-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathtrain.py
700 lines (620 loc) · 40.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
import argparse
import concurrent.futures
import copy
import os
import re
from icecream import install
from ogb.lsc import DglPCQM4MDataset, PCQM4MEvaluator
from ogb.utils import smiles2graph
from commons.utils import seed_all, get_random_indices, TENSORBOARD_FUNCTIONS
from datasets.ZINC_dataset import ZINCDataset
from datasets.bace_geomol_feat import BACEGeomol
from datasets.bace_geomol_featurization_of_qm9 import BACEGeomolQM9Featurization
from datasets.bace_geomol_random_split import BACEGeomolRandom
from datasets.bbbp_geomol_feat import BBBPGeomol
from datasets.bbbp_geomol_featurization_of_qm9 import BBBPGeomolQM9Featurization
from datasets.bbbp_geomol_random_split import BBBPGeomolRandom
from datasets.esol_geomol_feat import ESOLGeomol
from datasets.esol_geomol_featurization_of_qm9 import ESOLGeomolQM9Featurization
from datasets.file_loader_drugs import FileLoaderDrugs
from datasets.file_loader_qm9 import FileLoaderQM9
from datasets.geom_drugs_dataset import GEOMDrugs
from datasets.geom_qm9_dataset import GEOMqm9
from datasets.geomol_geom_qm9_dataset import QM9GeomolFeatDataset
from datasets.lipo_geomol_feat import LIPOGeomol
from datasets.lipo_geomol_featurization_of_qm9 import LIPOGeomolQM9Featurization
from datasets.ogbg_dataset_extension import OGBGDatasetExtension
from datasets.qm9_dataset_geomol_conformers import QM9DatasetGeomolConformers
from datasets.qm9_dataset_rdkit_conformers import QM9DatasetRDKITConformers
from datasets.qm9_geomol_featurization import QM9GeomolFeaturization
from datasets.qmugs_dataset import QMugsDataset
from models.geomol_mpnn import GeomolGNNWrapper
from trainer.byol_trainer import BYOLTrainer
from trainer.byol_wrapper import BYOLwrapper
import seaborn
from trainer.graphcl_trainer import GraphCLTrainer
from trainer.optimal_transport_trainer import OptimalTransportTrainer
from trainer.philosophy_trainer import PhilosophyTrainer
from trainer.self_supervised_ae_trainer import SelfSupervisedAETrainer
from trainer.self_supervised_alternating_trainer import SelfSupervisedAlternatingTrainer
from trainer.self_supervised_trainer import SelfSupervisedTrainer
import yaml
from datasets.custom_collate import * # do not remove
from models import * # do not remove
from torch.nn import * # do not remove
from torch.optim import * # do not remove
from commons.losses import * # do not remove
from torch.optim.lr_scheduler import * # do not remove
from datasets.samplers import * # do not remove
from datasets.qm9_dataset import QM9Dataset
from torch.utils.data import DataLoader, Subset
from trainer.metrics import QM9DenormalizedL1, QM9DenormalizedL2, \
QM9SingleTargetDenormalizedL1, Rsquared, NegativeSimilarity, MeanPredictorLoss, \
PositiveSimilarity, ContrastiveAccuracy, TrueNegativeRate, TruePositiveRate, Alignment, Uniformity, \
BatchVariance, DimensionCovariance, MAE, PositiveSimilarityMultiplePositivesSeparate2d, \
NegativeSimilarityMultiplePositivesSeparate2d, OGBEvaluator, PearsonR, PositiveProb, NegativeProb, \
Conformer2DVariance, Conformer3DVariance, PCQM4MEvaluatorWrapper
from trainer.trainer import Trainer
# turn on for debugging C code like Segmentation Faults
import faulthandler
faulthandler.enable()
install()
seaborn.set_theme()
def parse_arguments():
p = argparse.ArgumentParser()
p.add_argument('--config', type=argparse.FileType(mode='r'), default='configs/pna.yml')
p.add_argument('--experiment_name', type=str, help='name that will be added to the runs folder output')
p.add_argument('--logdir', type=str, default='runs', help='tensorboard logdirectory')
p.add_argument('--num_epochs', type=int, default=2500, help='number of times to iterate through all samples')
p.add_argument('--batch_size', type=int, default=1024, help='samples that will be processed in parallel')
p.add_argument('--patience', type=int, default=20, help='stop training after no improvement in this many epochs')
p.add_argument('--minimum_epochs', type=int, default=0, help='minimum numer of epochs to run')
p.add_argument('--dataset', type=str, default='qm9', help='[qm9, zinc, drugs, geom_qm9, molhiv]')
p.add_argument('--num_train', type=int, default=-1, help='n samples of the model samples to use for train')
p.add_argument('--seed', type=int, default=123, help='seed for reproducibility')
p.add_argument('--num_val', type=int, default=None, help='n samples of the model samples to use for validation')
