Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

performance gap of HRNetV2+OCR on cityscape val set using default config #91

Open
verymadmatt opened this issue Jan 23, 2020 · 18 comments

Comments

@verymadmatt
Copy link

Hi, I'm trying to replicate the performance listed on the project page "HRNetV2-W48 + OCR val mIoU 81.6" on cityscape val set using the config file provided, i.e., "seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484.yaml". However, I can only get "Best_mIoU: 0.8033" which is ~1.3% lower than reported. Just wondering if there is any config setting I missed or extra train data was used in the reported result. Any help will be much appreciated. I noticed a previous open issue about class balance setting for the performance gap on cityscape using HRNetV2. Not sure if it is related. #67

@hsfzxjy
Copy link
Contributor

hsfzxjy commented Jan 24, 2020

Hi. Would you please share your training log? We want to make sure if there's any difference.

@verymadmatt
Copy link
Author

@hsfzxjy
thanks for your quick response. the following is the training log. the training resumed from epoch 460.

2020-01-23 08:38:18,729 Namespace(cfg='experiments/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484.yaml', local_rank=3, opts=[], seed=304)
2020-01-23 08:38:18,729 Namespace(cfg='experiments/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484.yaml', local_rank=2, opts=[], seed=304)
2020-01-23 08:38:18,729 Namespace(cfg='experiments/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484.yaml', local_rank=1, opts=[], seed=304)
2020-01-23 08:38:18,729 Namespace(cfg='experiments/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484.yaml', local_rank=0, opts=[], seed=304)
2020-01-23 08:38:18,729 AUTO_RESUME: False
CUDNN:
BENCHMARK: True
DETERMINISTIC: False
ENABLED: True
DATASET:
DATASET: cityscapes
EXTRA_TRAIN_SET:
NUM_CLASSES: 19
ROOT: data/
TEST_SET: list/cityscapes/val.lst
TRAIN_SET: list/cityscapes/train.lst
DEBUG:
DEBUG: False
SAVE_BATCH_IMAGES_GT: False
SAVE_BATCH_IMAGES_PRED: False
SAVE_HEATMAPS_GT: False
SAVE_HEATMAPS_PRED: False
GPUS: (0, 1, 2, 3)
LOG_DIR: log
LOSS:
BALANCE_WEIGHTS: [0.4, 1]
CLASS_BALANCE: False
OHEMKEEP: 131072
OHEMTHRES: 0.9
USE_OHEM: False
MODEL:
ALIGN_CORNERS: True
EXTRA:
FINAL_CONV_KERNEL: 1
STAGE1:
BLOCK: BOTTLENECK
FUSE_METHOD: SUM
NUM_BLOCKS: [4]
NUM_CHANNELS: [64]
NUM_MODULES: 1
NUM_RANCHES: 1
STAGE2:
BLOCK: BASIC
FUSE_METHOD: SUM
NUM_BLOCKS: [4, 4]
NUM_BRANCHES: 2
NUM_CHANNELS: [48, 96]
NUM_MODULES: 1
STAGE3:
BLOCK: BASIC
FUSE_METHOD: SUM
NUM_BLOCKS: [4, 4, 4]
NUM_BRANCHES: 3
NUM_CHANNELS: [48, 96, 192]
NUM_MODULES: 4
STAGE4:
BLOCK: BASIC
FUSE_METHOD: SUM
NUM_BLOCKS: [4, 4, 4, 4]
NUM_BRANCHES: 4
NUM_CHANNELS: [48, 96, 192, 384]
NUM_MODULES: 3
NAME: seg_hrnet_ocr
NUM_OUTPUTS: 2
OCR:
DROPOUT: 0.05
KEY_CHANNELS: 256
MID_CHANNELS: 512
SCALE: 1
PRETRAINED: pretrained_models/hrnetv2_w48_imagenet_pretrained.pth
OUTPUT_DIR: output
PIN_MEMORY: True
PRINT_FREQ: 10
RANK: 0
TEST:
BASE_SIZE: 2048
BATCH_SIZE_PER_GPU: 4
FLIP_TEST: False
IMAGE_SIZE: [2048, 1024]
MODEL_FILE:
MULTI_SCALE: False
NUM_SAMPLES: 0
OUTPUT_INDEX: -1
SCALE_LIST: [1]
TRAIN:
BASE_SIZE: 2048
BATCH_SIZE_PER_GPU: 3
BEGIN_EPOCH: 0
DOWNSAMPLERATE: 1
END_EPOCH: 484
EXTRA_EPOCH: 0
EXTRA_LR: 0.001
FLIP: True
FREEZE_EPOCHS: -1
FREEZE_LAYERS:
IGNORE_LABEL: 255
IMAGE_SIZE: [1024, 512]
LR: 0.01
LR_FACTOR: 0.1
LR_STEP: [90, 110]
MOMENTUM: 0.9
MULTI_SCALE: True
NESTEROV: False
NONBACKBONE_KEYWORDS: []
NONBACKBONE_MULT: 10
NUM_SAMPLES: 0
OPTIMIZER: sgd
RANDOM_BRIGHTNESS: False
RANDOM_BRIGHTNESS_SHIFT_VALUE: 10
RESUME: True
SCALE_FACTOR: 16
SHUFFLE: True
WD: 0.0005
WORKERS: 4
2020-01-23 08:38:18,729 AUTO_RESUME: False
CUDNN:
BENCHMARK: True
DETERMINISTIC: False
ENABLED: True
DATASET:
DATASET: cityscapes
EXTRA_TRAIN_SET:
NUM_CLASSES: 19
ROOT: data/
TEST_SET: list/cityscapes/val.lst
TRAIN_SET: list/cityscapes/train.lst
DEBUG:
DEBUG: False
SAVE_BATCH_IMAGES_GT: False
SAVE_BATCH_IMAGES_PRED: False
SAVE_HEATMAPS_GT: False
SAVE_HEATMAPS_PRED: False
GPUS: (0, 1, 2, 3)
LOG_DIR: log
LOSS:
BALANCE_WEIGHTS: [0.4, 1]
CLASS_BALANCE: False
OHEMKEEP: 131072
OHEMTHRES: 0.9
USE_OHEM: False
MODEL:
ALIGN_CORNERS: True
EXTRA:
FINAL_CONV_KERNEL: 1
STAGE1:
BLOCK: BOTTLENECK
FUSE_METHOD: SUM
NUM_BLOCKS: [4]
NUM_CHANNELS: [64]
NUM_MODULES: 1
NUM_RANCHES: 1
STAGE2:
BLOCK: BASIC
FUSE_METHOD: SUM
NUM_BLOCKS: [4, 4]
NUM_BRANCHES: 2
NUM_CHANNELS: [48, 96]
NUM_MODULES: 1
STAGE3:
BLOCK: BASIC
FUSE_METHOD: SUM
NUM_BLOCKS: [4, 4, 4]
NUM_BRANCHES: 3
NUM_CHANNELS: [48, 96, 192]
NUM_MODULES: 4
STAGE4:
BLOCK: BASIC
FUSE_METHOD: SUM
NUM_BLOCKS: [4, 4, 4, 4]
NUM_BRANCHES: 4
NUM_CHANNELS: [48, 96, 192, 384]
NUM_MODULES: 3
NAME: seg_hrnet_ocr
NUM_OUTPUTS: 2
OCR:
DROPOUT: 0.05
KEY_CHANNELS: 256
MID_CHANNELS: 512
SCALE: 1
PRETRAINED: pretrained_models/hrnetv2_w48_imagenet_pretrained.pth
OUTPUT_DIR: output
PIN_MEMORY: True
PRINT_FREQ: 10
RANK: 0
TEST:
BASE_SIZE: 2048
BATCH_SIZE_PER_GPU: 4
FLIP_TEST: False
IMAGE_SIZE: [2048, 1024]
MODEL_FILE:
MULTI_SCALE: False
NUM_SAMPLES: 0
OUTPUT_INDEX: -1
SCALE_LIST: [1]
TRAIN:
BASE_SIZE: 2048
BATCH_SIZE_PER_GPU: 3
BEGIN_EPOCH: 0
DOWNSAMPLERATE: 1
END_EPOCH: 484
EXTRA_EPOCH: 0
EXTRA_LR: 0.001
FLIP: True
FREEZE_EPOCHS: -1
FREEZE_LAYERS:
IGNORE_LABEL: 255
IMAGE_SIZE: [1024, 512]
LR: 0.01
LR_FACTOR: 0.1
LR_STEP: [90, 110]
MOMENTUM: 0.9
MULTI_SCALE: True
NESTEROV: False
NONBACKBONE_KEYWORDS: []
NONBACKBONE_MULT: 10
NUM_SAMPLES: 0
OPTIMIZER: sgd
RANDOM_BRIGHTNESS: False
RANDOM_BRIGHTNESS_SHIFT_VALUE: 10
RESUME: True
SCALE_FACTOR: 16
SHUFFLE: True
WD: 0.0005
WORKERS: 4
2020-01-23 08:38:18,729 AUTO_RESUME: False
CUDNN:
BENCHMARK: True
DETERMINISTIC: False
ENABLED: True
DATASET:
DATASET: cityscapes
EXTRA_TRAIN_SET:
NUM_CLASSES: 19
ROOT: data/
TEST_SET: list/cityscapes/val.lst
TRAIN_SET: list/cityscapes/train.lst
DEBUG:
DEBUG: False
SAVE_BATCH_IMAGES_GT: False
SAVE_BATCH_IMAGES_PRED: False
SAVE_HEATMAPS_GT: False
SAVE_HEATMAPS_PRED: False
GPUS: (0, 1, 2, 3)
LOG_DIR: log
LOSS:
BALANCE_WEIGHTS: [0.4, 1]
CLASS_BALANCE: False
OHEMKEEP: 131072
OHEMTHRES: 0.9
USE_OHEM: False
MODEL:
ALIGN_CORNERS: True
EXTRA:
FINAL_CONV_KERNEL: 1
STAGE1:
BLOCK: BOTTLENECK
FUSE_METHOD: SUM
NUM_BLOCKS: [4]
NUM_CHANNELS: [64]
NUM_MODULES: 1
NUM_RANCHES: 1
STAGE2:
BLOCK: BASIC
FUSE_METHOD: SUM
NUM_BLOCKS: [4, 4]
NUM_BRANCHES: 2
NUM_CHANNELS: [48, 96]
NUM_MODULES: 1
STAGE3:
BLOCK: BASIC
FUSE_METHOD: SUM
NUM_BLOCKS: [4, 4, 4]
NUM_BRANCHES: 3
NUM_CHANNELS: [48, 96, 192]
NUM_MODULES: 4
STAGE4:
BLOCK: BASIC
FUSE_METHOD: SUM
NUM_BLOCKS: [4, 4, 4, 4]
NUM_BRANCHES: 4
NUM_CHANNELS: [48, 96, 192, 384]
NUM_MODULES: 3
NAME: seg_hrnet_ocr
NUM_OUTPUTS: 2
OCR:
DROPOUT: 0.05
KEY_CHANNELS: 256
MID_CHANNELS: 512
SCALE: 1
PRETRAINED: pretrained_models/hrnetv2_w48_imagenet_pretrained.pth
OUTPUT_DIR: output
PIN_MEMORY: True
PRINT_FREQ: 10
RANK: 0
TEST:
BASE_SIZE: 2048
BATCH_SIZE_PER_GPU: 4
FLIP_TEST: False
IMAGE_SIZE: [2048, 1024]
MODEL_FILE:
MULTI_SCALE: False
NUM_SAMPLES: 0
OUTPUT_INDEX: -1
SCALE_LIST: [1]
TRAIN:
BASE_SIZE: 2048
BATCH_SIZE_PER_GPU: 3
BEGIN_EPOCH: 0
DOWNSAMPLERATE: 1
END_EPOCH: 484
EXTRA_EPOCH: 0
EXTRA_LR: 0.001
FLIP: True
FREEZE_EPOCHS: -1
FREEZE_LAYERS:
IGNORE_LABEL: 255
IMAGE_SIZE: [1024, 512]
LR: 0.01
LR_FACTOR: 0.1
LR_STEP: [90, 110]
MOMENTUM: 0.9
MULTI_SCALE: True
NESTEROV: False
NONBACKBONE_KEYWORDS: []
NONBACKBONE_MULT: 10
NUM_SAMPLES: 0
OPTIMIZER: sgd
RANDOM_BRIGHTNESS: False
RANDOM_BRIGHTNESS_SHIFT_VALUE: 10
RESUME: True
SCALE_FACTOR: 16
SHUFFLE: True
WD: 0.0005
WORKERS: 4
2020-01-23 08:38:18,729 AUTO_RESUME: False
CUDNN:
BENCHMARK: True
DETERMINISTIC: False
ENABLED: True
DATASET:
DATASET: cityscapes
EXTRA_TRAIN_SET:
NUM_CLASSES: 19
ROOT: data/
TEST_SET: list/cityscapes/val.lst
TRAIN_SET: list/cityscapes/train.lst
DEBUG:
DEBUG: False
SAVE_BATCH_IMAGES_GT: False
SAVE_BATCH_IMAGES_PRED: False
SAVE_HEATMAPS_GT: False
SAVE_HEATMAPS_PRED: False
GPUS: (0, 1, 2, 3)
LOG_DIR: log
LOSS:
BALANCE_WEIGHTS: [0.4, 1]
CLASS_BALANCE: False
OHEMKEEP: 131072
OHEMTHRES: 0.9
USE_OHEM: False
MODEL:
ALIGN_CORNERS: True
EXTRA:
FINAL_CONV_KERNEL: 1
STAGE1:
BLOCK: BOTTLENECK
FUSE_METHOD: SUM
NUM_BLOCKS: [4]
NUM_CHANNELS: [64]
NUM_MODULES: 1
NUM_RANCHES: 1
STAGE2:
BLOCK: BASIC
FUSE_METHOD: SUM
NUM_BLOCKS: [4, 4]
NUM_BRANCHES: 2
NUM_CHANNELS: [48, 96]
NUM_MODULES: 1
STAGE3:
BLOCK: BASIC
FUSE_METHOD: SUM
NUM_BLOCKS: [4, 4, 4]
NUM_BRANCHES: 3
NUM_CHANNELS: [48, 96, 192]
NUM_MODULES: 4
STAGE4:
BLOCK: BASIC
FUSE_METHOD: SUM
NUM_BLOCKS: [4, 4, 4, 4]
NUM_BRANCHES: 4
NUM_CHANNELS: [48, 96, 192, 384]
NUM_MODULES: 3
NAME: seg_hrnet_ocr
NUM_OUTPUTS: 2
OCR:
DROPOUT: 0.05
KEY_CHANNELS: 256
MID_CHANNELS: 512
SCALE: 1
PRETRAINED: pretrained_models/hrnetv2_w48_imagenet_pretrained.pth
OUTPUT_DIR: output
PIN_MEMORY: True
PRINT_FREQ: 10
RANK: 0
TEST:
BASE_SIZE: 2048
BATCH_SIZE_PER_GPU: 4
FLIP_TEST: False
IMAGE_SIZE: [2048, 1024]
MODEL_FILE:
MULTI_SCALE: False
NUM_SAMPLES: 0
OUTPUT_INDEX: -1
SCALE_LIST: [1]
TRAIN:
BASE_SIZE: 2048
BATCH_SIZE_PER_GPU: 3
BEGIN_EPOCH: 0
DOWNSAMPLERATE: 1
END_EPOCH: 484
EXTRA_EPOCH: 0
EXTRA_LR: 0.001
FLIP: True
FREEZE_EPOCHS: -1
FREEZE_LAYERS:
IGNORE_LABEL: 255
IMAGE_SIZE: [1024, 512]
LR: 0.01
LR_FACTOR: 0.1
LR_STEP: [90, 110]
MOMENTUM: 0.9
MULTI_SCALE: True
NESTEROV: False
NONBACKBONE_KEYWORDS: []
NONBACKBONE_MULT: 10
NUM_SAMPLES: 0
OPTIMIZER: sgd
RANDOM_BRIGHTNESS: False
RANDOM_BRIGHTNESS_SHIFT_VALUE: 10
RESUME: True
SCALE_FACTOR: 16
SHUFFLE: True
WD: 0.0005
WORKERS: 4
2020-01-23 08:38:20,239 => init weights from normal distribution
2020-01-23 08:38:20,244 => init weights from normal distribution
2020-01-23 08:38:21,243 => init weights from normal distribution
2020-01-23 08:38:21,244 => init weights from normal distribution
2020-01-23 08:38:22,839 => loading pretrained model pretrained_models/hrnetv2_w48_imagenet_pretrained.pth
2020-01-23 08:38:22,839 => loading pretrained model pretrained_models/hrnetv2_w48_imagenet_pretrained.pth
2020-01-23 08:38:22,840 => loading pretrained model pretrained_models/hrnetv2_w48_imagenet_pretrained.pth
2020-01-23 08:38:22,840 => loading pretrained model pretrained_models/hrnetv2_w48_imagenet_pretrained.pth
2020-01-23 08:38:46,009 => loaded checkpoint (epoch 460)
2020-01-23 08:38:46,013 => loaded checkpoint (epoch 460)
2020-01-23 08:38:46,019 => loaded checkpoint (epoch 460)
2020-01-23 08:38:46,022 => loaded checkpoint (epoch 460)
2020-01-23 08:38:58,242 Epoch: [460/484] Iter:[0/247], Time: 12.21, lr: [0.0006696213499130277], Loss: 0.118911
2020-01-23 08:39:07,370 Epoch: [460/484] Iter:[10/247], Time: 1.94, lr: [0.0006686046325075444], Loss: 0.119875
2020-01-23 08:39:16,070 Epoch: [460/484] Iter:[20/247], Time: 1.43, lr: [0.0006675877432866135], Loss: 0.128737
2020-01-23 08:39:24,247 Epoch: [460/484] Iter:[30/247], Time: 1.23, lr: [0.0006665706819303064], Loss: 0.135692
2020-01-23 08:39:32,488 Epoch: [460/484] Iter:[40/247], Time: 1.13, lr: [0.0006655534481175586], Loss: 0.129678
2020-01-23 08:39:40,553 Epoch: [460/484] Iter:[50/247], Time: 1.07, lr: [0.0006645360415261557], Loss: 0.127583
2020-01-23 08:39:48,696 Epoch: [460/484] Iter:[60/247], Time: 1.03, lr: [0.0006635184618327374], Loss: 0.129885
2020-01-23 08:39:56,943 Epoch: [460/484] Iter:[70/247], Time: 1.00, lr: [0.0006625007087127803], Loss: 0.127894
2020-01-23 08:40:05,347 Epoch: [460/484] Iter:[80/247], Time: 0.98, lr: [0.0006614827818406031], Loss: 0.127111
2020-01-23 08:40:13,642 Epoch: [460/484] Iter:[90/247], Time: 0.96, lr: [0.0006604646808893498], Loss: 0.126133
2020-01-23 08:40:21,899 Epoch: [460/484] Iter:[100/247], Time: 0.95, lr: [0.0006594464055309934], Loss: 0.126229
2020-01-23 08:40:30,274 Epoch: [460/484] Iter:[110/247], Time: 0.94, lr: [0.0006584279554363199], Loss: 0.125137
2020-01-23 08:40:38,471 Epoch: [460/484] Iter:[120/247], Time: 0.93, lr: [0.0006574093302749319], Loss: 0.130603
2020-01-23 08:40:46,558 Epoch: [460/484] Iter:[130/247], Time: 0.92, lr: [0.0006563905297152323], Loss: 0.130406
2020-01-23 08:40:54,672 Epoch: [460/484] Iter:[140/247], Time: 0.91, lr: [0.0006553715534244278], Loss: 0.131272
2020-01-23 08:41:02,779 Epoch: [460/484] Iter:[150/247], Time: 0.91, lr: [0.0006543524010685127], Loss: 0.129639
2020-01-23 08:41:10,782 Epoch: [460/484] Iter:[160/247], Time: 0.90, lr: [0.0006533330723122722], Loss: 0.131556
2020-01-23 08:41:18,960 Epoch: [460/484] Iter:[170/247], Time: 0.89, lr: [0.0006523135668192672], Loss: 0.131600
2020-01-23 08:41:27,032 Epoch: [460/484] Iter:[180/247], Time: 0.89, lr: [0.0006512938842518311], Loss: 0.131241
2020-01-23 08:41:35,148 Epoch: [460/484] Iter:[190/247], Time: 0.89, lr: [0.000650274024271068], Loss: 0.131862
2020-01-23 08:41:43,255 Epoch: [460/484] Iter:[200/247], Time: 0.88, lr: [0.0006492539865368359], Loss: 0.130830
2020-01-23 08:41:51,305 Epoch: [460/484] Iter:[210/247], Time: 0.88, lr: [0.0006482337707077512], Loss: 0.130380
2020-01-23 08:41:59,540 Epoch: [460/484] Iter:[220/247], Time: 0.88, lr: [0.0006472133764411711], Loss: 0.129506
2020-01-23 08:42:07,761 Epoch: [460/484] Iter:[230/247], Time: 0.87, lr: [0.0006461928033931973], Loss: 0.130382
2020-01-23 08:42:15,844 Epoch: [460/484] Iter:[240/247], Time: 0.87, lr: [0.0006451720512186586], Loss: 0.130188
2020-01-23 08:45:45,871 0 [0.98437091 0.87080627 0.93431437 0.56149059 0.63651587 0.69703517
0.7438209 0.81912795 0.92951809 0.63110144 0.95263837 0.83888669
0.64346649 0.95265834 0.70352713 0.86580247 0.70959489 0.64546466
0.79148257] 0.7848222718276417
2020-01-23 08:45:45,872 1 [0.98455361 0.87262859 0.93521555 0.55916849 0.64176191 0.70092739
0.74658187 0.82199962 0.93013398 0.63550485 0.9528006 0.84105856
0.65051016 0.95634688 0.76277092 0.88573624 0.79219625 0.65678277
0.79405576] 0.7958281055046451
2020-01-23 08:45:45,872 => saving checkpoint to output/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484checkpoint.pth.tar
2020-01-23 08:45:48,771 Loss: 0.164, MeanIU: 0.7958, Best_mIoU: 0.7984
2020-01-23 08:45:48,771 [0.98455361 0.87262859 0.93521555 0.55916849 0.64176191 0.70092739
0.74658187 0.82199962 0.93013398 0.63550485 0.9528006 0.84105856
0.65051016 0.95634688 0.76277092 0.88573624 0.79219625 0.65678277
0.79405576]
2020-01-23 08:45:51,088 Epoch: [461/484] Iter:[0/247], Time: 2.31, lr: [0.0006444574179307085], Loss: 0.075820
2020-01-23 08:45:59,151 Epoch: [461/484] Iter:[10/247], Time: 0.94, lr: [0.0006434363604452395], Loss: 0.116503
2020-01-23 08:46:07,345 Epoch: [461/484] Iter:[20/247], Time: 0.88, lr: [0.0006424151228948677], Loss: 0.119192
