-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCliantSensor.ino
306 lines (274 loc) · 8.52 KB
/
CliantSensor.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
#include <Adafruit_NeoPixel.h>
#include <ArduinoJson.h>
#include <Wire.h>
#include <SSCI_BME280.h>
#include <WioCellLibforArduino.h>
#define BME280_ADDRESS 0x76
#define UUID "Test0001"
#define APN "soracom.io"
#define USERNAME "sora"
#define PASSWORD "sora"
#define INTERVAL 5000
#define READGPS WIO_UART_D23
#define GPS_OVERFLOW_STRING "OVERFLOW"
#define LEDPIN WIO_D38
#define LEDNUM 30
WioCellular Wio;
char buff[128] = {'\0'};
int counter = 0;
unsigned long int hum_raw, temp_raw, pres_raw;
signed long int t_fine;
String input;
char GpsData[100];
int GpsDataLength=0;
Adafruit_NeoPixel pixels = Adafruit_NeoPixel(LEDNUM, LEDPIN, NEO_GRB + NEO_KHZ800);
int led_num=0;
uint16_t dig_T1;
int16_t dig_T2;
int16_t dig_T3;
uint16_t dig_P1;
int16_t dig_P2;
int16_t dig_P3;
int16_t dig_P4;
int16_t dig_P5;
int16_t dig_P6;
int16_t dig_P7;
int16_t dig_P8;
int16_t dig_P9;
int8_t dig_H1;
int16_t dig_H2;
int8_t dig_H3;
int16_t dig_H4;
int16_t dig_H5;
int8_t dig_H6;
void setup() {
uint8_t osrs_t = 1; //Temperature oversampling x 1
uint8_t osrs_p = 1; //Pressure oversampling x 1
uint8_t osrs_h = 1; //Humidity oversampling x 1
uint8_t mode = 3; //Normal mode
uint8_t t_sb = 5; //Tstandby 1000ms
uint8_t filter = 0; //Filter off
uint8_t spi3w_en = 0; //3-wire SPI Disable
uint8_t ctrl_meas_reg = (osrs_t << 5) | (osrs_p << 2) | mode;
uint8_t config_reg = (t_sb << 5) | (filter << 2) | spi3w_en;
uint8_t ctrl_hum_reg = osrs_h;
SerialUSB.begin(115200);
//SerialUART.begin(4800);
//SerialUART.print("$PUNV,CONFIG,00,00,0,1000,115200,01*0C\r\n");
Wire.begin();
writeReg(0xF2, ctrl_hum_reg);
writeReg(0xF4, ctrl_meas_reg);
writeReg(0xF5, config_reg);
readTrim();
Wio.Init();
pixels.begin();
pixels.clear();
SerialUSB.println("### Power supply ON.");
Wio.PowerSupplyCellular(true);
Wio.PowerSupplyGrove(true);
delay(500);
SerialUSB.println("### Turn on or reset.");
#ifdef ARDUINO_WIO_LTE_M1NB1_BG96
Wio.SetAccessTechnology(WioCellular::ACCESS_TECHNOLOGY_LTE_M1);
Wio.SetSelectNetwork(WioCellular::SELECT_NETWORK_MODE_MANUAL_IMSI);
#endif
if (!Wio.TurnOnOrReset()) {
SerialUSB.println("### ERROR! ###");
return;
}
SerialUSB.println("### Connecting to \"" APN "\".");
if (!Wio.Activate(APN, USERNAME, PASSWORD)) {
SerialUSB.println("### ERROR! ###");
return;
}
SerialUSB.println("### Setup completed.");
}
void loop()
{
input ="";
double temp_act = 0.0, press_act = 0.0, hum_act = 0.0;
signed long int temp_cal;
unsigned long int press_cal, hum_cal;
readData();
temp_cal = calibration_T(temp_raw);
press_cal = calibration_P(pres_raw);
hum_cal = calibration_H(hum_raw);