p.add_argument('--multithreaded_seeds', type=list, default=[],
help='if this is non empty, multiple threads will be started, training the same model but with the different seeds')
p.add_argument('--seed_data', type=int, default=123, help='if you want to use a different seed for the datasplit')
p.add_argument('--loss_func', type=str, default='MSELoss', help='Class name of torch.nn like [MSELoss, L1Loss]')
p.add_argument('--loss_params', type=dict, default={}, help='parameters with keywords of the chosen loss function')
p.add_argument('--critic_loss', type=str, default='MSELoss', help='Class name of torch.nn like [MSELoss, L1Loss]')
p.add_argument('--critic_loss_params', type=dict, default={},
help='parameters with keywords of the chosen loss function')
p.add_argument('--optimizer', type=str, default='Adam', help='Class name of torch.optim like [Adam, SGD, AdamW]')
p.add_argument('--optimizer_params', type=dict, help='parameters with keywords of the chosen optimizer like lr')
p.add_argument('--lr_scheduler', type=str,
help='Class name of torch.optim.lr_scheduler like [CosineAnnealingLR, ExponentialLR, LambdaLR]')
p.add_argument('--lr_scheduler_params', type=dict, help='parameters with keywords of the chosen lr_scheduler')
p.add_argument('--scheduler_step_per_batch', default=True, type=bool,
help='step every batch if true step every epoch otherwise')
p.add_argument('--log_iterations', type=int, default=-1,
help='log every log_iterations iterations (-1 for only logging after each epoch)')
p.add_argument('--expensive_log_iterations', type=int, default=100,
help='frequency with which to do expensive logging operations')
p.add_argument('--eval_per_epochs', type=int, default=0,
help='frequency with which to do run the function run_eval_per_epoch that can do some expensive calculations on the val set or sth like that. If this is zero, then the function will never be called')
p.add_argument('--linear_probing_samples', type=int, default=500,
help='number of samples to use for linear probing in the run_eval_per_epoch function of the self supervised trainer')
p.add_argument('--num_conformers', type=int, default=3,
help='number of conformers to use if we are using multiple conformers on the 3d side')
p.add_argument('--metrics', default=[], help='tensorboard metrics [mae, mae_denormalized, qm9_properties ...]')
p.add_argument('--main_metric', default='mae_denormalized', help='for early stopping etc.')
p.add_argument('--main_metric_goal', type=str, default='min', help='controls early stopping. [max, min]')
p.add_argument('--val_per_batch', type=bool, default=True,
help='run evaluation every batch and then average over the eval results. When running the molhiv benchmark for example, this needs to be Fale because we need to evaluate on all val data at once since the metric is rocauc')
p.add_argument('--tensorboard_functions', default=[], help='choices of the TENSORBOARD_FUNCTIONS in utils')
p.add_argument('--checkpoint', type=str, help='path to directory that contains a checkpoint to continue training')
p.add_argument('--pretrain_checkpoint', type=str, help='Specify path to finetune from a pretrained checkpoint')
p.add_argument('--transfer_layers', default=[],
help='strings contained in the keys of the weights that are transferred')
p.add_argument('--frozen_layers', default=[],
help='strings contained in the keys of the weights that are transferred')
p.add_argument('--exclude_from_transfer', default=[],
help='parameters that usually should not be transferred like batchnorm params')
p.add_argument('--transferred_lr', type=float, default=None, help='set to use a different LR for transfer layers')
p.add_argument('--num_epochs_local_only', type=int, default=1,
help='when training with OptimalTransportTrainer, this specifies for how many epochs only the local predictions will get a loss')
p.add_argument('--required_data', default=[],
help='what will be included in a batch like [dgl_graph, targets, dgl_graph3d]')
p.add_argument('--collate_function', default='graph_collate', help='the collate function to use for DataLoader')
p.add_argument('--collate_params', type=dict, default={},
help='parameters with keywords of the chosen collate function')
p.add_argument('--use_e_features', default=True, type=bool, help='ignore edge features if set to False')
p.add_argument('--targets', default=[], help='properties that should be predicted')
p.add_argument('--device', type=str, default='cuda', help='What device to train on: cuda or cpu')