2020-01-23 08:46:15,497 Epoch: [461/484] Iter:[30/247], Time: 0.86, lr: [0.000641393704929673], Loss: 0.124967
2020-01-23 08:46:23,526 Epoch: [461/484] Iter:[40/247], Time: 0.85, lr: [0.0006403721061984345], Loss: 0.125565
2020-01-23 08:46:31,797 Epoch: [461/484] Iter:[50/247], Time: 0.84, lr: [0.0006393503263486281], Loss: 0.122569
2020-01-23 08:46:40,026 Epoch: [461/484] Iter:[60/247], Time: 0.84, lr: [0.0006383283650264092], Loss: 0.121108
2020-01-23 08:46:48,309 Epoch: [461/484] Iter:[70/247], Time: 0.84, lr: [0.0006373062218766165], Loss: 0.122991
2020-01-23 08:46:56,630 Epoch: [461/484] Iter:[80/247], Time: 0.84, lr: [0.0006362838965427542], Loss: 0.126043
2020-01-23 08:47:04,675 Epoch: [461/484] Iter:[90/247], Time: 0.83, lr: [0.0006352613886669949], Loss: 0.128042
2020-01-23 08:47:12,794 Epoch: [461/484] Iter:[100/247], Time: 0.83, lr: [0.0006342386978901619], Loss: 0.127832
2020-01-23 08:47:21,070 Epoch: [461/484] Iter:[110/247], Time: 0.83, lr: [0.0006332158238517319], Loss: 0.127493
2020-01-23 08:47:29,122 Epoch: [461/484] Iter:[120/247], Time: 0.83, lr: [0.0006321927661898176], Loss: 0.126949
2020-01-23 08:47:37,172 Epoch: [461/484] Iter:[130/247], Time: 0.83, lr: [0.0006311695245411698], Loss: 0.128273
2020-01-23 08:47:45,569 Epoch: [461/484] Iter:[140/247], Time: 0.83, lr: [0.0006301460985411603], Loss: 0.128170
2020-01-23 08:47:53,856 Epoch: [461/484] Iter:[150/247], Time: 0.83, lr: [0.0006291224878237833], Loss: 0.128914
2020-01-23 08:48:01,924 Epoch: [461/484] Iter:[160/247], Time: 0.83, lr: [0.0006280986920216388], Loss: 0.129907
2020-01-23 08:48:10,179 Epoch: [461/484] Iter:[170/247], Time: 0.83, lr: [0.0006270747107659339], Loss: 0.128707
2020-01-23 08:48:18,273 Epoch: [461/484] Iter:[180/247], Time: 0.83, lr: [0.0006260505436864653], Loss: 0.127596
2020-01-23 08:48:26,369 Epoch: [461/484] Iter:[190/247], Time: 0.83, lr: [0.0006250261904116214], Loss: 0.129863
2020-01-23 08:48:34,534 Epoch: [461/484] Iter:[200/247], Time: 0.82, lr: [0.0006240016505683654], Loss: 0.129164
2020-01-23 08:48:42,794 Epoch: [461/484] Iter:[210/247], Time: 0.82, lr: [0.000622976923782231], Loss: 0.129494
2020-01-23 08:48:50,994 Epoch: [461/484] Iter:[220/247], Time: 0.82, lr: [0.0006219520096773186], Loss: 0.128742
2020-01-23 08:48:59,207 Epoch: [461/484] Iter:[230/247], Time: 0.82, lr: [0.0006209269078762776], Loss: 0.129028
2020-01-23 08:49:07,365 Epoch: [461/484] Iter:[240/247], Time: 0.82, lr: [0.0006199016180003085], Loss: 0.128983
2020-01-23 08:52:44,292 0 [0.98403233 0.86677607 0.93275096 0.57285824 0.6380202 0.69608891
0.7419803 0.81982863 0.92918788 0.63017172 0.95188877 0.84104149
0.64715434 0.9493354 0.66410468 0.85237538 0.69260188 0.65644771
0.78923281] 0.7818883008411794
2020-01-23 08:52:44,292 1 [0.98429423 0.86882542 0.93320899 0.57588066 0.64276964 0.70052156
0.74241117 0.82194612 0.92984191 0.63438439 0.9528121 0.84287945
0.65216577 0.95139094 0.69170568 0.87519977 0.7650452 0.66595666
0.79139403] 0.7906649312589081
2020-01-23 08:52:44,293 => saving checkpoint to output/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484checkpoint.pth.tar
2020-01-23 08:52:47,104 Loss: 0.168, MeanIU: 0.7907, Best_mIoU: 0.7984
2020-01-23 08:52:47,105 [0.98429423 0.86882542 0.93320899 0.57588066 0.64276964 0.70052156
0.74241117 0.82194612 0.92984191 0.63438439 0.9528121 0.84287945
0.65216577 0.95139094 0.69170568 0.87519977 0.7650452 0.66595666
0.79139403]
2020-01-23 08:52:48,957 Epoch: [462/484] Iter:[0/247], Time: 1.85, lr: [0.0006191838029789736], Loss: 0.127456
2020-01-23 08:52:57,178 Epoch: [462/484] Iter:[10/247], Time: 0.92, lr: [0.0006181581925021317], Loss: 0.124150
2020-01-23 08:53:05,344 Epoch: [462/484] Iter:[20/247], Time: 0.87, lr: [0.000617132392920267], Loss: 0.125770
2020-01-23 08:53:13,614 Epoch: [462/484] Iter:[30/247], Time: 0.85, lr: [0.0006161064038491285], Loss: 0.125951
2020-01-23 08:53:21,840 Epoch: [462/484] Iter:[40/247], Time: 0.85, lr: [0.0006150802249029663], Loss: 0.125334
2020-01-23 08:53:30,035 Epoch: [462/484] Iter:[50/247], Time: 0.84, lr: [0.000614053855694534], Loss: 0.126813
2020-01-23 08:53:38,357 Epoch: [462/484] Iter:[60/247], Time: 0.84, lr: [0.0006130272958350709], Loss: 0.126591
2020-01-23 08:53:46,455 Epoch: [462/484] Iter:[70/247], Time: 0.84, lr: [0.0006120005449342964], Loss: 0.124839
2020-01-23 08:53:54,596 Epoch: [462/484] Iter:[80/247], Time: 0.83, lr: [0.0006109736026004065], Loss: 0.126375
2020-01-23 08:54:02,803 Epoch: [462/484] Iter:[90/247], Time: 0.83, lr: [0.0006099464684400544], Loss: 0.126471
2020-01-23 08:54:10,841 Epoch: [462/484] Iter:[100/247], Time: 0.83, lr: [0.0006089191420583531], Loss: 0.127334
2020-01-23 08:54:18,991 Epoch: [462/484] Iter:[110/247], Time: 0.83, lr: [0.0006078916230588552], Loss: 0.128796
2020-01-23 08:54:27,418 Epoch: [462/484] Iter:[120/247], Time: 0.83, lr: [0.0006068639110435551], Loss: 0.129228
2020-01-23 08:54:35,602 Epoch: [462/484] Iter:[130/247], Time: 0.83, lr: [0.0006058360056128684], Loss: 0.128529
2020-01-23 08:54:43,684 Epoch: [462/484] Iter:[140/247], Time: 0.83, lr: [0.000604807906365634], Loss: 0.129156
2020-01-23 08:54:52,037 Epoch: [462/484] Iter:[150/247], Time: 0.83, lr: [0.0006037796128990944], Loss: 0.129477
2020-01-23 08:55:00,322 Epoch: [462/484] Iter:[160/247], Time: 0.83, lr: [0.0006027511248088959], Loss: 0.128126
2020-01-23 08:55:08,570 Epoch: [462/484] Iter:[170/247], Time: 0.83, lr: [0.0006017224416890697], Loss: 0.127795
2020-01-23 08:55:16,846 Epoch: [462/484] Iter:[180/247], Time: 0.83, lr: [0.0006006935631320328], Loss: 0.128891
2020-01-23 08:55:25,041 Epoch: [462/484] Iter:[190/247], Time: 0.83, lr: [0.0005996644887285671], Loss: 0.128605
2020-01-23 08:55:33,194 Epoch: [462/484] Iter:[200/247], Time: 0.83, lr: [0.0005986352180678213], Loss: 0.127676
2020-01-23 08:55:41,605 Epoch: [462/484] Iter:[210/247], Time: 0.83, lr: [0.0005976057507372914], Loss: 0.128769
2020-01-23 08:55:49,835 Epoch: [462/484] Iter:[220/247], Time: 0.83, lr: [0.0005965760863228149], Loss: 0.129427
2020-01-23 08:55:58,491 Epoch: [462/484] Iter:[230/247], Time: 0.83, lr: [0.0005955462244085654], Loss: 0.129148
2020-01-23 08:56:07,723 Epoch: [462/484] Iter:[240/247], Time: 0.83, lr: [0.0005945161645770325], Loss: 0.130601
2020-01-23 09:00:06,623 0 [0.9840897 0.86739981 0.93417353 0.58468911 0.63395352 0.70207379
0.74306553 0.82401682 0.93024343 0.63247745 0.95254216 0.84086631
0.63837956 0.95037691 0.65801323 0.8286728 0.56503247 0.65961128
0.79365219] 0.7749120849113121
2020-01-23 09:00:06,624 1 [0.98432422 0.86948458 0.93441968 0.58243555 0.63745061 0.70698372
0.74554226 0.82588719 0.93075165 0.63671922 0.95261371 0.84376925
0.64656234 0.951723 0.67282398 0.82875147 0.54193775 0.66781598
0.79688137] 0.7766777658097438
2020-01-23 09:00:06,624 => saving checkpoint to output/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484checkpoint.pth.tar
2020-01-23 09:00:09,535 Loss: 0.167, MeanIU: 0.7767, Best_mIoU: 0.7984
2020-01-23 09:00:09,535 [0.98432422 0.86948458 0.93441968 0.58243555 0.63745061 0.70698372
0.74554226 0.82588719 0.93075165 0.63671922 0.95261371 0.84376925
0.64656234 0.951723 0.67282398 0.82875147 0.54193775 0.66781598
0.79688137]
2020-01-23 09:00:11,491 Epoch: [463/484] Iter:[0/247], Time: 1.94, lr: [0.0005937950047097665], Loss: 0.128534
2020-01-23 09:00:19,737 Epoch: [463/484] Iter:[10/247], Time: 0.93, lr: [0.0005927646074558912], Loss: 0.111006
2020-01-23 09:00:28,046 Epoch: [463/484] Iter:[20/247], Time: 0.88, lr: [0.0005917340111490039], Loss: 0.105998
2020-01-23 09:00:36,290 Epoch: [463/484] Iter:[30/247], Time: 0.86, lr: [0.0005907032153652975], Loss: 0.114645
2020-01-23 09:00:44,363 Epoch: [463/484] Iter:[40/247], Time: 0.85, lr: [0.000589672219679244], Loss: 0.117490
2020-01-23 09:00:52,443 Epoch: [463/484] Iter:[50/247], Time: 0.84, lr: [0.0005886410236635743], Loss: 0.124547
2020-01-23 09:01:00,572 Epoch: [463/484] Iter:[60/247], Time: 0.84, lr: [0.0005876096268892771], Loss: 0.127271
2020-01-23 09:01:08,627 Epoch: [463/484] Iter:[70/247], Time: 0.83, lr: [0.0005865780289255803], Loss: 0.125105
2020-01-23 09:01:16,827 Epoch: [463/484] Iter:[80/247], Time: 0.83, lr: [0.0005855462293399432], Loss: 0.126093
2020-01-23 09:01:25,035 Epoch: [463/484] Iter:[90/247], Time: 0.83, lr: [0.0005845142276980508], Loss: 0.127423
2020-01-23 09:01:33,259 Epoch: [463/484] Iter:[100/247], Time: 0.83, lr: [0.000583482023563793], Loss: 0.127719
2020-01-23 09:01:41,438 Epoch: [463/484] Iter:[110/247], Time: 0.83, lr: [0.0005824496164992644], Loss: 0.127757
2020-01-23 09:01:49,638 Epoch: [463/484] Iter:[120/247], Time: 0.83, lr: [0.0005814170060647429], Loss: 0.128981
2020-01-23 09:01:57,878 Epoch: [463/484] Iter:[130/247], Time: 0.83, lr: [0.0005803841918186891], Loss: 0.128008
2020-01-23 09:02:05,969 Epoch: [463/484] Iter:[140/247], Time: 0.83, lr: [0.0005793511733177245], Loss: 0.128694
2020-01-23 09:02:14,111 Epoch: [463/484] Iter:[150/247], Time: 0.82, lr: [0.0005783179501166311], Loss: 0.128120
2020-01-23 09:02:22,300 Epoch: [463/484] Iter:[160/247], Time: 0.82, lr: [0.0005772845217683287], Loss: 0.127989
2020-01-23 09:02:30,538 Epoch: [463/484] Iter:[170/247], Time: 0.82, lr: [0.0005762508878238752], Loss: 0.127994
2020-01-23 09:02:38,784 Epoch: [463/484] Iter:[180/247], Time: 0.82, lr: [0.0005752170478324435], Loss: 0.127578
2020-01-23 09:02:46,861 Epoch: [463/484] Iter:[190/247], Time: 0.82, lr: [0.0005741830013413207], Loss: 0.126680
2020-01-23 09:02:55,486 Epoch: [463/484] Iter:[200/247], Time: 0.83, lr: [0.0005731487478958862], Loss: 0.127300
2020-01-23 09:03:04,407 Epoch: [463/484] Iter:[210/247], Time: 0.83, lr: [0.0005721142870396096], Loss: 0.128803
2020-01-23 09:03:13,419 Epoch: [463/484] Iter:[220/247], Time: 0.83, lr: [0.0005710796183140307], Loss: 0.128047
2020-01-23 09:03:22,231 Epoch: [463/484] Iter:[230/247], Time: 0.83, lr: [0.0005700447412587501], Loss: 0.127893
2020-01-23 09:03:31,153 Epoch: [463/484] Iter:[240/247], Time: 0.84, lr: [0.0005690096554114224], Loss: 0.127927
2020-01-23 09:07:16,434 0 [0.98402281 0.86732705 0.93242174 0.54977841 0.62725479 0.69929614
0.74057547 0.82111322 0.93053242 0.64419378 0.95366707 0.84080874
0.64104054 0.95160795 0.71439027 0.86444502 0.71138762 0.6662869
0.79010774] 0.7858030359719429
2020-01-23 09:07:16,435 1 [0.98437887 0.86957622 0.93313335 0.55901336 0.63133668 0.70323038
0.74229717 0.82347385 0.93128121 0.64864622 0.95396813 0.84316724
0.64509483 0.95479021 0.7747153 0.89660925 0.80678609 0.67543924
0.79252834] 0.7983929438289701
2020-01-23 09:07:16,435 => saving checkpoint to output/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484checkpoint.pth.tar
2020-01-23 09:07:20,687 Loss: 0.167, MeanIU: 0.7984, Best_mIoU: 0.7984
2020-01-23 09:07:20,687 [0.98437887 0.86957622 0.93313335 0.55901336 0.63133668 0.70323038
0.74229717 0.82347385 0.93128121 0.64864622 0.95396813 0.84316724
0.64509483 0.95479021 0.7747153 0.89660925 0.80678609 0.67543924
0.79252834]
2020-01-23 09:07:22,570 Epoch: [464/484] Iter:[0/247], Time: 1.88, lr: [0.0005682849708384633], Loss: 0.140334
2020-01-23 09:07:30,645 Epoch: [464/484] Iter:[10/247], Time: 0.90, lr: [0.0005672495289780013], Loss: 0.112829
2020-01-23 09:07:38,655 Epoch: [464/484] Iter:[20/247], Time: 0.86, lr: [0.0005662138770673093], Loss: 0.124635
2020-01-23 09:07:46,815 Epoch: [464/484] Iter:[30/247], Time: 0.84, lr: [0.000565178014636717], Loss: 0.122768
2020-01-23 09:07:54,906 Epoch: [464/484] Iter:[40/247], Time: 0.83, lr: [0.00056414194121454], Loss: 0.123501
2020-01-23 09:08:02,936 Epoch: [464/484] Iter:[50/247], Time: 0.83, lr: [0.0005631056563270772], Loss: 0.125901
2020-01-23 09:08:11,022 Epoch: [464/484] Iter:[60/247], Time: 0.83, lr: [0.000562069159498588], Loss: 0.124226
2020-01-23 09:08:19,149 Epoch: [464/484] Iter:[70/247], Time: 0.82, lr: [0.0005610324502512894], Loss: 0.124301
2020-01-23 09:08:27,445 Epoch: [464/484] Iter:[80/247], Time: 0.82, lr: [0.0005599955281053328], Loss: 0.120878
2020-01-23 09:08:35,641 Epoch: [464/484] Iter:[90/247], Time: 0.82, lr: [0.0005589583925788012], Loss: 0.118658
2020-01-23 09:08:43,727 Epoch: [464/484] Iter:[100/247], Time: 0.82, lr: [0.0005579210431876868], Loss: 0.118407
2020-01-23 09:08:51,771 Epoch: [464/484] Iter:[110/247], Time: 0.82, lr: [0.0005568834794458814], Loss: 0.119367
2020-01-23 09:08:59,929 Epoch: [464/484] Iter:[120/247], Time: 0.82, lr: [0.0005558457008651673], Loss: 0.118923
2020-01-23 09:09:08,136 Epoch: [464/484] Iter:[130/247], Time: 0.82, lr: [0.0005548077069551938], Loss: 0.118975
2020-01-23 09:09:16,165 Epoch: [464/484] Iter:[140/247], Time: 0.82, lr: [0.0005537694972234748], Loss: 0.119314
2020-01-23 09:09:24,224 Epoch: [464/484] Iter:[150/247], Time: 0.82, lr: [0.000552731071175364], Loss: 0.120334
2020-01-23 09:09:32,198 Epoch: [464/484] Iter:[160/247], Time: 0.82, lr: [0.0005516924283140512], Loss: 0.125043
2020-01-23 09:09:40,379 Epoch: [464/484] Iter:[170/247], Time: 0.82, lr: [0.0005506535681405385], Loss: 0.125799
2020-01-23 09:09:48,521 Epoch: [464/484] Iter:[180/247], Time: 0.82, lr: [0.0005496144901536361], Loss: 0.128367
2020-01-23 09:09:56,747 Epoch: [464/484] Iter:[190/247], Time: 0.82, lr: [0.0005485751938499374], Loss: 0.127717
2020-01-23 09:10:04,945 Epoch: [464/484] Iter:[200/247], Time: 0.82, lr: [0.0005475356787238154], Loss: 0.128366
2020-01-23 09:10:13,053 Epoch: [464/484] Iter:[210/247], Time: 0.82, lr: [0.0005464959442673973], Loss: 0.127815
2020-01-23 09:10:21,246 Epoch: [464/484] Iter:[220/247], Time: 0.82, lr: [0.0005454559899705605], Loss: 0.126646
2020-01-23 09:10:29,445 Epoch: [464/484] Iter:[230/247], Time: 0.82, lr: [0.0005444158153209075], Loss: 0.126749
2020-01-23 09:10:37,556 Epoch: [464/484] Iter:[240/247], Time: 0.82, lr: [0.0005433754198037612], Loss: 0.127773
2020-01-23 09:14:13,899 0 [0.98399046 0.86773851 0.93315325 0.60056559 0.6363511 0.70055369
0.73813424 0.81897529 0.92984023 0.64331609 0.95247502 0.84191888
0.64395434 0.95419988 0.74980507 0.8684766 0.733729 0.66361353
0.79496267] 0.7924080749396682
2020-01-23 09:14:13,900 1 [0.98412237 0.86899429 0.93281983 0.5759732 0.63895571 0.70488978
0.73952183 0.81958489 0.93063633 0.64819003 0.95322453 0.8441142
0.64981107 0.95804859 0.82619482 0.8946129 0.82476427 0.67021678
0.79839178] 0.8033193267783957
2020-01-23 09:14:13,901 => saving checkpoint to output/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484checkpoint.pth.tar