temp_act = (double)temp_cal / 100.0;
press_act = (double)press_cal / 100.0;
hum_act = (double)hum_cal / 1024.0;
SerialUSB.print("TEMP : ");
SerialUSB.print(temp_act);
SerialUSB.print(" DegC PRESS : ");
SerialUSB.print(press_act);
SerialUSB.print(" hPa HUM : ");
SerialUSB.print(hum_act);
SerialUSB.println(" %");
// allocate the memory for the document
const size_t CAPACITY = JSON_OBJECT_SIZE(3);
StaticJsonDocument<CAPACITY> doc;
// create an object
JsonObject root = doc.to<JsonObject>();
root["uuid"] = UUID;
root["temperature"] = temp_act;
root["humidity"] = hum_act;
char data[200];
serializeJson(doc, data);
int statusCode = 0;
if (!Wio.HttpPost("http://fukai.mybluemix.net/post-data", data, &statusCode)) {
SerialUSB.println("ERROR in sending data!!");
}
SerialUSB.print("Status code : ");
SerialUSB.println(statusCode);
float Res = calcDI(temp_act,hum_act);
SerialUSB.print("DI : ");
SerialUSB.println(Res);
LEDControl(Res);
delay(INTERVAL);
}
void readTrim()
{
uint8_t data[32], i = 0;
Wire.beginTransmission(BME280_ADDRESS);
Wire.write(0x88);
Wire.endTransmission();
Wire.requestFrom(BME280_ADDRESS, 24);
while (Wire.available()) {
data[i] = Wire.read();
i++;
}
Wire.beginTransmission(BME280_ADDRESS);
Wire.write(0xA1);
Wire.endTransmission();
Wire.requestFrom(BME280_ADDRESS, 1);
data[i] = Wire.read();
i++;
Wire.beginTransmission(BME280_ADDRESS);
Wire.write(0xE1);
Wire.endTransmission();
Wire.requestFrom(BME280_ADDRESS, 7);
while (Wire.available()) {
data[i] = Wire.read();
i++;
}
dig_T1 = (data[1] << 8) | data[0];
dig_T2 = (data[3] << 8) | data[2];
dig_T3 = (data[5] << 8) | data[4];
dig_P1 = (data[7] << 8) | data[6];
dig_P2 = (data[9] << 8) | data[8];
dig_P3 = (data[11] << 8) | data[10];
dig_P4 = (data[13] << 8) | data[12];
dig_P5 = (data[15] << 8) | data[14];
dig_P6 = (data[17] << 8) | data[16];
dig_P7 = (data[19] << 8) | data[18];
dig_P8 = (data[21] << 8) | data[20];
dig_P9 = (data[23] << 8) | data[22];
dig_H1 = data[24];
dig_H2 = (data[26] << 8) | data[25];
dig_H3 = data[27];
dig_H4 = (data[28] << 4) | (0x0F & data[29]);
dig_H5 = (data[30] << 4) | ((data[29] >> 4) & 0x0F);
dig_H6 = data[31];
}
void writeReg(uint8_t reg_address, uint8_t data)
{
Wire.beginTransmission(BME280_ADDRESS);
Wire.write(reg_address);
Wire.write(data);
Wire.endTransmission();
}
void readData()
{
int i = 0;
uint32_t data[8];
Wire.beginTransmission(BME280_ADDRESS);
Wire.write(0xF7);
Wire.endTransmission();
Wire.requestFrom(BME280_ADDRESS, 8);
while (Wire.available()) {
data[i] = Wire.read();
i++;
}
pres_raw = (data[0] << 12) | (data[1] << 4) | (data[2] >> 4);
temp_raw = (data[3] << 12) | (data[4] << 4) | (data[5] >> 4);
hum_raw = (data[6] << 8) | data[7];
}
signed long int calibration_T(signed long int adc_T)
{
signed long int var1, var2, T;