p.add_argument('--dist_embedding', type=bool, default=False, help='add dist embedding to complete graphs edges')
p.add_argument('--num_radial', type=int, default=6, help='number of frequencies for distance embedding')
p.add_argument('--models_to_save', type=list, default=[],
help='specify after which epochs to remember the best model')
p.add_argument('--model_type', type=str, default='MPNN', help='Classname of one of the models in the models dir')
p.add_argument('--model_parameters', type=dict, help='dictionary of model parameters')
p.add_argument('--model3d_type', type=str, default=None, help='Classname of one of the models in the models dir')
p.add_argument('--model3d_parameters', type=dict, help='dictionary of model parameters')
p.add_argument('--critic_type', type=str, default=None, help='Classname of one of the models in the models dir')
p.add_argument('--critic_parameters', type=dict, help='dictionary of model parameters')
p.add_argument('--trainer', type=str, default='contrastive', help='[contrastive, byol, alternating, philosophy]')
p.add_argument('--train_sampler', type=str, default=None, help='any of pytorchs samplers or a custom sampler')
p.add_argument('--eval_on_test', type=bool, default=True, help='runs evaluation on test set if true')
p.add_argument('--force_random_split', type=bool, default=False, help='use random split for ogb')
p.add_argument('--reuse_pre_train_data', type=bool, default=False, help='use all data instead of ignoring that used during pre-training')
p.add_argument('--transfer_3d', type=bool, default=False, help='set true to load the 3d network instead of the 2d network')
return p.parse_args()
def get_trainer(args, model, data, device, metrics):
tensorboard_functions = {function: TENSORBOARD_FUNCTIONS[function] for function in args.tensorboard_functions}
if args.model3d_type:
model3d = globals()[args.model3d_type](
node_dim=0, # 3d model has no input node features
edge_dim=data[0][1].edata['d'].shape[
1] if args.use_e_features and isinstance(data[0][1], dgl.DGLGraph) else 0,
avg_d=data.avg_degree if hasattr(data, 'avg_degree') else 1,
**args.model3d_parameters)
print('3D model trainable params: ', sum(p.numel() for p in model3d.parameters() if p.requires_grad))
critic = None
if args.trainer == 'byol':
ssl_trainer = BYOLTrainer
elif args.trainer == 'alternating':
ssl_trainer = SelfSupervisedAlternatingTrainer
elif args.trainer == 'autoencoder':
ssl_trainer = SelfSupervisedAETrainer
elif args.trainer == 'contrastive':
ssl_trainer = SelfSupervisedTrainer
elif args.trainer == 'philosophy':
ssl_trainer = PhilosophyTrainer
critic = globals()[args.critic_type](**args.critic_parameters)
return ssl_trainer(model=model, model3d=model3d, critic=critic, args=args, metrics=metrics,
main_metric=args.main_metric, main_metric_goal=args.main_metric_goal,
optim=globals()[args.optimizer], loss_func=globals()[args.loss_func](**args.loss_params),
critic_loss=globals()[args.critic_loss](**args.critic_loss_params), device=device,
tensorboard_functions=tensorboard_functions,
scheduler_step_per_batch=args.scheduler_step_per_batch)
else:
if args.trainer == 'optimal_transport':
trainer = OptimalTransportTrainer
elif args.trainer == 'graphcl_trainer':
trainer = GraphCLTrainer
else:
trainer = Trainer
return trainer(model=model, args=args, metrics=metrics, main_metric=args.main_metric,
main_metric_goal=args.main_metric_goal, optim=globals()[args.optimizer],
loss_func=globals()[args.loss_func](**args.loss_params), device=device,
tensorboard_functions=tensorboard_functions,
scheduler_step_per_batch=args.scheduler_step_per_batch)
def load_model(args, data, device):
model = globals()[args.model_type](avg_d=data.avg_degree if hasattr(data, 'avg_degree') else 1, device=device,
**args.model_parameters)
if args.pretrain_checkpoint:
# get arguments used during pretraining
with open(os.path.join(os.path.dirname(args.pretrain_checkpoint), 'train_arguments.yaml'), 'r') as arg_file:
pretrain_dict = yaml.load(arg_file, Loader=yaml.FullLoader)
pretrain_args = argparse.Namespace()
pretrain_args.__dict__.update(pretrain_dict)
checkpoint = torch.load(args.pretrain_checkpoint, map_location=device)
# get all the weights that have something from 'args.transfer_layers' in their keys name
# but only if they do not contain 'teacher' and remove 'student.' which we need for loading from BYOLWrapper
weights_key = 'model3d_state_dict' if args.transfer_3d == True else 'model_state_dict'
pretrained_gnn_dict = {re.sub('^gnn\.|^gnn2\.', 'node_gnn.', k.replace('student.', '')): v