2020-01-23 09:14:18,136 Loss: 0.162, MeanIU: 0.8033, Best_mIoU: 0.8033
2020-01-23 09:14:18,136 [0.98412237 0.86899429 0.93281983 0.5759732 0.63895571 0.70488978
0.73952183 0.81958489 0.93063633 0.64819003 0.95322453 0.8441142
0.64981107 0.95804859 0.82619482 0.8946129 0.82476427 0.67021678
0.79839178]
2020-01-23 09:14:19,945 Epoch: [465/484] Iter:[0/247], Time: 1.80, lr: [0.0005426470112488497], Loss: 0.119499
2020-01-23 09:14:28,105 Epoch: [465/484] Iter:[10/247], Time: 0.91, lr: [0.0005416062390692534], Loss: 0.121959
2020-01-23 09:14:36,346 Epoch: [465/484] Iter:[20/247], Time: 0.87, lr: [0.0005405652446209973], Loss: 0.122974
2020-01-23 09:14:44,600 Epoch: [465/484] Iter:[30/247], Time: 0.85, lr: [0.0005395240273808128], Loss: 0.123857
2020-01-23 09:14:52,682 Epoch: [465/484] Iter:[40/247], Time: 0.84, lr: [0.0005384825868230803], Loss: 0.132320
2020-01-23 09:15:00,766 Epoch: [465/484] Iter:[50/247], Time: 0.84, lr: [0.000537440922419802], Loss: 0.129501
2020-01-23 09:15:08,827 Epoch: [465/484] Iter:[60/247], Time: 0.83, lr: [0.0005363990336405973], Loss: 0.131007
2020-01-23 09:15:16,814 Epoch: [465/484] Iter:[70/247], Time: 0.83, lr: [0.0005353569199526755], Loss: 0.128086
2020-01-23 09:15:25,095 Epoch: [465/484] Iter:[80/247], Time: 0.83, lr: [0.0005343145808208316], Loss: 0.129547
2020-01-23 09:15:33,060 Epoch: [465/484] Iter:[90/247], Time: 0.82, lr: [0.0005332720157074176], Loss: 0.127596
2020-01-23 09:15:41,295 Epoch: [465/484] Iter:[100/247], Time: 0.82, lr: [0.0005322292240723384], Loss: 0.130999
2020-01-23 09:15:49,231 Epoch: [465/484] Iter:[110/247], Time: 0.82, lr: [0.0005311862053730249], Loss: 0.130745
2020-01-23 09:15:57,399 Epoch: [465/484] Iter:[120/247], Time: 0.82, lr: [0.0005301429590644216], Loss: 0.130638
2020-01-23 09:16:05,404 Epoch: [465/484] Iter:[130/247], Time: 0.82, lr: [0.0005290994845989738], Loss: 0.130766
2020-01-23 09:16:13,711 Epoch: [465/484] Iter:[140/247], Time: 0.82, lr: [0.0005280557814266012], Loss: 0.131708
2020-01-23 09:16:21,841 Epoch: [465/484] Iter:[150/247], Time: 0.82, lr: [0.0005270118489946914], Loss: 0.131902
2020-01-23 09:16:30,076 Epoch: [465/484] Iter:[160/247], Time: 0.82, lr: [0.0005259676867480717], Loss: 0.132308
2020-01-23 09:16:38,199 Epoch: [465/484] Iter:[170/247], Time: 0.82, lr: [0.000524923294129003], Loss: 0.131581
2020-01-23 09:16:46,410 Epoch: [465/484] Iter:[180/247], Time: 0.82, lr: [0.0005238786705771505], Loss: 0.131287
2020-01-23 09:16:54,370 Epoch: [465/484] Iter:[190/247], Time: 0.82, lr: [0.0005228338155295776], Loss: 0.130705
2020-01-23 09:17:02,726 Epoch: [465/484] Iter:[200/247], Time: 0.82, lr: [0.000521788728420716], Loss: 0.130647
2020-01-23 09:17:10,807 Epoch: [465/484] Iter:[210/247], Time: 0.82, lr: [0.0005207434086823599], Loss: 0.130546
2020-01-23 09:17:18,939 Epoch: [465/484] Iter:[220/247], Time: 0.82, lr: [0.0005196978557436356], Loss: 0.129339
2020-01-23 09:17:27,183 Epoch: [465/484] Iter:[230/247], Time: 0.82, lr: [0.0005186520690309946], Loss: 0.129609
2020-01-23 09:17:35,273 Epoch: [465/484] Iter:[240/247], Time: 0.82, lr: [0.0005176060479681835], Loss: 0.129010
2020-01-23 09:21:15,928 0 [0.98400896 0.86588743 0.93322819 0.5863259 0.63489848 0.69568069
0.73925896 0.82185804 0.93054229 0.62927777 0.95392777 0.84044663
0.64045535 0.949831 0.65139938 0.85477072 0.66746655 0.65996037
0.79248751] 0.7806164206063521
2020-01-23 09:21:15,929 1 [0.98417145 0.86733762 0.93364575 0.57548772 0.64029347 0.69941482
0.74183735 0.82471449 0.93124318 0.63495368 0.95471954 0.8423293
0.64127981 0.95193913 0.68417083 0.87891298 0.7500817 0.66462009
0.79464445] 0.7892524930901829
2020-01-23 09:21:15,929 => saving checkpoint to output/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484checkpoint.pth.tar
2020-01-23 09:21:18,854 Loss: 0.164, MeanIU: 0.7893, Best_mIoU: 0.8033
2020-01-23 09:21:18,855 [0.98417145 0.86733762 0.93364575 0.57548772 0.64029347 0.69941482
0.74183735 0.82471449 0.93124318 0.63495368 0.95471954 0.8423293
0.64127981 0.95193913 0.68417083 0.87891298 0.7500817 0.66462009
0.79464445]
2020-01-23 09:21:20,728 Epoch: [466/484] Iter:[0/247], Time: 1.87, lr: [0.0005168736934759387], Loss: 0.078918
2020-01-23 09:21:28,857 Epoch: [466/484] Iter:[10/247], Time: 0.91, lr: [0.0005158272726876455], Loss: 0.130154
2020-01-23 09:21:36,911 Epoch: [466/484] Iter:[20/247], Time: 0.86, lr: [0.0005147806159796768], Loss: 0.137728
2020-01-23 09:21:45,193 Epoch: [466/484] Iter:[30/247], Time: 0.85, lr: [0.0005137337227656337], Loss: 0.134108
2020-01-23 09:21:53,278 Epoch: [466/484] Iter:[40/247], Time: 0.84, lr: [0.0005126865924563228], Loss: 0.138695
2020-01-23 09:22:01,391 Epoch: [466/484] Iter:[50/247], Time: 0.83, lr: [0.0005116392244597475], Loss: 0.138556
2020-01-23 09:22:09,481 Epoch: [466/484] Iter:[60/247], Time: 0.83, lr: [0.0005105916181810776], Loss: 0.138651
2020-01-23 09:22:17,771 Epoch: [466/484] Iter:[70/247], Time: 0.83, lr: [0.0005095437730226401], Loss: 0.137149
2020-01-23 09:22:25,825 Epoch: [466/484] Iter:[80/247], Time: 0.83, lr: [0.0005084956883838877], Loss: 0.137584
2020-01-23 09:22:33,918 Epoch: [466/484] Iter:[90/247], Time: 0.82, lr: [0.00050744736366139], Loss: 0.135971
2020-01-23 09:22:41,981 Epoch: [466/484] Iter:[100/247], Time: 0.82, lr: [0.0005063987982488014], Loss: 0.135384
2020-01-23 09:22:50,059 Epoch: [466/484] Iter:[110/247], Time: 0.82, lr: [0.0005053499915368516], Loss: 0.137314
2020-01-23 09:22:58,215 Epoch: [466/484] Iter:[120/247], Time: 0.82, lr: [0.0005043009429133139], Loss: 0.136379
2020-01-23 09:23:06,193 Epoch: [466/484] Iter:[130/247], Time: 0.82, lr: [0.0005032516517629946], Loss: 0.135747
2020-01-23 09:23:14,257 Epoch: [466/484] Iter:[140/247], Time: 0.82, lr: [0.0005022021174677022], Loss: 0.136100
2020-01-23 09:23:22,528 Epoch: [466/484] Iter:[150/247], Time: 0.82, lr: [0.0005011523394062298], Loss: 0.135730
2020-01-23 09:23:30,543 Epoch: [466/484] Iter:[160/247], Time: 0.82, lr: [0.0005001023169543382], Loss: 0.134489
2020-01-23 09:23:38,673 Epoch: [466/484] Iter:[170/247], Time: 0.82, lr: [0.0004990520494847232], Loss: 0.134144
2020-01-23 09:23:46,771 Epoch: [466/484] Iter:[180/247], Time: 0.82, lr: [0.0004980015363670053], Loss: 0.133344
2020-01-23 09:23:54,991 Epoch: [466/484] Iter:[190/247], Time: 0.82, lr: [0.0004969507769676956], Loss: 0.132672
2020-01-23 09:24:03,383 Epoch: [466/484] Iter:[200/247], Time: 0.82, lr: [0.0004958997706501851], Loss: 0.131891
2020-01-23 09:24:11,542 Epoch: [466/484] Iter:[210/247], Time: 0.82, lr: [0.00049484851677471], Loss: 0.131304
2020-01-23 09:24:19,880 Epoch: [466/484] Iter:[220/247], Time: 0.82, lr: [0.00049379701469834], Loss: 0.130588
2020-01-23 09:24:27,994 Epoch: [466/484] Iter:[230/247], Time: 0.82, lr: [0.0004927452637749442], Loss: 0.131887
2020-01-23 09:24:36,314 Epoch: [466/484] Iter:[240/247], Time: 0.82, lr: [0.0004916932633551782], Loss: 0.132374
2020-01-23 09:28:05,268 0 [0.9840747 0.86766238 0.93204249 0.5585745 0.62785532 0.69651066
0.74480789 0.82135696 0.93049667 0.63864206 0.95202933 0.84037556
0.64049381 0.95243174 0.72367426 0.85690338 0.68002997 0.65783178
0.7940135 ] 0.7842003663235227
2020-01-23 09:28:05,269 1 [0.98426271 0.86906639 0.93211437 0.54639641 0.63016604 0.70047272
0.74596282 0.82275463 0.93097676 0.64439332 0.952163 0.84278969
0.64308678 0.95617205 0.79460638 0.87542434 0.73897895 0.66409791
0.79512237] 0.7931056656595974
2020-01-23 09:28:05,269 => saving checkpoint to output/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484checkpoint.pth.tar
2020-01-23 09:28:08,129 Loss: 0.166, MeanIU: 0.7931, Best_mIoU: 0.8033
2020-01-23 09:28:08,129 [0.98426271 0.86906639 0.93211437 0.54639641 0.63016604 0.70047272
0.74596282 0.82275463 0.93097676 0.64439332 0.952163 0.84278969
0.64308678 0.95617205 0.79460638 0.87542434 0.73897895 0.66409791
0.79512237]
2020-01-23 09:28:10,058 Epoch: [467/484] Iter:[0/247], Time: 1.92, lr: [0.0004909567142616703], Loss: 0.192269
2020-01-23 09:28:18,172 Epoch: [467/484] Iter:[10/247], Time: 0.91, lr: [0.0004899042881986302], Loss: 0.138270
2020-01-23 09:28:26,212 Epoch: [467/484] Iter:[20/247], Time: 0.86, lr: [0.0004888516108697188], Loss: 0.132952
2020-01-23 09:28:34,339 Epoch: [467/484] Iter:[30/247], Time: 0.85, lr: [0.00048779868161346885], Loss: 0.129351
2020-01-23 09:28:42,591 Epoch: [467/484] Iter:[40/247], Time: 0.84, lr: [0.00048674549976508594], Loss: 0.126491
2020-01-23 09:28:50,635 Epoch: [467/484] Iter:[50/247], Time: 0.83, lr: [0.00048569206465641333], Loss: 0.128602
2020-01-23 09:28:58,711 Epoch: [467/484] Iter:[60/247], Time: 0.83, lr: [0.0004846383756159175], Loss: 0.128057
2020-01-23 09:29:07,080 Epoch: [467/484] Iter:[70/247], Time: 0.83, lr: [0.00048358443196865167], Loss: 0.126289
2020-01-23 09:29:15,136 Epoch: [467/484] Iter:[80/247], Time: 0.83, lr: [0.00048253023303624146], Loss: 0.124461
2020-01-23 09:29:23,394 Epoch: [467/484] Iter:[90/247], Time: 0.83, lr: [0.00048147577813684807], Loss: 0.127203
2020-01-23 09:29:31,617 Epoch: [467/484] Iter:[100/247], Time: 0.83, lr: [0.00048042106658515295], Loss: 0.126757
2020-01-23 09:29:39,869 Epoch: [467/484] Iter:[110/247], Time: 0.83, lr: [0.0004793660976923206], Loss: 0.126285
2020-01-23 09:29:48,079 Epoch: [467/484] Iter:[120/247], Time: 0.83, lr: [0.000478310870765983], Loss: 0.126908
2020-01-23 09:29:56,093 Epoch: [467/484] Iter:[130/247], Time: 0.82, lr: [0.00047725538511020154], Loss: 0.127332
2020-01-23 09:30:04,325 Epoch: [467/484] Iter:[140/247], Time: 0.82, lr: [0.0004761996400254511], Loss: 0.125755
2020-01-23 09:30:12,494 Epoch: [467/484] Iter:[150/247], Time: 0.82, lr: [0.00047514363480858263], Loss: 0.125078
2020-01-23 09:30:20,656 Epoch: [467/484] Iter:[160/247], Time: 0.82, lr: [0.0004740873687527998], Loss: 0.124757
2020-01-23 09:30:29,137 Epoch: [467/484] Iter:[170/247], Time: 0.82, lr: [0.00047303084114763537], Loss: 0.125445
2020-01-23 09:30:37,204 Epoch: [467/484] Iter:[180/247], Time: 0.82, lr: [0.0004719740512789126], Loss: 0.125770
2020-01-23 09:30:45,344 Epoch: [467/484] Iter:[190/247], Time: 0.82, lr: [0.0004709169984287284], Loss: 0.126108
2020-01-23 09:30:53,466 Epoch: [467/484] Iter:[200/247], Time: 0.82, lr: [0.00046985968187541306], Loss: 0.126750
2020-01-23 09:31:01,569 Epoch: [467/484] Iter:[210/247], Time: 0.82, lr: [0.0004688021008935121], Loss: 0.127363
2020-01-23 09:31:09,605 Epoch: [467/484] Iter:[220/247], Time: 0.82, lr: [0.000467744254753746], Loss: 0.127027
2020-01-23 09:31:17,952 Epoch: [467/484] Iter:[230/247], Time: 0.82, lr: [0.0004666861427229913], Loss: 0.126537
2020-01-23 09:31:25,947 Epoch: [467/484] Iter:[240/247], Time: 0.82, lr: [0.0004656277640642396], Loss: 0.126481
2020-01-23 09:34:52,159 0 [0.98416989 0.86629179 0.93366442 0.56670372 0.63706748 0.69872507
0.74930258 0.82228465 0.92994666 0.62650546 0.95283151 0.84111052
0.64312305 0.95353196 0.73460485 0.83855002 0.6484054 0.6585812
0.7955607 ] 0.7832084711605984
2020-01-23 09:34:52,160 1 [0.98439409 0.86804416 0.93422364 0.56512522 0.64241215 0.70340037
0.75014413 0.82476729 0.93054254 0.62973297 0.95329735 0.84365237
0.65136345 0.95769721 0.81717694 0.85653287 0.67724067 0.66557657
0.79803111] 0.7922818481942623
2020-01-23 09:34:52,161 => saving checkpoint to output/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484checkpoint.pth.tar
2020-01-23 09:34:55,058 Loss: 0.163, MeanIU: 0.7923, Best_mIoU: 0.8033
2020-01-23 09:34:55,059 [0.98439409 0.86804416 0.93422364 0.56512522 0.64241215 0.70340037
0.75014413 0.82476729 0.93054254 0.62973297 0.95329735 0.84365237
0.65136345 0.95769721 0.81717694 0.85653287 0.67724067 0.66557657
0.79803111]
2020-01-23 09:34:57,040 Epoch: [468/484] Iter:[0/247], Time: 1.97, lr: [0.0004648867399628546], Loss: 0.095789
2020-01-23 09:35:05,080 Epoch: [468/484] Iter:[10/247], Time: 0.91, lr: [0.00046382790633400155], Loss: 0.121572
2020-01-23 09:35:13,392 Epoch: [468/484] Iter:[20/247], Time: 0.87, lr: [0.0004627688040676193], Loss: 0.129477
2020-01-23 09:35:21,430 Epoch: [468/484] Iter:[30/247], Time: 0.85, lr: [0.00046170943241208426], Loss: 0.130970
2020-01-23 09:35:29,519 Epoch: [468/484] Iter:[40/247], Time: 0.84, lr: [0.00046064979061174224], Loss: 0.129457
2020-01-23 09:35:37,795 Epoch: [468/484] Iter:[50/247], Time: 0.84, lr: [0.0004595898779068877], Loss: 0.128306
2020-01-23 09:35:45,783 Epoch: [468/484] Iter:[60/247], Time: 0.83, lr: [0.00045852969353372015], Loss: 0.127638
2020-01-23 09:35:53,944 Epoch: [468/484] Iter:[70/247], Time: 0.83, lr: [0.0004574692367243232], Loss: 0.125260
2020-01-23 09:36:02,080 Epoch: [468/484] Iter:[80/247], Time: 0.83, lr: [0.00045640850670662], Loss: 0.124835
2020-01-23 09:36:10,285 Epoch: [468/484] Iter:[90/247], Time: 0.83, lr: [0.00045534750270435144], Loss: 0.124889
2020-01-23 09:36:18,381 Epoch: [468/484] Iter:[100/247], Time: 0.82, lr: [0.00045428622393703133], Loss: 0.124268
2020-01-23 09:36:26,564 Epoch: [468/484] Iter:[110/247], Time: 0.82, lr: [0.0004532246696199234], Loss: 0.123612
2020-01-23 09:36:34,770 Epoch: [468/484] Iter:[120/247], Time: 0.82, lr: [0.0004521628389639959], Loss: 0.124026
2020-01-23 09:36:42,855 Epoch: [468/484] Iter:[130/247], Time: 0.82, lr: [0.0004511007311758982], Loss: 0.124232
2020-01-23 09:36:51,090 Epoch: [468/484] Iter:[140/247], Time: 0.82, lr: [0.0004500383454579143], Loss: 0.123487
2020-01-23 09:36:59,105 Epoch: [468/484] Iter:[150/247], Time: 0.82, lr: [0.00044897568100793885], Loss: 0.123524
2020-01-23 09:37:07,276 Epoch: [468/484] Iter:[160/247], Time: 0.82, lr: [0.00044791273701943107], Loss: 0.125154
2020-01-23 09:37:15,479 Epoch: [468/484] Iter:[170/247], Time: 0.82, lr: [0.0004468495126813831], Loss: 0.125463
2020-01-23 09:37:23,662 Epoch: [468/484] Iter:[180/247], Time: 0.82, lr: [0.0004457860071782876], Loss: 0.124663
2020-01-23 09:37:31,820 Epoch: [468/484] Iter:[190/247], Time: 0.82, lr: [0.0004447222196900905], Loss: 0.124511
2020-01-23 09:37:40,055 Epoch: [468/484] Iter:[200/247], Time: 0.82, lr: [0.0004436581493921653], Loss: 0.123212
2020-01-23 09:37:48,199 Epoch: [468/484] Iter:[210/247], Time: 0.82, lr: [0.00044259379545526375], Loss: 0.121892
2020-01-23 09:37:56,459 Epoch: [468/484] Iter:[220/247], Time: 0.82, lr: [0.0004415291570454889], Loss: 0.122300
2020-01-23 09:38:04,470 Epoch: [468/484] Iter:[230/247], Time: 0.82, lr: [0.0004404642333242449], Loss: 0.123231
2020-01-23 09:38:12,691 Epoch: [468/484] Iter:[240/247], Time: 0.82, lr: [0.00043939902344820994], Loss: 0.123620
