-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpretrain_dmgi.py
74 lines (51 loc) · 2 KB
/
pretrain_dmgi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
import numpy as np
import torch
from torch.optim import Adam
from torch_geometric import seed_everything
from dmgi_model import load_heterodata, DMGI
from datetime import datetime
# set random seeds
seed_everything(42)
np.random.seed(42)
torch.set_num_threads(5)
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--data', default='data/knowledge_graph/kg_heterodata.pt')
args = parser.parse_args()
def train(data, model, optimizer):
model.train()
optimizer.zero_grad()
x = data['Compound'].x
edge_indices = data.edge_index_dict.values()
pos_hs, neg_hs, summaries = model(x, edge_indices)
loss = model.loss(pos_hs, neg_hs, summaries)
loss.backward()
optimizer.step()
return float(loss)
def pretrain_dmgi(hps, data, device):
model = DMGI(data['Compound'].num_nodes,
data['Compound'].x.size(-1),
hps[0],
len(data.edge_types))
data, model = data.to(device), model.to(device)
optimizer = Adam(model.parameters(), lr=hps[1], weight_decay=hps[2])
for epoch in range(1, 101):
epoch_start = datetime.now()
train_loss = train(data, model, optimizer)
if epoch == 1 or epoch % 25 == 0:
print(f'\tEpoch: {epoch:03d}, Loss: {train_loss:.4f}, Time: {datetime.now() - epoch_start}')
return train_loss, model
if __name__ == '__main__':
data = load_heterodata(args.data)
print(f'Loaded data: {args.data}')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f'\nUsing device: {device}\n')
print('Starting training...\n')
train_start = datetime.now()
loss, model = pretrain_dmgi([64, 0.01, 0.001], data, device)
print(f'\nDone. Total training time: {datetime.now() - train_start}')
# save model
os.makedirs('models', exist_ok=True)
torch.save(model.state_dict(), 'data/pretrained_models/kg_dmgi_model.pt')
print(f'Model saved: data/pretrained_models/kg_dmgi_model.pt\n')