for k, v in checkpoint[weights_key].items() if any(
transfer_layer in k for transfer_layer in args.transfer_layers) and 'teacher' not in k and not any(
to_exclude in k for to_exclude in args.exclude_from_transfer)}
model_state_dict = model.state_dict()
model_state_dict.update(pretrained_gnn_dict) # update the gnn layers with the pretrained weights
model.load_state_dict(model_state_dict)
if args.reuse_pre_train_data:
return model, 0, pretrain_args.dataset == args.dataset
else:
return model, pretrain_args.num_train, pretrain_args.dataset == args.dataset
return model, None, False
def train(args):
seed_all(args.seed)
device = torch.device("cuda:0" if torch.cuda.is_available() and args.device == 'cuda' else "cpu")
metrics_dict = {'rsquared': Rsquared(),
'mae': MAE(),
'pearsonr': PearsonR(),
'ogbg-molhiv': OGBEvaluator(d_name='ogbg-molhiv', metric='rocauc'),
'ogbg-molpcba': OGBEvaluator(d_name='ogbg-molpcba', metric='ap'),
'ogbg-molbace': OGBEvaluator(d_name='ogbg-molbace', metric='rocauc'),
'ogbg-molbbbp': OGBEvaluator(d_name='ogbg-molbbbp', metric='rocauc'),
'ogbg-molclintox': OGBEvaluator(d_name='ogbg-molclintox', metric='rocauc'),
'ogbg-moltoxcast': OGBEvaluator(d_name='ogbg-moltoxcast', metric='rocauc'),
'ogbg-moltox21': OGBEvaluator(d_name='ogbg-moltox21', metric='rocauc'),
'ogbg-mollipo': OGBEvaluator(d_name='ogbg-mollipo', metric='rmse'),
'ogbg-molmuv': OGBEvaluator(d_name='ogbg-molmuv', metric='ap'),
'ogbg-molsider': OGBEvaluator(d_name='ogbg-molsider', metric='rocauc'),
'ogbg-molfreesolv': OGBEvaluator(d_name='ogbg-molfreesolv', metric='rmse'),
'ogbg-molesol': OGBEvaluator(d_name='ogbg-molesol', metric='rmse'),
'pcqm4m': PCQM4MEvaluatorWrapper(),
'conformer_3d_variance': Conformer3DVariance(),
'conformer_2d_variance': Conformer2DVariance(),
'positive_similarity': PositiveSimilarity(),
'positive_similarity_multiple_positives_separate2d': PositiveSimilarityMultiplePositivesSeparate2d(),
'positive_prob': PositiveProb(),
'negative_prob': NegativeProb(),
'negative_similarity': NegativeSimilarity(),
'negative_similarity_multiple_positives_separate2d': NegativeSimilarityMultiplePositivesSeparate2d(),
'contrastive_accuracy': ContrastiveAccuracy(threshold=0.5009),
'true_negative_rate': TrueNegativeRate(threshold=0.5009),
'true_positive_rate': TruePositiveRate(threshold=0.5009),
'mean_predictor_loss': MeanPredictorLoss(globals()[args.loss_func](**args.loss_params)),
'uniformity': Uniformity(t=2),
'alignment': Alignment(alpha=2),
'batch_variance': BatchVariance(),
'dimension_covariance': DimensionCovariance()
}
print('using device: ', device)
if args.dataset == 'qm9' or args.dataset == 'qm9_rdkit'or args.dataset == 'qm9_neuralconf':
return train_qm9(args, device, metrics_dict)
elif args.dataset == 'zinc':
return train_zinc(args, device, metrics_dict)
elif args.dataset == 'qmugs':
return train_geom(args, device, metrics_dict)
elif args.dataset == 'drugs' or args.dataset == 'geom_qm9' or args.dataset == 'qm9_geomol_feat' or args.dataset == 'file_loader_drugs' or args.dataset == 'file_loader_qm9':
return train_geom(args, device, metrics_dict)
elif args.dataset == 'qm9_geomol':
return train_qm9_geomol_featurization(args, device, metrics_dict)
elif 'pcqm4m' == args.dataset:
return train_pcqm4m(args, device, metrics_dict)
elif 'geomol' in args.dataset:
return train_geomol(args, device, metrics_dict)
elif 'ogbg' in args.dataset:
return train_ogbg(args, device, metrics_dict)
def train_geomol(args, device, metrics_dict):
if args.dataset == 'bace_geomol':
dataset = BACEGeomol
elif args.dataset == 'bbbp_geomol':
dataset = BBBPGeomol
elif args.dataset == 'bace_geomol_random':
dataset = BACEGeomolRandom
elif args.dataset == 'bbbp_geomol_random':
dataset = BBBPGeomolRandom
elif args.dataset == 'esol_geomol':
dataset = ESOLGeomol
elif args.dataset == 'lipo_geomol':
dataset = LIPOGeomol
elif args.dataset == 'esol_geomol_qm9_featurization':
dataset = ESOLGeomolQM9Featurization
elif args.dataset == 'lipo_geomol_qm9_featurization':
dataset = LIPOGeomolQM9Featurization
if args.dataset == 'bace_geomol_qm9_featurization':
dataset = BACEGeomolQM9Featurization
elif args.dataset == 'bbbp_geomol_qm9_featurization':
dataset = BBBPGeomolQM9Featurization
train = dataset(split='train', device=device)
val = dataset(split='val', device=device)
test = dataset(split='test', device=device)
model = globals()[args.model_type](node_dim=train[0][0].z.shape[1], edge_dim=train[0][0].edge_attr.shape[1],