2020-01-23 09:41:40,070 0 [0.98421468 0.86845627 0.93356008 0.57557084 0.63196503 0.69970147
0.74592588 0.82115901 0.93086626 0.63235585 0.95349201 0.83958856
0.64092599 0.95343701 0.7139013 0.84145848 0.65256003 0.65664666
0.79385064] 0.7826124244858883
2020-01-23 09:41:40,071 1 [0.98446138 0.87028255 0.93431881 0.58076283 0.63886388 0.70460688
0.7495364 0.82316477 0.9315974 0.63821583 0.953704 0.84172862
0.64653084 0.95708966 0.78195645 0.85717223 0.69414261 0.65971895
0.79568481] 0.7917652048397439
2020-01-23 09:41:40,071 => saving checkpoint to output/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484checkpoint.pth.tar
2020-01-23 09:41:42,869 Loss: 0.163, MeanIU: 0.7918, Best_mIoU: 0.8033
2020-01-23 09:41:42,870 [0.98446138 0.87028255 0.93431881 0.58076283 0.63886388 0.70460688
0.7495364 0.82316477 0.9315974 0.63821583 0.953704 0.84172862
0.64653084 0.95708966 0.78195645 0.85717223 0.69414261 0.65971895
0.79568481]
2020-01-23 09:41:44,925 Epoch: [469/484] Iter:[0/247], Time: 2.04, lr: [0.00043865320581891964], Loss: 0.124131
2020-01-23 09:41:53,181 Epoch: [469/484] Iter:[10/247], Time: 0.94, lr: [0.0004375875075307809], Loss: 0.129483
2020-01-23 09:42:01,434 Epoch: [469/484] Iter:[20/247], Time: 0.88, lr: [0.0004365215207869233], Loss: 0.117846
2020-01-23 09:42:09,949 Epoch: [469/484] Iter:[30/247], Time: 0.87, lr: [0.0004354552447261691], Loss: 0.122618
2020-01-23 09:42:18,125 Epoch: [469/484] Iter:[40/247], Time: 0.86, lr: [0.0004343886784824141], Loss: 0.121612
2020-01-23 09:42:26,318 Epoch: [469/484] Iter:[50/247], Time: 0.85, lr: [0.00043332182118459116], Loss: 0.123326
2020-01-23 09:42:34,476 Epoch: [469/484] Iter:[60/247], Time: 0.85, lr: [0.0004322546719566317], Loss: 0.122194
2020-01-23 09:42:42,754 Epoch: [469/484] Iter:[70/247], Time: 0.84, lr: [0.00043118722991741364], Loss: 0.118290
2020-01-23 09:42:51,020 Epoch: [469/484] Iter:[80/247], Time: 0.84, lr: [0.0004301194941807292], Loss: 0.122345
2020-01-23 09:42:59,164 Epoch: [469/484] Iter:[90/247], Time: 0.84, lr: [0.00042905146385523055], Loss: 0.123140
2020-01-23 09:43:07,232 Epoch: [469/484] Iter:[100/247], Time: 0.84, lr: [0.0004279831380443967], Loss: 0.124432
2020-01-23 09:43:15,586 Epoch: [469/484] Iter:[110/247], Time: 0.84, lr: [0.00042691451584647797], Loss: 0.124205
2020-01-23 09:43:23,843 Epoch: [469/484] Iter:[120/247], Time: 0.83, lr: [0.0004258455963544617], Loss: 0.123202
2020-01-23 09:43:31,918 Epoch: [469/484] Iter:[130/247], Time: 0.83, lr: [0.0004247763786560162], Loss: 0.124270
2020-01-23 09:43:40,011 Epoch: [469/484] Iter:[140/247], Time: 0.83, lr: [0.0004237068618334552], Loss: 0.124005
2020-01-23 09:43:48,374 Epoch: [469/484] Iter:[150/247], Time: 0.83, lr: [0.0004226370449636805], Loss: 0.124286
2020-01-23 09:43:56,642 Epoch: [469/484] Iter:[160/247], Time: 0.83, lr: [0.00042156692711814566], Loss: 0.123982
2020-01-23 09:44:04,793 Epoch: [469/484] Iter:[170/247], Time: 0.83, lr: [0.00042049650736279736], Loss: 0.125012
2020-01-23 09:44:13,059 Epoch: [469/484] Iter:[180/247], Time: 0.83, lr: [0.00041942578475803825], Loss: 0.124165
2020-01-23 09:44:21,159 Epoch: [469/484] Iter:[190/247], Time: 0.83, lr: [0.0004183547583586683], Loss: 0.124125
2020-01-23 09:44:29,213 Epoch: [469/484] Iter:[200/247], Time: 0.83, lr: [0.00041728342721383983], Loss: 0.124665
2020-01-23 09:44:37,374 Epoch: [469/484] Iter:[210/247], Time: 0.83, lr: [0.0004162117903670113], Loss: 0.123897
2020-01-23 09:44:45,449 Epoch: [469/484] Iter:[220/247], Time: 0.83, lr: [0.0004151398468558874], Loss: 0.123540
2020-01-23 09:44:53,469 Epoch: [469/484] Iter:[230/247], Time: 0.83, lr: [0.0004140675957123791], Loss: 0.122748
2020-01-23 09:45:01,845 Epoch: [469/484] Iter:[240/247], Time: 0.83, lr: [0.00041299503596254044], Loss: 0.124272
2020-01-23 09:48:19,328 0 [0.9840956 0.86730921 0.93317801 0.5633122 0.63841099 0.69804372
0.7436697 0.82326143 0.93083591 0.63634031 0.95149954 0.84099318
0.64325101 0.95351759 0.70881938 0.84018311 0.65365969 0.66097425
0.79424805] 0.7824001510075161
2020-01-23 09:48:19,329 1 [0.98434616 0.8693557 0.93396391 0.56419249 0.64354954 0.70298405
0.74559862 0.82613651 0.93162644 0.64149016 0.95190456 0.8439476
0.65122916 0.95593961 0.74250715 0.84880468 0.66641026 0.66937918
0.79625392] 0.7878747215533665
2020-01-23 09:48:19,330 => saving checkpoint to output/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484checkpoint.pth.tar
2020-01-23 09:48:22,259 Loss: 0.165, MeanIU: 0.7879, Best_mIoU: 0.8033
2020-01-23 09:48:22,259 [0.98434616 0.8693557 0.93396391 0.56419249 0.64354954 0.70298405
0.74559862 0.82613651 0.93162644 0.64149016 0.95190456 0.8439476
0.65122916 0.95593961 0.74250715 0.84880468 0.66641026 0.66937918
0.79625392]
2020-01-23 09:48:24,119 Epoch: [470/484] Iter:[0/247], Time: 1.85, lr: [0.00041224405999241927], Loss: 0.039987
2020-01-23 09:48:32,118 Epoch: [470/484] Iter:[10/247], Time: 0.90, lr: [0.00041117097335988535], Loss: 0.101448
2020-01-23 09:48:40,274 Epoch: [470/484] Iter:[20/247], Time: 0.86, lr: [0.00041009757546173865], Loss: 0.099401
2020-01-23 09:48:48,382 Epoch: [470/484] Iter:[30/247], Time: 0.84, lr: [0.0004090238653019236], Loss: 0.112577
2020-01-23 09:48:56,641 Epoch: [470/484] Iter:[40/247], Time: 0.84, lr: [0.0004079498418782876], Loss: 0.117014
2020-01-23 09:49:05,056 Epoch: [470/484] Iter:[50/247], Time: 0.84, lr: [0.00040687550418251546], Loss: 0.121828
2020-01-23 09:49:13,139 Epoch: [470/484] Iter:[60/247], Time: 0.83, lr: [0.00040580085120007803], Loss: 0.122947
2020-01-23 09:49:21,139 Epoch: [470/484] Iter:[70/247], Time: 0.83, lr: [0.00040472588191017963], Loss: 0.125027
2020-01-23 09:49:29,464 Epoch: [470/484] Iter:[80/247], Time: 0.83, lr: [0.0004036505952856905], Loss: 0.125593
2020-01-23 09:49:37,760 Epoch: [470/484] Iter:[90/247], Time: 0.83, lr: [0.00040257499029310034], Loss: 0.127033
2020-01-23 09:49:45,916 Epoch: [470/484] Iter:[100/247], Time: 0.83, lr: [0.0004014990658924481], Loss: 0.126176
2020-01-23 09:49:54,072 Epoch: [470/484] Iter:[110/247], Time: 0.83, lr: [0.0004004228210372738], Loss: 0.123730
2020-01-23 09:50:02,149 Epoch: [470/484] Iter:[120/247], Time: 0.83, lr: [0.0003993462546745468], Loss: 0.124894
2020-01-23 09:50:10,191 Epoch: [470/484] Iter:[130/247], Time: 0.82, lr: [0.00039826936574461654], Loss: 0.124453
2020-01-23 09:50:18,348 Epoch: [470/484] Iter:[140/247], Time: 0.82, lr: [0.000397192153181139], Loss: 0.124200
2020-01-23 09:50:26,500 Epoch: [470/484] Iter:[150/247], Time: 0.82, lr: [0.000396114615911026], Loss: 0.125895
2020-01-23 09:50:34,658 Epoch: [470/484] Iter:[160/247], Time: 0.82, lr: [0.0003950367528543703], Loss: 0.125300
2020-01-23 09:50:42,794 Epoch: [470/484] Iter:[170/247], Time: 0.82, lr: [0.0003939585629243929], Loss: 0.124929
2020-01-23 09:50:50,876 Epoch: [470/484] Iter:[180/247], Time: 0.82, lr: [0.000392880045027367], Loss: 0.124607
2020-01-23 09:50:59,084 Epoch: [470/484] Iter:[190/247], Time: 0.82, lr: [0.0003918011980625637], Loss: 0.124130
2020-01-23 09:51:07,237 Epoch: [470/484] Iter:[200/247], Time: 0.82, lr: [0.0003907220209221751], Loss: 0.123993
2020-01-23 09:51:15,326 Epoch: [470/484] Iter:[210/247], Time: 0.82, lr: [0.0003896425124912521], Loss: 0.124741
2020-01-23 09:51:23,571 Epoch: [470/484] Iter:[220/247], Time: 0.82, lr: [0.00038856267164763975], Loss: 0.124787
2020-01-23 09:51:31,754 Epoch: [470/484] Iter:[230/247], Time: 0.82, lr: [0.0003874824972618985], Loss: 0.125405
2020-01-23 09:51:39,980 Epoch: [470/484] Iter:[240/247], Time: 0.82, lr: [0.0003864019881972457], Loss: 0.125794
2020-01-23 09:55:01,406 0 [0.98423083 0.86923941 0.9338234 0.5920862 0.63495497 0.69995981
0.74640283 0.81986434 0.9307016 0.64054152 0.95318395 0.84021291
0.64032014 0.9536651 0.69531711 0.83462909 0.65010572 0.65491831
0.79172293] 0.7824147460175406
2020-01-23 09:55:01,407 1 [0.98442465 0.87087922 0.93439038 0.59090588 0.6396356 0.7039103
0.74763751 0.82252763 0.93115218 0.64524046 0.95353651 0.8422542
0.64864212 0.95758829 0.75060984 0.83646595 0.65975538 0.66528995
0.79489851] 0.7884076086552868
2020-01-23 09:55:01,407 => saving checkpoint to output/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484checkpoint.pth.tar
2020-01-23 09:55:04,316 Loss: 0.164, MeanIU: 0.7884, Best_mIoU: 0.8033
2020-01-23 09:55:04,317 [0.98442465 0.87087922 0.93439038 0.59090588 0.6396356 0.7039103
0.74763751 0.82252763 0.93115218 0.64524046 0.95353651 0.8422542
0.64864212 0.95758829 0.75060984 0.83646595 0.65975538 0.66528995
0.79489851]
2020-01-23 09:55:06,143 Epoch: [471/484] Iter:[0/247], Time: 1.82, lr: [0.0003856454321056124], Loss: 0.180211
2020-01-23 09:55:14,238 Epoch: [471/484] Iter:[10/247], Time: 0.90, lr: [0.0003845643514568483], Loss: 0.115277
2020-01-23 09:55:22,287 Epoch: [471/484] Iter:[20/247], Time: 0.86, lr: [0.00038348293302258463], Loss: 0.118951
2020-01-23 09:55:30,415 Epoch: [471/484] Iter:[30/247], Time: 0.84, lr: [0.0003824011756382254], Loss: 0.118626
2020-01-23 09:55:38,900 Epoch: [471/484] Iter:[40/247], Time: 0.84, lr: [0.0003813190781314795], Loss: 0.122733
2020-01-23 09:55:47,192 Epoch: [471/484] Iter:[50/247], Time: 0.84, lr: [0.0003802366393222965], Loss: 0.122352
2020-01-23 09:55:55,524 Epoch: [471/484] Iter:[60/247], Time: 0.84, lr: [0.00037915385802277937], Loss: 0.127918
2020-01-23 09:56:03,610 Epoch: [471/484] Iter:[70/247], Time: 0.84, lr: [0.00037807073303711884], Loss: 0.125376
2020-01-23 09:56:11,951 Epoch: [471/484] Iter:[80/247], Time: 0.83, lr: [0.0003769872631615052], Loss: 0.125997
2020-01-23 09:56:20,026 Epoch: [471/484] Iter:[90/247], Time: 0.83, lr: [0.000375903447184053], Loss: 0.126431
2020-01-23 09:56:28,128 Epoch: [471/484] Iter:[100/247], Time: 0.83, lr: [0.0003748192838847258], Loss: 0.125811
2020-01-23 09:56:36,215 Epoch: [471/484] Iter:[110/247], Time: 0.83, lr: [0.00037373477203524413], Loss: 0.126298
2020-01-23 09:56:44,370 Epoch: [471/484] Iter:[120/247], Time: 0.83, lr: [0.00037264991039901536], Loss: 0.126510
2020-01-23 09:56:52,447 Epoch: [471/484] Iter:[130/247], Time: 0.83, lr: [0.00037156469773103816], Loss: 0.125788
2020-01-23 09:57:00,601 Epoch: [471/484] Iter:[140/247], Time: 0.82, lr: [0.00037047913277782964], Loss: 0.124933
2020-01-23 09:57:08,690 Epoch: [471/484] Iter:[150/247], Time: 0.82, lr: [0.0003693932142773283], Loss: 0.124703
2020-01-23 09:57:16,653 Epoch: [471/484] Iter:[160/247], Time: 0.82, lr: [0.0003683069409588184], Loss: 0.123877
2020-01-23 09:57:24,789 Epoch: [471/484] Iter:[170/247], Time: 0.82, lr: [0.00036722031154283084], Loss: 0.124481
2020-01-23 09:57:32,806 Epoch: [471/484] Iter:[180/247], Time: 0.82, lr: [0.0003661333247410652], Loss: 0.124005
2020-01-23 09:57:40,978 Epoch: [471/484] Iter:[190/247], Time: 0.82, lr: [0.0003650459792562877], Loss: 0.122907
2020-01-23 09:57:48,997 Epoch: [471/484] Iter:[200/247], Time: 0.82, lr: [0.00036395827378225154], Loss: 0.121771
2020-01-23 09:57:57,032 Epoch: [471/484] Iter:[210/247], Time: 0.82, lr: [0.0003628702070035921], Loss: 0.121584
2020-01-23 09:58:05,128 Epoch: [471/484] Iter:[220/247], Time: 0.82, lr: [0.00036178177759574456], Loss: 0.120766
2020-01-23 09:58:13,268 Epoch: [471/484] Iter:[230/247], Time: 0.82, lr: [0.0003606929842248383], Loss: 0.121544
2020-01-23 09:58:21,503 Epoch: [471/484] Iter:[240/247], Time: 0.82, lr: [0.0003596038255476044], Loss: 0.121867
2020-01-23 10:01:57,899 0 [0.98439247 0.86920535 0.93321118 0.56817043 0.63291181 0.6994973
0.74555977 0.82047236 0.93020934 0.63934399 0.95246153 0.84112153
0.64371005 0.95402116 0.72247761 0.85736517 0.7106087 0.65463054
0.79433955] 0.7870373599835038
2020-01-23 10:01:57,900 1 [0.98461203 0.87093956 0.93366366 0.55956686 0.63759038 0.70347689
0.74711618 0.82292895 0.93087278 0.64416221 0.95310819 0.84338623
0.64962671 0.95824935 0.78614686 0.86325307 0.74709756 0.65956291
0.79566469] 0.7942644778143952
2020-01-23 10:01:57,900 => saving checkpoint to output/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484checkpoint.pth.tar
2020-01-23 10:02:00,844 Loss: 0.163, MeanIU: 0.7943, Best_mIoU: 0.8033
2020-01-23 10:02:00,844 [0.98461203 0.87093956 0.93366366 0.55956686 0.63759038 0.70347689
0.74711618 0.82292895 0.93087278 0.64416221 0.95310819 0.84338623
0.64962671 0.95824935 0.78614686 0.86325307 0.74709756 0.65956291
0.79566469]
2020-01-23 10:02:02,755 Epoch: [472/484] Iter:[0/247], Time: 1.90, lr: [0.00035884119639225694], Loss: 0.067849
2020-01-23 10:02:10,893 Epoch: [472/484] Iter:[10/247], Time: 0.91, lr: [0.00035775141358454125], Loss: 0.120018
2020-01-23 10:02:19,131 Epoch: [472/484] Iter:[20/247], Time: 0.87, lr: [0.0003566612617959625], Loss: 0.117600
2020-01-23 10:02:27,173 Epoch: [472/484] Iter:[30/247], Time: 0.85, lr: [0.00035557073964761343], Loss: 0.119953
2020-01-23 10:02:35,319 Epoch: [472/484] Iter:[40/247], Time: 0.84, lr: [0.0003544798457507213], Loss: 0.127204
2020-01-23 10:02:43,482 Epoch: [472/484] Iter:[50/247], Time: 0.84, lr: [0.00035338857870653197], Loss: 0.127339
2020-01-23 10:02:51,684 Epoch: [472/484] Iter:[60/247], Time: 0.83, lr: [0.00035229693710621466], Loss: 0.125563
2020-01-23 10:02:59,749 Epoch: [472/484] Iter:[70/247], Time: 0.83, lr: [0.00035120491953074347], Loss: 0.126410
2020-01-23 10:03:07,790 Epoch: [472/484] Iter:[80/247], Time: 0.83, lr: [0.00035011252455079925], Loss: 0.125490
2020-01-23 10:03:15,956 Epoch: [472/484] Iter:[90/247], Time: 0.83, lr: [0.0003490197507266491], Loss: 0.126361
2020-01-23 10:03:24,147 Epoch: [472/484] Iter:[100/247], Time: 0.82, lr: [0.0003479265966080382], Loss: 0.126115
2020-01-23 10:03:32,210 Epoch: [472/484] Iter:[110/247], Time: 0.82, lr: [0.00034683306073408037], Loss: 0.126041
2020-01-23 10:03:40,412 Epoch: [472/484] Iter:[120/247], Time: 0.82, lr: [0.0003457391416331322], Loss: 0.127136
2020-01-23 10:03:48,545 Epoch: [472/484] Iter:[130/247], Time: 0.82, lr: [0.0003446448378226878], Loss: 0.127279
2020-01-23 10:03:56,671 Epoch: [472/484] Iter:[140/247], Time: 0.82, lr: [0.0003435501478092477], Loss: 0.126418
2020-01-23 10:04:04,857 Epoch: [472/484] Iter:[150/247], Time: 0.82, lr: [0.00034245507008821054], Loss: 0.125961
2020-01-23 10:04:12,798 Epoch: [472/484] Iter:[160/247], Time: 0.82, lr: [0.00034135960314373847], Loss: 0.124526
2020-01-23 10:04:20,850 Epoch: [472/484] Iter:[170/247], Time: 0.82, lr: [0.00034026374544864486], Loss: 0.125002
2020-01-23 10:04:28,854 Epoch: [472/484] Iter:[180/247], Time: 0.82, lr: [0.00033916749546425656], Loss: 0.124476