var1 = ((((adc_T >> 3) - ((signed long int)dig_T1 << 1))) * ((signed long int)dig_T2)) >> 11;
var2 = (((((adc_T >> 4) - ((signed long int)dig_T1)) * ((adc_T >> 4) - ((signed long int)dig_T1))) >> 12) * ((signed long int)dig_T3)) >> 14;
t_fine = var1 + var2;
T = (t_fine * 5 + 128) >> 8;
return T;
}
unsigned long int calibration_P(signed long int adc_P)
{
signed long int var1, var2;
unsigned long int P;
var1 = (((signed long int)t_fine) >> 1) - (signed long int)64000;
var2 = (((var1 >> 2) * (var1 >> 2)) >> 11) * ((signed long int)dig_P6);
var2 = var2 + ((var1 * ((signed long int)dig_P5)) << 1);
var2 = (var2 >> 2) + (((signed long int)dig_P4) << 16);
var1 = (((dig_P3 * (((var1 >> 2) * (var1 >> 2)) >> 13)) >> 3) + ((((signed long int)dig_P2) * var1) >> 1)) >> 18;
var1 = ((((32768 + var1)) * ((signed long int)dig_P1)) >> 15);
if (var1 == 0)
{
return 0;
}
P = (((unsigned long int)(((signed long int)1048576) - adc_P) - (var2 >> 12))) * 3125;
if (P < 0x80000000)
{
P = (P << 1) / ((unsigned long int) var1);
}
else
{
P = (P / (unsigned long int)var1) * 2;
}
var1 = (((signed long int)dig_P9) * ((signed long int)(((P >> 3) * (P >> 3)) >> 13))) >> 12;
var2 = (((signed long int)(P >> 2)) * ((signed long int)dig_P8)) >> 13;
P = (unsigned long int)((signed long int)P + ((var1 + var2 + dig_P7) >> 4));
return P;
}
unsigned long int calibration_H(signed long int adc_H)
{
signed long int v_x1;
v_x1 = (t_fine - ((signed long int)76800));
v_x1 = (((((adc_H << 14) - (((signed long int)dig_H4) << 20) - (((signed long int)dig_H5) * v_x1)) +
((signed long int)16384)) >> 15) * (((((((v_x1 * ((signed long int)dig_H6)) >> 10) *
(((v_x1 * ((signed long int)dig_H3)) >> 11) + ((signed long int) 32768))) >> 10) + (( signed long int)2097152)) *
((signed long int) dig_H2) + 8192) >> 14));
v_x1 = (v_x1 - (((((v_x1 >> 15) * (v_x1 >> 15)) >> 7) * ((signed long int)dig_H1)) >> 4));
v_x1 = (v_x1 < 0 ? 0 : v_x1);
v_x1 = (v_x1 > 419430400 ? 419430400 : v_x1);
return (unsigned long int)(v_x1 >> 12);
}
const char* GpsRead() {
while (SerialUART.available()) {
char data = SerialUART.read();
if (data == '\r') continue;
if (data == '\n') {
GpsData[GpsDataLength] = '\0';
GpsDataLength = 0;
return GpsData;
}
if (GpsDataLength > (int)sizeof(GpsData) - 1) { // Overflow
GpsDataLength = 0;
return GPS_OVERFLOW_STRING;
}
GpsData[GpsDataLength++] = data;
}
return NULL;
}
float calcDI(float temp,float hum){
return 0.81*temp + 0.01*hum * (0.99 * temp - 14.3) + 46.3;
}
void LEDControl(float di){
if(di<65){
pixels.setPixelColor(led_num,pixels.Color(0,map(di,65,60,255,0),map(di,65,0,0,255)));
}else if(di>=65){
pixels.setPixelColor(led_num,pixels.Color(map(di,65,100,0,255),map(di,65,70,255,0),0));
}
pixels.show();
led_num++;
if(led_num>30) led_num =0;
}