**args.model_parameters)
if args.pretrain_checkpoint:
checkpoint = torch.load(args.pretrain_checkpoint, map_location=device)
pretrained_gnn_dict = {k.replace('student.', ''): v for k, v in checkpoint.items() if any(
transfer_layer in k for transfer_layer in args.transfer_layers) and 'teacher' not in k and not any(
to_exclude in k for to_exclude in args.exclude_from_transfer)}
model_state_dict = model.state_dict()
model_state_dict.update(pretrained_gnn_dict) # update the gnn layers with the pretrained weights
model.load_state_dict(model_state_dict)
print('model trainable params: ', sum(p.numel() for p in model.parameters() if p.requires_grad))
collate_function = globals()[args.collate_function] if args.collate_params == {} else globals()[
args.collate_function](**args.collate_params)
train_loader = DataLoader(train, batch_size=args.batch_size, shuffle=True,
collate_fn=collate_function)
val_loader = DataLoader(val, batch_size=args.batch_size, collate_fn=collate_function)
test_loader = DataLoader(test, batch_size=args.batch_size, collate_fn=collate_function)
metrics = {metric: metrics_dict[metric] for metric in args.metrics}
metric_name = [key for key in metrics_dict.keys() if 'ogbg-mol' + args.dataset.split('_')[0] == key.lower()][0]
metrics[metric_name] = metrics_dict[metric_name]
args.main_metric = metric_name
args.val_per_batch = False
args.main_metric_goal = 'min' if metrics[metric_name].metric == 'rmse' else 'max'
trainer = get_trainer(args=args, model=model, data=train, device=device, metrics=metrics)
val_metrics = trainer.train(train_loader, val_loader)
if args.eval_on_test:
test_metrics = trainer.evaluation(test_loader, data_split='test')
return val_metrics, test_metrics, trainer.writer.log_dir
return val_metrics
def train_qm9_geomol_featurization(args, device, metrics_dict):
all_data = QM9GeomolFeaturization(return_types=args.required_data, target_tasks=args.targets, device=device,
dist_embedding=args.dist_embedding, num_radial=args.num_radial)
all_idx = get_random_indices(len(all_data), args.seed_data)
model_idx = all_idx[:100000]
test_idx = all_idx[len(model_idx): len(model_idx) + int(0.1 * len(all_data))]
val_idx = all_idx[len(model_idx) + len(test_idx):]
train_idx = model_idx[:args.num_train]
# for debugging purposes:
# test_idx = all_idx[len(model_idx): len(model_idx) + 200]
# val_idx = all_idx[len(model_idx) + len(test_idx): len(model_idx) + len(test_idx) + 3000]
model = globals()[args.model_type](node_dim=all_data[0][0].z.shape[1], edge_dim=all_data[0][0].edge_attr.shape[1],
**args.model_parameters)
if args.pretrain_checkpoint:
checkpoint = torch.load(args.pretrain_checkpoint, map_location=device)
pretrained_gnn_dict = {k.replace('student.', ''): v for k, v in checkpoint.items() if any(
transfer_layer in k for transfer_layer in args.transfer_layers) and 'teacher' not in k and not any(
to_exclude in k for to_exclude in args.exclude_from_transfer)}
model_state_dict = model.state_dict()
model_state_dict.update(pretrained_gnn_dict) # update the gnn layers with the pretrained weights
model.load_state_dict(model_state_dict)
print('model trainable params: ', sum(p.numel() for p in model.parameters() if p.requires_grad))
print(f'Training on {len(train_idx)} samples from the model sequences')
collate_function = globals()[args.collate_function] if args.collate_params == {} else globals()[
args.collate_function](**args.collate_params)
train_loader = DataLoader(Subset(all_data, train_idx), batch_size=args.batch_size, shuffle=True,
collate_fn=collate_function)
val_loader = DataLoader(Subset(all_data, val_idx), batch_size=args.batch_size, collate_fn=collate_function)
test_loader = DataLoader(Subset(all_data, test_idx), batch_size=args.batch_size, collate_fn=collate_function)
metrics_dict.update({'mae_denormalized': QM9DenormalizedL1(dataset=all_data),
'mse_denormalized': QM9DenormalizedL2(dataset=all_data)})
metrics = {metric: metrics_dict[metric] for metric in args.metrics if metric != 'qm9_properties'}
if 'qm9_properties' in args.metrics:
metrics.update(
{task: QM9SingleTargetDenormalizedL1(dataset=all_data, task=task) for task in all_data.target_tasks})
trainer = get_trainer(args=args, model=model, data=all_data, device=device, metrics=metrics)
val_metrics = trainer.train(train_loader, val_loader)
if args.eval_on_test:
test_metrics = trainer.evaluation(test_loader, data_split='test')
return val_metrics, test_metrics, trainer.writer.log_dir
return val_metrics
def train_pcqm4m(args, device, metrics_dict):
dataset = DglPCQM4MDataset(smiles2graph=smiles2graph)