2020-01-23 10:04:36,917 Epoch: [472/484] Iter:[190/247], Time: 0.82, lr: [0.000338070851640298], Loss: 0.123885
2020-01-23 10:04:44,955 Epoch: [472/484] Iter:[200/247], Time: 0.82, lr: [0.0003369738124147491], Loss: 0.123679
2020-01-23 10:04:53,102 Epoch: [472/484] Iter:[210/247], Time: 0.82, lr: [0.00033587637621372595], Loss: 0.124270
2020-01-23 10:05:01,183 Epoch: [472/484] Iter:[220/247], Time: 0.82, lr: [0.00033477854145133525], Loss: 0.124459
2020-01-23 10:05:09,449 Epoch: [472/484] Iter:[230/247], Time: 0.82, lr: [0.0003336803065295503], Loss: 0.124599
2020-01-23 10:05:17,707 Epoch: [472/484] Iter:[240/247], Time: 0.82, lr: [0.000332581669838063], Loss: 0.124362
2020-01-23 10:08:44,819 0 [0.98460027 0.87121124 0.93284538 0.56538873 0.6322862 0.69790457
0.74697931 0.82409515 0.9306186 0.63789396 0.95313121 0.83652203
0.61298419 0.95376341 0.71209127 0.85860158 0.72032112 0.66003605
0.79459724] 0.7855721847231726
2020-01-23 10:08:44,820 1 [0.98483833 0.87301399 0.9329803 0.55671737 0.63555377 0.70142407
0.74969474 0.82617042 0.93118896 0.64180866 0.95405021 0.8402508
0.6261658 0.95734371 0.76971672 0.86825007 0.75508706 0.6625382
0.79520116] 0.7927365447742296
2020-01-23 10:08:44,821 => saving checkpoint to output/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484checkpoint.pth.tar
2020-01-23 10:08:47,615 Loss: 0.165, MeanIU: 0.7927, Best_mIoU: 0.8033
2020-01-23 10:08:47,616 [0.98483833 0.87301399 0.9329803 0.55671737 0.63555377 0.70142407
0.74969474 0.82617042 0.93118896 0.64180866 0.95405021 0.8402508
0.6261658 0.95734371 0.76971672 0.86825007 0.75508706 0.6625382
0.79520116]
2020-01-23 10:08:49,553 Epoch: [473/484] Iter:[0/247], Time: 1.93, lr: [0.00033181238423258223], Loss: 0.168255
2020-01-23 10:08:57,576 Epoch: [473/484] Iter:[10/247], Time: 0.90, lr: [0.0003307130608017321], Loss: 0.136556
2020-01-23 10:09:05,545 Epoch: [473/484] Iter:[20/247], Time: 0.85, lr: [0.00032961333119092704], Loss: 0.126938
2020-01-23 10:09:13,604 Epoch: [473/484] Iter:[30/247], Time: 0.84, lr: [0.0003285131937432072], Loss: 0.127144
2020-01-23 10:09:21,698 Epoch: [473/484] Iter:[40/247], Time: 0.83, lr: [0.0003274126467886547], Loss: 0.123490
2020-01-23 10:09:29,696 Epoch: [473/484] Iter:[50/247], Time: 0.82, lr: [0.00032631168864425504], Loss: 0.121994
2020-01-23 10:09:37,750 Epoch: [473/484] Iter:[60/247], Time: 0.82, lr: [0.00032521031761373326], Loss: 0.123384
2020-01-23 10:09:46,001 Epoch: [473/484] Iter:[70/247], Time: 0.82, lr: [0.0003241085319874109], Loss: 0.124742
2020-01-23 10:09:54,055 Epoch: [473/484] Iter:[80/247], Time: 0.82, lr: [0.0003230063300420371], Loss: 0.124162
2020-01-23 10:10:02,117 Epoch: [473/484] Iter:[90/247], Time: 0.82, lr: [0.00032190371004064104], Loss: 0.123241
2020-01-23 10:10:10,166 Epoch: [473/484] Iter:[100/247], Time: 0.82, lr: [0.00032080067023235957], Loss: 0.124651
2020-01-23 10:10:18,450 Epoch: [473/484] Iter:[110/247], Time: 0.82, lr: [0.0003196972088522769], Loss: 0.125001
2020-01-23 10:10:26,422 Epoch: [473/484] Iter:[120/247], Time: 0.82, lr: [0.00031859332412126216], Loss: 0.125901
2020-01-23 10:10:34,529 Epoch: [473/484] Iter:[130/247], Time: 0.82, lr: [0.000317489014245789], Loss: 0.124395
2020-01-23 10:10:42,751 Epoch: [473/484] Iter:[140/247], Time: 0.82, lr: [0.0003163842774177754], Loss: 0.126242
2020-01-23 10:10:50,906 Epoch: [473/484] Iter:[150/247], Time: 0.82, lr: [0.0003152791118143961], Loss: 0.126225
2020-01-23 10:10:59,136 Epoch: [473/484] Iter:[160/247], Time: 0.82, lr: [0.00031417351559791674], Loss: 0.125683
2020-01-23 10:11:07,174 Epoch: [473/484] Iter:[170/247], Time: 0.82, lr: [0.0003130674869155011], Loss: 0.124949
2020-01-23 10:11:15,501 Epoch: [473/484] Iter:[180/247], Time: 0.82, lr: [0.0003119610238990393], Loss: 0.124872
2020-01-23 10:11:23,686 Epoch: [473/484] Iter:[190/247], Time: 0.82, lr: [0.00031085412466494894], Loss: 0.124061
2020-01-23 10:11:31,924 Epoch: [473/484] Iter:[200/247], Time: 0.82, lr: [0.0003097467873139973], Loss: 0.125194
2020-01-23 10:11:40,290 Epoch: [473/484] Iter:[210/247], Time: 0.82, lr: [0.00030863900993109673], Loss: 0.125132
2020-01-23 10:11:48,655 Epoch: [473/484] Iter:[220/247], Time: 0.82, lr: [0.0003075307905851203], Loss: 0.125381
2020-01-23 10:11:56,758 Epoch: [473/484] Iter:[230/247], Time: 0.82, lr: [0.0003064221273286908], Loss: 0.125238
2020-01-23 10:12:05,042 Epoch: [473/484] Iter:[240/247], Time: 0.82, lr: [0.0003053130181979902], Loss: 0.125287
2020-01-23 10:15:30,148 0 [0.98461069 0.87106202 0.93403975 0.58791253 0.63530438 0.70057261
0.74770854 0.81851507 0.93086016 0.63817573 0.95280532 0.83905178
0.63607439 0.95365741 0.70782817 0.85417728 0.69421426 0.65094056
0.79167975] 0.7857468623524323
2020-01-23 10:15:30,149 1 [0.984774 0.87270805 0.93499873 0.59689198 0.64139304 0.70496067
0.74979725 0.82123185 0.93150431 0.64110247 0.95309993 0.84119897
0.64154716 0.9574447 0.76191701 0.87036539 0.77654558 0.65550062
0.79260419] 0.7962939946868476
2020-01-23 10:15:30,150 => saving checkpoint to output/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484checkpoint.pth.tar
2020-01-23 10:15:33,082 Loss: 0.162, MeanIU: 0.7963, Best_mIoU: 0.8033
2020-01-23 10:15:33,083 [0.984774 0.87270805 0.93499873 0.59689198 0.64139304 0.70496067
0.74979725 0.82123185 0.93150431 0.64110247 0.95309993 0.84119897
0.64154716 0.9574447 0.76191701 0.87036539 0.77654558 0.65550062
0.79260419]
2020-01-23 10:15:34,951 Epoch: [474/484] Iter:[0/247], Time: 1.86, lr: [0.0003045363754514388], Loss: 0.121844
2020-01-23 10:15:43,010 Epoch: [474/484] Iter:[10/247], Time: 0.90, lr: [0.00030342650378026455], Loss: 0.137934
2020-01-23 10:15:51,200 Epoch: [474/484] Iter:[20/247], Time: 0.86, lr: [0.00030231618084872744], Loss: 0.140091
2020-01-23 10:15:59,366 Epoch: [474/484] Iter:[30/247], Time: 0.85, lr: [0.0003012054046303328], Loss: 0.138707
2020-01-23 10:16:07,465 Epoch: [474/484] Iter:[40/247], Time: 0.84, lr: [0.000300094173081147], Loss: 0.137068
2020-01-23 10:16:15,475 Epoch: [474/484] Iter:[50/247], Time: 0.83, lr: [0.0002989824841395632], Loss: 0.132649
2020-01-23 10:16:23,504 Epoch: [474/484] Iter:[60/247], Time: 0.83, lr: [0.0002978703357260865], Loss: 0.129489
2020-01-23 10:16:31,516 Epoch: [474/484] Iter:[70/247], Time: 0.82, lr: [0.0002967577257430922], Loss: 0.127531
2020-01-23 10:16:39,832 Epoch: [474/484] Iter:[80/247], Time: 0.82, lr: [0.0002956446520746032], Loss: 0.125706
2020-01-23 10:16:48,128 Epoch: [474/484] Iter:[90/247], Time: 0.82, lr: [0.00029453111258604027], Loss: 0.125463
2020-01-23 10:16:56,323 Epoch: [474/484] Iter:[100/247], Time: 0.82, lr: [0.0002934171051239915], Loss: 0.123881
2020-01-23 10:17:04,526 Epoch: [474/484] Iter:[110/247], Time: 0.82, lr: [0.0002923026275159539], Loss: 0.125373
2020-01-23 10:17:12,548 Epoch: [474/484] Iter:[120/247], Time: 0.82, lr: [0.00029118767757009453], Loss: 0.124109
2020-01-23 10:17:20,692 Epoch: [474/484] Iter:[130/247], Time: 0.82, lr: [0.0002900722530749851], Loss: 0.124937
2020-01-23 10:17:28,952 Epoch: [474/484] Iter:[140/247], Time: 0.82, lr: [0.0002889563517993469], Loss: 0.123825
2020-01-23 10:17:37,065 Epoch: [474/484] Iter:[150/247], Time: 0.82, lr: [0.0002878399714917906], Loss: 0.124250
2020-01-23 10:17:45,206 Epoch: [474/484] Iter:[160/247], Time: 0.82, lr: [0.0002867231098805378], Loss: 0.124178
2020-01-23 10:17:53,459 Epoch: [474/484] Iter:[170/247], Time: 0.82, lr: [0.0002856057646731586], Loss: 0.123486
2020-01-23 10:18:01,760 Epoch: [474/484] Iter:[180/247], Time: 0.82, lr: [0.0002844879335562814], Loss: 0.122757
2020-01-23 10:18:09,834 Epoch: [474/484] Iter:[190/247], Time: 0.82, lr: [0.00028336961419532183], Loss: 0.123733
2020-01-23 10:18:17,891 Epoch: [474/484] Iter:[200/247], Time: 0.82, lr: [0.0002822508042341815], Loss: 0.122272
2020-01-23 10:18:25,973 Epoch: [474/484] Iter:[210/247], Time: 0.82, lr: [0.0002811315012949666], Loss: 0.122155
2020-01-23 10:18:34,077 Epoch: [474/484] Iter:[220/247], Time: 0.82, lr: [0.00028001170297767676], Loss: 0.122021
2020-01-23 10:18:42,207 Epoch: [474/484] Iter:[230/247], Time: 0.82, lr: [0.0002788914068599125], Loss: 0.122613
2020-01-23 10:18:50,289 Epoch: [474/484] Iter:[240/247], Time: 0.82, lr: [0.000277770610496553], Loss: 0.122502
2020-01-23 10:22:13,579 0 [0.98438447 0.8689603 0.93394711 0.58248262 0.6401366 0.70126636
0.74894927 0.82460367 0.93029219 0.63474259 0.95337494 0.83744663
0.61559994 0.95295242 0.69671058 0.86105973 0.73064992 0.66129334
0.79356086] 0.7869691335670714
2020-01-23 10:22:13,580 1 [0.98459176 0.87064074 0.93480229 0.58548867 0.64555054 0.70544607
0.75069015 0.82760819 0.93100747 0.63983786 0.95384572 0.84050926
0.62251865 0.9565583 0.75003689 0.87566674 0.79792343 0.67013574
0.79541314] 0.7967511376250825
2020-01-23 10:22:13,580 => saving checkpoint to output/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484checkpoint.pth.tar
2020-01-23 10:22:16,405 Loss: 0.163, MeanIU: 0.7968, Best_mIoU: 0.8033
2020-01-23 10:22:16,405 [0.98459176 0.87064074 0.93480229 0.58548867 0.64555054 0.70544607
0.75069015 0.82760819 0.93100747 0.63983786 0.95384572 0.84050926
0.62251865 0.9565583 0.75003689 0.87566674 0.79792343 0.67013574
0.79541314]
2020-01-23 10:22:18,327 Epoch: [475/484] Iter:[0/247], Time: 1.91, lr: [0.0002769857540753147], Loss: 0.144831
2020-01-23 10:22:26,527 Epoch: [475/484] Iter:[10/247], Time: 0.92, lr: [0.00027586410161755277], Loss: 0.134913
2020-01-23 10:22:34,720 Epoch: [475/484] Iter:[20/247], Time: 0.87, lr: [0.0002747419421964232], Loss: 0.123261
2020-01-23 10:22:43,061 Epoch: [475/484] Iter:[30/247], Time: 0.86, lr: [0.000273619273279972], Loss: 0.124412
2020-01-23 10:22:51,270 Epoch: [475/484] Iter:[40/247], Time: 0.85, lr: [0.00027249609231198765], Loss: 0.121076
2020-01-23 10:22:59,384 Epoch: [475/484] Iter:[50/247], Time: 0.84, lr: [0.00027137239671166854], Loss: 0.123613
2020-01-23 10:23:07,420 Epoch: [475/484] Iter:[60/247], Time: 0.84, lr: [0.00027024818387326], Loss: 0.127117
2020-01-23 10:23:15,528 Epoch: [475/484] Iter:[70/247], Time: 0.83, lr: [0.0002691234511657087], Loss: 0.124037
2020-01-23 10:23:23,841 Epoch: [475/484] Iter:[80/247], Time: 0.83, lr: [0.00026799819593228616], Loss: 0.122026
2020-01-23 10:23:32,000 Epoch: [475/484] Iter:[90/247], Time: 0.83, lr: [0.00026687241549022944], Loss: 0.120724
2020-01-23 10:23:40,088 Epoch: [475/484] Iter:[100/247], Time: 0.83, lr: [0.0002657461071303505], Loss: 0.120797
2020-01-23 10:23:48,203 Epoch: [475/484] Iter:[110/247], Time: 0.83, lr: [0.0002646192681166624], Loss: 0.122866
2020-01-23 10:23:56,300 Epoch: [475/484] Iter:[120/247], Time: 0.83, lr: [0.0002634918956859737], Loss: 0.123772
2020-01-23 10:24:04,533 Epoch: [475/484] Iter:[130/247], Time: 0.83, lr: [0.00026236398704749983], Loss: 0.123734
2020-01-23 10:24:12,739 Epoch: [475/484] Iter:[140/247], Time: 0.82, lr: [0.0002612355393824434], Loss: 0.123392
2020-01-23 10:24:20,982 Epoch: [475/484] Iter:[150/247], Time: 0.82, lr: [0.000260106549843582], Loss: 0.123441
2020-01-23 10:24:29,129 Epoch: [475/484] Iter:[160/247], Time: 0.82, lr: [0.00025897701555484715], Loss: 0.123205
2020-01-23 10:24:37,395 Epoch: [475/484] Iter:[170/247], Time: 0.82, lr: [0.00025784693361088066], Loss: 0.123151
2020-01-23 10:24:45,584 Epoch: [475/484] Iter:[180/247], Time: 0.82, lr: [0.0002567163010766038], Loss: 0.123639
2020-01-23 10:24:53,826 Epoch: [475/484] Iter:[190/247], Time: 0.82, lr: [0.00025558511498675467], Loss: 0.123323
2020-01-23 10:25:01,932 Epoch: [475/484] Iter:[200/247], Time: 0.82, lr: [0.0002544533723454395], Loss: 0.121954
2020-01-23 10:25:10,267 Epoch: [475/484] Iter:[210/247], Time: 0.82, lr: [0.00025332107012565115], Loss: 0.122238
2020-01-23 10:25:18,401 Epoch: [475/484] Iter:[220/247], Time: 0.82, lr: [0.00025218820526880204], Loss: 0.122532
2020-01-23 10:25:26,524 Epoch: [475/484] Iter:[230/247], Time: 0.82, lr: [0.00025105477468422303], Loss: 0.122711
2020-01-23 10:25:34,581 Epoch: [475/484] Iter:[240/247], Time: 0.82, lr: [0.00024992077524867655], Loss: 0.121795
2020-01-23 10:29:06,466 0 [0.98408551 0.868231 0.93364447 0.57803482 0.64003772 0.70113068
0.74795124 0.82561553 0.9300227 0.63713769 0.95219838 0.84044121
0.63178273 0.95319815 0.70045566 0.86083376 0.73215374 0.6619401
0.79457411] 0.7880773267445321
2020-01-23 10:29:06,467 1 [0.98431864 0.86987782 0.93438542 0.58084935 0.64438789 0.70528434
0.74978093 0.82764136 0.93061144 0.6400203 0.95349152 0.84289365
0.6376478 0.9564287 0.74820027 0.87484201 0.79381354 0.66974945
0.79585455] 0.796846262096388
2020-01-23 10:29:06,467 => saving checkpoint to output/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484checkpoint.pth.tar
2020-01-23 10:29:09,277 Loss: 0.164, MeanIU: 0.7968, Best_mIoU: 0.8033
2020-01-23 10:29:09,277 [0.98431864 0.86987782 0.93438542 0.58084935 0.64438789 0.70528434
0.74978093 0.82764136 0.93061144 0.6400203 0.95349152 0.84289365
0.6376478 0.9564287 0.74820027 0.87484201 0.79381354 0.66974945
0.79585455]
2020-01-23 10:29:11,265 Epoch: [476/484] Iter:[0/247], Time: 1.98, lr: [0.0002491266354885982], Loss: 0.100399
2020-01-23 10:29:19,495 Epoch: [476/484] Iter:[10/247], Time: 0.93, lr: [0.0002479916617446659], Loss: 0.122167
2020-01-23 10:29:27,631 Epoch: [476/484] Iter:[20/247], Time: 0.87, lr: [0.00024685611055028344], Loss: 0.116266
2020-01-23 10:29:35,712 Epoch: [476/484] Iter:[30/247], Time: 0.85, lr: [0.0002457199786571703], Loss: 0.119998
2020-01-23 10:29:43,810 Epoch: [476/484] Iter:[40/247], Time: 0.84, lr: [0.0002445832627819873], Loss: 0.125454
2020-01-23 10:29:51,864 Epoch: [476/484] Iter:[50/247], Time: 0.83, lr: [0.00024344595960576498], Loss: 0.124229
2020-01-23 10:29:59,963 Epoch: [476/484] Iter:[60/247], Time: 0.83, lr: [0.00024230806577334185], Loss: 0.121739
2020-01-23 10:30:08,006 Epoch: [476/484] Iter:[70/247], Time: 0.83, lr: [0.00024116957789276666], Loss: 0.121234
2020-01-23 10:30:16,346 Epoch: [476/484] Iter:[80/247], Time: 0.83, lr: [0.00024003049253471185], Loss: 0.120092
2020-01-23 10:30:24,519 Epoch: [476/484] Iter:[90/247], Time: 0.83, lr: [0.00023889080623185028], Loss: 0.118837
2020-01-23 10:30:32,713 Epoch: [476/484] Iter:[100/247], Time: 0.83, lr: [0.0002377505154782425], Loss: 0.120069
2020-01-23 10:30:40,878 Epoch: [476/484] Iter:[110/247], Time: 0.83, lr: [0.00023660961672868641], Loss: 0.119016
2020-01-23 10:30:48,919 Epoch: [476/484] Iter:[120/247], Time: 0.82, lr: [0.00023546810639807692], Loss: 0.119222
