
t = 1-prob
for i in range(img.shape[0]):
for j in range(img.shape[1]):
rand = random.random()
if rand < prob: #less than 0.04
out[i][j] = 0
elif rand > t: #greater than 0.96
out[i][j] = 255
else:
out[i][j] = image[i][j] #except prob<R<1-prob
return out
img_noise = sNp(img, 0.04)
cv2.imwrite("commodity_noisy.jpg", img_noise)
#Box Filter
img_boxF = cv2.boxFilter(img_noise, -1, (5,5))
#Gaussian Filter
img_gausF = cv2.GaussianBlur(img_noise, (7,7), 0)
#Median Filter
img_mediF = cv2.medianBlur(img_noise, 5)
#Bilateral Filter
img_bilatF = cv2.bilateralFilter(img_noise, 10,80,80)
plt.figure(figsize=(18,12))
plt.subplot(321), plt.imshow(img), plt.title("Gray original Image")
plt.subplot(322), plt.imshow(img_noise), plt.title("Noisy Image")
plt.subplot(323), plt.imshow(img_boxF), plt.title("Box Filter")
plt.subplot(324), plt.imshow(img_gausF), plt.title("Gaussian Filter")
plt.subplot(325), plt.imshow(img_mediF), plt.title("Median Filter")
plt.subplot(326), plt.imshow(img_bilatF), plt.title("Bilateral Filter")