split_idx = dataset.get_idx_split()
split_idx["train"] = split_idx["train"][:args.num_train]
collate_function = globals()[args.collate_function] if args.collate_params == {} else globals()[
args.collate_function](**args.collate_params)
train_loader = DataLoader(Subset(dataset, split_idx["train"]), batch_size=args.batch_size, shuffle=True,
collate_fn=collate_function)
val_loader = DataLoader(Subset(dataset, split_idx["valid"]), batch_size=args.batch_size, shuffle=False,
collate_fn=collate_function)
test_loader = DataLoader(Subset(dataset, split_idx["test"]), batch_size=args.batch_size, shuffle=False,
collate_fn=collate_function)
model, num_pretrain, transfer_from_same_dataset = load_model(args, data=dataset, device=device)
metrics = {metric: metrics_dict[metric] for metric in args.metrics}
metrics[args.dataset] = metrics_dict[args.dataset]
args.main_metric = args.dataset
args.main_metric_goal = 'min'
trainer = get_trainer(args=args, model=model, data=dataset, device=device, metrics=metrics)
val_metrics = trainer.train(train_loader, val_loader)
if args.eval_on_test:
test_metrics = trainer.evaluation(test_loader, data_split='test')
return val_metrics, test_metrics, trainer.writer.log_dir
return val_metrics
def train_ogbg(args, device, metrics_dict):
dataset = OGBGDatasetExtension(return_types=args.required_data, device=device, name=args.dataset)
split_idx = dataset.get_idx_split()
if args.force_random_split == True:
all_idx = get_random_indices(len(dataset), args.seed_data)
split_idx["train"] = all_idx[:len(split_idx["train"])]
split_idx["train"] = all_idx[len(split_idx["train"]):len(split_idx["train"])+len(split_idx["valid"])]
split_idx["train"] = all_idx[len(split_idx["train"])+len(split_idx["valid"]):]
collate_function = globals()[args.collate_function] if args.collate_params == {} else globals()[
args.collate_function](**args.collate_params)
train_loader = DataLoader(Subset(dataset, split_idx["train"]), batch_size=args.batch_size, shuffle=True,
collate_fn=collate_function)
val_loader = DataLoader(Subset(dataset, split_idx["valid"]), batch_size=args.batch_size, shuffle=False,
collate_fn=collate_function)
test_loader = DataLoader(Subset(dataset, split_idx["test"]), batch_size=args.batch_size, shuffle=False,
collate_fn=collate_function)
model, num_pretrain, transfer_from_same_dataset = load_model(args, data=dataset, device=device)
metrics = {metric: metrics_dict[metric] for metric in args.metrics}
metrics[args.dataset] = metrics_dict[args.dataset]
args.main_metric = args.dataset
args.val_per_batch = False
args.main_metric_goal = 'min' if metrics[args.main_metric].metric == 'rmse' else 'max'
trainer = get_trainer(args=args, model=model, data=dataset, device=device, metrics=metrics)
val_metrics = trainer.train(train_loader, val_loader)
if args.eval_on_test:
test_metrics = trainer.evaluation(test_loader, data_split='test')
return val_metrics, test_metrics, trainer.writer.log_dir
return val_metrics
def train_zinc(args, device, metrics_dict):
train_data = ZINCDataset(split='train', device=device)
val_data = ZINCDataset(split='val', device=device)
test_data = ZINCDataset(split='test', device=device)
model, num_pretrain, transfer_from_same_dataset = load_model(args, data=train_data, device=device)
print('model trainable params: ', sum(p.numel() for p in model.parameters() if p.requires_grad))
collate_function = globals()[args.collate_function] if args.collate_params == {} else globals()[
args.collate_function](**args.collate_params)
if args.train_sampler != None:
sampler = globals()[args.train_sampler](data_source=train_data, batch_size=args.batch_size,
indices=range(len(train_data)))
train_loader = DataLoader(train_data, batch_sampler=sampler, collate_fn=collate_function)
else:
train_loader = DataLoader(train_data, batch_size=args.batch_size, shuffle=True, collate_fn=collate_function)
val_loader = DataLoader(val_data, batch_size=args.batch_size, collate_fn=collate_function)
test_loader = DataLoader(test_data, batch_size=args.batch_size, collate_fn=collate_function)
metrics = {metric: metrics_dict[metric] for metric in args.metrics}
trainer = get_trainer(args=args, model=model, data=train_data, device=device, metrics=metrics)
val_metrics = trainer.train(train_loader, val_loader)
if args.eval_on_test:
test_metrics = trainer.evaluation(test_loader, data_split='test')
return val_metrics, test_metrics, trainer.writer.log_dir
return val_metrics
def train_geom(args, device, metrics_dict):
if args.dataset == 'drugs':