2020-01-23 10:30:57,103 Epoch: [476/484] Iter:[130/247], Time: 0.82, lr: [0.00023432598086072718], Loss: 0.118169
2020-01-23 10:31:05,113 Epoch: [476/484] Iter:[140/247], Time: 0.82, lr: [0.000233183236449699], Loss: 0.117266
2020-01-23 10:31:13,231 Epoch: [476/484] Iter:[150/247], Time: 0.82, lr: [0.000232039869456094], Loss: 0.117394
2020-01-23 10:31:21,490 Epoch: [476/484] Iter:[160/247], Time: 0.82, lr: [0.00023089587612835317], Loss: 0.116930
2020-01-23 10:31:29,653 Epoch: [476/484] Iter:[170/247], Time: 0.82, lr: [0.00022975125267151776], Loss: 0.117161
2020-01-23 10:31:37,922 Epoch: [476/484] Iter:[180/247], Time: 0.82, lr: [0.0002286059952464888], Loss: 0.116967
2020-01-23 10:31:46,183 Epoch: [476/484] Iter:[190/247], Time: 0.82, lr: [0.00022746009996926943], Loss: 0.117128
2020-01-23 10:31:54,496 Epoch: [476/484] Iter:[200/247], Time: 0.82, lr: [0.0002263135629101747], Loss: 0.117791
2020-01-23 10:32:02,737 Epoch: [476/484] Iter:[210/247], Time: 0.82, lr: [0.00022516638009304605], Loss: 0.119141
2020-01-23 10:32:11,023 Epoch: [476/484] Iter:[220/247], Time: 0.82, lr: [0.0002240185474944231], Loss: 0.118622
2020-01-23 10:32:19,317 Epoch: [476/484] Iter:[230/247], Time: 0.82, lr: [0.00022287006104272061], Loss: 0.117878
2020-01-23 10:32:27,507 Epoch: [476/484] Iter:[240/247], Time: 0.82, lr: [0.0002217209166173614], Loss: 0.118172
2020-01-23 10:35:54,122 0 [0.98418462 0.86917879 0.93391301 0.57976346 0.63798334 0.70298022
0.75036525 0.8237418 0.93029237 0.63976399 0.95244916 0.84050093
0.63465386 0.9536618 0.71471392 0.86069193 0.71138766 0.66735087
0.79616166] 0.7886178234357949
2020-01-23 10:35:54,123 1 [0.98436086 0.87094216 0.93478097 0.58798563 0.64561136 0.70716943
0.75270548 0.82637526 0.93108823 0.64316581 0.95323301 0.84296612
0.63817268 0.95687612 0.76192188 0.87704648 0.77750263 0.67032026
0.79737518] 0.7978736601946161
2020-01-23 10:35:54,123 => saving checkpoint to output/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484checkpoint.pth.tar
2020-01-23 10:35:57,021 Loss: 0.163, MeanIU: 0.7979, Best_mIoU: 0.8033
2020-01-23 10:35:57,022 [0.98436086 0.87094216 0.93478097 0.58798563 0.64561136 0.70716943
0.75270548 0.82637526 0.93108823 0.64316581 0.95323301 0.84296612
0.63817268 0.95687612 0.76192188 0.87704648 0.77750263 0.67032026
0.79737518]
2020-01-23 10:35:58,913 Epoch: [477/484] Iter:[0/247], Time: 1.88, lr: [0.00022091612179404727], Loss: 0.096867
2020-01-23 10:36:07,013 Epoch: [477/484] Iter:[10/247], Time: 0.91, lr: [0.00021976584921518244], Loss: 0.116482
2020-01-23 10:36:15,409 Epoch: [477/484] Iter:[20/247], Time: 0.88, lr: [0.00021861490728551276], Loss: 0.107135
2020-01-23 10:36:23,538 Epoch: [477/484] Iter:[30/247], Time: 0.86, lr: [0.00021746329169544215], Loss: 0.109641
2020-01-23 10:36:31,599 Epoch: [477/484] Iter:[40/247], Time: 0.84, lr: [0.00021631099808209022], Loss: 0.108900
2020-01-23 10:36:39,642 Epoch: [477/484] Iter:[50/247], Time: 0.84, lr: [0.000215158022028319], Loss: 0.111877
2020-01-23 10:36:47,891 Epoch: [477/484] Iter:[60/247], Time: 0.83, lr: [0.00021400435906171965], Loss: 0.114716
2020-01-23 10:36:56,021 Epoch: [477/484] Iter:[70/247], Time: 0.83, lr: [0.0002128500046535983], Loss: 0.115094
2020-01-23 10:37:04,138 Epoch: [477/484] Iter:[80/247], Time: 0.83, lr: [0.00021169495421791116], Loss: 0.114057
2020-01-23 10:37:12,314 Epoch: [477/484] Iter:[90/247], Time: 0.83, lr: [0.00021053920311019873], Loss: 0.115403
2020-01-23 10:37:20,649 Epoch: [477/484] Iter:[100/247], Time: 0.83, lr: [0.00020938274662646804], Loss: 0.117711
2020-01-23 10:37:28,768 Epoch: [477/484] Iter:[110/247], Time: 0.83, lr: [0.0002082255800020718], Loss: 0.118469
2020-01-23 10:37:36,907 Epoch: [477/484] Iter:[120/247], Time: 0.83, lr: [0.00020706769841053417], Loss: 0.117450
2020-01-23 10:37:44,886 Epoch: [477/484] Iter:[130/247], Time: 0.82, lr: [0.0002059090969623716], Loss: 0.119053
2020-01-23 10:37:52,941 Epoch: [477/484] Iter:[140/247], Time: 0.82, lr: [0.00020474977070385837], Loss: 0.120153
2020-01-23 10:38:01,111 Epoch: [477/484] Iter:[150/247], Time: 0.82, lr: [0.00020358971461578544], Loss: 0.120780
2020-01-23 10:38:09,493 Epoch: [477/484] Iter:[160/247], Time: 0.82, lr: [0.00020242892361216173], Loss: 0.120566
2020-01-23 10:38:17,653 Epoch: [477/484] Iter:[170/247], Time: 0.82, lr: [0.0002012673925389069], Loss: 0.121247
2020-01-23 10:38:25,817 Epoch: [477/484] Iter:[180/247], Time: 0.82, lr: [0.00020010511617248587], Loss: 0.121379
2020-01-23 10:38:33,962 Epoch: [477/484] Iter:[190/247], Time: 0.82, lr: [0.00019894208921852313], Loss: 0.121150
2020-01-23 10:38:42,212 Epoch: [477/484] Iter:[200/247], Time: 0.82, lr: [0.00019777830631037988], Loss: 0.121696
2020-01-23 10:38:50,437 Epoch: [477/484] Iter:[210/247], Time: 0.82, lr: [0.00019661376200767755], Loss: 0.120519
2020-01-23 10:38:58,621 Epoch: [477/484] Iter:[220/247], Time: 0.82, lr: [0.00019544845079480484], Loss: 0.120574
2020-01-23 10:39:06,905 Epoch: [477/484] Iter:[230/247], Time: 0.82, lr: [0.00019428236707935906], Loss: 0.119238
2020-01-23 10:39:14,983 Epoch: [477/484] Iter:[240/247], Time: 0.82, lr: [0.00019311550519057017], Loss: 0.119053
2020-01-23 10:42:37,601 0 [0.98398294 0.86679832 0.93406855 0.56691882 0.6333281 0.70195324
0.75093721 0.82222477 0.93030906 0.63697811 0.9528853 0.84030586
0.63557602 0.95357125 0.70890745 0.83924365 0.63282867 0.67102656
0.79624532] 0.7820046944766762
2020-01-23 10:42:37,601 1 [0.98418876 0.86869725 0.93450913 0.57023798 0.63873659 0.7060927
0.7535753 0.8255608 0.93104661 0.64131875 0.95372515 0.84345351
0.64368614 0.95793815 0.77442573 0.84302023 0.65642473 0.67694821
0.79869442] 0.7895936916075983
2020-01-23 10:42:37,602 => saving checkpoint to output/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484checkpoint.pth.tar
2020-01-23 10:42:40,430 Loss: 0.165, MeanIU: 0.7896, Best_mIoU: 0.8033
2020-01-23 10:42:40,430 [0.98418876 0.86869725 0.93450913 0.57023798 0.63873659 0.7060927
0.7535753 0.8255608 0.93104661 0.64131875 0.95372515 0.84345351
0.64368614 0.95793815 0.77442573 0.84302023 0.65642473 0.67694821
0.79869442]
2020-01-23 10:42:42,239 Epoch: [478/484] Iter:[0/247], Time: 1.80, lr: [0.00019229823577899684], Loss: 0.129491
2020-01-23 10:42:50,291 Epoch: [478/484] Iter:[10/247], Time: 0.90, lr: [0.000191130037753811], Loss: 0.101415
2020-01-23 10:42:58,407 Epoch: [478/484] Iter:[20/247], Time: 0.86, lr: [0.00018996104583979007], Loss: 0.113695
2020-01-23 10:43:06,691 Epoch: [478/484] Iter:[30/247], Time: 0.85, lr: [0.00018879125406162919], Loss: 0.110362
2020-01-23 10:43:14,840 Epoch: [478/484] Iter:[40/247], Time: 0.84, lr: [0.00018762065635756573], Loss: 0.114077
2020-01-23 10:43:23,121 Epoch: [478/484] Iter:[50/247], Time: 0.84, lr: [0.00018644924657753258], Loss: 0.113466
2020-01-23 10:43:31,201 Epoch: [478/484] Iter:[60/247], Time: 0.83, lr: [0.0001852770184812348], Loss: 0.116276
2020-01-23 10:43:39,181 Epoch: [478/484] Iter:[70/247], Time: 0.83, lr: [0.00018410396573618638], Loss: 0.117617
2020-01-23 10:43:47,199 Epoch: [478/484] Iter:[80/247], Time: 0.82, lr: [0.00018293008191569052], Loss: 0.117668
2020-01-23 10:43:55,242 Epoch: [478/484] Iter:[90/247], Time: 0.82, lr: [0.0001817553604967444], Loss: 0.117995
2020-01-23 10:44:03,382 Epoch: [478/484] Iter:[100/247], Time: 0.82, lr: [0.00018057979485790624], Loss: 0.118279
2020-01-23 10:44:11,639 Epoch: [478/484] Iter:[110/247], Time: 0.82, lr: [0.0001794033782770738], Loss: 0.118827
2020-01-23 10:44:19,766 Epoch: [478/484] Iter:[120/247], Time: 0.82, lr: [0.00017822610392922154], Loss: 0.118753
2020-01-23 10:44:27,854 Epoch: [478/484] Iter:[130/247], Time: 0.82, lr: [0.00017704796488404463], Loss: 0.118354
2020-01-23 10:44:36,145 Epoch: [478/484] Iter:[140/247], Time: 0.82, lr: [0.00017586895410355658], Loss: 0.119227
2020-01-23 10:44:44,284 Epoch: [478/484] Iter:[150/247], Time: 0.82, lr: [0.00017468906443958806], Loss: 0.118609
2020-01-23 10:44:52,303 Epoch: [478/484] Iter:[160/247], Time: 0.82, lr: [0.00017350828863123437], Loss: 0.118455
2020-01-23 10:45:00,349 Epoch: [478/484] Iter:[170/247], Time: 0.82, lr: [0.0001723266193021979], Loss: 0.117734
2020-01-23 10:45:08,444 Epoch: [478/484] Iter:[180/247], Time: 0.82, lr: [0.00017114404895807338], Loss: 0.118801
2020-01-23 10:45:16,533 Epoch: [478/484] Iter:[190/247], Time: 0.82, lr: [0.00016996056998352168], Loss: 0.119049
2020-01-23 10:45:24,772 Epoch: [478/484] Iter:[200/247], Time: 0.82, lr: [0.00016877617463937977], Loss: 0.118854
2020-01-23 10:45:32,734 Epoch: [478/484] Iter:[210/247], Time: 0.82, lr: [0.00016759085505965412], Loss: 0.118415
2020-01-23 10:45:40,914 Epoch: [478/484] Iter:[220/247], Time: 0.82, lr: [0.00016640460324843313], Loss: 0.118679
2020-01-23 10:45:48,956 Epoch: [478/484] Iter:[230/247], Time: 0.82, lr: [0.00016521741107669908], Loss: 0.118216
2020-01-23 10:45:57,147 Epoch: [478/484] Iter:[240/247], Time: 0.82, lr: [0.00016402927027901992], Loss: 0.117719
2020-01-23 10:49:34,408 0 [0.9841543 0.86796994 0.93418433 0.57255827 0.63485811 0.70366195
0.74884056 0.82493559 0.93030724 0.64167735 0.95297546 0.84228228
0.6416854 0.95351417 0.70785445 0.85559025 0.68958127 0.66382912
0.79403551] 0.7865523973924439
2020-01-23 10:49:34,408 1 [0.98431336 0.86979241 0.93476466 0.57784828 0.6399756 0.70746188
0.75174547 0.82828127 0.9310032 0.64387285 0.95382535 0.84434411
0.64735739 0.95690231 0.75529809 0.87356446 0.76344711 0.67239885
0.79580435] 0.7964211054269583
2020-01-23 10:49:34,409 => saving checkpoint to output/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484checkpoint.pth.tar
2020-01-23 10:49:37,240 Loss: 0.164, MeanIU: 0.7964, Best_mIoU: 0.8033
2020-01-23 10:49:37,241 [0.98431336 0.86979241 0.93476466 0.57784828 0.6399756 0.70746188
0.75174547 0.82828127 0.9310032 0.64387285 0.95382535 0.84434411
0.64735739 0.95690231 0.75529809 0.87356446 0.76344711 0.67239885
0.79580435]
2020-01-23 10:49:39,217 Epoch: [479/484] Iter:[0/247], Time: 1.97, lr: [0.0001631970027929206], Loss: 0.081131
2020-01-23 10:49:47,378 Epoch: [479/484] Iter:[10/247], Time: 0.92, lr: [0.0001620072299644936], Loss: 0.109495
2020-01-23 10:49:55,426 Epoch: [479/484] Iter:[20/247], Time: 0.87, lr: [0.0001608164854850733], Loss: 0.117302
2020-01-23 10:50:03,545 Epoch: [479/484] Iter:[30/247], Time: 0.85, lr: [0.00015962476055399712], Loss: 0.125331
2020-01-23 10:50:11,566 Epoch: [479/484] Iter:[40/247], Time: 0.84, lr: [0.0001584320462171676], Loss: 0.122308
2020-01-23 10:50:19,906 Epoch: [479/484] Iter:[50/247], Time: 0.84, lr: [0.00015723833336305716], Loss: 0.124601
2020-01-23 10:50:27,995 Epoch: [479/484] Iter:[60/247], Time: 0.83, lr: [0.00015604361271860095], Loss: 0.117816
2020-01-23 10:50:36,220 Epoch: [479/484] Iter:[70/247], Time: 0.83, lr: [0.00015484787484492142], Loss: 0.118768
2020-01-23 10:50:44,292 Epoch: [479/484] Iter:[80/247], Time: 0.83, lr: [0.00015365111013291904], Loss: 0.117914
2020-01-23 10:50:52,559 Epoch: [479/484] Iter:[90/247], Time: 0.83, lr: [0.00015245330879870613], Loss: 0.118958
2020-01-23 10:51:00,698 Epoch: [479/484] Iter:[100/247], Time: 0.83, lr: [0.00015125446087886106], Loss: 0.119236
2020-01-23 10:51:08,767 Epoch: [479/484] Iter:[110/247], Time: 0.82, lr: [0.00015005455622553516], Loss: 0.118254
2020-01-23 10:51:16,997 Epoch: [479/484] Iter:[120/247], Time: 0.82, lr: [0.00014885358450135528], Loss: 0.118614
2020-01-23 10:51:25,038 Epoch: [479/484] Iter:[130/247], Time: 0.82, lr: [0.00014765153517416488], Loss: 0.117408
2020-01-23 10:51:33,261 Epoch: [479/484] Iter:[140/247], Time: 0.82, lr: [0.00014644839751154373], Loss: 0.117487
2020-01-23 10:51:41,368 Epoch: [479/484] Iter:[150/247], Time: 0.82, lr: [0.00014524416057514833], Loss: 0.118239
2020-01-23 10:51:49,490 Epoch: [479/484] Iter:[160/247], Time: 0.82, lr: [0.00014403881321481263], Loss: 0.118526
2020-01-23 10:51:57,698 Epoch: [479/484] Iter:[170/247], Time: 0.82, lr: [0.00014283234406244923], Loss: 0.119753
2020-01-23 10:52:05,795 Epoch: [479/484] Iter:[180/247], Time: 0.82, lr: [0.00014162474152568992], Loss: 0.120708
2020-01-23 10:52:14,097 Epoch: [479/484] Iter:[190/247], Time: 0.82, lr: [0.00014041599378130485], Loss: 0.122078
2020-01-23 10:52:22,266 Epoch: [479/484] Iter:[200/247], Time: 0.82, lr: [0.00013920608876833736], Loss: 0.122148
2020-01-23 10:52:30,324 Epoch: [479/484] Iter:[210/247], Time: 0.82, lr: [0.00013799501418099294], Loss: 0.121960
2020-01-23 10:52:38,570 Epoch: [479/484] Iter:[220/247], Time: 0.82, lr: [0.00013678275746121856], Loss: 0.121769
2020-01-23 10:52:46,717 Epoch: [479/484] Iter:[230/247], Time: 0.82, lr: [0.00013556930579099928], Loss: 0.122217
2020-01-23 10:52:54,774 Epoch: [479/484] Iter:[240/247], Time: 0.82, lr: [0.0001343546460843396], Loss: 0.122411
2020-01-23 10:56:39,863 0 [0.98430026 0.86900755 0.93408138 0.57856017 0.63171872 0.702891
0.74812163 0.82554758 0.93012189 0.63710888 0.95304822 0.84224078
0.64088722 0.95347816 0.7051187 0.85940805 0.69308415 0.67099572
0.79580662] 0.7871329829010906
2020-01-23 10:56:39,863 1 [0.98445291 0.87029548 0.93464216 0.58061946 0.63857153 0.70688833
0.75077554 0.82887789 0.93085551 0.63905946 0.95367792 0.84462599
0.64739221 0.95614767 0.74526927 0.87664288 0.75709174 0.67864983
0.79785673] 0.7959153960351941
2020-01-23 10:56:39,864 => saving checkpoint to output/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484checkpoint.pth.tar
2020-01-23 10:56:42,710 Loss: 0.164, MeanIU: 0.7959, Best_mIoU: 0.8033
2020-01-23 10:56:42,710 [0.98445291 0.87029548 0.93464216 0.58061946 0.63857153 0.70688833
0.75077554 0.82887789 0.93085551 0.63905946 0.95367792 0.84462599
0.64739221 0.95614767 0.74526927 0.87664288 0.75709174 0.67864983
0.79785673]
2020-01-23 10:56:44,580 Epoch: [480/484] Iter:[0/247], Time: 1.86, lr: [0.00013350365836381595], Loss: 0.107470
2020-01-23 10:56:52,588 Epoch: [480/484] Iter:[10/247], Time: 0.90, lr: [0.00013228691417635965], Loss: 0.116083
2020-01-23 10:57:00,732 Epoch: [480/484] Iter:[20/247], Time: 0.86, lr: [0.0001310689252151365], Loss: 0.126424
2020-01-23 10:57:08,868 Epoch: [480/484] Iter:[30/247], Time: 0.84, lr: [0.00012984967732718321], Loss: 0.118923
2020-01-23 10:57:16,895 Epoch: [480/484] Iter:[40/247], Time: 0.83, lr: [0.00012862915604910919], Loss: 0.116873
2020-01-23 10:57:25,094 Epoch: [480/484] Iter:[50/247], Time: 0.83, lr: [0.00012740734659695226], Loss: 0.113165
2020-01-23 10:57:33,221 Epoch: [480/484] Iter:[60/247], Time: 0.83, lr: [0.00012618423385556477], Loss: 0.113899
2020-01-23 10:57:41,323 Epoch: [480/484] Iter:[70/247], Time: 0.83, lr: [0.00012495980236755655], Loss: 0.113630
2020-01-23 10:57:49,583 Epoch: [480/484] Iter:[80/247], Time: 0.83, lr: [0.00012373403632171887], Loss: 0.116201
2020-01-23 10:57:57,716 Epoch: [480/484] Iter:[90/247], Time: 0.82, lr: [0.00012250691954094234], Loss: 0.114807
2020-01-23 10:58:05,739 Epoch: [480/484] Iter:[100/247], Time: 0.82, lr: [0.00012127843546958239], Loss: 0.116589
2020-01-23 10:58:13,884 Epoch: [480/484] Iter:[110/247], Time: 0.82, lr: [0.00012004856716022444], Loss: 0.116911
2020-01-23 10:58:22,008 Epoch: [480/484] Iter:[120/247], Time: 0.82, lr: [0.0001188172972598559], Loss: 0.115955
2020-01-23 10:58:29,983 Epoch: [480/484] Iter:[130/247], Time: 0.82, lr: [0.0001175846079953575], Loss: 0.118248
2020-01-23 10:58:38,051 Epoch: [480/484] Iter:[140/247], Time: 0.82, lr: [0.00011635048115832787], Loss: 0.117357
2020-01-23 10:58:46,236 Epoch: [480/484] Iter:[150/247], Time: 0.82, lr: [0.00011511489808914687], Loss: 0.116876
2020-01-23 10:58:54,361 Epoch: [480/484] Iter:[160/247], Time: 0.82, lr: [0.00011387783966028567], Loss: 0.116245
2020-01-23 10:59:02,667 Epoch: [480/484] Iter:[170/247], Time: 0.82, lr: [0.00011263928625876283], Loss: 0.114778
2020-01-23 10:59:10,991 Epoch: [480/484] Iter:[180/247], Time: 0.82, lr: [0.00011139921776774728], Loss: 0.116359
2020-01-23 10:59:19,340 Epoch: [480/484] Iter:[190/247], Time: 0.82, lr: [0.00011015761354720029], Loss: 0.116121
2020-01-23 10:59:27,528 Epoch: [480/484] Iter:[200/247], Time: 0.82, lr: [0.00010891445241354888], Loss: 0.116680
2020-01-23 10:59:35,698 Epoch: [480/484] Iter:[210/247], Time: 0.82, lr: [0.00010766971261827402], Loss: 0.118730
2020-01-23 10:59:43,748 Epoch: [480/484] Iter:[220/247], Time: 0.82, lr: [0.00010642337182539646], Loss: 0.119317
2020-01-23 10:59:51,778 Epoch: [480/484] Iter:[230/247], Time: 0.82, lr: [0.00010517540708773274], Loss: 0.119150
2020-01-23 10:59:59,758 Epoch: [480/484] Iter:[240/247], Time: 0.82, lr: [0.00010392579482189281], Loss: 0.119178
2020-01-23 11:03:36,228 0 [0.98445085 0.86983538 0.93409369 0.57275511 0.63350737 0.70436549
0.74866048 0.82440248 0.93007521 0.64050603 0.95343372 0.84184206
0.64134026 0.95347463 0.70970861 0.86232047 0.70268417 0.66376538
0.79512108] 0.7877022348042918
2020-01-23 11:03:36,229 1 [0.98460798 0.87151552 0.93466816 0.57819068 0.64017744 0.70858521
0.75095473 0.82756112 0.93086834 0.6440191 0.95434979 0.84409075
0.64688333 0.95656219 0.7580944 0.88014135 0.766376 0.67053394
0.79709075] 0.7971195150766698
2020-01-23 11:03:36,229 => saving checkpoint to output/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484checkpoint.pth.tar
2020-01-23 11:03:39,151 Loss: 0.164, MeanIU: 0.7971, Best_mIoU: 0.8033
2020-01-23 11:03:39,151 [0.98460798 0.87151552 0.93466816 0.57819068 0.64017744 0.70858521
0.75095473 0.82756112 0.93086834 0.6440191 0.95434979 0.84409075
0.64688333 0.95656219 0.7580944 0.88014135 0.766376 0.67053394
0.79709075]
2020-01-23 11:03:41,071 Epoch: [481/484] Iter:[0/247], Time: 1.91, lr: [0.00010305007300023879], Loss: 0.059279
2020-01-23 11:03:49,454 Epoch: [481/484] Iter:[10/247], Time: 0.94, lr: [0.00010179760392336366], Loss: 0.119549
2020-01-23 11:03:57,643 Epoch: [481/484] Iter:[20/247], Time: 0.88, lr: [0.00010054342025384094], Loss: 0.124599
2020-01-23 11:04:05,816 Epoch: [481/484] Iter:[30/247], Time: 0.86, lr: [9.928749581301605e-05], Loss: 0.122993
2020-01-23 11:04:14,003 Epoch: [481/484] Iter:[40/247], Time: 0.85, lr: [9.802980364841368e-05], Loss: 0.120393
2020-01-23 11:04:22,418 Epoch: [481/484] Iter:[50/247], Time: 0.85, lr: [9.677031599947501e-05], Loss: 0.121214
2020-01-23 11:04:30,550 Epoch: [481/484] Iter:[60/247], Time: 0.84, lr: [9.55090042612875e-05], Loss: 0.121931
2020-01-23 11:04:38,967 Epoch: [481/484] Iter:[70/247], Time: 0.84, lr: [9.424583894610179e-05], Loss: 0.119543
2020-01-23 11:04:47,041 Epoch: [481/484] Iter:[80/247], Time: 0.84, lr: [9.29807896425223e-05], Loss: 0.122222
2020-01-23 11:04:55,304 Epoch: [481/484] Iter:[90/247], Time: 0.84, lr: [9.171382497213674e-05], Loss: 0.121666
2020-01-23 11:05:03,461 Epoch: [481/484] Iter:[100/247], Time: 0.83, lr: [9.044491254343908e-05], Loss: 0.123080
2020-01-23 11:05:11,649 Epoch: [481/484] Iter:[110/247], Time: 0.83, lr: [8.917401890277648e-05], Loss: 0.124254
2020-01-23 11:05:19,796 Epoch: [481/484] Iter:[120/247], Time: 0.83, lr: [8.790110948212332e-05], Loss: 0.125276
2020-01-23 11:05:27,849 Epoch: [481/484] Iter:[130/247], Time: 0.83, lr: [8.662614854340343e-05], Loss: 0.125216
2020-01-23 11:05:36,058 Epoch: [481/484] Iter:[140/247], Time: 0.83, lr: [8.534909911905492e-05], Loss: 0.124686
2020-01-23 11:05:44,159 Epoch: [481/484] Iter:[150/247], Time: 0.83, lr: [8.406992294856246e-05], Loss: 0.124287
2020-01-23 11:05:52,191 Epoch: [481/484] Iter:[160/247], Time: 0.83, lr: [8.278858041055368e-05], Loss: 0.123899
2020-01-23 11:06:00,210 Epoch: [481/484] Iter:[170/247], Time: 0.82, lr: [8.150503045012669e-05], Loss: 0.123689
2020-01-23 11:06:08,479 Epoch: [481/484] Iter:[180/247], Time: 0.82, lr: [8.021923050092539e-05], Loss: 0.123981
2020-01-23 11:06:16,615 Epoch: [481/484] Iter:[190/247], Time: 0.82, lr: [7.893113640154154e-05], Loss: 0.122929
2020-01-23 11:06:24,692 Epoch: [481/484] Iter:[200/247], Time: 0.82, lr: [7.764070230566066e-05], Loss: 0.123816
2020-01-23 11:06:32,810 Epoch: [481/484] Iter:[210/247], Time: 0.82, lr: [7.634788058541861e-05], Loss: 0.123057
2020-01-23 11:06:40,988 Epoch: [481/484] Iter:[220/247], Time: 0.82, lr: [7.505262172725853e-05], Loss: 0.123191
2020-01-23 11:06:49,084 Epoch: [481/484] Iter:[230/247], Time: 0.82, lr: [7.375487421961049e-05], Loss: 0.123094
2020-01-23 11:06:57,169 Epoch: [481/484] Iter:[240/247], Time: 0.82, lr: [7.245458443151907e-05], Loss: 0.122341
2020-01-23 11:10:30,581 0 [0.98422507 0.86937829 0.93397827 0.57422895 0.63350519 0.70429236
0.74893811 0.82422439 0.92985008 0.64135694 0.95303837 0.84191301
0.64024099 0.95365719 0.71253503 0.85804545 0.69231959 0.66186598
0.79317115] 0.7868823371116404
2020-01-23 11:10:30,582 1 [0.98445409 0.87110562 0.93468324 0.57607456 0.63886157 0.70849035
0.75044198 0.82732651 0.93071402 0.64468807 0.95383681 0.84403096
0.64442819 0.95694307 0.76196315 0.87660772 0.76019372 0.67061543
0.79534337] 0.796358022659045
2020-01-23 11:10:30,582 => saving checkpoint to output/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484checkpoint.pth.tar
2020-01-23 11:10:33,413 Loss: 0.164, MeanIU: 0.7964, Best_mIoU: 0.8033
2020-01-23 11:10:33,414 [0.98445409 0.87110562 0.93468324 0.57607456 0.63886157 0.70849035
0.75044198 0.82732651 0.93071402 0.64468807 0.95383681 0.84403096
0.64442819 0.95694307 0.76196315 0.87660772 0.76019372 0.67061543
0.79534337]
2020-01-23 11:10:35,334 Epoch: [482/484] Iter:[0/247], Time: 1.91, lr: [7.154283909292469e-05], Loss: 0.166780
2020-01-23 11:10:43,746 Epoch: [482/484] Iter:[10/247], Time: 0.94, lr: [7.023809790436952e-05], Loss: 0.114268
2020-01-23 11:10:51,784 Epoch: [482/484] Iter:[20/247], Time: 0.87, lr: [6.893065798093745e-05], Loss: 0.119852
2020-01-23 11:11:00,054 Epoch: [482/484] Iter:[30/247], Time: 0.86, lr: [6.762045661843488e-05], Loss: 0.107438
2020-01-23 11:11:08,691 Epoch: [482/484] Iter:[40/247], Time: 0.86, lr: [6.630742827105917e-05], Loss: 0.109519
2020-01-23 11:11:17,090 Epoch: [482/484] Iter:[50/247], Time: 0.86, lr: [6.499150435710936e-05], Loss: 0.111015
2020-01-23 11:11:25,394 Epoch: [482/484] Iter:[60/247], Time: 0.85, lr: [6.367261304669901e-05], Loss: 0.109332
2020-01-23 11:11:33,565 Epoch: [482/484] Iter:[70/247], Time: 0.85, lr: [6.23506790294124e-05], Loss: 0.109176
2020-01-23 11:11:41,787 Epoch: [482/484] Iter:[80/247], Time: 0.84, lr: [6.102562325942771e-05], Loss: 0.110645
2020-01-23 11:11:49,907 Epoch: [482/484] Iter:[90/247], Time: 0.84, lr: [5.969736267538652e-05], Loss: 0.110461
2020-01-23 11:11:58,131 Epoch: [482/484] Iter:[100/247], Time: 0.84, lr: [5.836580989175592e-05], Loss: 0.112154
2020-01-23 11:12:06,324 Epoch: [482/484] Iter:[110/247], Time: 0.84, lr: [5.703087285804628e-05], Loss: 0.111316
2020-01-23 11:12:14,492 Epoch: [482/484] Iter:[120/247], Time: 0.84, lr: [5.5692454481549096e-05], Loss: 0.112158
2020-01-23 11:12:22,475 Epoch: [482/484] Iter:[130/247], Time: 0.83, lr: [5.435045220865801e-05], Loss: 0.112527
2020-01-23 11:12:30,500 Epoch: [482/484] Iter:[140/247], Time: 0.83, lr: [5.300475755893817e-05], Loss: 0.113887
2020-01-23 11:12:38,622 Epoch: [482/484] Iter:[150/247], Time: 0.83, lr: [5.165525560510407e-05], Loss: 0.112811
2020-01-23 11:12:46,801 Epoch: [482/484] Iter:[160/247], Time: 0.83, lr: [5.0301824390915753e-05], Loss: 0.115787
2020-01-23 11:12:55,062 Epoch: [482/484] Iter:[170/247], Time: 0.83, lr: [4.8944334277432656e-05], Loss: 0.116089
2020-01-23 11:13:03,269 Epoch: [482/484] Iter:[180/247], Time: 0.83, lr: [4.7582647206382684e-05], Loss: 0.116651
2020-01-23 11:13:11,431 Epoch: [482/484] Iter:[190/247], Time: 0.83, lr: [4.6216615867088406e-05], Loss: 0.116704
2020-01-23 11:13:19,684 Epoch: [482/484] Iter:[200/247], Time: 0.83, lr: [4.4846082750790883e-05], Loss: 0.117078
2020-01-23 11:13:27,943 Epoch: [482/484] Iter:[210/247], Time: 0.83, lr: [4.3470879072721804e-05], Loss: 0.117720
2020-01-23 11:13:36,182 Epoch: [482/484] Iter:[220/247], Time: 0.83, lr: [4.209082353816928e-05], Loss: 0.118627
2020-01-23 11:13:44,359 Epoch: [482/484] Iter:[230/247], Time: 0.83, lr: [4.0705720923348604e-05], Loss: 0.118686
2020-01-23 11:13:52,441 Epoch: [482/484] Iter:[240/247], Time: 0.83, lr: [3.931536043525206e-05], Loss: 0.119942
2020-01-23 11:17:11,007 0 [0.98414966 0.86895431 0.93426231 0.57670458 0.634724 0.70516927
0.75071086 0.8250581 0.93018378 0.64025838 0.95302315 0.84245084
0.64344523 0.95362048 0.71624589 0.85770536 0.6860041 0.66650235
0.79521642] 0.7875994250409313
2020-01-23 11:17:11,008 1 [0.9843783 0.87077118 0.93492977 0.58157962 0.64100609 0.70981016
0.75212876 0.82800797 0.93097216 0.64313357 0.95364184 0.84508425
0.64973645 0.95708874 0.76677151 0.8753902 0.75322363 0.67198745
0.79760631] 0.7972235767655834
2020-01-23 11:17:11,008 => saving checkpoint to output/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484checkpoint.pth.tar
2020-01-23 11:17:13,936 Loss: 0.163, MeanIU: 0.7972, Best_mIoU: 0.8033
2020-01-23 11:17:13,936 [0.9843783 0.87077118 0.93492977 0.58157962 0.64100609 0.70981016
0.75212876 0.82800797 0.93097216 0.64313357 0.95364184 0.84508425
0.64973645 0.95708874 0.76677151 0.8753902 0.75322363 0.67198745
0.79760631]
2020-01-23 11:17:15,794 Epoch: [483/484] Iter:[0/247], Time: 1.85, lr: [3.833885818715131e-05], Loss: 0.192975
2020-01-23 11:17:23,939 Epoch: [483/484] Iter:[10/247], Time: 0.91, lr: [3.693902498956716e-05], Loss: 0.139059
2020-01-23 11:17:32,061 Epoch: [483/484] Iter:[20/247], Time: 0.86, lr: [3.5533270994975924e-05], Loss: 0.125767
2020-01-23 11:17:40,075 Epoch: [483/484] Iter:[30/247], Time: 0.84, lr: [3.4121308476897076e-05], Loss: 0.126252
2020-01-23 11:17:48,402 Epoch: [483/484] Iter:[40/247], Time: 0.84, lr: [3.270282177209703e-05], Loss: 0.120885
2020-01-23 11:17:56,485 Epoch: [483/484] Iter:[50/247], Time: 0.83, lr: [3.127746308071114e-05], Loss: 0.113956
2020-01-23 11:18:04,567 Epoch: [483/484] Iter:[60/247], Time: 0.83, lr: [2.9844847388417388e-05], Loss: 0.111658
2020-01-23 11:18:12,687 Epoch: [483/484] Iter:[70/247], Time: 0.83, lr: [2.8404546269919003e-05], Loss: 0.113975
2020-01-23 11:18:20,838 Epoch: [483/484] Iter:[80/247], Time: 0.83, lr: [2.695608024967217e-05], Loss: 0.114058
2020-01-23 11:18:28,990 Epoch: [483/484] Iter:[90/247], Time: 0.82, lr: [2.5498909276512854e-05], Loss: 0.114804
2020-01-23 11:18:37,167 Epoch: [483/484] Iter:[100/247], Time: 0.82, lr: [2.403242069550214e-05], Loss: 0.115689
2020-01-23 11:18:45,566 Epoch: [483/484] Iter:[110/247], Time: 0.83, lr: [2.2555913842252914e-05], Loss: 0.117390
2020-01-23 11:18:53,909 Epoch: [483/484] Iter:[120/247], Time: 0.83, lr: [2.106857999227624e-05], Loss: 0.118007
2020-01-23 11:19:02,083 Epoch: [483/484] Iter:[130/247], Time: 0.83, lr: [1.9569475783004125e-05], Loss: 0.116486
2020-01-23 11:19:10,185 Epoch: [483/484] Iter:[140/247], Time: 0.82, lr: [1.8057487234054166e-05], Loss: 0.116207
2020-01-23 11:19:18,276 Epoch: [483/484] Iter:[150/247], Time: 0.82, lr: [1.653127983166872e-05], Loss: 0.116788
2020-01-23 11:19:26,618 Epoch: [483/484] Iter:[160/247], Time: 0.82, lr: [1.498922725005196e-05], Loss: 0.117709
2020-01-23 11:19:34,735 Epoch: [483/484] Iter:[170/247], Time: 0.82, lr: [1.3429305983725939e-05], Loss: 0.117533
2020-01-23 11:19:42,898 Epoch: [483/484] Iter:[180/247], Time: 0.82, lr: [1.1848932870667405e-05], Loss: 0.117266
2020-01-23 11:19:51,219 Epoch: [483/484] Iter:[190/247], Time: 0.82, lr: [1.0244700976647234e-05], Loss: 0.117899
2020-01-23 11:19:59,265 Epoch: [483/484] Iter:[200/247], Time: 0.82, lr: [8.611920037976371e-06], Loss: 0.117801
2020-01-23 11:20:07,402 Epoch: [483/484] Iter:[210/247], Time: 0.82, lr: [6.943740278341014e-06], Loss: 0.117981
2020-01-23 11:20:15,736 Epoch: [483/484] Iter:[220/247], Time: 0.82, lr: [5.229248786907857e-06], Loss: 0.119557
2020-01-23 11:20:23,976 Epoch: [483/484] Iter:[230/247], Time: 0.82, lr: [3.4483865763123378e-06], Loss: 0.119375
2020-01-23 11:20:32,168 Epoch: [483/484] Iter:[240/247], Time: 0.82, lr: [1.55167281912151e-06], Loss: 0.119287
2020-01-23 11:24:08,399 0 [0.98427684 0.86914601 0.93384861 0.57542279 0.63306998 0.70514902
0.75020965 0.82584636 0.93002661 0.63876686 0.9526544 0.84269889
0.64094631 0.95342941 0.71083969 0.8606712 0.7045397 0.6648826
0.79501391] 0.7879704663729828
2020-01-23 11:24:08,400 1 [0.98446208 0.87073235 0.93450846 0.57955524 0.63832697 0.70909732
0.75140754 0.82827462 0.93078488 0.64213624 0.95328786 0.84514085
0.64734001 0.95666015 0.75642446 0.87660393 0.77795041 0.66563148
0.79636404] 0.7970888892500124
2020-01-23 11:24:08,401 => saving checkpoint to output/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484checkpoint.pth.tar
2020-01-23 11:24:11,270 Loss: 0.165, MeanIU: 0.7971, Best_mIoU: 0.8033
2020-01-23 11:24:11,270 [0.98446208 0.87073235 0.93450846 0.57955524 0.63832697 0.70909732
0.75140754 0.82827462 0.93078488 0.64213624 0.95328786 0.84514085
0.64734001 0.95666015 0.75642446 0.87660393 0.77795041 0.66563148
0.79636404]
2020-01-23 11:24:11,718 Hours: 2
2020-01-23 11:24:11,718 Done