dataset = GEOMDrugs
elif args.dataset == 'geom_qm9':
dataset = GEOMqm9
elif args.dataset == 'qmugs':
dataset = QMugsDataset
elif args.dataset == 'qm9_geomol_feat':
dataset = QM9GeomolFeatDataset
elif args.dataset == 'file_loader_drugs':
dataset = FileLoaderDrugs
elif args.dataset == 'file_loader_qm9':
dataset = FileLoaderQM9
all_data = dataset(return_types=args.required_data, target_tasks=args.targets, device=device,
num_conformers=args.num_conformers)
all_idx = get_random_indices(len(all_data), args.seed_data)
if args.dataset == 'drugs':
model_idx = all_idx[:280000] # 304293 in all data
elif args.dataset in ['geom_qm9', 'qm9_geomol_feat']:
model_idx = all_idx[:100000]
elif args.dataset == 'qmugs':
model_idx = all_idx[:620000]
elif args.dataset == 'file_loader_qm9':
model_idx = all_idx[:80000] # 107857 molecules in all_data
elif args.dataset == 'file_loader_drugs':
model_idx = all_idx[:160000]
test_idx = all_idx[len(model_idx): len(model_idx) + int(0.05 * len(all_data))]
if args.dataset in ['file_loader_drugs', 'file_loader_qm9']:
val_idx = all_idx[max(len(model_idx) + len(test_idx), len(all_data) - 1000):]
else:
val_idx = all_idx[len(model_idx) + len(test_idx):]
train_idx = model_idx[:args.num_train]
# for debugging purposes:
# test_idx = all_idx[len(model_idx): len(model_idx) + 200]
# val_idx = all_idx[len(model_idx) + len(test_idx): len(model_idx) + len(test_idx) + 3000]
model, num_pretrain, transfer_from_same_dataset = load_model(args, data=all_data, device=device)
if transfer_from_same_dataset:
train_idx = model_idx[num_pretrain: num_pretrain + args.num_train]
print('model trainable params: ', sum(p.numel() for p in model.parameters() if p.requires_grad))
print(f'Training on {len(train_idx)} samples from the model sequences')
collate_function = globals()[args.collate_function] if args.collate_params == {} else globals()[
args.collate_function](**args.collate_params)
if args.train_sampler != None:
sampler = globals()[args.train_sampler](data_source=all_data, batch_size=args.batch_size, indices=train_idx)
train_loader = DataLoader(Subset(all_data, train_idx), batch_sampler=sampler, collate_fn=collate_function)
else:
train_loader = DataLoader(Subset(all_data, train_idx), batch_size=args.batch_size, shuffle=True,
collate_fn=collate_function)
val_loader = DataLoader(Subset(all_data, val_idx), batch_size=args.batch_size, collate_fn=collate_function)
test_loader = DataLoader(Subset(all_data, test_idx), batch_size=args.batch_size, collate_fn=collate_function)
if 'mae_denormalized' in args.metrics:
metrics_dict.update({'mae_denormalized': QM9DenormalizedL1(dataset=all_data),
'mse_denormalized': QM9DenormalizedL2(dataset=all_data)})
metrics = {metric: metrics_dict[metric] for metric in args.metrics}
trainer = get_trainer(args=args, model=model, data=all_data, device=device, metrics=metrics)
val_metrics = trainer.train(train_loader, val_loader)
if args.eval_on_test:
test_metrics = trainer.evaluation(test_loader, data_split='test')
return val_metrics, test_metrics, trainer.writer.log_dir
return val_metrics
def train_qm9(args, device, metrics_dict):
if args.dataset == 'qm9_rdkit':
all_data = QM9DatasetRDKITConformers(return_types=args.required_data, target_tasks=args.targets, device=device,
dist_embedding=args.dist_embedding, num_radial=args.num_radial)
elif args.dataset == 'qm9_neuralconf':
all_data = QM9DatasetGeomolConformers(return_types=args.required_data, target_tasks=args.targets, device=device,
dist_embedding=args.dist_embedding, num_radial=args.num_radial)
else:
all_data = QM9Dataset(return_types=args.required_data, target_tasks=args.targets, device=device,
dist_embedding=args.dist_embedding, num_radial=args.num_radial)
all_idx = get_random_indices(len(all_data), args.seed_data)
model_idx = all_idx[:100000]
test_idx = all_idx[len(model_idx): len(model_idx) + int(0.1 * len(all_data))]
val_idx = all_idx[len(model_idx) + len(test_idx):]
train_idx = model_idx[:args.num_train]
if args.num_val != None:
train_idx = all_idx[:args.num_train]
val_idx = all_idx[len(train_idx): len(train_idx) + args.num_val]
test_idx = all_idx[len(train_idx) + args.num_val: len(train_idx) + 2*args.num_val]
# for debugging purposes:
# test_idx = all_idx[len(model_idx): len(model_idx) + 20]
# val_idx = all_idx[len(model_idx) + len(test_idx): len(model_idx) + len(test_idx) + 30]
model, num_pretrain, transfer_from_same_dataset = load_model(args, data=all_data, device=device)
if transfer_from_same_dataset:
train_idx = model_idx[num_pretrain: num_pretrain + args.num_train]
print('model trainable params: ', sum(p.numel() for p in model.parameters() if p.requires_grad))
print(f'Training on {len(train_idx)} samples from the model sequences')
print(f'Validating on {len(val_idx)} samples')
print(f'Testing on {len(test_idx)} samples')
collate_function = globals()[args.collate_function] if args.collate_params == {} else globals()[
args.collate_function](**args.collate_params)
if args.train_sampler != None:
sampler = globals()[args.train_sampler](data_source=all_data, batch_size=args.batch_size, indices=train_idx)
train_loader = DataLoader(Subset(all_data, train_idx), batch_sampler=sampler, collate_fn=collate_function)
else:
train_loader = DataLoader(Subset(all_data, train_idx), batch_size=args.batch_size, shuffle=True,
collate_fn=collate_function)
val_loader = DataLoader(Subset(all_data, val_idx), batch_size=args.batch_size, collate_fn=collate_function)
test_loader = DataLoader(Subset(all_data, test_idx), batch_size=args.batch_size, collate_fn=collate_function)
metrics_dict.update({'mae_denormalized': QM9DenormalizedL1(dataset=all_data),
'mse_denormalized': QM9DenormalizedL2(dataset=all_data)})
metrics = {metric: metrics_dict[metric] for metric in args.metrics if metric != 'qm9_properties'}
if 'qm9_properties' in args.metrics:
metrics.update(
{task: QM9SingleTargetDenormalizedL1(dataset=all_data, task=task) for task in all_data.target_tasks})
trainer = get_trainer(args=args, model=model, data=all_data, device=device, metrics=metrics)
val_metrics = trainer.train(train_loader, val_loader)
if args.eval_on_test:
test_metrics = trainer.evaluation(test_loader, data_split='test')
return val_metrics, test_metrics, trainer.writer.log_dir
return val_metrics
def get_arguments():
args = parse_arguments()
if args.config:
config_dict = yaml.load(args.config, Loader=yaml.FullLoader)
arg_dict = args.__dict__
for key, value in config_dict.items():
if isinstance(value, list):
for v in value:
arg_dict[key].append(v)
else:
arg_dict[key] = value
else:
config_dict = {}
if args.checkpoint: # overwrite args with args from checkpoint except for the args that were contained in the config file
arg_dict = args.__dict__
with open(os.path.join(os.path.dirname(args.checkpoint), 'train_arguments.yaml'), 'r') as arg_file:
checkpoint_dict = yaml.load(arg_file, Loader=yaml.FullLoader)
for key, value in checkpoint_dict.items():
if key not in config_dict.keys():
if isinstance(value, list):
for v in value:
arg_dict[key].append(v)
else:
arg_dict[key] = value
return args
if __name__ == '__main__':
args = get_arguments()
if args.multithreaded_seeds != []:
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = []
for seed in args.multithreaded_seeds:
args_copy = get_arguments()
args_copy.seed = seed
futures.append(executor.submit(train, args_copy))
results = [f.result() for f in
futures] # list of tuples of dictionaries with the validation results first and the test results second
all_val_metrics = defaultdict(list)
all_test_metrics = defaultdict(list)
log_dirs = []
for result in results:
val_metrics, test_metrics, log_dir = result
log_dirs.append(log_dir)
for key in val_metrics.keys():
all_val_metrics[key].append(val_metrics[key])
all_test_metrics[key].append(test_metrics[key])
files = [open(os.path.join(dir, 'multiple_seed_validation_statistics.txt'), 'w') for dir in log_dirs]
print('Validation results:')
for key, value in all_val_metrics.items():
metric = np.array(value)
for file in files:
file.write(f'\n{key:}\n')
file.write(f'mean: {metric.mean()}\n')
file.write(f'stddev: {metric.std()}\n')
file.write(f'stderr: {metric.std() / np.sqrt(len(metric))}\n')
file.write(f'values: {value}\n')
print(f'\n{key}:')
print(f'mean: {metric.mean()}')
print(f'stddev: {metric.std()}')
print(f'stderr: {metric.std() / np.sqrt(len(metric))}')
print(f'values: {value}')
for file in files:
file.close()
files = [open(os.path.join(dir, 'multiple_seed_test_statistics.txt'), 'w') for dir in log_dirs]
print('Test results:')
for key, value in all_test_metrics.items():
metric = np.array(value)
for file in files:
file.write(f'\n{key:}\n')
file.write(f'mean: {metric.mean()}\n')
file.write(f'stddev: {metric.std()}\n')
file.write(f'stderr: {metric.std() / np.sqrt(len(metric))}\n')
file.write(f'values: {value}\n')
print(f'\n{key}:')
print(f'mean: {metric.mean()}')
print(f'stddev: {metric.std()}')
print(f'stderr: {metric.std() / np.sqrt(len(metric))}')
print(f'values: {value}')
for file in files:
file.close()
else:
train(args)