@PkuRainBow
Copy link
Collaborator

PkuRainBow commented Jan 26, 2020

@verymadmatt We perform class-balance for all the experiments on Cityscapes. We only use the Cityscapes train set for training. First, could you provide more details about your environmental information? We expect you to conduct experiments with Pytorch1.1. Second, please ensure that you have reproduced the performance of the HRNet baseline.

@verymadmatt
Copy link
Author

@PkuRainBow Thanks for your reply. I'm using python 3.6, pytorch 1.1 and 4 P100 GPUs. Others just followed the 'requirements.txt' file. The mIoU increased to 0.8064 when i turned class_balance on, but still 1% lower than the reported.
I will try to reproduce HRNet first. But it will take me ~3 days. Would the performance be of any difference if I double the BS and base learning rate accordingly?
Any advice will be much appreciated.

@PkuRainBow
Copy link
Collaborator

@hsfzxjy Please check the possible reasons.

@verymadmatt
Copy link
Author

@hsfzxjy @PkuRainBow
FYI. I have reproduced the performance of HRNetV2 with the provided config file. The mIoU reached 0.8086 as reported (0.809).
I tried HRNetV2+OCR with random_brightness turned on as the paper suggested. But the mIoU downgraded from 0.8064 to 0.8033.
Not sure if I missed anything for HRNetV2+OCR, any advice will be much appreciated.

@PkuRainBow
Copy link
Collaborator

@verymadmatt Please be patient. We will check the possible problems and reply to you latter.

@laojiangwei
Copy link

@PkuRainBow Thanks for your reply. I'm using python 3.6, pytorch 1.1 and 4 P100 GPUs. Others just followed the 'requirements.txt' file. The mIoU increased to 0.8064 when i turned class_balance on, but still 1% lower than the reported.
I will try to reproduce HRNet first. But it will take me ~3 days. Would the performance be of any difference if I double the BS and base learning rate accordingly?
Any advice will be much appreciated.

hello, which version of cuda are you using?

@verymadmatt
Copy link
Author

@PkuRainBow Thanks for your reply. I'm using python 3.6, pytorch 1.1 and 4 P100 GPUs. Others just followed the 'requirements.txt' file. The mIoU increased to 0.8064 when i turned class_balance on, but still 1% lower than the reported.
I will try to reproduce HRNet first. But it will take me ~3 days. Would the performance be of any difference if I double the BS and base learning rate accordingly?
Any advice will be much appreciated.

hello, which version of cuda are you using?

8.0. Which version should I use?

@laojiangwei
Copy link

@PkuRainBow Thanks for your reply. I'm using python 3.6, pytorch 1.1 and 4 P100 GPUs. Others just followed the 'requirements.txt' file. The mIoU increased to 0.8064 when i turned class_balance on, but still 1% lower than the reported.
I will try to reproduce HRNet first. But it will take me ~3 days. Would the performance be of any difference if I double the BS and base learning rate accordingly?
Any advice will be much appreciated.

hello, which version of cuda are you using?

8.0. Which version should I use?

I don`t know, I encountered the same problem as you。I just want to confirm whether our environment is consistent。

@PkuRainBow
Copy link
Collaborator

PkuRainBow commented Feb 6, 2020

@verymadmatt There might be some bugs in the pushed code and @hsfzxjy will check the possible reasons and update the progress soon. Please be patient.

@PkuRainBow
Copy link
Collaborator

@verymadmatt We recommend you to try our "HRNet + OCR" on the other two datasets including PASCAL-Context and LIP.

@verymadmatt
Copy link
Author

@verymadmatt We recommend you to try our "HRNet + OCR" on the other two datasets including PASCAL-Context and LIP.

Thanks for your response. So there're no bugs in the current release?

@PkuRainBow
Copy link
Collaborator

@verymadmatt Yes, the performance on Cityscapes is not very stable and we recommend you to run multiple times currently. The performance on the other datasets is expected to be more stable.

@purse1996
Copy link

@verymadmatt We perform class-balance for all the experiments on Cityscapes. We only use the Cityscapes train set for training. First, could you provide more details about your environmental information? We expect you to conduct experiments with Pytorch1.1. Second, please ensure that you have reproduced the performance of the HRNet baseline.

I read the code. But it seems that the parameter of class-balance is useless. In the 200th row of train.py, criterion = CrossEntropy(ignore_label=config.TRAIN.IGNORE_LABEL,
weight=train_dataset.class_weights), so in the cityscapes dataset, class_weights is always use. I'm confused.

@hsfzxjy
Copy link
Contributor

hsfzxjy commented Dec 1, 2020

@purse1996 I could not quite understand what do you mean by "useless". The code snippet you post just shows that we are using class balance.

@purse1996
Copy link

Sorry, I did not express clearly what I mean. Of course, class weight is useful. While no matter that LOSS.CLASS_BALANCE is True or False, class-balance weights are always in use in criterion = CrossEntropy(ignore_label=config.TRAIN.IGNORE_LABEL,
weight=train_dataset.class_weights).
So I'm confused what is the use to turn the parameter of class_balance on? In this issue, #91 (comment), he says "The mIoU increased to 0.8064 when I turned class_balance on". I'm confused about it. Thank you.

@Margrate
Copy link

The config multi-scale and flip set as NO both in training and testing
or training is YES, testing is NO?

image

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

6 participants